blob: 9ce0734378403b243b8ed4c804fa4ffd22d87526 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2008 the V8 project authors. All rights reserved.
34
35// A light-weight IA32 Assembler.
36
37#ifndef V8_IA32_ASSEMBLER_IA32_H_
38#define V8_IA32_ASSEMBLER_IA32_H_
39
Steve Blockd0582a62009-12-15 09:54:21 +000040#include "serialize.h"
41
Steve Blocka7e24c12009-10-30 11:49:00 +000042namespace v8 {
43namespace internal {
44
45// CPU Registers.
46//
47// 1) We would prefer to use an enum, but enum values are assignment-
48// compatible with int, which has caused code-generation bugs.
49//
50// 2) We would prefer to use a class instead of a struct but we don't like
51// the register initialization to depend on the particular initialization
52// order (which appears to be different on OS X, Linux, and Windows for the
53// installed versions of C++ we tried). Using a struct permits C-style
54// "initialization". Also, the Register objects cannot be const as this
55// forces initialization stubs in MSVC, making us dependent on initialization
56// order.
57//
58// 3) By not using an enum, we are possibly preventing the compiler from
59// doing certain constant folds, which may significantly reduce the
60// code generated for some assembly instructions (because they boil down
61// to a few constants). If this is a problem, we could change the code
62// such that we use an enum in optimized mode, and the struct in debug
63// mode. This way we get the compile-time error checking in debug mode
64// and best performance in optimized code.
65//
66struct Register {
67 bool is_valid() const { return 0 <= code_ && code_ < 8; }
68 bool is(Register reg) const { return code_ == reg.code_; }
69 // eax, ebx, ecx and edx are byte registers, the rest are not.
70 bool is_byte_register() const { return code_ <= 3; }
71 int code() const {
72 ASSERT(is_valid());
73 return code_;
74 }
75 int bit() const {
76 ASSERT(is_valid());
77 return 1 << code_;
78 }
79
80 // (unfortunately we can't make this private in a struct)
81 int code_;
82};
83
84const Register eax = { 0 };
85const Register ecx = { 1 };
86const Register edx = { 2 };
87const Register ebx = { 3 };
88const Register esp = { 4 };
89const Register ebp = { 5 };
90const Register esi = { 6 };
91const Register edi = { 7 };
92const Register no_reg = { -1 };
93
94
95struct XMMRegister {
96 bool is_valid() const { return 0 <= code_ && code_ < 2; } // currently
97 int code() const {
98 ASSERT(is_valid());
99 return code_;
100 }
101
102 int code_;
103};
104
105const XMMRegister xmm0 = { 0 };
106const XMMRegister xmm1 = { 1 };
107const XMMRegister xmm2 = { 2 };
108const XMMRegister xmm3 = { 3 };
109const XMMRegister xmm4 = { 4 };
110const XMMRegister xmm5 = { 5 };
111const XMMRegister xmm6 = { 6 };
112const XMMRegister xmm7 = { 7 };
113
114enum Condition {
115 // any value < 0 is considered no_condition
116 no_condition = -1,
117
118 overflow = 0,
119 no_overflow = 1,
120 below = 2,
121 above_equal = 3,
122 equal = 4,
123 not_equal = 5,
124 below_equal = 6,
125 above = 7,
126 negative = 8,
127 positive = 9,
128 parity_even = 10,
129 parity_odd = 11,
130 less = 12,
131 greater_equal = 13,
132 less_equal = 14,
133 greater = 15,
134
135 // aliases
136 carry = below,
137 not_carry = above_equal,
138 zero = equal,
139 not_zero = not_equal,
140 sign = negative,
141 not_sign = positive
142};
143
144
145// Returns the equivalent of !cc.
146// Negation of the default no_condition (-1) results in a non-default
147// no_condition value (-2). As long as tests for no_condition check
148// for condition < 0, this will work as expected.
149inline Condition NegateCondition(Condition cc);
150
151// Corresponds to transposing the operands of a comparison.
152inline Condition ReverseCondition(Condition cc) {
153 switch (cc) {
154 case below:
155 return above;
156 case above:
157 return below;
158 case above_equal:
159 return below_equal;
160 case below_equal:
161 return above_equal;
162 case less:
163 return greater;
164 case greater:
165 return less;
166 case greater_equal:
167 return less_equal;
168 case less_equal:
169 return greater_equal;
170 default:
171 return cc;
172 };
173}
174
175enum Hint {
176 no_hint = 0,
177 not_taken = 0x2e,
178 taken = 0x3e
179};
180
181// The result of negating a hint is as if the corresponding condition
182// were negated by NegateCondition. That is, no_hint is mapped to
183// itself and not_taken and taken are mapped to each other.
184inline Hint NegateHint(Hint hint) {
185 return (hint == no_hint)
186 ? no_hint
187 : ((hint == not_taken) ? taken : not_taken);
188}
189
190
191// -----------------------------------------------------------------------------
192// Machine instruction Immediates
193
194class Immediate BASE_EMBEDDED {
195 public:
196 inline explicit Immediate(int x);
197 inline explicit Immediate(const char* s);
198 inline explicit Immediate(const ExternalReference& ext);
199 inline explicit Immediate(Handle<Object> handle);
200 inline explicit Immediate(Smi* value);
201
202 static Immediate CodeRelativeOffset(Label* label) {
203 return Immediate(label);
204 }
205
206 bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
207 bool is_int8() const {
208 return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
209 }
210 bool is_int16() const {
211 return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
212 }
213
214 private:
215 inline explicit Immediate(Label* value);
216
217 int x_;
218 RelocInfo::Mode rmode_;
219
220 friend class Assembler;
221};
222
223
224// -----------------------------------------------------------------------------
225// Machine instruction Operands
226
227enum ScaleFactor {
228 times_1 = 0,
229 times_2 = 1,
230 times_4 = 2,
231 times_8 = 3,
Leon Clarke4515c472010-02-03 11:58:03 +0000232 times_int_size = times_4,
233 times_half_pointer_size = times_2,
234 times_pointer_size = times_4
Steve Blocka7e24c12009-10-30 11:49:00 +0000235};
236
237
238class Operand BASE_EMBEDDED {
239 public:
240 // reg
241 INLINE(explicit Operand(Register reg));
242
243 // [disp/r]
244 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
245 // disp only must always be relocated
246
247 // [base + disp/r]
248 explicit Operand(Register base, int32_t disp,
249 RelocInfo::Mode rmode = RelocInfo::NONE);
250
251 // [base + index*scale + disp/r]
252 explicit Operand(Register base,
253 Register index,
254 ScaleFactor scale,
255 int32_t disp,
256 RelocInfo::Mode rmode = RelocInfo::NONE);
257
258 // [index*scale + disp/r]
259 explicit Operand(Register index,
260 ScaleFactor scale,
261 int32_t disp,
262 RelocInfo::Mode rmode = RelocInfo::NONE);
263
264 static Operand StaticVariable(const ExternalReference& ext) {
265 return Operand(reinterpret_cast<int32_t>(ext.address()),
266 RelocInfo::EXTERNAL_REFERENCE);
267 }
268
269 static Operand StaticArray(Register index,
270 ScaleFactor scale,
271 const ExternalReference& arr) {
272 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
273 RelocInfo::EXTERNAL_REFERENCE);
274 }
275
276 // Returns true if this Operand is a wrapper for the specified register.
277 bool is_reg(Register reg) const;
278
279 private:
280 byte buf_[6];
281 // The number of bytes in buf_.
282 unsigned int len_;
283 // Only valid if len_ > 4.
284 RelocInfo::Mode rmode_;
285
286 // Set the ModRM byte without an encoded 'reg' register. The
287 // register is encoded later as part of the emit_operand operation.
288 inline void set_modrm(int mod, Register rm);
289
290 inline void set_sib(ScaleFactor scale, Register index, Register base);
291 inline void set_disp8(int8_t disp);
292 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
293
294 friend class Assembler;
295};
296
297
298// -----------------------------------------------------------------------------
299// A Displacement describes the 32bit immediate field of an instruction which
300// may be used together with a Label in order to refer to a yet unknown code
301// position. Displacements stored in the instruction stream are used to describe
302// the instruction and to chain a list of instructions using the same Label.
303// A Displacement contains 2 different fields:
304//
305// next field: position of next displacement in the chain (0 = end of list)
306// type field: instruction type
307//
308// A next value of null (0) indicates the end of a chain (note that there can
309// be no displacement at position zero, because there is always at least one
310// instruction byte before the displacement).
311//
312// Displacement _data field layout
313//
314// |31.....2|1......0|
315// [ next | type |
316
317class Displacement BASE_EMBEDDED {
318 public:
319 enum Type {
320 UNCONDITIONAL_JUMP,
321 CODE_RELATIVE,
322 OTHER
323 };
324
325 int data() const { return data_; }
326 Type type() const { return TypeField::decode(data_); }
327 void next(Label* L) const {
328 int n = NextField::decode(data_);
329 n > 0 ? L->link_to(n) : L->Unuse();
330 }
331 void link_to(Label* L) { init(L, type()); }
332
333 explicit Displacement(int data) { data_ = data; }
334
335 Displacement(Label* L, Type type) { init(L, type); }
336
337 void print() {
338 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
339 NextField::decode(data_));
340 }
341
342 private:
343 int data_;
344
345 class TypeField: public BitField<Type, 0, 2> {};
346 class NextField: public BitField<int, 2, 32-2> {};
347
348 void init(Label* L, Type type);
349};
350
351
352
353// CpuFeatures keeps track of which features are supported by the target CPU.
354// Supported features must be enabled by a Scope before use.
355// Example:
356// if (CpuFeatures::IsSupported(SSE2)) {
357// CpuFeatures::Scope fscope(SSE2);
358// // Generate SSE2 floating point code.
359// } else {
360// // Generate standard x87 floating point code.
361// }
362class CpuFeatures : public AllStatic {
363 public:
Steve Blocka7e24c12009-10-30 11:49:00 +0000364 // Detect features of the target CPU. Set safe defaults if the serializer
365 // is enabled (snapshots must be portable).
366 static void Probe();
367 // Check whether a feature is supported by the target CPU.
Steve Blockd0582a62009-12-15 09:54:21 +0000368 static bool IsSupported(CpuFeature f) {
Steve Block3ce2e202009-11-05 08:53:23 +0000369 if (f == SSE2 && !FLAG_enable_sse2) return false;
370 if (f == SSE3 && !FLAG_enable_sse3) return false;
371 if (f == CMOV && !FLAG_enable_cmov) return false;
372 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +0000373 return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
374 }
375 // Check whether a feature is currently enabled.
Steve Blockd0582a62009-12-15 09:54:21 +0000376 static bool IsEnabled(CpuFeature f) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000377 return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0;
378 }
379 // Enable a specified feature within a scope.
380 class Scope BASE_EMBEDDED {
381#ifdef DEBUG
382 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000383 explicit Scope(CpuFeature f) {
384 uint64_t mask = static_cast<uint64_t>(1) << f;
Steve Blocka7e24c12009-10-30 11:49:00 +0000385 ASSERT(CpuFeatures::IsSupported(f));
Steve Blockd0582a62009-12-15 09:54:21 +0000386 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000387 old_enabled_ = CpuFeatures::enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000388 CpuFeatures::enabled_ |= mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000389 }
390 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
391 private:
392 uint64_t old_enabled_;
393#else
394 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000395 explicit Scope(CpuFeature f) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000396#endif
397 };
398 private:
399 static uint64_t supported_;
400 static uint64_t enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000401 static uint64_t found_by_runtime_probing_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000402};
403
404
405class Assembler : public Malloced {
406 private:
407 // We check before assembling an instruction that there is sufficient
408 // space to write an instruction and its relocation information.
409 // The relocation writer's position must be kGap bytes above the end of
410 // the generated instructions. This leaves enough space for the
411 // longest possible ia32 instruction, 15 bytes, and the longest possible
412 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
413 // (There is a 15 byte limit on ia32 instruction length that rules out some
414 // otherwise valid instructions.)
415 // This allows for a single, fast space check per instruction.
416 static const int kGap = 32;
417
418 public:
419 // Create an assembler. Instructions and relocation information are emitted
420 // into a buffer, with the instructions starting from the beginning and the
421 // relocation information starting from the end of the buffer. See CodeDesc
422 // for a detailed comment on the layout (globals.h).
423 //
424 // If the provided buffer is NULL, the assembler allocates and grows its own
425 // buffer, and buffer_size determines the initial buffer size. The buffer is
426 // owned by the assembler and deallocated upon destruction of the assembler.
427 //
428 // If the provided buffer is not NULL, the assembler uses the provided buffer
429 // for code generation and assumes its size to be buffer_size. If the buffer
430 // is too small, a fatal error occurs. No deallocation of the buffer is done
431 // upon destruction of the assembler.
432 Assembler(void* buffer, int buffer_size);
433 ~Assembler();
434
435 // GetCode emits any pending (non-emitted) code and fills the descriptor
436 // desc. GetCode() is idempotent; it returns the same result if no other
437 // Assembler functions are invoked in between GetCode() calls.
438 void GetCode(CodeDesc* desc);
439
440 // Read/Modify the code target in the branch/call instruction at pc.
441 inline static Address target_address_at(Address pc);
442 inline static void set_target_address_at(Address pc, Address target);
443
Steve Blockd0582a62009-12-15 09:54:21 +0000444 // This sets the branch destination (which is in the instruction on x86).
445 // This is for calls and branches within generated code.
446 inline static void set_target_at(Address instruction_payload,
447 Address target) {
448 set_target_address_at(instruction_payload, target);
449 }
450
451 // This sets the branch destination (which is in the instruction on x86).
452 // This is for calls and branches to runtime code.
453 inline static void set_external_target_at(Address instruction_payload,
454 Address target) {
455 set_target_address_at(instruction_payload, target);
456 }
457
458 static const int kCallTargetSize = kPointerSize;
459 static const int kExternalTargetSize = kPointerSize;
460
Steve Blocka7e24c12009-10-30 11:49:00 +0000461 // Distance between the address of the code target in the call instruction
462 // and the return address
463 static const int kCallTargetAddressOffset = kPointerSize;
464 // Distance between start of patched return sequence and the emitted address
465 // to jump to.
466 static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
467
Steve Blockd0582a62009-12-15 09:54:21 +0000468 static const int kCallInstructionLength = 5;
469 static const int kJSReturnSequenceLength = 6;
Steve Blocka7e24c12009-10-30 11:49:00 +0000470
471 // ---------------------------------------------------------------------------
472 // Code generation
473 //
474 // - function names correspond one-to-one to ia32 instruction mnemonics
475 // - unless specified otherwise, instructions operate on 32bit operands
476 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
477 // - instructions on 16bit (word) operands/registers have a trailing '_w'
478 // - naming conflicts with C++ keywords are resolved via a trailing '_'
479
480 // NOTE ON INTERFACE: Currently, the interface is not very consistent
481 // in the sense that some operations (e.g. mov()) can be called in more
482 // the one way to generate the same instruction: The Register argument
483 // can in some cases be replaced with an Operand(Register) argument.
484 // This should be cleaned up and made more orthogonal. The questions
485 // is: should we always use Operands instead of Registers where an
486 // Operand is possible, or should we have a Register (overloaded) form
487 // instead? We must be careful to make sure that the selected instruction
488 // is obvious from the parameters to avoid hard-to-find code generation
489 // bugs.
490
491 // Insert the smallest number of nop instructions
492 // possible to align the pc offset to a multiple
493 // of m. m must be a power of 2.
494 void Align(int m);
495
496 // Stack
497 void pushad();
498 void popad();
499
500 void pushfd();
501 void popfd();
502
503 void push(const Immediate& x);
504 void push(Register src);
505 void push(const Operand& src);
506 void push(Label* label, RelocInfo::Mode relocation_mode);
507
508 void pop(Register dst);
509 void pop(const Operand& dst);
510
511 void enter(const Immediate& size);
512 void leave();
513
514 // Moves
515 void mov_b(Register dst, const Operand& src);
516 void mov_b(const Operand& dst, int8_t imm8);
517 void mov_b(const Operand& dst, Register src);
518
519 void mov_w(Register dst, const Operand& src);
520 void mov_w(const Operand& dst, Register src);
521
522 void mov(Register dst, int32_t imm32);
523 void mov(Register dst, const Immediate& x);
524 void mov(Register dst, Handle<Object> handle);
525 void mov(Register dst, const Operand& src);
526 void mov(Register dst, Register src);
527 void mov(const Operand& dst, const Immediate& x);
528 void mov(const Operand& dst, Handle<Object> handle);
529 void mov(const Operand& dst, Register src);
530
531 void movsx_b(Register dst, const Operand& src);
532
533 void movsx_w(Register dst, const Operand& src);
534
535 void movzx_b(Register dst, const Operand& src);
536
537 void movzx_w(Register dst, const Operand& src);
538
539 // Conditional moves
540 void cmov(Condition cc, Register dst, int32_t imm32);
541 void cmov(Condition cc, Register dst, Handle<Object> handle);
542 void cmov(Condition cc, Register dst, const Operand& src);
543
Leon Clarkee46be812010-01-19 14:06:41 +0000544 // Repetitive string instructions.
545 void rep_movs();
546
Steve Blocka7e24c12009-10-30 11:49:00 +0000547 // Exchange two registers
548 void xchg(Register dst, Register src);
549
550 // Arithmetics
551 void adc(Register dst, int32_t imm32);
552 void adc(Register dst, const Operand& src);
553
554 void add(Register dst, const Operand& src);
555 void add(const Operand& dst, const Immediate& x);
556
557 void and_(Register dst, int32_t imm32);
558 void and_(Register dst, const Operand& src);
559 void and_(const Operand& src, Register dst);
560 void and_(const Operand& dst, const Immediate& x);
561
562 void cmpb(const Operand& op, int8_t imm8);
Leon Clarked91b9f72010-01-27 17:25:45 +0000563 void cmpb(Register src, const Operand& dst);
564 void cmpb(const Operand& dst, Register src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 void cmpb_al(const Operand& op);
566 void cmpw_ax(const Operand& op);
567 void cmpw(const Operand& op, Immediate imm16);
568 void cmp(Register reg, int32_t imm32);
569 void cmp(Register reg, Handle<Object> handle);
570 void cmp(Register reg, const Operand& op);
571 void cmp(const Operand& op, const Immediate& imm);
572 void cmp(const Operand& op, Handle<Object> handle);
573
574 void dec_b(Register dst);
575
576 void dec(Register dst);
577 void dec(const Operand& dst);
578
579 void cdq();
580
581 void idiv(Register src);
582
583 // Signed multiply instructions.
584 void imul(Register src); // edx:eax = eax * src.
585 void imul(Register dst, const Operand& src); // dst = dst * src.
586 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
587
588 void inc(Register dst);
589 void inc(const Operand& dst);
590
591 void lea(Register dst, const Operand& src);
592
593 // Unsigned multiply instruction.
594 void mul(Register src); // edx:eax = eax * reg.
595
596 void neg(Register dst);
597
598 void not_(Register dst);
599
600 void or_(Register dst, int32_t imm32);
601 void or_(Register dst, const Operand& src);
602 void or_(const Operand& dst, Register src);
603 void or_(const Operand& dst, const Immediate& x);
604
605 void rcl(Register dst, uint8_t imm8);
606
607 void sar(Register dst, uint8_t imm8);
Steve Blockd0582a62009-12-15 09:54:21 +0000608 void sar_cl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000609
610 void sbb(Register dst, const Operand& src);
611
612 void shld(Register dst, const Operand& src);
613
614 void shl(Register dst, uint8_t imm8);
Steve Blockd0582a62009-12-15 09:54:21 +0000615 void shl_cl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000616
617 void shrd(Register dst, const Operand& src);
618
619 void shr(Register dst, uint8_t imm8);
Steve Blocka7e24c12009-10-30 11:49:00 +0000620 void shr_cl(Register dst);
621
Steve Block3ce2e202009-11-05 08:53:23 +0000622 void subb(const Operand& dst, int8_t imm8);
Leon Clarkee46be812010-01-19 14:06:41 +0000623 void subb(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000624 void sub(const Operand& dst, const Immediate& x);
625 void sub(Register dst, const Operand& src);
626 void sub(const Operand& dst, Register src);
627
628 void test(Register reg, const Immediate& imm);
629 void test(Register reg, const Operand& op);
Leon Clarkee46be812010-01-19 14:06:41 +0000630 void test_b(Register reg, const Operand& op);
Steve Blocka7e24c12009-10-30 11:49:00 +0000631 void test(const Operand& op, const Immediate& imm);
632
633 void xor_(Register dst, int32_t imm32);
634 void xor_(Register dst, const Operand& src);
635 void xor_(const Operand& src, Register dst);
636 void xor_(const Operand& dst, const Immediate& x);
637
638 // Bit operations.
639 void bt(const Operand& dst, Register src);
640 void bts(const Operand& dst, Register src);
641
642 // Miscellaneous
643 void hlt();
644 void int3();
645 void nop();
646 void rdtsc();
647 void ret(int imm16);
648
649 // Label operations & relative jumps (PPUM Appendix D)
650 //
651 // Takes a branch opcode (cc) and a label (L) and generates
652 // either a backward branch or a forward branch and links it
653 // to the label fixup chain. Usage:
654 //
655 // Label L; // unbound label
656 // j(cc, &L); // forward branch to unbound label
657 // bind(&L); // bind label to the current pc
658 // j(cc, &L); // backward branch to bound label
659 // bind(&L); // illegal: a label may be bound only once
660 //
661 // Note: The same Label can be used for forward and backward branches
662 // but it may be bound only once.
663
664 void bind(Label* L); // binds an unbound label L to the current code position
665
666 // Calls
667 void call(Label* L);
668 void call(byte* entry, RelocInfo::Mode rmode);
669 void call(const Operand& adr);
670 void call(Handle<Code> code, RelocInfo::Mode rmode);
671
672 // Jumps
673 void jmp(Label* L); // unconditional jump to L
674 void jmp(byte* entry, RelocInfo::Mode rmode);
675 void jmp(const Operand& adr);
676 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
677
678 // Conditional jumps
679 void j(Condition cc, Label* L, Hint hint = no_hint);
680 void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
681 void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
682
683 // Floating-point operations
684 void fld(int i);
685
686 void fld1();
687 void fldz();
688
689 void fld_s(const Operand& adr);
690 void fld_d(const Operand& adr);
691
692 void fstp_s(const Operand& adr);
693 void fstp_d(const Operand& adr);
694
695 void fild_s(const Operand& adr);
696 void fild_d(const Operand& adr);
697
698 void fist_s(const Operand& adr);
699
700 void fistp_s(const Operand& adr);
701 void fistp_d(const Operand& adr);
702
703 void fisttp_s(const Operand& adr);
Leon Clarkee46be812010-01-19 14:06:41 +0000704 void fisttp_d(const Operand& adr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000705
706 void fabs();
707 void fchs();
708 void fcos();
709 void fsin();
710
711 void fadd(int i);
712 void fsub(int i);
713 void fmul(int i);
714 void fdiv(int i);
715
716 void fisub_s(const Operand& adr);
717
718 void faddp(int i = 1);
719 void fsubp(int i = 1);
720 void fsubrp(int i = 1);
721 void fmulp(int i = 1);
722 void fdivp(int i = 1);
723 void fprem();
724 void fprem1();
725
726 void fxch(int i = 1);
727 void fincstp();
728 void ffree(int i = 0);
729
730 void ftst();
731 void fucomp(int i);
732 void fucompp();
Steve Block3ce2e202009-11-05 08:53:23 +0000733 void fucomi(int i);
734 void fucomip();
Steve Blocka7e24c12009-10-30 11:49:00 +0000735 void fcompp();
736 void fnstsw_ax();
737 void fwait();
738 void fnclex();
739
740 void frndint();
741
742 void sahf();
743 void setcc(Condition cc, Register reg);
744
745 void cpuid();
746
747 // SSE2 instructions
748 void cvttss2si(Register dst, const Operand& src);
749 void cvttsd2si(Register dst, const Operand& src);
750
751 void cvtsi2sd(XMMRegister dst, const Operand& src);
752
753 void addsd(XMMRegister dst, XMMRegister src);
754 void subsd(XMMRegister dst, XMMRegister src);
755 void mulsd(XMMRegister dst, XMMRegister src);
756 void divsd(XMMRegister dst, XMMRegister src);
Leon Clarkee46be812010-01-19 14:06:41 +0000757 void xorpd(XMMRegister dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000758
759 void comisd(XMMRegister dst, XMMRegister src);
760
Leon Clarkee46be812010-01-19 14:06:41 +0000761 void movdqa(XMMRegister dst, const Operand& src);
762 void movdqa(const Operand& dst, XMMRegister src);
763 void movdqu(XMMRegister dst, const Operand& src);
764 void movdqu(const Operand& dst, XMMRegister src);
765
Steve Blocka7e24c12009-10-30 11:49:00 +0000766 // Use either movsd or movlpd.
767 void movdbl(XMMRegister dst, const Operand& src);
768 void movdbl(const Operand& dst, XMMRegister src);
769
770 // Debugging
771 void Print();
772
773 // Check the code size generated from label to here.
774 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
775
776 // Mark address of the ExitJSFrame code.
777 void RecordJSReturn();
778
779 // Record a comment relocation entry that can be used by a disassembler.
780 // Use --debug_code to enable.
781 void RecordComment(const char* msg);
782
783 void RecordPosition(int pos);
784 void RecordStatementPosition(int pos);
785 void WriteRecordedPositions();
786
787 // Writes a single word of data in the code stream.
788 // Used for inline tables, e.g., jump-tables.
789 void dd(uint32_t data, RelocInfo::Mode reloc_info);
790
791 int pc_offset() const { return pc_ - buffer_; }
792 int current_statement_position() const { return current_statement_position_; }
793 int current_position() const { return current_position_; }
794
795 // Check if there is less than kGap bytes available in the buffer.
796 // If this is the case, we need to grow the buffer before emitting
797 // an instruction or relocation information.
798 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
799
800 // Get the number of bytes available in the buffer.
801 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
802
803 // Avoid overflows for displacements etc.
804 static const int kMaximalBufferSize = 512*MB;
805 static const int kMinimalBufferSize = 4*KB;
806
807 protected:
808 void movsd(XMMRegister dst, const Operand& src);
809 void movsd(const Operand& dst, XMMRegister src);
810
811 void emit_sse_operand(XMMRegister reg, const Operand& adr);
812 void emit_sse_operand(XMMRegister dst, XMMRegister src);
813
814
815 private:
816 byte* addr_at(int pos) { return buffer_ + pos; }
817 byte byte_at(int pos) { return buffer_[pos]; }
818 uint32_t long_at(int pos) {
819 return *reinterpret_cast<uint32_t*>(addr_at(pos));
820 }
821 void long_at_put(int pos, uint32_t x) {
822 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
823 }
824
825 // code emission
826 void GrowBuffer();
827 inline void emit(uint32_t x);
828 inline void emit(Handle<Object> handle);
829 inline void emit(uint32_t x, RelocInfo::Mode rmode);
830 inline void emit(const Immediate& x);
831 inline void emit_w(const Immediate& x);
832
833 // Emit the code-object-relative offset of the label's position
834 inline void emit_code_relative_offset(Label* label);
835
836 // instruction generation
837 void emit_arith_b(int op1, int op2, Register dst, int imm8);
838
839 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
840 // with a given destination expression and an immediate operand. It attempts
841 // to use the shortest encoding possible.
842 // sel specifies the /n in the modrm byte (see the Intel PRM).
843 void emit_arith(int sel, Operand dst, const Immediate& x);
844
845 void emit_operand(Register reg, const Operand& adr);
846
847 void emit_farith(int b1, int b2, int i);
848
849 // labels
850 void print(Label* L);
851 void bind_to(Label* L, int pos);
852 void link_to(Label* L, Label* appendix);
853
854 // displacements
855 inline Displacement disp_at(Label* L);
856 inline void disp_at_put(Label* L, Displacement disp);
857 inline void emit_disp(Label* L, Displacement::Type type);
858
859 // record reloc info for current pc_
860 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
861
862 friend class CodePatcher;
863 friend class EnsureSpace;
864
865 // Code buffer:
866 // The buffer into which code and relocation info are generated.
867 byte* buffer_;
868 int buffer_size_;
869 // True if the assembler owns the buffer, false if buffer is external.
870 bool own_buffer_;
871 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
872 static byte* spare_buffer_;
873
874 // code generation
875 byte* pc_; // the program counter; moves forward
876 RelocInfoWriter reloc_info_writer;
877
878 // push-pop elimination
879 byte* last_pc_;
880
881 // source position information
882 int current_statement_position_;
883 int current_position_;
884 int written_statement_position_;
885 int written_position_;
886};
887
888
889// Helper class that ensures that there is enough space for generating
890// instructions and relocation information. The constructor makes
891// sure that there is enough space and (in debug mode) the destructor
892// checks that we did not generate too much.
893class EnsureSpace BASE_EMBEDDED {
894 public:
895 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
896 if (assembler_->overflow()) assembler_->GrowBuffer();
897#ifdef DEBUG
898 space_before_ = assembler_->available_space();
899#endif
900 }
901
902#ifdef DEBUG
903 ~EnsureSpace() {
904 int bytes_generated = space_before_ - assembler_->available_space();
905 ASSERT(bytes_generated < assembler_->kGap);
906 }
907#endif
908
909 private:
910 Assembler* assembler_;
911#ifdef DEBUG
912 int space_before_;
913#endif
914};
915
916} } // namespace v8::internal
917
918#endif // V8_IA32_ASSEMBLER_IA32_H_