blob: ea7a732f8a9146d270a515c0324a96afcd0f9ff4 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2//
3// Redistribution and use in source and binary forms, with or without
4// modification, are permitted provided that the following conditions are
5// met:
6//
7// * Redistributions of source code must retain the above copyright
8// notice, this list of conditions and the following disclaimer.
9// * Redistributions in binary form must reproduce the above
10// copyright notice, this list of conditions and the following
11// disclaimer in the documentation and/or other materials provided
12// with the distribution.
13// * Neither the name of Google Inc. nor the names of its
14// contributors may be used to endorse or promote products derived
15// from this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
Ben Murdochb8a8cc12014-11-26 15:28:44 +000029#if V8_TARGET_ARCH_ARM64
30
31#define ARM64_DEFINE_REG_STATICS
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000032#include "src/arm64/assembler-arm64.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000033
34#include "src/arm64/assembler-arm64-inl.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000035#include "src/arm64/frames-arm64.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000036#include "src/base/bits.h"
37#include "src/base/cpu.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000038#include "src/register-configuration.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000039
40namespace v8 {
41namespace internal {
42
43
44// -----------------------------------------------------------------------------
45// CpuFeatures implementation.
46
47void CpuFeatures::ProbeImpl(bool cross_compile) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -040048 // AArch64 has no configuration options, no further probing is required.
49 supported_ = 0;
50
51 // Only use statically determined features for cross compile (snapshot).
52 if (cross_compile) return;
53
54 // Probe for runtime features
55 base::CPU cpu;
56 if (cpu.implementer() == base::CPU::NVIDIA &&
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000057 cpu.variant() == base::CPU::NVIDIA_DENVER &&
58 cpu.part() <= base::CPU::NVIDIA_DENVER_V10) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -040059 supported_ |= 1u << COHERENT_CACHE;
Ben Murdochb8a8cc12014-11-26 15:28:44 +000060 }
61}
62
63
64void CpuFeatures::PrintTarget() { }
Emily Bernierd0a1eb72015-03-24 16:35:39 -040065
66
67void CpuFeatures::PrintFeatures() {
68 printf("COHERENT_CACHE=%d\n", CpuFeatures::IsSupported(COHERENT_CACHE));
69}
Ben Murdochb8a8cc12014-11-26 15:28:44 +000070
71
72// -----------------------------------------------------------------------------
73// CPURegList utilities.
74
75CPURegister CPURegList::PopLowestIndex() {
76 DCHECK(IsValid());
77 if (IsEmpty()) {
78 return NoCPUReg;
79 }
80 int index = CountTrailingZeros(list_, kRegListSizeInBits);
81 DCHECK((1 << index) & list_);
82 Remove(index);
83 return CPURegister::Create(index, size_, type_);
84}
85
86
87CPURegister CPURegList::PopHighestIndex() {
88 DCHECK(IsValid());
89 if (IsEmpty()) {
90 return NoCPUReg;
91 }
92 int index = CountLeadingZeros(list_, kRegListSizeInBits);
93 index = kRegListSizeInBits - 1 - index;
94 DCHECK((1 << index) & list_);
95 Remove(index);
96 return CPURegister::Create(index, size_, type_);
97}
98
99
100void CPURegList::RemoveCalleeSaved() {
101 if (type() == CPURegister::kRegister) {
102 Remove(GetCalleeSaved(RegisterSizeInBits()));
103 } else if (type() == CPURegister::kFPRegister) {
104 Remove(GetCalleeSavedFP(RegisterSizeInBits()));
105 } else {
106 DCHECK(type() == CPURegister::kNoRegister);
107 DCHECK(IsEmpty());
108 // The list must already be empty, so do nothing.
109 }
110}
111
112
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000113CPURegList CPURegList::GetCalleeSaved(int size) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000114 return CPURegList(CPURegister::kRegister, size, 19, 29);
115}
116
117
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000118CPURegList CPURegList::GetCalleeSavedFP(int size) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000119 return CPURegList(CPURegister::kFPRegister, size, 8, 15);
120}
121
122
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000123CPURegList CPURegList::GetCallerSaved(int size) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000124 // Registers x0-x18 and lr (x30) are caller-saved.
125 CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
126 list.Combine(lr);
127 return list;
128}
129
130
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000131CPURegList CPURegList::GetCallerSavedFP(int size) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000132 // Registers d0-d7 and d16-d31 are caller-saved.
133 CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
134 list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
135 return list;
136}
137
138
139// This function defines the list of registers which are associated with a
140// safepoint slot. Safepoint register slots are saved contiguously on the stack.
141// MacroAssembler::SafepointRegisterStackIndex handles mapping from register
142// code to index in the safepoint register slots. Any change here can affect
143// this mapping.
144CPURegList CPURegList::GetSafepointSavedRegisters() {
145 CPURegList list = CPURegList::GetCalleeSaved();
146 list.Combine(
147 CPURegList(CPURegister::kRegister, kXRegSizeInBits, kJSCallerSaved));
148
149 // Note that unfortunately we can't use symbolic names for registers and have
150 // to directly use register codes. This is because this function is used to
151 // initialize some static variables and we can't rely on register variables
152 // to be initialized due to static initialization order issues in C++.
153
154 // Drop ip0 and ip1 (i.e. x16 and x17), as they should not be expected to be
155 // preserved outside of the macro assembler.
156 list.Remove(16);
157 list.Remove(17);
158
159 // Add x18 to the safepoint list, as although it's not in kJSCallerSaved, it
160 // is a caller-saved register according to the procedure call standard.
161 list.Combine(18);
162
163 // Drop jssp as the stack pointer doesn't need to be included.
164 list.Remove(28);
165
166 // Add the link register (x30) to the safepoint list.
167 list.Combine(30);
168
169 return list;
170}
171
172
173// -----------------------------------------------------------------------------
174// Implementation of RelocInfo
175
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000176const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000177
178
179bool RelocInfo::IsCodedSpecially() {
180 // The deserializer needs to know whether a pointer is specially coded. Being
181 // specially coded on ARM64 means that it is a movz/movk sequence. We don't
182 // generate those for relocatable pointers.
183 return false;
184}
185
186
187bool RelocInfo::IsInConstantPool() {
188 Instruction* instr = reinterpret_cast<Instruction*>(pc_);
189 return instr->IsLdrLiteralX();
190}
191
192
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000193Register GetAllocatableRegisterThatIsNotOneOf(Register reg1, Register reg2,
194 Register reg3, Register reg4) {
195 CPURegList regs(reg1, reg2, reg3, reg4);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000196 const RegisterConfiguration* config =
197 RegisterConfiguration::ArchDefault(RegisterConfiguration::CRANKSHAFT);
198 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
199 int code = config->GetAllocatableDoubleCode(i);
200 Register candidate = Register::from_code(code);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000201 if (regs.IncludesAliasOf(candidate)) continue;
202 return candidate;
203 }
204 UNREACHABLE();
205 return NoReg;
206}
207
208
209bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
210 const CPURegister& reg3, const CPURegister& reg4,
211 const CPURegister& reg5, const CPURegister& reg6,
212 const CPURegister& reg7, const CPURegister& reg8) {
213 int number_of_valid_regs = 0;
214 int number_of_valid_fpregs = 0;
215
216 RegList unique_regs = 0;
217 RegList unique_fpregs = 0;
218
219 const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8};
220
221 for (unsigned i = 0; i < arraysize(regs); i++) {
222 if (regs[i].IsRegister()) {
223 number_of_valid_regs++;
224 unique_regs |= regs[i].Bit();
225 } else if (regs[i].IsFPRegister()) {
226 number_of_valid_fpregs++;
227 unique_fpregs |= regs[i].Bit();
228 } else {
229 DCHECK(!regs[i].IsValid());
230 }
231 }
232
233 int number_of_unique_regs =
234 CountSetBits(unique_regs, sizeof(unique_regs) * kBitsPerByte);
235 int number_of_unique_fpregs =
236 CountSetBits(unique_fpregs, sizeof(unique_fpregs) * kBitsPerByte);
237
238 DCHECK(number_of_valid_regs >= number_of_unique_regs);
239 DCHECK(number_of_valid_fpregs >= number_of_unique_fpregs);
240
241 return (number_of_valid_regs != number_of_unique_regs) ||
242 (number_of_valid_fpregs != number_of_unique_fpregs);
243}
244
245
246bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
247 const CPURegister& reg3, const CPURegister& reg4,
248 const CPURegister& reg5, const CPURegister& reg6,
249 const CPURegister& reg7, const CPURegister& reg8) {
250 DCHECK(reg1.IsValid());
251 bool match = true;
252 match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1);
253 match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1);
254 match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1);
255 match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1);
256 match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1);
257 match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1);
258 match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1);
259 return match;
260}
261
262
263void Immediate::InitializeHandle(Handle<Object> handle) {
264 AllowDeferredHandleDereference using_raw_address;
265
266 // Verify all Objects referred by code are NOT in new space.
267 Object* obj = *handle;
268 if (obj->IsHeapObject()) {
269 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
270 value_ = reinterpret_cast<intptr_t>(handle.location());
271 rmode_ = RelocInfo::EMBEDDED_OBJECT;
272 } else {
273 STATIC_ASSERT(sizeof(intptr_t) == sizeof(int64_t));
274 value_ = reinterpret_cast<intptr_t>(obj);
275 rmode_ = RelocInfo::NONE64;
276 }
277}
278
279
280bool Operand::NeedsRelocation(const Assembler* assembler) const {
281 RelocInfo::Mode rmode = immediate_.rmode();
282
283 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
284 return assembler->serializer_enabled();
285 }
286
287 return !RelocInfo::IsNone(rmode);
288}
289
290
291// Constant Pool.
292void ConstPool::RecordEntry(intptr_t data,
293 RelocInfo::Mode mode) {
294 DCHECK(mode != RelocInfo::COMMENT &&
295 mode != RelocInfo::POSITION &&
296 mode != RelocInfo::STATEMENT_POSITION &&
297 mode != RelocInfo::CONST_POOL &&
298 mode != RelocInfo::VENEER_POOL &&
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000299 mode != RelocInfo::CODE_AGE_SEQUENCE &&
300 mode != RelocInfo::DEOPT_REASON);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000301 uint64_t raw_data = static_cast<uint64_t>(data);
302 int offset = assm_->pc_offset();
303 if (IsEmpty()) {
304 first_use_ = offset;
305 }
306
307 std::pair<uint64_t, int> entry = std::make_pair(raw_data, offset);
308 if (CanBeShared(mode)) {
309 shared_entries_.insert(entry);
310 if (shared_entries_.count(entry.first) == 1) {
311 shared_entries_count++;
312 }
313 } else {
314 unique_entries_.push_back(entry);
315 }
316
317 if (EntryCount() > Assembler::kApproxMaxPoolEntryCount) {
318 // Request constant pool emission after the next instruction.
319 assm_->SetNextConstPoolCheckIn(1);
320 }
321}
322
323
324int ConstPool::DistanceToFirstUse() {
325 DCHECK(first_use_ >= 0);
326 return assm_->pc_offset() - first_use_;
327}
328
329
330int ConstPool::MaxPcOffset() {
331 // There are no pending entries in the pool so we can never get out of
332 // range.
333 if (IsEmpty()) return kMaxInt;
334
335 // Entries are not necessarily emitted in the order they are added so in the
336 // worst case the first constant pool use will be accessing the last entry.
337 return first_use_ + kMaxLoadLiteralRange - WorstCaseSize();
338}
339
340
341int ConstPool::WorstCaseSize() {
342 if (IsEmpty()) return 0;
343
344 // Max size prologue:
345 // b over
346 // ldr xzr, #pool_size
347 // blr xzr
348 // nop
349 // All entries are 64-bit for now.
350 return 4 * kInstructionSize + EntryCount() * kPointerSize;
351}
352
353
354int ConstPool::SizeIfEmittedAtCurrentPc(bool require_jump) {
355 if (IsEmpty()) return 0;
356
357 // Prologue is:
358 // b over ;; if require_jump
359 // ldr xzr, #pool_size
360 // blr xzr
361 // nop ;; if not 64-bit aligned
362 int prologue_size = require_jump ? kInstructionSize : 0;
363 prologue_size += 2 * kInstructionSize;
364 prologue_size += IsAligned(assm_->pc_offset() + prologue_size, 8) ?
365 0 : kInstructionSize;
366
367 // All entries are 64-bit for now.
368 return prologue_size + EntryCount() * kPointerSize;
369}
370
371
372void ConstPool::Emit(bool require_jump) {
373 DCHECK(!assm_->is_const_pool_blocked());
374 // Prevent recursive pool emission and protect from veneer pools.
375 Assembler::BlockPoolsScope block_pools(assm_);
376
377 int size = SizeIfEmittedAtCurrentPc(require_jump);
378 Label size_check;
379 assm_->bind(&size_check);
380
381 assm_->RecordConstPool(size);
382 // Emit the constant pool. It is preceded by an optional branch if
383 // require_jump and a header which will:
384 // 1) Encode the size of the constant pool, for use by the disassembler.
385 // 2) Terminate the program, to try to prevent execution from accidentally
386 // flowing into the constant pool.
387 // 3) align the pool entries to 64-bit.
388 // The header is therefore made of up to three arm64 instructions:
389 // ldr xzr, #<size of the constant pool in 32-bit words>
390 // blr xzr
391 // nop
392 //
393 // If executed, the header will likely segfault and lr will point to the
394 // instruction following the offending blr.
395 // TODO(all): Make the alignment part less fragile. Currently code is
396 // allocated as a byte array so there are no guarantees the alignment will
397 // be preserved on compaction. Currently it works as allocation seems to be
398 // 64-bit aligned.
399
400 // Emit branch if required
401 Label after_pool;
402 if (require_jump) {
403 assm_->b(&after_pool);
404 }
405
406 // Emit the header.
407 assm_->RecordComment("[ Constant Pool");
408 EmitMarker();
409 EmitGuard();
410 assm_->Align(8);
411
412 // Emit constant pool entries.
413 // TODO(all): currently each relocated constant is 64 bits, consider adding
414 // support for 32-bit entries.
415 EmitEntries();
416 assm_->RecordComment("]");
417
418 if (after_pool.is_linked()) {
419 assm_->bind(&after_pool);
420 }
421
422 DCHECK(assm_->SizeOfCodeGeneratedSince(&size_check) ==
423 static_cast<unsigned>(size));
424}
425
426
427void ConstPool::Clear() {
428 shared_entries_.clear();
429 shared_entries_count = 0;
430 unique_entries_.clear();
431 first_use_ = -1;
432}
433
434
435bool ConstPool::CanBeShared(RelocInfo::Mode mode) {
436 // Constant pool currently does not support 32-bit entries.
437 DCHECK(mode != RelocInfo::NONE32);
438
439 return RelocInfo::IsNone(mode) ||
440 (!assm_->serializer_enabled() && (mode >= RelocInfo::CELL));
441}
442
443
444void ConstPool::EmitMarker() {
445 // A constant pool size is expressed in number of 32-bits words.
446 // Currently all entries are 64-bit.
447 // + 1 is for the crash guard.
448 // + 0/1 for alignment.
449 int word_count = EntryCount() * 2 + 1 +
450 (IsAligned(assm_->pc_offset(), 8) ? 0 : 1);
451 assm_->Emit(LDR_x_lit |
452 Assembler::ImmLLiteral(word_count) |
453 Assembler::Rt(xzr));
454}
455
456
457MemOperand::PairResult MemOperand::AreConsistentForPair(
458 const MemOperand& operandA,
459 const MemOperand& operandB,
460 int access_size_log2) {
461 DCHECK(access_size_log2 >= 0);
462 DCHECK(access_size_log2 <= 3);
463 // Step one: check that they share the same base, that the mode is Offset
464 // and that the offset is a multiple of access size.
465 if (!operandA.base().Is(operandB.base()) ||
466 (operandA.addrmode() != Offset) ||
467 (operandB.addrmode() != Offset) ||
468 ((operandA.offset() & ((1 << access_size_log2) - 1)) != 0)) {
469 return kNotPair;
470 }
471 // Step two: check that the offsets are contiguous and that the range
472 // is OK for ldp/stp.
473 if ((operandB.offset() == operandA.offset() + (1 << access_size_log2)) &&
474 is_int7(operandA.offset() >> access_size_log2)) {
475 return kPairAB;
476 }
477 if ((operandA.offset() == operandB.offset() + (1 << access_size_log2)) &&
478 is_int7(operandB.offset() >> access_size_log2)) {
479 return kPairBA;
480 }
481 return kNotPair;
482}
483
484
485void ConstPool::EmitGuard() {
486#ifdef DEBUG
487 Instruction* instr = reinterpret_cast<Instruction*>(assm_->pc());
488 DCHECK(instr->preceding()->IsLdrLiteralX() &&
489 instr->preceding()->Rt() == xzr.code());
490#endif
491 assm_->EmitPoolGuard();
492}
493
494
495void ConstPool::EmitEntries() {
496 DCHECK(IsAligned(assm_->pc_offset(), 8));
497
498 typedef std::multimap<uint64_t, int>::const_iterator SharedEntriesIterator;
499 SharedEntriesIterator value_it;
500 // Iterate through the keys (constant pool values).
501 for (value_it = shared_entries_.begin();
502 value_it != shared_entries_.end();
503 value_it = shared_entries_.upper_bound(value_it->first)) {
504 std::pair<SharedEntriesIterator, SharedEntriesIterator> range;
505 uint64_t data = value_it->first;
506 range = shared_entries_.equal_range(data);
507 SharedEntriesIterator offset_it;
508 // Iterate through the offsets of a given key.
509 for (offset_it = range.first; offset_it != range.second; offset_it++) {
510 Instruction* instr = assm_->InstructionAt(offset_it->second);
511
512 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
513 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000514 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000515 }
516 assm_->dc64(data);
517 }
518 shared_entries_.clear();
519 shared_entries_count = 0;
520
521 // Emit unique entries.
522 std::vector<std::pair<uint64_t, int> >::const_iterator unique_it;
523 for (unique_it = unique_entries_.begin();
524 unique_it != unique_entries_.end();
525 unique_it++) {
526 Instruction* instr = assm_->InstructionAt(unique_it->second);
527
528 // Instruction to patch must be 'ldr rd, [pc, #offset]' with offset == 0.
529 DCHECK(instr->IsLdrLiteral() && instr->ImmLLiteral() == 0);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000530 instr->SetImmPCOffsetTarget(assm_->isolate(), assm_->pc());
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000531 assm_->dc64(unique_it->first);
532 }
533 unique_entries_.clear();
534 first_use_ = -1;
535}
536
537
538// Assembler
539Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
540 : AssemblerBase(isolate, buffer, buffer_size),
541 constpool_(this),
542 recorded_ast_id_(TypeFeedbackId::None()),
543 unresolved_branches_(),
544 positions_recorder_(this) {
545 const_pool_blocked_nesting_ = 0;
546 veneer_pool_blocked_nesting_ = 0;
547 Reset();
548}
549
550
551Assembler::~Assembler() {
552 DCHECK(constpool_.IsEmpty());
553 DCHECK(const_pool_blocked_nesting_ == 0);
554 DCHECK(veneer_pool_blocked_nesting_ == 0);
555}
556
557
558void Assembler::Reset() {
559#ifdef DEBUG
560 DCHECK((pc_ >= buffer_) && (pc_ < buffer_ + buffer_size_));
561 DCHECK(const_pool_blocked_nesting_ == 0);
562 DCHECK(veneer_pool_blocked_nesting_ == 0);
563 DCHECK(unresolved_branches_.empty());
564 memset(buffer_, 0, pc_ - buffer_);
565#endif
566 pc_ = buffer_;
567 reloc_info_writer.Reposition(reinterpret_cast<byte*>(buffer_ + buffer_size_),
568 reinterpret_cast<byte*>(pc_));
569 constpool_.Clear();
570 next_constant_pool_check_ = 0;
571 next_veneer_pool_check_ = kMaxInt;
572 no_const_pool_before_ = 0;
573 ClearRecordedAstId();
574}
575
576
577void Assembler::GetCode(CodeDesc* desc) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000578 reloc_info_writer.Finish();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000579 // Emit constant pool if necessary.
580 CheckConstPool(true, false);
581 DCHECK(constpool_.IsEmpty());
582
583 // Set up code descriptor.
584 if (desc) {
585 desc->buffer = reinterpret_cast<byte*>(buffer_);
586 desc->buffer_size = buffer_size_;
587 desc->instr_size = pc_offset();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000588 desc->reloc_size =
589 static_cast<int>((reinterpret_cast<byte*>(buffer_) + buffer_size_) -
590 reloc_info_writer.pos());
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000591 desc->origin = this;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000592 desc->constant_pool_size = 0;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000593 }
594}
595
596
597void Assembler::Align(int m) {
598 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
599 while ((pc_offset() & (m - 1)) != 0) {
600 nop();
601 }
602}
603
604
605void Assembler::CheckLabelLinkChain(Label const * label) {
606#ifdef DEBUG
607 if (label->is_linked()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400608 static const int kMaxLinksToCheck = 64; // Avoid O(n2) behaviour.
609 int links_checked = 0;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000610 int64_t linkoffset = label->pos();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000611 bool end_of_chain = false;
612 while (!end_of_chain) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400613 if (++links_checked > kMaxLinksToCheck) break;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000614 Instruction * link = InstructionAt(linkoffset);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000615 int64_t linkpcoffset = link->ImmPCOffset();
616 int64_t prevlinkoffset = linkoffset + linkpcoffset;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000617
618 end_of_chain = (linkoffset == prevlinkoffset);
619 linkoffset = linkoffset + linkpcoffset;
620 }
621 }
622#endif
623}
624
625
626void Assembler::RemoveBranchFromLabelLinkChain(Instruction* branch,
627 Label* label,
628 Instruction* label_veneer) {
629 DCHECK(label->is_linked());
630
631 CheckLabelLinkChain(label);
632
633 Instruction* link = InstructionAt(label->pos());
634 Instruction* prev_link = link;
635 Instruction* next_link;
636 bool end_of_chain = false;
637
638 while (link != branch && !end_of_chain) {
639 next_link = link->ImmPCOffsetTarget();
640 end_of_chain = (link == next_link);
641 prev_link = link;
642 link = next_link;
643 }
644
645 DCHECK(branch == link);
646 next_link = branch->ImmPCOffsetTarget();
647
648 if (branch == prev_link) {
649 // The branch is the first instruction in the chain.
650 if (branch == next_link) {
651 // It is also the last instruction in the chain, so it is the only branch
652 // currently referring to this label.
653 label->Unuse();
654 } else {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000655 label->link_to(
656 static_cast<int>(reinterpret_cast<byte*>(next_link) - buffer_));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000657 }
658
659 } else if (branch == next_link) {
660 // The branch is the last (but not also the first) instruction in the chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000661 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000662
663 } else {
664 // The branch is in the middle of the chain.
665 if (prev_link->IsTargetInImmPCOffsetRange(next_link)) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000666 prev_link->SetImmPCOffsetTarget(isolate(), next_link);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000667 } else if (label_veneer != NULL) {
668 // Use the veneer for all previous links in the chain.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000669 prev_link->SetImmPCOffsetTarget(isolate(), prev_link);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000670
671 end_of_chain = false;
672 link = next_link;
673 while (!end_of_chain) {
674 next_link = link->ImmPCOffsetTarget();
675 end_of_chain = (link == next_link);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000676 link->SetImmPCOffsetTarget(isolate(), label_veneer);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000677 link = next_link;
678 }
679 } else {
680 // The assert below will fire.
681 // Some other work could be attempted to fix up the chain, but it would be
682 // rather complicated. If we crash here, we may want to consider using an
683 // other mechanism than a chain of branches.
684 //
685 // Note that this situation currently should not happen, as we always call
686 // this function with a veneer to the target label.
687 // However this could happen with a MacroAssembler in the following state:
688 // [previous code]
689 // B(label);
690 // [20KB code]
691 // Tbz(label); // First tbz. Pointing to unconditional branch.
692 // [20KB code]
693 // Tbz(label); // Second tbz. Pointing to the first tbz.
694 // [more code]
695 // and this function is called to remove the first tbz from the label link
696 // chain. Since tbz has a range of +-32KB, the second tbz cannot point to
697 // the unconditional branch.
698 CHECK(prev_link->IsTargetInImmPCOffsetRange(next_link));
699 UNREACHABLE();
700 }
701 }
702
703 CheckLabelLinkChain(label);
704}
705
706
707void Assembler::bind(Label* label) {
708 // Bind label to the address at pc_. All instructions (most likely branches)
709 // that are linked to this label will be updated to point to the newly-bound
710 // label.
711
712 DCHECK(!label->is_near_linked());
713 DCHECK(!label->is_bound());
714
715 DeleteUnresolvedBranchInfoForLabel(label);
716
717 // If the label is linked, the link chain looks something like this:
718 //
719 // |--I----I-------I-------L
720 // |---------------------->| pc_offset
721 // |-------------->| linkoffset = label->pos()
722 // |<------| link->ImmPCOffset()
723 // |------>| prevlinkoffset = linkoffset + link->ImmPCOffset()
724 //
725 // On each iteration, the last link is updated and then removed from the
726 // chain until only one remains. At that point, the label is bound.
727 //
728 // If the label is not linked, no preparation is required before binding.
729 while (label->is_linked()) {
730 int linkoffset = label->pos();
731 Instruction* link = InstructionAt(linkoffset);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000732 int prevlinkoffset = linkoffset + static_cast<int>(link->ImmPCOffset());
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000733
734 CheckLabelLinkChain(label);
735
736 DCHECK(linkoffset >= 0);
737 DCHECK(linkoffset < pc_offset());
738 DCHECK((linkoffset > prevlinkoffset) ||
739 (linkoffset - prevlinkoffset == kStartOfLabelLinkChain));
740 DCHECK(prevlinkoffset >= 0);
741
742 // Update the link to point to the label.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000743 if (link->IsUnresolvedInternalReference()) {
744 // Internal references do not get patched to an instruction but directly
745 // to an address.
746 internal_reference_positions_.push_back(linkoffset);
747 PatchingAssembler patcher(isolate(), link, 2);
748 patcher.dc64(reinterpret_cast<uintptr_t>(pc_));
749 } else {
750 link->SetImmPCOffsetTarget(isolate(),
751 reinterpret_cast<Instruction*>(pc_));
752 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000753
754 // Link the label to the previous link in the chain.
755 if (linkoffset - prevlinkoffset == kStartOfLabelLinkChain) {
756 // We hit kStartOfLabelLinkChain, so the chain is fully processed.
757 label->Unuse();
758 } else {
759 // Update the label for the next iteration.
760 label->link_to(prevlinkoffset);
761 }
762 }
763 label->bind_to(pc_offset());
764
765 DCHECK(label->is_bound());
766 DCHECK(!label->is_linked());
767}
768
769
770int Assembler::LinkAndGetByteOffsetTo(Label* label) {
771 DCHECK(sizeof(*pc_) == 1);
772 CheckLabelLinkChain(label);
773
774 int offset;
775 if (label->is_bound()) {
776 // The label is bound, so it does not need to be updated. Referring
777 // instructions must link directly to the label as they will not be
778 // updated.
779 //
780 // In this case, label->pos() returns the offset of the label from the
781 // start of the buffer.
782 //
783 // Note that offset can be zero for self-referential instructions. (This
784 // could be useful for ADR, for example.)
785 offset = label->pos() - pc_offset();
786 DCHECK(offset <= 0);
787 } else {
788 if (label->is_linked()) {
789 // The label is linked, so the referring instruction should be added onto
790 // the end of the label's link chain.
791 //
792 // In this case, label->pos() returns the offset of the last linked
793 // instruction from the start of the buffer.
794 offset = label->pos() - pc_offset();
795 DCHECK(offset != kStartOfLabelLinkChain);
796 // Note that the offset here needs to be PC-relative only so that the
797 // first instruction in a buffer can link to an unbound label. Otherwise,
798 // the offset would be 0 for this case, and 0 is reserved for
799 // kStartOfLabelLinkChain.
800 } else {
801 // The label is unused, so it now becomes linked and the referring
802 // instruction is at the start of the new link chain.
803 offset = kStartOfLabelLinkChain;
804 }
805 // The instruction at pc is now the last link in the label's chain.
806 label->link_to(pc_offset());
807 }
808
809 return offset;
810}
811
812
813void Assembler::DeleteUnresolvedBranchInfoForLabelTraverse(Label* label) {
814 DCHECK(label->is_linked());
815 CheckLabelLinkChain(label);
816
817 int link_offset = label->pos();
818 int link_pcoffset;
819 bool end_of_chain = false;
820
821 while (!end_of_chain) {
822 Instruction * link = InstructionAt(link_offset);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000823 link_pcoffset = static_cast<int>(link->ImmPCOffset());
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000824
825 // ADR instructions are not handled by veneers.
826 if (link->IsImmBranch()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000827 int max_reachable_pc =
828 static_cast<int>(InstructionOffset(link) +
829 Instruction::ImmBranchRange(link->BranchType()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000830 typedef std::multimap<int, FarBranchInfo>::iterator unresolved_info_it;
831 std::pair<unresolved_info_it, unresolved_info_it> range;
832 range = unresolved_branches_.equal_range(max_reachable_pc);
833 unresolved_info_it it;
834 for (it = range.first; it != range.second; ++it) {
835 if (it->second.pc_offset_ == link_offset) {
836 unresolved_branches_.erase(it);
837 break;
838 }
839 }
840 }
841
842 end_of_chain = (link_pcoffset == 0);
843 link_offset = link_offset + link_pcoffset;
844 }
845}
846
847
848void Assembler::DeleteUnresolvedBranchInfoForLabel(Label* label) {
849 if (unresolved_branches_.empty()) {
850 DCHECK(next_veneer_pool_check_ == kMaxInt);
851 return;
852 }
853
854 if (label->is_linked()) {
855 // Branches to this label will be resolved when the label is bound, normally
856 // just after all the associated info has been deleted.
857 DeleteUnresolvedBranchInfoForLabelTraverse(label);
858 }
859 if (unresolved_branches_.empty()) {
860 next_veneer_pool_check_ = kMaxInt;
861 } else {
862 next_veneer_pool_check_ =
863 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
864 }
865}
866
867
868void Assembler::StartBlockConstPool() {
869 if (const_pool_blocked_nesting_++ == 0) {
870 // Prevent constant pool checks happening by setting the next check to
871 // the biggest possible offset.
872 next_constant_pool_check_ = kMaxInt;
873 }
874}
875
876
877void Assembler::EndBlockConstPool() {
878 if (--const_pool_blocked_nesting_ == 0) {
879 // Check the constant pool hasn't been blocked for too long.
880 DCHECK(pc_offset() < constpool_.MaxPcOffset());
881 // Two cases:
882 // * no_const_pool_before_ >= next_constant_pool_check_ and the emission is
883 // still blocked
884 // * no_const_pool_before_ < next_constant_pool_check_ and the next emit
885 // will trigger a check.
886 next_constant_pool_check_ = no_const_pool_before_;
887 }
888}
889
890
891bool Assembler::is_const_pool_blocked() const {
892 return (const_pool_blocked_nesting_ > 0) ||
893 (pc_offset() < no_const_pool_before_);
894}
895
896
897bool Assembler::IsConstantPoolAt(Instruction* instr) {
898 // The constant pool marker is made of two instructions. These instructions
899 // will never be emitted by the JIT, so checking for the first one is enough:
900 // 0: ldr xzr, #<size of pool>
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000901 bool result = instr->IsLdrLiteralX() && (instr->Rt() == kZeroRegCode);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000902
903 // It is still worth asserting the marker is complete.
904 // 4: blr xzr
905 DCHECK(!result || (instr->following()->IsBranchAndLinkToRegister() &&
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000906 instr->following()->Rn() == kZeroRegCode));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000907
908 return result;
909}
910
911
912int Assembler::ConstantPoolSizeAt(Instruction* instr) {
913#ifdef USE_SIMULATOR
914 // Assembler::debug() embeds constants directly into the instruction stream.
915 // Although this is not a genuine constant pool, treat it like one to avoid
916 // disassembling the constants.
917 if ((instr->Mask(ExceptionMask) == HLT) &&
918 (instr->ImmException() == kImmExceptionIsDebug)) {
919 const char* message =
920 reinterpret_cast<const char*>(
921 instr->InstructionAtOffset(kDebugMessageOffset));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000922 int size = static_cast<int>(kDebugMessageOffset + strlen(message) + 1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000923 return RoundUp(size, kInstructionSize) / kInstructionSize;
924 }
925 // Same for printf support, see MacroAssembler::CallPrintf().
926 if ((instr->Mask(ExceptionMask) == HLT) &&
927 (instr->ImmException() == kImmExceptionIsPrintf)) {
928 return kPrintfLength / kInstructionSize;
929 }
930#endif
931 if (IsConstantPoolAt(instr)) {
932 return instr->ImmLLiteral();
933 } else {
934 return -1;
935 }
936}
937
938
939void Assembler::EmitPoolGuard() {
940 // We must generate only one instruction as this is used in scopes that
941 // control the size of the code generated.
942 Emit(BLR | Rn(xzr));
943}
944
945
946void Assembler::StartBlockVeneerPool() {
947 ++veneer_pool_blocked_nesting_;
948}
949
950
951void Assembler::EndBlockVeneerPool() {
952 if (--veneer_pool_blocked_nesting_ == 0) {
953 // Check the veneer pool hasn't been blocked for too long.
954 DCHECK(unresolved_branches_.empty() ||
955 (pc_offset() < unresolved_branches_first_limit()));
956 }
957}
958
959
960void Assembler::br(const Register& xn) {
961 positions_recorder()->WriteRecordedPositions();
962 DCHECK(xn.Is64Bits());
963 Emit(BR | Rn(xn));
964}
965
966
967void Assembler::blr(const Register& xn) {
968 positions_recorder()->WriteRecordedPositions();
969 DCHECK(xn.Is64Bits());
970 // The pattern 'blr xzr' is used as a guard to detect when execution falls
971 // through the constant pool. It should not be emitted.
972 DCHECK(!xn.Is(xzr));
973 Emit(BLR | Rn(xn));
974}
975
976
977void Assembler::ret(const Register& xn) {
978 positions_recorder()->WriteRecordedPositions();
979 DCHECK(xn.Is64Bits());
980 Emit(RET | Rn(xn));
981}
982
983
984void Assembler::b(int imm26) {
985 Emit(B | ImmUncondBranch(imm26));
986}
987
988
989void Assembler::b(Label* label) {
990 positions_recorder()->WriteRecordedPositions();
991 b(LinkAndGetInstructionOffsetTo(label));
992}
993
994
995void Assembler::b(int imm19, Condition cond) {
996 Emit(B_cond | ImmCondBranch(imm19) | cond);
997}
998
999
1000void Assembler::b(Label* label, Condition cond) {
1001 positions_recorder()->WriteRecordedPositions();
1002 b(LinkAndGetInstructionOffsetTo(label), cond);
1003}
1004
1005
1006void Assembler::bl(int imm26) {
1007 positions_recorder()->WriteRecordedPositions();
1008 Emit(BL | ImmUncondBranch(imm26));
1009}
1010
1011
1012void Assembler::bl(Label* label) {
1013 positions_recorder()->WriteRecordedPositions();
1014 bl(LinkAndGetInstructionOffsetTo(label));
1015}
1016
1017
1018void Assembler::cbz(const Register& rt,
1019 int imm19) {
1020 positions_recorder()->WriteRecordedPositions();
1021 Emit(SF(rt) | CBZ | ImmCmpBranch(imm19) | Rt(rt));
1022}
1023
1024
1025void Assembler::cbz(const Register& rt,
1026 Label* label) {
1027 positions_recorder()->WriteRecordedPositions();
1028 cbz(rt, LinkAndGetInstructionOffsetTo(label));
1029}
1030
1031
1032void Assembler::cbnz(const Register& rt,
1033 int imm19) {
1034 positions_recorder()->WriteRecordedPositions();
1035 Emit(SF(rt) | CBNZ | ImmCmpBranch(imm19) | Rt(rt));
1036}
1037
1038
1039void Assembler::cbnz(const Register& rt,
1040 Label* label) {
1041 positions_recorder()->WriteRecordedPositions();
1042 cbnz(rt, LinkAndGetInstructionOffsetTo(label));
1043}
1044
1045
1046void Assembler::tbz(const Register& rt,
1047 unsigned bit_pos,
1048 int imm14) {
1049 positions_recorder()->WriteRecordedPositions();
1050 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1051 Emit(TBZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1052}
1053
1054
1055void Assembler::tbz(const Register& rt,
1056 unsigned bit_pos,
1057 Label* label) {
1058 positions_recorder()->WriteRecordedPositions();
1059 tbz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1060}
1061
1062
1063void Assembler::tbnz(const Register& rt,
1064 unsigned bit_pos,
1065 int imm14) {
1066 positions_recorder()->WriteRecordedPositions();
1067 DCHECK(rt.Is64Bits() || (rt.Is32Bits() && (bit_pos < kWRegSizeInBits)));
1068 Emit(TBNZ | ImmTestBranchBit(bit_pos) | ImmTestBranch(imm14) | Rt(rt));
1069}
1070
1071
1072void Assembler::tbnz(const Register& rt,
1073 unsigned bit_pos,
1074 Label* label) {
1075 positions_recorder()->WriteRecordedPositions();
1076 tbnz(rt, bit_pos, LinkAndGetInstructionOffsetTo(label));
1077}
1078
1079
1080void Assembler::adr(const Register& rd, int imm21) {
1081 DCHECK(rd.Is64Bits());
1082 Emit(ADR | ImmPCRelAddress(imm21) | Rd(rd));
1083}
1084
1085
1086void Assembler::adr(const Register& rd, Label* label) {
1087 adr(rd, LinkAndGetByteOffsetTo(label));
1088}
1089
1090
1091void Assembler::add(const Register& rd,
1092 const Register& rn,
1093 const Operand& operand) {
1094 AddSub(rd, rn, operand, LeaveFlags, ADD);
1095}
1096
1097
1098void Assembler::adds(const Register& rd,
1099 const Register& rn,
1100 const Operand& operand) {
1101 AddSub(rd, rn, operand, SetFlags, ADD);
1102}
1103
1104
1105void Assembler::cmn(const Register& rn,
1106 const Operand& operand) {
1107 Register zr = AppropriateZeroRegFor(rn);
1108 adds(zr, rn, operand);
1109}
1110
1111
1112void Assembler::sub(const Register& rd,
1113 const Register& rn,
1114 const Operand& operand) {
1115 AddSub(rd, rn, operand, LeaveFlags, SUB);
1116}
1117
1118
1119void Assembler::subs(const Register& rd,
1120 const Register& rn,
1121 const Operand& operand) {
1122 AddSub(rd, rn, operand, SetFlags, SUB);
1123}
1124
1125
1126void Assembler::cmp(const Register& rn, const Operand& operand) {
1127 Register zr = AppropriateZeroRegFor(rn);
1128 subs(zr, rn, operand);
1129}
1130
1131
1132void Assembler::neg(const Register& rd, const Operand& operand) {
1133 Register zr = AppropriateZeroRegFor(rd);
1134 sub(rd, zr, operand);
1135}
1136
1137
1138void Assembler::negs(const Register& rd, const Operand& operand) {
1139 Register zr = AppropriateZeroRegFor(rd);
1140 subs(rd, zr, operand);
1141}
1142
1143
1144void Assembler::adc(const Register& rd,
1145 const Register& rn,
1146 const Operand& operand) {
1147 AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC);
1148}
1149
1150
1151void Assembler::adcs(const Register& rd,
1152 const Register& rn,
1153 const Operand& operand) {
1154 AddSubWithCarry(rd, rn, operand, SetFlags, ADC);
1155}
1156
1157
1158void Assembler::sbc(const Register& rd,
1159 const Register& rn,
1160 const Operand& operand) {
1161 AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC);
1162}
1163
1164
1165void Assembler::sbcs(const Register& rd,
1166 const Register& rn,
1167 const Operand& operand) {
1168 AddSubWithCarry(rd, rn, operand, SetFlags, SBC);
1169}
1170
1171
1172void Assembler::ngc(const Register& rd, const Operand& operand) {
1173 Register zr = AppropriateZeroRegFor(rd);
1174 sbc(rd, zr, operand);
1175}
1176
1177
1178void Assembler::ngcs(const Register& rd, const Operand& operand) {
1179 Register zr = AppropriateZeroRegFor(rd);
1180 sbcs(rd, zr, operand);
1181}
1182
1183
1184// Logical instructions.
1185void Assembler::and_(const Register& rd,
1186 const Register& rn,
1187 const Operand& operand) {
1188 Logical(rd, rn, operand, AND);
1189}
1190
1191
1192void Assembler::ands(const Register& rd,
1193 const Register& rn,
1194 const Operand& operand) {
1195 Logical(rd, rn, operand, ANDS);
1196}
1197
1198
1199void Assembler::tst(const Register& rn,
1200 const Operand& operand) {
1201 ands(AppropriateZeroRegFor(rn), rn, operand);
1202}
1203
1204
1205void Assembler::bic(const Register& rd,
1206 const Register& rn,
1207 const Operand& operand) {
1208 Logical(rd, rn, operand, BIC);
1209}
1210
1211
1212void Assembler::bics(const Register& rd,
1213 const Register& rn,
1214 const Operand& operand) {
1215 Logical(rd, rn, operand, BICS);
1216}
1217
1218
1219void Assembler::orr(const Register& rd,
1220 const Register& rn,
1221 const Operand& operand) {
1222 Logical(rd, rn, operand, ORR);
1223}
1224
1225
1226void Assembler::orn(const Register& rd,
1227 const Register& rn,
1228 const Operand& operand) {
1229 Logical(rd, rn, operand, ORN);
1230}
1231
1232
1233void Assembler::eor(const Register& rd,
1234 const Register& rn,
1235 const Operand& operand) {
1236 Logical(rd, rn, operand, EOR);
1237}
1238
1239
1240void Assembler::eon(const Register& rd,
1241 const Register& rn,
1242 const Operand& operand) {
1243 Logical(rd, rn, operand, EON);
1244}
1245
1246
1247void Assembler::lslv(const Register& rd,
1248 const Register& rn,
1249 const Register& rm) {
1250 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1251 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1252 Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd));
1253}
1254
1255
1256void Assembler::lsrv(const Register& rd,
1257 const Register& rn,
1258 const Register& rm) {
1259 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1260 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1261 Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd));
1262}
1263
1264
1265void Assembler::asrv(const Register& rd,
1266 const Register& rn,
1267 const Register& rm) {
1268 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1269 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1270 Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd));
1271}
1272
1273
1274void Assembler::rorv(const Register& rd,
1275 const Register& rn,
1276 const Register& rm) {
1277 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1278 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1279 Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd));
1280}
1281
1282
1283// Bitfield operations.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001284void Assembler::bfm(const Register& rd, const Register& rn, int immr,
1285 int imms) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001286 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1287 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1288 Emit(SF(rd) | BFM | N |
1289 ImmR(immr, rd.SizeInBits()) |
1290 ImmS(imms, rn.SizeInBits()) |
1291 Rn(rn) | Rd(rd));
1292}
1293
1294
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001295void Assembler::sbfm(const Register& rd, const Register& rn, int immr,
1296 int imms) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001297 DCHECK(rd.Is64Bits() || rn.Is32Bits());
1298 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1299 Emit(SF(rd) | SBFM | N |
1300 ImmR(immr, rd.SizeInBits()) |
1301 ImmS(imms, rn.SizeInBits()) |
1302 Rn(rn) | Rd(rd));
1303}
1304
1305
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001306void Assembler::ubfm(const Register& rd, const Register& rn, int immr,
1307 int imms) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001308 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1309 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1310 Emit(SF(rd) | UBFM | N |
1311 ImmR(immr, rd.SizeInBits()) |
1312 ImmS(imms, rn.SizeInBits()) |
1313 Rn(rn) | Rd(rd));
1314}
1315
1316
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001317void Assembler::extr(const Register& rd, const Register& rn, const Register& rm,
1318 int lsb) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001319 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1320 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1321 Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset);
1322 Emit(SF(rd) | EXTR | N | Rm(rm) |
1323 ImmS(lsb, rn.SizeInBits()) | Rn(rn) | Rd(rd));
1324}
1325
1326
1327void Assembler::csel(const Register& rd,
1328 const Register& rn,
1329 const Register& rm,
1330 Condition cond) {
1331 ConditionalSelect(rd, rn, rm, cond, CSEL);
1332}
1333
1334
1335void Assembler::csinc(const Register& rd,
1336 const Register& rn,
1337 const Register& rm,
1338 Condition cond) {
1339 ConditionalSelect(rd, rn, rm, cond, CSINC);
1340}
1341
1342
1343void Assembler::csinv(const Register& rd,
1344 const Register& rn,
1345 const Register& rm,
1346 Condition cond) {
1347 ConditionalSelect(rd, rn, rm, cond, CSINV);
1348}
1349
1350
1351void Assembler::csneg(const Register& rd,
1352 const Register& rn,
1353 const Register& rm,
1354 Condition cond) {
1355 ConditionalSelect(rd, rn, rm, cond, CSNEG);
1356}
1357
1358
1359void Assembler::cset(const Register &rd, Condition cond) {
1360 DCHECK((cond != al) && (cond != nv));
1361 Register zr = AppropriateZeroRegFor(rd);
1362 csinc(rd, zr, zr, NegateCondition(cond));
1363}
1364
1365
1366void Assembler::csetm(const Register &rd, Condition cond) {
1367 DCHECK((cond != al) && (cond != nv));
1368 Register zr = AppropriateZeroRegFor(rd);
1369 csinv(rd, zr, zr, NegateCondition(cond));
1370}
1371
1372
1373void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) {
1374 DCHECK((cond != al) && (cond != nv));
1375 csinc(rd, rn, rn, NegateCondition(cond));
1376}
1377
1378
1379void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) {
1380 DCHECK((cond != al) && (cond != nv));
1381 csinv(rd, rn, rn, NegateCondition(cond));
1382}
1383
1384
1385void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) {
1386 DCHECK((cond != al) && (cond != nv));
1387 csneg(rd, rn, rn, NegateCondition(cond));
1388}
1389
1390
1391void Assembler::ConditionalSelect(const Register& rd,
1392 const Register& rn,
1393 const Register& rm,
1394 Condition cond,
1395 ConditionalSelectOp op) {
1396 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1397 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1398 Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd));
1399}
1400
1401
1402void Assembler::ccmn(const Register& rn,
1403 const Operand& operand,
1404 StatusFlags nzcv,
1405 Condition cond) {
1406 ConditionalCompare(rn, operand, nzcv, cond, CCMN);
1407}
1408
1409
1410void Assembler::ccmp(const Register& rn,
1411 const Operand& operand,
1412 StatusFlags nzcv,
1413 Condition cond) {
1414 ConditionalCompare(rn, operand, nzcv, cond, CCMP);
1415}
1416
1417
1418void Assembler::DataProcessing3Source(const Register& rd,
1419 const Register& rn,
1420 const Register& rm,
1421 const Register& ra,
1422 DataProcessing3SourceOp op) {
1423 Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd));
1424}
1425
1426
1427void Assembler::mul(const Register& rd,
1428 const Register& rn,
1429 const Register& rm) {
1430 DCHECK(AreSameSizeAndType(rd, rn, rm));
1431 Register zr = AppropriateZeroRegFor(rn);
1432 DataProcessing3Source(rd, rn, rm, zr, MADD);
1433}
1434
1435
1436void Assembler::madd(const Register& rd,
1437 const Register& rn,
1438 const Register& rm,
1439 const Register& ra) {
1440 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1441 DataProcessing3Source(rd, rn, rm, ra, MADD);
1442}
1443
1444
1445void Assembler::mneg(const Register& rd,
1446 const Register& rn,
1447 const Register& rm) {
1448 DCHECK(AreSameSizeAndType(rd, rn, rm));
1449 Register zr = AppropriateZeroRegFor(rn);
1450 DataProcessing3Source(rd, rn, rm, zr, MSUB);
1451}
1452
1453
1454void Assembler::msub(const Register& rd,
1455 const Register& rn,
1456 const Register& rm,
1457 const Register& ra) {
1458 DCHECK(AreSameSizeAndType(rd, rn, rm, ra));
1459 DataProcessing3Source(rd, rn, rm, ra, MSUB);
1460}
1461
1462
1463void Assembler::smaddl(const Register& rd,
1464 const Register& rn,
1465 const Register& rm,
1466 const Register& ra) {
1467 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1468 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1469 DataProcessing3Source(rd, rn, rm, ra, SMADDL_x);
1470}
1471
1472
1473void Assembler::smsubl(const Register& rd,
1474 const Register& rn,
1475 const Register& rm,
1476 const Register& ra) {
1477 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1478 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1479 DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x);
1480}
1481
1482
1483void Assembler::umaddl(const Register& rd,
1484 const Register& rn,
1485 const Register& rm,
1486 const Register& ra) {
1487 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1488 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1489 DataProcessing3Source(rd, rn, rm, ra, UMADDL_x);
1490}
1491
1492
1493void Assembler::umsubl(const Register& rd,
1494 const Register& rn,
1495 const Register& rm,
1496 const Register& ra) {
1497 DCHECK(rd.Is64Bits() && ra.Is64Bits());
1498 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1499 DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x);
1500}
1501
1502
1503void Assembler::smull(const Register& rd,
1504 const Register& rn,
1505 const Register& rm) {
1506 DCHECK(rd.Is64Bits());
1507 DCHECK(rn.Is32Bits() && rm.Is32Bits());
1508 DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x);
1509}
1510
1511
1512void Assembler::smulh(const Register& rd,
1513 const Register& rn,
1514 const Register& rm) {
1515 DCHECK(AreSameSizeAndType(rd, rn, rm));
1516 DataProcessing3Source(rd, rn, rm, xzr, SMULH_x);
1517}
1518
1519
1520void Assembler::sdiv(const Register& rd,
1521 const Register& rn,
1522 const Register& rm) {
1523 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1524 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1525 Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd));
1526}
1527
1528
1529void Assembler::udiv(const Register& rd,
1530 const Register& rn,
1531 const Register& rm) {
1532 DCHECK(rd.SizeInBits() == rn.SizeInBits());
1533 DCHECK(rd.SizeInBits() == rm.SizeInBits());
1534 Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd));
1535}
1536
1537
1538void Assembler::rbit(const Register& rd,
1539 const Register& rn) {
1540 DataProcessing1Source(rd, rn, RBIT);
1541}
1542
1543
1544void Assembler::rev16(const Register& rd,
1545 const Register& rn) {
1546 DataProcessing1Source(rd, rn, REV16);
1547}
1548
1549
1550void Assembler::rev32(const Register& rd,
1551 const Register& rn) {
1552 DCHECK(rd.Is64Bits());
1553 DataProcessing1Source(rd, rn, REV);
1554}
1555
1556
1557void Assembler::rev(const Register& rd,
1558 const Register& rn) {
1559 DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w);
1560}
1561
1562
1563void Assembler::clz(const Register& rd,
1564 const Register& rn) {
1565 DataProcessing1Source(rd, rn, CLZ);
1566}
1567
1568
1569void Assembler::cls(const Register& rd,
1570 const Register& rn) {
1571 DataProcessing1Source(rd, rn, CLS);
1572}
1573
1574
1575void Assembler::ldp(const CPURegister& rt,
1576 const CPURegister& rt2,
1577 const MemOperand& src) {
1578 LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2));
1579}
1580
1581
1582void Assembler::stp(const CPURegister& rt,
1583 const CPURegister& rt2,
1584 const MemOperand& dst) {
1585 LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2));
1586}
1587
1588
1589void Assembler::ldpsw(const Register& rt,
1590 const Register& rt2,
1591 const MemOperand& src) {
1592 DCHECK(rt.Is64Bits());
1593 LoadStorePair(rt, rt2, src, LDPSW_x);
1594}
1595
1596
1597void Assembler::LoadStorePair(const CPURegister& rt,
1598 const CPURegister& rt2,
1599 const MemOperand& addr,
1600 LoadStorePairOp op) {
1601 // 'rt' and 'rt2' can only be aliased for stores.
1602 DCHECK(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2));
1603 DCHECK(AreSameSizeAndType(rt, rt2));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001604 DCHECK(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op)));
1605 int offset = static_cast<int>(addr.offset());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001606
1607 Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) |
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001608 ImmLSPair(offset, CalcLSPairDataSize(op));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001609
1610 Instr addrmodeop;
1611 if (addr.IsImmediateOffset()) {
1612 addrmodeop = LoadStorePairOffsetFixed;
1613 } else {
1614 // Pre-index and post-index modes.
1615 DCHECK(!rt.Is(addr.base()));
1616 DCHECK(!rt2.Is(addr.base()));
1617 DCHECK(addr.offset() != 0);
1618 if (addr.IsPreIndex()) {
1619 addrmodeop = LoadStorePairPreIndexFixed;
1620 } else {
1621 DCHECK(addr.IsPostIndex());
1622 addrmodeop = LoadStorePairPostIndexFixed;
1623 }
1624 }
1625 Emit(addrmodeop | memop);
1626}
1627
1628
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001629// Memory instructions.
1630void Assembler::ldrb(const Register& rt, const MemOperand& src) {
1631 LoadStore(rt, src, LDRB_w);
1632}
1633
1634
1635void Assembler::strb(const Register& rt, const MemOperand& dst) {
1636 LoadStore(rt, dst, STRB_w);
1637}
1638
1639
1640void Assembler::ldrsb(const Register& rt, const MemOperand& src) {
1641 LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w);
1642}
1643
1644
1645void Assembler::ldrh(const Register& rt, const MemOperand& src) {
1646 LoadStore(rt, src, LDRH_w);
1647}
1648
1649
1650void Assembler::strh(const Register& rt, const MemOperand& dst) {
1651 LoadStore(rt, dst, STRH_w);
1652}
1653
1654
1655void Assembler::ldrsh(const Register& rt, const MemOperand& src) {
1656 LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w);
1657}
1658
1659
1660void Assembler::ldr(const CPURegister& rt, const MemOperand& src) {
1661 LoadStore(rt, src, LoadOpFor(rt));
1662}
1663
1664
1665void Assembler::str(const CPURegister& rt, const MemOperand& src) {
1666 LoadStore(rt, src, StoreOpFor(rt));
1667}
1668
1669
1670void Assembler::ldrsw(const Register& rt, const MemOperand& src) {
1671 DCHECK(rt.Is64Bits());
1672 LoadStore(rt, src, LDRSW_x);
1673}
1674
1675
1676void Assembler::ldr_pcrel(const CPURegister& rt, int imm19) {
1677 // The pattern 'ldr xzr, #offset' is used to indicate the beginning of a
1678 // constant pool. It should not be emitted.
1679 DCHECK(!rt.IsZero());
1680 Emit(LoadLiteralOpFor(rt) | ImmLLiteral(imm19) | Rt(rt));
1681}
1682
1683
1684void Assembler::ldr(const CPURegister& rt, const Immediate& imm) {
1685 // Currently we only support 64-bit literals.
1686 DCHECK(rt.Is64Bits());
1687
1688 RecordRelocInfo(imm.rmode(), imm.value());
1689 BlockConstPoolFor(1);
1690 // The load will be patched when the constpool is emitted, patching code
1691 // expect a load literal with offset 0.
1692 ldr_pcrel(rt, 0);
1693}
1694
1695
1696void Assembler::mov(const Register& rd, const Register& rm) {
1697 // Moves involving the stack pointer are encoded as add immediate with
1698 // second operand of zero. Otherwise, orr with first operand zr is
1699 // used.
1700 if (rd.IsSP() || rm.IsSP()) {
1701 add(rd, rm, 0);
1702 } else {
1703 orr(rd, AppropriateZeroRegFor(rd), rm);
1704 }
1705}
1706
1707
1708void Assembler::mvn(const Register& rd, const Operand& operand) {
1709 orn(rd, AppropriateZeroRegFor(rd), operand);
1710}
1711
1712
1713void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
1714 DCHECK(rt.Is64Bits());
1715 Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
1716}
1717
1718
1719void Assembler::msr(SystemRegister sysreg, const Register& rt) {
1720 DCHECK(rt.Is64Bits());
1721 Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
1722}
1723
1724
1725void Assembler::hint(SystemHint code) {
1726 Emit(HINT | ImmHint(code) | Rt(xzr));
1727}
1728
1729
1730void Assembler::dmb(BarrierDomain domain, BarrierType type) {
1731 Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1732}
1733
1734
1735void Assembler::dsb(BarrierDomain domain, BarrierType type) {
1736 Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
1737}
1738
1739
1740void Assembler::isb() {
1741 Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
1742}
1743
1744
1745void Assembler::fmov(FPRegister fd, double imm) {
1746 DCHECK(fd.Is64Bits());
1747 DCHECK(IsImmFP64(imm));
1748 Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
1749}
1750
1751
1752void Assembler::fmov(FPRegister fd, float imm) {
1753 DCHECK(fd.Is32Bits());
1754 DCHECK(IsImmFP32(imm));
1755 Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
1756}
1757
1758
1759void Assembler::fmov(Register rd, FPRegister fn) {
1760 DCHECK(rd.SizeInBits() == fn.SizeInBits());
1761 FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
1762 Emit(op | Rd(rd) | Rn(fn));
1763}
1764
1765
1766void Assembler::fmov(FPRegister fd, Register rn) {
1767 DCHECK(fd.SizeInBits() == rn.SizeInBits());
1768 FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
1769 Emit(op | Rd(fd) | Rn(rn));
1770}
1771
1772
1773void Assembler::fmov(FPRegister fd, FPRegister fn) {
1774 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1775 Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
1776}
1777
1778
1779void Assembler::fadd(const FPRegister& fd,
1780 const FPRegister& fn,
1781 const FPRegister& fm) {
1782 FPDataProcessing2Source(fd, fn, fm, FADD);
1783}
1784
1785
1786void Assembler::fsub(const FPRegister& fd,
1787 const FPRegister& fn,
1788 const FPRegister& fm) {
1789 FPDataProcessing2Source(fd, fn, fm, FSUB);
1790}
1791
1792
1793void Assembler::fmul(const FPRegister& fd,
1794 const FPRegister& fn,
1795 const FPRegister& fm) {
1796 FPDataProcessing2Source(fd, fn, fm, FMUL);
1797}
1798
1799
1800void Assembler::fmadd(const FPRegister& fd,
1801 const FPRegister& fn,
1802 const FPRegister& fm,
1803 const FPRegister& fa) {
1804 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
1805}
1806
1807
1808void Assembler::fmsub(const FPRegister& fd,
1809 const FPRegister& fn,
1810 const FPRegister& fm,
1811 const FPRegister& fa) {
1812 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
1813}
1814
1815
1816void Assembler::fnmadd(const FPRegister& fd,
1817 const FPRegister& fn,
1818 const FPRegister& fm,
1819 const FPRegister& fa) {
1820 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
1821}
1822
1823
1824void Assembler::fnmsub(const FPRegister& fd,
1825 const FPRegister& fn,
1826 const FPRegister& fm,
1827 const FPRegister& fa) {
1828 FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
1829}
1830
1831
1832void Assembler::fdiv(const FPRegister& fd,
1833 const FPRegister& fn,
1834 const FPRegister& fm) {
1835 FPDataProcessing2Source(fd, fn, fm, FDIV);
1836}
1837
1838
1839void Assembler::fmax(const FPRegister& fd,
1840 const FPRegister& fn,
1841 const FPRegister& fm) {
1842 FPDataProcessing2Source(fd, fn, fm, FMAX);
1843}
1844
1845
1846void Assembler::fmaxnm(const FPRegister& fd,
1847 const FPRegister& fn,
1848 const FPRegister& fm) {
1849 FPDataProcessing2Source(fd, fn, fm, FMAXNM);
1850}
1851
1852
1853void Assembler::fmin(const FPRegister& fd,
1854 const FPRegister& fn,
1855 const FPRegister& fm) {
1856 FPDataProcessing2Source(fd, fn, fm, FMIN);
1857}
1858
1859
1860void Assembler::fminnm(const FPRegister& fd,
1861 const FPRegister& fn,
1862 const FPRegister& fm) {
1863 FPDataProcessing2Source(fd, fn, fm, FMINNM);
1864}
1865
1866
1867void Assembler::fabs(const FPRegister& fd,
1868 const FPRegister& fn) {
1869 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1870 FPDataProcessing1Source(fd, fn, FABS);
1871}
1872
1873
1874void Assembler::fneg(const FPRegister& fd,
1875 const FPRegister& fn) {
1876 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1877 FPDataProcessing1Source(fd, fn, FNEG);
1878}
1879
1880
1881void Assembler::fsqrt(const FPRegister& fd,
1882 const FPRegister& fn) {
1883 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1884 FPDataProcessing1Source(fd, fn, FSQRT);
1885}
1886
1887
1888void Assembler::frinta(const FPRegister& fd,
1889 const FPRegister& fn) {
1890 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1891 FPDataProcessing1Source(fd, fn, FRINTA);
1892}
1893
1894
1895void Assembler::frintm(const FPRegister& fd,
1896 const FPRegister& fn) {
1897 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1898 FPDataProcessing1Source(fd, fn, FRINTM);
1899}
1900
1901
1902void Assembler::frintn(const FPRegister& fd,
1903 const FPRegister& fn) {
1904 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1905 FPDataProcessing1Source(fd, fn, FRINTN);
1906}
1907
1908
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001909void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
1910 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1911 FPDataProcessing1Source(fd, fn, FRINTP);
1912}
1913
1914
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001915void Assembler::frintz(const FPRegister& fd,
1916 const FPRegister& fn) {
1917 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1918 FPDataProcessing1Source(fd, fn, FRINTZ);
1919}
1920
1921
1922void Assembler::fcmp(const FPRegister& fn,
1923 const FPRegister& fm) {
1924 DCHECK(fn.SizeInBits() == fm.SizeInBits());
1925 Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
1926}
1927
1928
1929void Assembler::fcmp(const FPRegister& fn,
1930 double value) {
1931 USE(value);
1932 // Although the fcmp instruction can strictly only take an immediate value of
1933 // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
1934 // affect the result of the comparison.
1935 DCHECK(value == 0.0);
1936 Emit(FPType(fn) | FCMP_zero | Rn(fn));
1937}
1938
1939
1940void Assembler::fccmp(const FPRegister& fn,
1941 const FPRegister& fm,
1942 StatusFlags nzcv,
1943 Condition cond) {
1944 DCHECK(fn.SizeInBits() == fm.SizeInBits());
1945 Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
1946}
1947
1948
1949void Assembler::fcsel(const FPRegister& fd,
1950 const FPRegister& fn,
1951 const FPRegister& fm,
1952 Condition cond) {
1953 DCHECK(fd.SizeInBits() == fn.SizeInBits());
1954 DCHECK(fd.SizeInBits() == fm.SizeInBits());
1955 Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
1956}
1957
1958
1959void Assembler::FPConvertToInt(const Register& rd,
1960 const FPRegister& fn,
1961 FPIntegerConvertOp op) {
1962 Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
1963}
1964
1965
1966void Assembler::fcvt(const FPRegister& fd,
1967 const FPRegister& fn) {
1968 if (fd.Is64Bits()) {
1969 // Convert float to double.
1970 DCHECK(fn.Is32Bits());
1971 FPDataProcessing1Source(fd, fn, FCVT_ds);
1972 } else {
1973 // Convert double to float.
1974 DCHECK(fn.Is64Bits());
1975 FPDataProcessing1Source(fd, fn, FCVT_sd);
1976 }
1977}
1978
1979
1980void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
1981 FPConvertToInt(rd, fn, FCVTAU);
1982}
1983
1984
1985void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
1986 FPConvertToInt(rd, fn, FCVTAS);
1987}
1988
1989
1990void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
1991 FPConvertToInt(rd, fn, FCVTMU);
1992}
1993
1994
1995void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
1996 FPConvertToInt(rd, fn, FCVTMS);
1997}
1998
1999
2000void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
2001 FPConvertToInt(rd, fn, FCVTNU);
2002}
2003
2004
2005void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
2006 FPConvertToInt(rd, fn, FCVTNS);
2007}
2008
2009
2010void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
2011 FPConvertToInt(rd, fn, FCVTZU);
2012}
2013
2014
2015void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
2016 FPConvertToInt(rd, fn, FCVTZS);
2017}
2018
2019
2020void Assembler::scvtf(const FPRegister& fd,
2021 const Register& rn,
2022 unsigned fbits) {
2023 if (fbits == 0) {
2024 Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
2025 } else {
2026 Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2027 Rd(fd));
2028 }
2029}
2030
2031
2032void Assembler::ucvtf(const FPRegister& fd,
2033 const Register& rn,
2034 unsigned fbits) {
2035 if (fbits == 0) {
2036 Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
2037 } else {
2038 Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
2039 Rd(fd));
2040 }
2041}
2042
2043
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002044void Assembler::dcptr(Label* label) {
2045 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2046 if (label->is_bound()) {
2047 // The label is bound, so it does not need to be updated and the internal
2048 // reference should be emitted.
2049 //
2050 // In this case, label->pos() returns the offset of the label from the
2051 // start of the buffer.
2052 internal_reference_positions_.push_back(pc_offset());
2053 dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
2054 } else {
2055 int32_t offset;
2056 if (label->is_linked()) {
2057 // The label is linked, so the internal reference should be added
2058 // onto the end of the label's link chain.
2059 //
2060 // In this case, label->pos() returns the offset of the last linked
2061 // instruction from the start of the buffer.
2062 offset = label->pos() - pc_offset();
2063 DCHECK(offset != kStartOfLabelLinkChain);
2064 } else {
2065 // The label is unused, so it now becomes linked and the internal
2066 // reference is at the start of the new link chain.
2067 offset = kStartOfLabelLinkChain;
2068 }
2069 // The instruction at pc is now the last link in the label's chain.
2070 label->link_to(pc_offset());
2071
2072 // Traditionally the offset to the previous instruction in the chain is
2073 // encoded in the instruction payload (e.g. branch range) but internal
2074 // references are not instructions so while unbound they are encoded as
2075 // two consecutive brk instructions. The two 16-bit immediates are used
2076 // to encode the offset.
2077 offset >>= kInstructionSizeLog2;
2078 DCHECK(is_int32(offset));
2079 uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
2080 uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
2081
2082 brk(high16);
2083 brk(low16);
2084 }
2085}
2086
2087
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002088// Note:
2089// Below, a difference in case for the same letter indicates a
2090// negated bit.
2091// If b is 1, then B is 0.
2092Instr Assembler::ImmFP32(float imm) {
2093 DCHECK(IsImmFP32(imm));
2094 // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
2095 uint32_t bits = float_to_rawbits(imm);
2096 // bit7: a000.0000
2097 uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
2098 // bit6: 0b00.0000
2099 uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
2100 // bit5_to_0: 00cd.efgh
2101 uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
2102
2103 return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
2104}
2105
2106
2107Instr Assembler::ImmFP64(double imm) {
2108 DCHECK(IsImmFP64(imm));
2109 // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2110 // 0000.0000.0000.0000.0000.0000.0000.0000
2111 uint64_t bits = double_to_rawbits(imm);
2112 // bit7: a000.0000
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002113 uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002114 // bit6: 0b00.0000
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002115 uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002116 // bit5_to_0: 00cd.efgh
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002117 uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002118
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002119 return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002120}
2121
2122
2123// Code generation helpers.
2124void Assembler::MoveWide(const Register& rd,
2125 uint64_t imm,
2126 int shift,
2127 MoveWideImmediateOp mov_op) {
2128 // Ignore the top 32 bits of an immediate if we're moving to a W register.
2129 if (rd.Is32Bits()) {
2130 // Check that the top 32 bits are zero (a positive 32-bit number) or top
2131 // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
2132 DCHECK(((imm >> kWRegSizeInBits) == 0) ||
2133 ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
2134 imm &= kWRegMask;
2135 }
2136
2137 if (shift >= 0) {
2138 // Explicit shift specified.
2139 DCHECK((shift == 0) || (shift == 16) || (shift == 32) || (shift == 48));
2140 DCHECK(rd.Is64Bits() || (shift == 0) || (shift == 16));
2141 shift /= 16;
2142 } else {
2143 // Calculate a new immediate and shift combination to encode the immediate
2144 // argument.
2145 shift = 0;
2146 if ((imm & ~0xffffUL) == 0) {
2147 // Nothing to do.
2148 } else if ((imm & ~(0xffffUL << 16)) == 0) {
2149 imm >>= 16;
2150 shift = 1;
2151 } else if ((imm & ~(0xffffUL << 32)) == 0) {
2152 DCHECK(rd.Is64Bits());
2153 imm >>= 32;
2154 shift = 2;
2155 } else if ((imm & ~(0xffffUL << 48)) == 0) {
2156 DCHECK(rd.Is64Bits());
2157 imm >>= 48;
2158 shift = 3;
2159 }
2160 }
2161
2162 DCHECK(is_uint16(imm));
2163
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002164 Emit(SF(rd) | MoveWideImmediateFixed | mov_op | Rd(rd) |
2165 ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002166}
2167
2168
2169void Assembler::AddSub(const Register& rd,
2170 const Register& rn,
2171 const Operand& operand,
2172 FlagsUpdate S,
2173 AddSubOp op) {
2174 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2175 DCHECK(!operand.NeedsRelocation(this));
2176 if (operand.IsImmediate()) {
2177 int64_t immediate = operand.ImmediateValue();
2178 DCHECK(IsImmAddSub(immediate));
2179 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2180 Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002181 ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002182 } else if (operand.IsShiftedRegister()) {
2183 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2184 DCHECK(operand.shift() != ROR);
2185
2186 // For instructions of the form:
2187 // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
2188 // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ]
2189 // add/sub wsp, wsp, <Wm> [, LSL #0-3 ]
2190 // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ]
2191 // or their 64-bit register equivalents, convert the operand from shifted to
2192 // extended register mode, and emit an add/sub extended instruction.
2193 if (rn.IsSP() || rd.IsSP()) {
2194 DCHECK(!(rd.IsSP() && (S == SetFlags)));
2195 DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S,
2196 AddSubExtendedFixed | op);
2197 } else {
2198 DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op);
2199 }
2200 } else {
2201 DCHECK(operand.IsExtendedRegister());
2202 DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op);
2203 }
2204}
2205
2206
2207void Assembler::AddSubWithCarry(const Register& rd,
2208 const Register& rn,
2209 const Operand& operand,
2210 FlagsUpdate S,
2211 AddSubWithCarryOp op) {
2212 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2213 DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
2214 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2215 DCHECK(!operand.NeedsRelocation(this));
2216 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
2217}
2218
2219
2220void Assembler::hlt(int code) {
2221 DCHECK(is_uint16(code));
2222 Emit(HLT | ImmException(code));
2223}
2224
2225
2226void Assembler::brk(int code) {
2227 DCHECK(is_uint16(code));
2228 Emit(BRK | ImmException(code));
2229}
2230
2231
2232void Assembler::EmitStringData(const char* string) {
2233 size_t len = strlen(string) + 1;
2234 DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002235 EmitData(string, static_cast<int>(len));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002236 // Pad with NULL characters until pc_ is aligned.
2237 const char pad[] = {'\0', '\0', '\0', '\0'};
2238 STATIC_ASSERT(sizeof(pad) == kInstructionSize);
2239 EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
2240}
2241
2242
2243void Assembler::debug(const char* message, uint32_t code, Instr params) {
2244#ifdef USE_SIMULATOR
2245 // Don't generate simulator specific code if we are building a snapshot, which
2246 // might be run on real hardware.
2247 if (!serializer_enabled()) {
2248 // The arguments to the debug marker need to be contiguous in memory, so
2249 // make sure we don't try to emit pools.
2250 BlockPoolsScope scope(this);
2251
2252 Label start;
2253 bind(&start);
2254
2255 // Refer to instructions-arm64.h for a description of the marker and its
2256 // arguments.
2257 hlt(kImmExceptionIsDebug);
2258 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugCodeOffset);
2259 dc32(code);
2260 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugParamsOffset);
2261 dc32(params);
2262 DCHECK(SizeOfCodeGeneratedSince(&start) == kDebugMessageOffset);
2263 EmitStringData(message);
2264 hlt(kImmExceptionIsUnreachable);
2265
2266 return;
2267 }
2268 // Fall through if Serializer is enabled.
2269#endif
2270
2271 if (params & BREAK) {
2272 hlt(kImmExceptionIsDebug);
2273 }
2274}
2275
2276
2277void Assembler::Logical(const Register& rd,
2278 const Register& rn,
2279 const Operand& operand,
2280 LogicalOp op) {
2281 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2282 DCHECK(!operand.NeedsRelocation(this));
2283 if (operand.IsImmediate()) {
2284 int64_t immediate = operand.ImmediateValue();
2285 unsigned reg_size = rd.SizeInBits();
2286
2287 DCHECK(immediate != 0);
2288 DCHECK(immediate != -1);
2289 DCHECK(rd.Is64Bits() || is_uint32(immediate));
2290
2291 // If the operation is NOT, invert the operation and immediate.
2292 if ((op & NOT) == NOT) {
2293 op = static_cast<LogicalOp>(op & ~NOT);
2294 immediate = rd.Is64Bits() ? ~immediate : (~immediate & kWRegMask);
2295 }
2296
2297 unsigned n, imm_s, imm_r;
2298 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
2299 // Immediate can be encoded in the instruction.
2300 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
2301 } else {
2302 // This case is handled in the macro assembler.
2303 UNREACHABLE();
2304 }
2305 } else {
2306 DCHECK(operand.IsShiftedRegister());
2307 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
2308 Instr dp_op = static_cast<Instr>(op | LogicalShiftedFixed);
2309 DataProcShiftedRegister(rd, rn, operand, LeaveFlags, dp_op);
2310 }
2311}
2312
2313
2314void Assembler::LogicalImmediate(const Register& rd,
2315 const Register& rn,
2316 unsigned n,
2317 unsigned imm_s,
2318 unsigned imm_r,
2319 LogicalOp op) {
2320 unsigned reg_size = rd.SizeInBits();
2321 Instr dest_reg = (op == ANDS) ? Rd(rd) : RdSP(rd);
2322 Emit(SF(rd) | LogicalImmediateFixed | op | BitN(n, reg_size) |
2323 ImmSetBits(imm_s, reg_size) | ImmRotate(imm_r, reg_size) | dest_reg |
2324 Rn(rn));
2325}
2326
2327
2328void Assembler::ConditionalCompare(const Register& rn,
2329 const Operand& operand,
2330 StatusFlags nzcv,
2331 Condition cond,
2332 ConditionalCompareOp op) {
2333 Instr ccmpop;
2334 DCHECK(!operand.NeedsRelocation(this));
2335 if (operand.IsImmediate()) {
2336 int64_t immediate = operand.ImmediateValue();
2337 DCHECK(IsImmConditionalCompare(immediate));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002338 ccmpop = ConditionalCompareImmediateFixed | op |
2339 ImmCondCmp(static_cast<unsigned>(immediate));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002340 } else {
2341 DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
2342 ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg());
2343 }
2344 Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv));
2345}
2346
2347
2348void Assembler::DataProcessing1Source(const Register& rd,
2349 const Register& rn,
2350 DataProcessing1SourceOp op) {
2351 DCHECK(rd.SizeInBits() == rn.SizeInBits());
2352 Emit(SF(rn) | op | Rn(rn) | Rd(rd));
2353}
2354
2355
2356void Assembler::FPDataProcessing1Source(const FPRegister& fd,
2357 const FPRegister& fn,
2358 FPDataProcessing1SourceOp op) {
2359 Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
2360}
2361
2362
2363void Assembler::FPDataProcessing2Source(const FPRegister& fd,
2364 const FPRegister& fn,
2365 const FPRegister& fm,
2366 FPDataProcessing2SourceOp op) {
2367 DCHECK(fd.SizeInBits() == fn.SizeInBits());
2368 DCHECK(fd.SizeInBits() == fm.SizeInBits());
2369 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
2370}
2371
2372
2373void Assembler::FPDataProcessing3Source(const FPRegister& fd,
2374 const FPRegister& fn,
2375 const FPRegister& fm,
2376 const FPRegister& fa,
2377 FPDataProcessing3SourceOp op) {
2378 DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
2379 Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
2380}
2381
2382
2383void Assembler::EmitShift(const Register& rd,
2384 const Register& rn,
2385 Shift shift,
2386 unsigned shift_amount) {
2387 switch (shift) {
2388 case LSL:
2389 lsl(rd, rn, shift_amount);
2390 break;
2391 case LSR:
2392 lsr(rd, rn, shift_amount);
2393 break;
2394 case ASR:
2395 asr(rd, rn, shift_amount);
2396 break;
2397 case ROR:
2398 ror(rd, rn, shift_amount);
2399 break;
2400 default:
2401 UNREACHABLE();
2402 }
2403}
2404
2405
2406void Assembler::EmitExtendShift(const Register& rd,
2407 const Register& rn,
2408 Extend extend,
2409 unsigned left_shift) {
2410 DCHECK(rd.SizeInBits() >= rn.SizeInBits());
2411 unsigned reg_size = rd.SizeInBits();
2412 // Use the correct size of register.
2413 Register rn_ = Register::Create(rn.code(), rd.SizeInBits());
2414 // Bits extracted are high_bit:0.
2415 unsigned high_bit = (8 << (extend & 0x3)) - 1;
2416 // Number of bits left in the result that are not introduced by the shift.
2417 unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1);
2418
2419 if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) {
2420 switch (extend) {
2421 case UXTB:
2422 case UXTH:
2423 case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break;
2424 case SXTB:
2425 case SXTH:
2426 case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break;
2427 case UXTX:
2428 case SXTX: {
2429 DCHECK(rn.SizeInBits() == kXRegSizeInBits);
2430 // Nothing to extend. Just shift.
2431 lsl(rd, rn_, left_shift);
2432 break;
2433 }
2434 default: UNREACHABLE();
2435 }
2436 } else {
2437 // No need to extend as the extended bits would be shifted away.
2438 lsl(rd, rn_, left_shift);
2439 }
2440}
2441
2442
2443void Assembler::DataProcShiftedRegister(const Register& rd,
2444 const Register& rn,
2445 const Operand& operand,
2446 FlagsUpdate S,
2447 Instr op) {
2448 DCHECK(operand.IsShiftedRegister());
2449 DCHECK(rn.Is64Bits() || (rn.Is32Bits() && is_uint5(operand.shift_amount())));
2450 DCHECK(!operand.NeedsRelocation(this));
2451 Emit(SF(rd) | op | Flags(S) |
2452 ShiftDP(operand.shift()) | ImmDPShift(operand.shift_amount()) |
2453 Rm(operand.reg()) | Rn(rn) | Rd(rd));
2454}
2455
2456
2457void Assembler::DataProcExtendedRegister(const Register& rd,
2458 const Register& rn,
2459 const Operand& operand,
2460 FlagsUpdate S,
2461 Instr op) {
2462 DCHECK(!operand.NeedsRelocation(this));
2463 Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd);
2464 Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) |
2465 ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) |
2466 dest_reg | RnSP(rn));
2467}
2468
2469
2470bool Assembler::IsImmAddSub(int64_t immediate) {
2471 return is_uint12(immediate) ||
2472 (is_uint12(immediate >> 12) && ((immediate & 0xfff) == 0));
2473}
2474
2475void Assembler::LoadStore(const CPURegister& rt,
2476 const MemOperand& addr,
2477 LoadStoreOp op) {
2478 Instr memop = op | Rt(rt) | RnSP(addr.base());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002479
2480 if (addr.IsImmediateOffset()) {
2481 LSDataSize size = CalcLSDataSize(op);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002482 if (IsImmLSScaled(addr.offset(), size)) {
2483 int offset = static_cast<int>(addr.offset());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002484 // Use the scaled addressing mode.
2485 Emit(LoadStoreUnsignedOffsetFixed | memop |
2486 ImmLSUnsigned(offset >> size));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002487 } else if (IsImmLSUnscaled(addr.offset())) {
2488 int offset = static_cast<int>(addr.offset());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002489 // Use the unscaled addressing mode.
2490 Emit(LoadStoreUnscaledOffsetFixed | memop | ImmLS(offset));
2491 } else {
2492 // This case is handled in the macro assembler.
2493 UNREACHABLE();
2494 }
2495 } else if (addr.IsRegisterOffset()) {
2496 Extend ext = addr.extend();
2497 Shift shift = addr.shift();
2498 unsigned shift_amount = addr.shift_amount();
2499
2500 // LSL is encoded in the option field as UXTX.
2501 if (shift == LSL) {
2502 ext = UXTX;
2503 }
2504
2505 // Shifts are encoded in one bit, indicating a left shift by the memory
2506 // access size.
2507 DCHECK((shift_amount == 0) ||
2508 (shift_amount == static_cast<unsigned>(CalcLSDataSize(op))));
2509 Emit(LoadStoreRegisterOffsetFixed | memop | Rm(addr.regoffset()) |
2510 ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0));
2511 } else {
2512 // Pre-index and post-index modes.
2513 DCHECK(!rt.Is(addr.base()));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002514 if (IsImmLSUnscaled(addr.offset())) {
2515 int offset = static_cast<int>(addr.offset());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002516 if (addr.IsPreIndex()) {
2517 Emit(LoadStorePreIndexFixed | memop | ImmLS(offset));
2518 } else {
2519 DCHECK(addr.IsPostIndex());
2520 Emit(LoadStorePostIndexFixed | memop | ImmLS(offset));
2521 }
2522 } else {
2523 // This case is handled in the macro assembler.
2524 UNREACHABLE();
2525 }
2526 }
2527}
2528
2529
2530bool Assembler::IsImmLSUnscaled(int64_t offset) {
2531 return is_int9(offset);
2532}
2533
2534
2535bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
2536 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2537 return offset_is_size_multiple && is_uint12(offset >> size);
2538}
2539
2540
2541bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
2542 bool offset_is_size_multiple = (((offset >> size) << size) == offset);
2543 return offset_is_size_multiple && is_int7(offset >> size);
2544}
2545
2546
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002547bool Assembler::IsImmLLiteral(int64_t offset) {
2548 int inst_size = static_cast<int>(kInstructionSizeLog2);
2549 bool offset_is_inst_multiple =
2550 (((offset >> inst_size) << inst_size) == offset);
2551 return offset_is_inst_multiple && is_intn(offset, ImmLLiteral_width);
2552}
2553
2554
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002555// Test if a given value can be encoded in the immediate field of a logical
2556// instruction.
2557// If it can be encoded, the function returns true, and values pointed to by n,
2558// imm_s and imm_r are updated with immediates encoded in the format required
2559// by the corresponding fields in the logical instruction.
2560// If it can not be encoded, the function returns false, and the values pointed
2561// to by n, imm_s and imm_r are undefined.
2562bool Assembler::IsImmLogical(uint64_t value,
2563 unsigned width,
2564 unsigned* n,
2565 unsigned* imm_s,
2566 unsigned* imm_r) {
2567 DCHECK((n != NULL) && (imm_s != NULL) && (imm_r != NULL));
2568 DCHECK((width == kWRegSizeInBits) || (width == kXRegSizeInBits));
2569
2570 bool negate = false;
2571
2572 // Logical immediates are encoded using parameters n, imm_s and imm_r using
2573 // the following table:
2574 //
2575 // N imms immr size S R
2576 // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
2577 // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
2578 // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
2579 // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
2580 // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
2581 // 0 11110s xxxxxr 2 UInt(s) UInt(r)
2582 // (s bits must not be all set)
2583 //
2584 // A pattern is constructed of size bits, where the least significant S+1 bits
2585 // are set. The pattern is rotated right by R, and repeated across a 32 or
2586 // 64-bit value, depending on destination register width.
2587 //
2588 // Put another way: the basic format of a logical immediate is a single
2589 // contiguous stretch of 1 bits, repeated across the whole word at intervals
2590 // given by a power of 2. To identify them quickly, we first locate the
2591 // lowest stretch of 1 bits, then the next 1 bit above that; that combination
2592 // is different for every logical immediate, so it gives us all the
2593 // information we need to identify the only logical immediate that our input
2594 // could be, and then we simply check if that's the value we actually have.
2595 //
2596 // (The rotation parameter does give the possibility of the stretch of 1 bits
2597 // going 'round the end' of the word. To deal with that, we observe that in
2598 // any situation where that happens the bitwise NOT of the value is also a
2599 // valid logical immediate. So we simply invert the input whenever its low bit
2600 // is set, and then we know that the rotated case can't arise.)
2601
2602 if (value & 1) {
2603 // If the low bit is 1, negate the value, and set a flag to remember that we
2604 // did (so that we can adjust the return values appropriately).
2605 negate = true;
2606 value = ~value;
2607 }
2608
2609 if (width == kWRegSizeInBits) {
2610 // To handle 32-bit logical immediates, the very easiest thing is to repeat
2611 // the input value twice to make a 64-bit word. The correct encoding of that
2612 // as a logical immediate will also be the correct encoding of the 32-bit
2613 // value.
2614
2615 // The most-significant 32 bits may not be zero (ie. negate is true) so
2616 // shift the value left before duplicating it.
2617 value <<= kWRegSizeInBits;
2618 value |= value >> kWRegSizeInBits;
2619 }
2620
2621 // The basic analysis idea: imagine our input word looks like this.
2622 //
2623 // 0011111000111110001111100011111000111110001111100011111000111110
2624 // c b a
2625 // |<--d-->|
2626 //
2627 // We find the lowest set bit (as an actual power-of-2 value, not its index)
2628 // and call it a. Then we add a to our original number, which wipes out the
2629 // bottommost stretch of set bits and replaces it with a 1 carried into the
2630 // next zero bit. Then we look for the new lowest set bit, which is in
2631 // position b, and subtract it, so now our number is just like the original
2632 // but with the lowest stretch of set bits completely gone. Now we find the
2633 // lowest set bit again, which is position c in the diagram above. Then we'll
2634 // measure the distance d between bit positions a and c (using CLZ), and that
2635 // tells us that the only valid logical immediate that could possibly be equal
2636 // to this number is the one in which a stretch of bits running from a to just
2637 // below b is replicated every d bits.
2638 uint64_t a = LargestPowerOf2Divisor(value);
2639 uint64_t value_plus_a = value + a;
2640 uint64_t b = LargestPowerOf2Divisor(value_plus_a);
2641 uint64_t value_plus_a_minus_b = value_plus_a - b;
2642 uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
2643
2644 int d, clz_a, out_n;
2645 uint64_t mask;
2646
2647 if (c != 0) {
2648 // The general case, in which there is more than one stretch of set bits.
2649 // Compute the repeat distance d, and set up a bitmask covering the basic
2650 // unit of repetition (i.e. a word with the bottom d bits set). Also, in all
2651 // of these cases the N bit of the output will be zero.
2652 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2653 int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
2654 d = clz_a - clz_c;
2655 mask = ((V8_UINT64_C(1) << d) - 1);
2656 out_n = 0;
2657 } else {
2658 // Handle degenerate cases.
2659 //
2660 // If any of those 'find lowest set bit' operations didn't find a set bit at
2661 // all, then the word will have been zero thereafter, so in particular the
2662 // last lowest_set_bit operation will have returned zero. So we can test for
2663 // all the special case conditions in one go by seeing if c is zero.
2664 if (a == 0) {
2665 // The input was zero (or all 1 bits, which will come to here too after we
2666 // inverted it at the start of the function), for which we just return
2667 // false.
2668 return false;
2669 } else {
2670 // Otherwise, if c was zero but a was not, then there's just one stretch
2671 // of set bits in our word, meaning that we have the trivial case of
2672 // d == 64 and only one 'repetition'. Set up all the same variables as in
2673 // the general case above, and set the N bit in the output.
2674 clz_a = CountLeadingZeros(a, kXRegSizeInBits);
2675 d = 64;
2676 mask = ~V8_UINT64_C(0);
2677 out_n = 1;
2678 }
2679 }
2680
2681 // If the repeat period d is not a power of two, it can't be encoded.
2682 if (!IS_POWER_OF_TWO(d)) {
2683 return false;
2684 }
2685
2686 if (((b - a) & ~mask) != 0) {
2687 // If the bit stretch (b - a) does not fit within the mask derived from the
2688 // repeat period, then fail.
2689 return false;
2690 }
2691
2692 // The only possible option is b - a repeated every d bits. Now we're going to
2693 // actually construct the valid logical immediate derived from that
2694 // specification, and see if it equals our original input.
2695 //
2696 // To repeat a value every d bits, we multiply it by a number of the form
2697 // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
2698 // be derived using a table lookup on CLZ(d).
2699 static const uint64_t multipliers[] = {
2700 0x0000000000000001UL,
2701 0x0000000100000001UL,
2702 0x0001000100010001UL,
2703 0x0101010101010101UL,
2704 0x1111111111111111UL,
2705 0x5555555555555555UL,
2706 };
2707 int multiplier_idx = CountLeadingZeros(d, kXRegSizeInBits) - 57;
2708 // Ensure that the index to the multipliers array is within bounds.
2709 DCHECK((multiplier_idx >= 0) &&
2710 (static_cast<size_t>(multiplier_idx) < arraysize(multipliers)));
2711 uint64_t multiplier = multipliers[multiplier_idx];
2712 uint64_t candidate = (b - a) * multiplier;
2713
2714 if (value != candidate) {
2715 // The candidate pattern doesn't match our input value, so fail.
2716 return false;
2717 }
2718
2719 // We have a match! This is a valid logical immediate, so now we have to
2720 // construct the bits and pieces of the instruction encoding that generates
2721 // it.
2722
2723 // Count the set bits in our basic stretch. The special case of clz(0) == -1
2724 // makes the answer come out right for stretches that reach the very top of
2725 // the word (e.g. numbers like 0xffffc00000000000).
2726 int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSizeInBits);
2727 int s = clz_a - clz_b;
2728
2729 // Decide how many bits to rotate right by, to put the low bit of that basic
2730 // stretch in position a.
2731 int r;
2732 if (negate) {
2733 // If we inverted the input right at the start of this function, here's
2734 // where we compensate: the number of set bits becomes the number of clear
2735 // bits, and the rotation count is based on position b rather than position
2736 // a (since b is the location of the 'lowest' 1 bit after inversion).
2737 s = d - s;
2738 r = (clz_b + 1) & (d - 1);
2739 } else {
2740 r = (clz_a + 1) & (d - 1);
2741 }
2742
2743 // Now we're done, except for having to encode the S output in such a way that
2744 // it gives both the number of set bits and the length of the repeated
2745 // segment. The s field is encoded like this:
2746 //
2747 // imms size S
2748 // ssssss 64 UInt(ssssss)
2749 // 0sssss 32 UInt(sssss)
2750 // 10ssss 16 UInt(ssss)
2751 // 110sss 8 UInt(sss)
2752 // 1110ss 4 UInt(ss)
2753 // 11110s 2 UInt(s)
2754 //
2755 // So we 'or' (-d << 1) with our computed s to form imms.
2756 *n = out_n;
2757 *imm_s = ((-d << 1) | (s - 1)) & 0x3f;
2758 *imm_r = r;
2759
2760 return true;
2761}
2762
2763
2764bool Assembler::IsImmConditionalCompare(int64_t immediate) {
2765 return is_uint5(immediate);
2766}
2767
2768
2769bool Assembler::IsImmFP32(float imm) {
2770 // Valid values will have the form:
2771 // aBbb.bbbc.defg.h000.0000.0000.0000.0000
2772 uint32_t bits = float_to_rawbits(imm);
2773 // bits[19..0] are cleared.
2774 if ((bits & 0x7ffff) != 0) {
2775 return false;
2776 }
2777
2778 // bits[29..25] are all set or all cleared.
2779 uint32_t b_pattern = (bits >> 16) & 0x3e00;
2780 if (b_pattern != 0 && b_pattern != 0x3e00) {
2781 return false;
2782 }
2783
2784 // bit[30] and bit[29] are opposite.
2785 if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
2786 return false;
2787 }
2788
2789 return true;
2790}
2791
2792
2793bool Assembler::IsImmFP64(double imm) {
2794 // Valid values will have the form:
2795 // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
2796 // 0000.0000.0000.0000.0000.0000.0000.0000
2797 uint64_t bits = double_to_rawbits(imm);
2798 // bits[47..0] are cleared.
2799 if ((bits & 0xffffffffffffL) != 0) {
2800 return false;
2801 }
2802
2803 // bits[61..54] are all set or all cleared.
2804 uint32_t b_pattern = (bits >> 48) & 0x3fc0;
2805 if (b_pattern != 0 && b_pattern != 0x3fc0) {
2806 return false;
2807 }
2808
2809 // bit[62] and bit[61] are opposite.
2810 if (((bits ^ (bits << 1)) & 0x4000000000000000L) == 0) {
2811 return false;
2812 }
2813
2814 return true;
2815}
2816
2817
2818void Assembler::GrowBuffer() {
2819 if (!own_buffer_) FATAL("external code buffer is too small");
2820
2821 // Compute new buffer size.
2822 CodeDesc desc; // the new buffer
2823 if (buffer_size_ < 1 * MB) {
2824 desc.buffer_size = 2 * buffer_size_;
2825 } else {
2826 desc.buffer_size = buffer_size_ + 1 * MB;
2827 }
2828 CHECK_GT(desc.buffer_size, 0); // No overflow.
2829
2830 byte* buffer = reinterpret_cast<byte*>(buffer_);
2831
2832 // Set up new buffer.
2833 desc.buffer = NewArray<byte>(desc.buffer_size);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002834 desc.origin = this;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002835
2836 desc.instr_size = pc_offset();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002837 desc.reloc_size =
2838 static_cast<int>((buffer + buffer_size_) - reloc_info_writer.pos());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002839
2840 // Copy the data.
2841 intptr_t pc_delta = desc.buffer - buffer;
2842 intptr_t rc_delta = (desc.buffer + desc.buffer_size) -
2843 (buffer + buffer_size_);
2844 memmove(desc.buffer, buffer, desc.instr_size);
2845 memmove(reloc_info_writer.pos() + rc_delta,
2846 reloc_info_writer.pos(), desc.reloc_size);
2847
2848 // Switch buffers.
2849 DeleteArray(buffer_);
2850 buffer_ = desc.buffer;
2851 buffer_size_ = desc.buffer_size;
2852 pc_ = reinterpret_cast<byte*>(pc_) + pc_delta;
2853 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2854 reloc_info_writer.last_pc() + pc_delta);
2855
2856 // None of our relocation types are pc relative pointing outside the code
2857 // buffer nor pc absolute pointing inside the code buffer, so there is no need
2858 // to relocate any emitted relocation entries.
2859
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002860 // Relocate internal references.
2861 for (auto pos : internal_reference_positions_) {
2862 intptr_t* p = reinterpret_cast<intptr_t*>(buffer_ + pos);
2863 *p += pc_delta;
2864 }
2865
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002866 // Pending relocation entries are also relative, no need to relocate.
2867}
2868
2869
2870void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2871 // We do not try to reuse pool constants.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002872 RelocInfo rinfo(isolate(), reinterpret_cast<byte*>(pc_), rmode, data, NULL);
2873 if (((rmode >= RelocInfo::COMMENT) &&
2874 (rmode <= RelocInfo::DEBUG_BREAK_SLOT_AT_CALL)) ||
2875 (rmode == RelocInfo::INTERNAL_REFERENCE) ||
2876 (rmode == RelocInfo::CONST_POOL) || (rmode == RelocInfo::VENEER_POOL) ||
2877 (rmode == RelocInfo::DEOPT_REASON) ||
2878 (rmode == RelocInfo::GENERATOR_CONTINUATION)) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002879 // Adjust code for new modes.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002880 DCHECK(RelocInfo::IsDebugBreakSlot(rmode) || RelocInfo::IsComment(rmode) ||
2881 RelocInfo::IsDeoptReason(rmode) || RelocInfo::IsPosition(rmode) ||
2882 RelocInfo::IsInternalReference(rmode) ||
2883 RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode) ||
2884 RelocInfo::IsGeneratorContinuation(rmode));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002885 // These modes do not need an entry in the constant pool.
2886 } else {
2887 constpool_.RecordEntry(data, rmode);
2888 // Make sure the constant pool is not emitted in place of the next
2889 // instruction for which we just recorded relocation info.
2890 BlockConstPoolFor(1);
2891 }
2892
2893 if (!RelocInfo::IsNone(rmode)) {
2894 // Don't record external references unless the heap will be serialized.
2895 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2896 !serializer_enabled() && !emit_debug_code()) {
2897 return;
2898 }
2899 DCHECK(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
2900 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002901 RelocInfo reloc_info_with_ast_id(isolate(), reinterpret_cast<byte*>(pc_),
2902 rmode, RecordedAstId().ToInt(), NULL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002903 ClearRecordedAstId();
2904 reloc_info_writer.Write(&reloc_info_with_ast_id);
2905 } else {
2906 reloc_info_writer.Write(&rinfo);
2907 }
2908 }
2909}
2910
2911
2912void Assembler::BlockConstPoolFor(int instructions) {
2913 int pc_limit = pc_offset() + instructions * kInstructionSize;
2914 if (no_const_pool_before_ < pc_limit) {
2915 no_const_pool_before_ = pc_limit;
2916 // Make sure the pool won't be blocked for too long.
2917 DCHECK(pc_limit < constpool_.MaxPcOffset());
2918 }
2919
2920 if (next_constant_pool_check_ < no_const_pool_before_) {
2921 next_constant_pool_check_ = no_const_pool_before_;
2922 }
2923}
2924
2925
2926void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2927 // Some short sequence of instruction mustn't be broken up by constant pool
2928 // emission, such sequences are protected by calls to BlockConstPoolFor and
2929 // BlockConstPoolScope.
2930 if (is_const_pool_blocked()) {
2931 // Something is wrong if emission is forced and blocked at the same time.
2932 DCHECK(!force_emit);
2933 return;
2934 }
2935
2936 // There is nothing to do if there are no pending constant pool entries.
2937 if (constpool_.IsEmpty()) {
2938 // Calculate the offset of the next check.
2939 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
2940 return;
2941 }
2942
2943 // We emit a constant pool when:
2944 // * requested to do so by parameter force_emit (e.g. after each function).
2945 // * the distance to the first instruction accessing the constant pool is
2946 // kApproxMaxDistToConstPool or more.
2947 // * the number of entries in the pool is kApproxMaxPoolEntryCount or more.
2948 int dist = constpool_.DistanceToFirstUse();
2949 int count = constpool_.EntryCount();
2950 if (!force_emit &&
2951 (dist < kApproxMaxDistToConstPool) &&
2952 (count < kApproxMaxPoolEntryCount)) {
2953 return;
2954 }
2955
2956
2957 // Emit veneers for branches that would go out of range during emission of the
2958 // constant pool.
2959 int worst_case_size = constpool_.WorstCaseSize();
2960 CheckVeneerPool(false, require_jump,
2961 kVeneerDistanceMargin + worst_case_size);
2962
2963 // Check that the code buffer is large enough before emitting the constant
2964 // pool (this includes the gap to the relocation information).
2965 int needed_space = worst_case_size + kGap + 1 * kInstructionSize;
2966 while (buffer_space() <= needed_space) {
2967 GrowBuffer();
2968 }
2969
2970 Label size_check;
2971 bind(&size_check);
2972 constpool_.Emit(require_jump);
2973 DCHECK(SizeOfCodeGeneratedSince(&size_check) <=
2974 static_cast<unsigned>(worst_case_size));
2975
2976 // Since a constant pool was just emitted, move the check offset forward by
2977 // the standard interval.
2978 SetNextConstPoolCheckIn(kCheckConstPoolInterval);
2979}
2980
2981
2982bool Assembler::ShouldEmitVeneer(int max_reachable_pc, int margin) {
2983 // Account for the branch around the veneers and the guard.
2984 int protection_offset = 2 * kInstructionSize;
2985 return pc_offset() > max_reachable_pc - margin - protection_offset -
2986 static_cast<int>(unresolved_branches_.size() * kMaxVeneerCodeSize);
2987}
2988
2989
2990void Assembler::RecordVeneerPool(int location_offset, int size) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002991 RelocInfo rinfo(isolate(), buffer_ + location_offset, RelocInfo::VENEER_POOL,
2992 static_cast<intptr_t>(size), NULL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002993 reloc_info_writer.Write(&rinfo);
2994}
2995
2996
2997void Assembler::EmitVeneers(bool force_emit, bool need_protection, int margin) {
2998 BlockPoolsScope scope(this);
2999 RecordComment("[ Veneers");
3000
3001 // The exact size of the veneer pool must be recorded (see the comment at the
3002 // declaration site of RecordConstPool()), but computing the number of
3003 // veneers that will be generated is not obvious. So instead we remember the
3004 // current position and will record the size after the pool has been
3005 // generated.
3006 Label size_check;
3007 bind(&size_check);
3008 int veneer_pool_relocinfo_loc = pc_offset();
3009
3010 Label end;
3011 if (need_protection) {
3012 b(&end);
3013 }
3014
3015 EmitVeneersGuard();
3016
3017 Label veneer_size_check;
3018
3019 std::multimap<int, FarBranchInfo>::iterator it, it_to_delete;
3020
3021 it = unresolved_branches_.begin();
3022 while (it != unresolved_branches_.end()) {
3023 if (force_emit || ShouldEmitVeneer(it->first, margin)) {
3024 Instruction* branch = InstructionAt(it->second.pc_offset_);
3025 Label* label = it->second.label_;
3026
3027#ifdef DEBUG
3028 bind(&veneer_size_check);
3029#endif
3030 // Patch the branch to point to the current position, and emit a branch
3031 // to the label.
3032 Instruction* veneer = reinterpret_cast<Instruction*>(pc_);
3033 RemoveBranchFromLabelLinkChain(branch, label, veneer);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003034 branch->SetImmPCOffsetTarget(isolate(), veneer);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003035 b(label);
3036#ifdef DEBUG
3037 DCHECK(SizeOfCodeGeneratedSince(&veneer_size_check) <=
3038 static_cast<uint64_t>(kMaxVeneerCodeSize));
3039 veneer_size_check.Unuse();
3040#endif
3041
3042 it_to_delete = it++;
3043 unresolved_branches_.erase(it_to_delete);
3044 } else {
3045 ++it;
3046 }
3047 }
3048
3049 // Record the veneer pool size.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003050 int pool_size = static_cast<int>(SizeOfCodeGeneratedSince(&size_check));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003051 RecordVeneerPool(veneer_pool_relocinfo_loc, pool_size);
3052
3053 if (unresolved_branches_.empty()) {
3054 next_veneer_pool_check_ = kMaxInt;
3055 } else {
3056 next_veneer_pool_check_ =
3057 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3058 }
3059
3060 bind(&end);
3061
3062 RecordComment("]");
3063}
3064
3065
3066void Assembler::CheckVeneerPool(bool force_emit, bool require_jump,
3067 int margin) {
3068 // There is nothing to do if there are no pending veneer pool entries.
3069 if (unresolved_branches_.empty()) {
3070 DCHECK(next_veneer_pool_check_ == kMaxInt);
3071 return;
3072 }
3073
3074 DCHECK(pc_offset() < unresolved_branches_first_limit());
3075
3076 // Some short sequence of instruction mustn't be broken up by veneer pool
3077 // emission, such sequences are protected by calls to BlockVeneerPoolFor and
3078 // BlockVeneerPoolScope.
3079 if (is_veneer_pool_blocked()) {
3080 DCHECK(!force_emit);
3081 return;
3082 }
3083
3084 if (!require_jump) {
3085 // Prefer emitting veneers protected by an existing instruction.
3086 margin *= kVeneerNoProtectionFactor;
3087 }
3088 if (force_emit || ShouldEmitVeneers(margin)) {
3089 EmitVeneers(force_emit, require_jump, margin);
3090 } else {
3091 next_veneer_pool_check_ =
3092 unresolved_branches_first_limit() - kVeneerDistanceCheckMargin;
3093 }
3094}
3095
3096
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003097int Assembler::buffer_space() const {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003098 return static_cast<int>(reloc_info_writer.pos() -
3099 reinterpret_cast<byte*>(pc_));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003100}
3101
3102
3103void Assembler::RecordConstPool(int size) {
3104 // We only need this for debugger support, to correctly compute offsets in the
3105 // code.
3106 RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
3107}
3108
3109
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003110void PatchingAssembler::PatchAdrFar(int64_t target_offset) {
3111 // The code at the current instruction should be:
3112 // adr rd, 0
3113 // nop (adr_far)
3114 // nop (adr_far)
3115 // movz scratch, 0
3116
3117 // Verify the expected code.
3118 Instruction* expected_adr = InstructionAt(0);
3119 CHECK(expected_adr->IsAdr() && (expected_adr->ImmPCRel() == 0));
3120 int rd_code = expected_adr->Rd();
3121 for (int i = 0; i < kAdrFarPatchableNNops; ++i) {
3122 CHECK(InstructionAt((i + 1) * kInstructionSize)->IsNop(ADR_FAR_NOP));
3123 }
3124 Instruction* expected_movz =
3125 InstructionAt((kAdrFarPatchableNInstrs - 1) * kInstructionSize);
3126 CHECK(expected_movz->IsMovz() &&
3127 (expected_movz->ImmMoveWide() == 0) &&
3128 (expected_movz->ShiftMoveWide() == 0));
3129 int scratch_code = expected_movz->Rd();
3130
3131 // Patch to load the correct address.
3132 Register rd = Register::XRegFromCode(rd_code);
3133 Register scratch = Register::XRegFromCode(scratch_code);
3134 // Addresses are only 48 bits.
3135 adr(rd, target_offset & 0xFFFF);
3136 movz(scratch, (target_offset >> 16) & 0xFFFF, 16);
3137 movk(scratch, (target_offset >> 32) & 0xFFFF, 32);
3138 DCHECK((target_offset >> 48) == 0);
3139 add(rd, rd, scratch);
3140}
3141
3142
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003143} // namespace internal
3144} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003145
3146#endif // V8_TARGET_ARCH_ARM64