blob: 6c261f63c376fdf9357eb06ad8cf397f1c08a9ec [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_AST_SCOPES_H_
6#define V8_AST_SCOPES_H_
7
8#include "src/ast/ast.h"
9#include "src/hashmap.h"
10#include "src/pending-compilation-error-handler.h"
11#include "src/zone.h"
12
13namespace v8 {
14namespace internal {
15
16class ParseInfo;
17
18// A hash map to support fast variable declaration and lookup.
19class VariableMap: public ZoneHashMap {
20 public:
21 explicit VariableMap(Zone* zone);
22
23 virtual ~VariableMap();
24
25 Variable* Declare(Scope* scope, const AstRawString* name, VariableMode mode,
26 Variable::Kind kind, InitializationFlag initialization_flag,
27 MaybeAssignedFlag maybe_assigned_flag = kNotAssigned,
28 int declaration_group_start = -1);
29
30 Variable* Lookup(const AstRawString* name);
31
32 Zone* zone() const { return zone_; }
33
34 private:
35 Zone* zone_;
36};
37
38
39// The dynamic scope part holds hash maps for the variables that will
40// be looked up dynamically from within eval and with scopes. The objects
41// are allocated on-demand from Scope::NonLocal to avoid wasting memory
42// and setup time for scopes that don't need them.
43class DynamicScopePart : public ZoneObject {
44 public:
45 explicit DynamicScopePart(Zone* zone) {
46 for (int i = 0; i < 3; i++)
47 maps_[i] = new(zone->New(sizeof(VariableMap))) VariableMap(zone);
48 }
49
50 VariableMap* GetMap(VariableMode mode) {
51 int index = mode - DYNAMIC;
52 DCHECK(index >= 0 && index < 3);
53 return maps_[index];
54 }
55
56 private:
57 VariableMap *maps_[3];
58};
59
60
61// Sloppy block-scoped function declarations to var-bind
62class SloppyBlockFunctionMap : public ZoneHashMap {
63 public:
64 explicit SloppyBlockFunctionMap(Zone* zone);
65
66 virtual ~SloppyBlockFunctionMap();
67
68 void Declare(const AstRawString* name,
69 SloppyBlockFunctionStatement* statement);
70
71 typedef ZoneVector<SloppyBlockFunctionStatement*> Vector;
72
73 private:
74 Zone* zone_;
75};
76
77
78// Global invariants after AST construction: Each reference (i.e. identifier)
79// to a JavaScript variable (including global properties) is represented by a
80// VariableProxy node. Immediately after AST construction and before variable
81// allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
82// corresponding variable (though some are bound during parse time). Variable
83// allocation binds each unresolved VariableProxy to one Variable and assigns
84// a location. Note that many VariableProxy nodes may refer to the same Java-
85// Script variable.
86
87class Scope: public ZoneObject {
88 public:
89 // ---------------------------------------------------------------------------
90 // Construction
91
92 Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
93 AstValueFactory* value_factory,
94 FunctionKind function_kind = kNormalFunction);
95
96 // Compute top scope and allocate variables. For lazy compilation the top
97 // scope only contains the single lazily compiled function, so this
98 // doesn't re-allocate variables repeatedly.
99 static bool Analyze(ParseInfo* info);
100
101 static Scope* DeserializeScopeChain(Isolate* isolate, Zone* zone,
102 Context* context, Scope* script_scope);
103
104 // The scope name is only used for printing/debugging.
105 void SetScopeName(const AstRawString* scope_name) {
106 scope_name_ = scope_name;
107 }
108
109 void Initialize();
110
111 // Checks if the block scope is redundant, i.e. it does not contain any
112 // block scoped declarations. In that case it is removed from the scope
113 // tree and its children are reparented.
114 Scope* FinalizeBlockScope();
115
116 // Inserts outer_scope into this scope's scope chain (and removes this
117 // from the current outer_scope_'s inner_scopes_).
118 // Assumes outer_scope_ is non-null.
119 void ReplaceOuterScope(Scope* outer_scope);
120
121 // Propagates any eagerly-gathered scope usage flags (such as calls_eval())
122 // to the passed-in scope.
123 void PropagateUsageFlagsToScope(Scope* other);
124
125 Zone* zone() const { return zone_; }
126
127 // ---------------------------------------------------------------------------
128 // Declarations
129
130 // Lookup a variable in this scope. Returns the variable or NULL if not found.
131 Variable* LookupLocal(const AstRawString* name);
132
133 // This lookup corresponds to a lookup in the "intermediate" scope sitting
134 // between this scope and the outer scope. (ECMA-262, 3rd., requires that
135 // the name of named function literal is kept in an intermediate scope
136 // in between this scope and the next outer scope.)
137 Variable* LookupFunctionVar(const AstRawString* name,
138 AstNodeFactory* factory);
139
140 // Lookup a variable in this scope or outer scopes.
141 // Returns the variable or NULL if not found.
142 Variable* Lookup(const AstRawString* name);
143
144 // Declare the function variable for a function literal. This variable
145 // is in an intermediate scope between this function scope and the the
146 // outer scope. Only possible for function scopes; at most one variable.
147 void DeclareFunctionVar(VariableDeclaration* declaration) {
148 DCHECK(is_function_scope());
149 // Handle implicit declaration of the function name in named function
150 // expressions before other declarations.
151 decls_.InsertAt(0, declaration, zone());
152 function_ = declaration;
153 }
154
155 // Declare a parameter in this scope. When there are duplicated
156 // parameters the rightmost one 'wins'. However, the implementation
157 // expects all parameters to be declared and from left to right.
158 Variable* DeclareParameter(
159 const AstRawString* name, VariableMode mode,
160 bool is_optional, bool is_rest, bool* is_duplicate);
161
162 // Declare a local variable in this scope. If the variable has been
163 // declared before, the previously declared variable is returned.
164 Variable* DeclareLocal(const AstRawString* name, VariableMode mode,
165 InitializationFlag init_flag, Variable::Kind kind,
166 MaybeAssignedFlag maybe_assigned_flag = kNotAssigned,
167 int declaration_group_start = -1);
168
169 // Declare an implicit global variable in this scope which must be a
170 // script scope. The variable was introduced (possibly from an inner
171 // scope) by a reference to an unresolved variable with no intervening
172 // with statements or eval calls.
173 Variable* DeclareDynamicGlobal(const AstRawString* name);
174
175 // Create a new unresolved variable.
176 VariableProxy* NewUnresolved(AstNodeFactory* factory,
177 const AstRawString* name,
178 Variable::Kind kind = Variable::NORMAL,
179 int start_position = RelocInfo::kNoPosition,
180 int end_position = RelocInfo::kNoPosition) {
181 // Note that we must not share the unresolved variables with
182 // the same name because they may be removed selectively via
183 // RemoveUnresolved().
184 DCHECK(!already_resolved());
185 VariableProxy* proxy =
186 factory->NewVariableProxy(name, kind, start_position, end_position);
187 unresolved_.Add(proxy, zone_);
188 return proxy;
189 }
190
191 void AddUnresolved(VariableProxy* proxy) {
192 DCHECK(!already_resolved());
193 DCHECK(!proxy->is_resolved());
194 unresolved_.Add(proxy, zone_);
195 }
196
197 // Remove a unresolved variable. During parsing, an unresolved variable
198 // may have been added optimistically, but then only the variable name
199 // was used (typically for labels). If the variable was not declared, the
200 // addition introduced a new unresolved variable which may end up being
201 // allocated globally as a "ghost" variable. RemoveUnresolved removes
202 // such a variable again if it was added; otherwise this is a no-op.
203 bool RemoveUnresolved(VariableProxy* var);
204
205 // Creates a new temporary variable in this scope's TemporaryScope. The
206 // name is only used for printing and cannot be used to find the variable.
207 // In particular, the only way to get hold of the temporary is by keeping the
208 // Variable* around. The name should not clash with a legitimate variable
209 // names.
210 Variable* NewTemporary(const AstRawString* name);
211
212 // Remove a temporary variable. This is for adjusting the scope of
213 // temporaries used when desugaring parameter initializers.
214 bool RemoveTemporary(Variable* var);
215
216 // Adds a temporary variable in this scope's TemporaryScope. This is for
217 // adjusting the scope of temporaries used when desugaring parameter
218 // initializers.
219 void AddTemporary(Variable* var) { temps_.Add(var, zone()); }
220
221 // Adds the specific declaration node to the list of declarations in
222 // this scope. The declarations are processed as part of entering
223 // the scope; see codegen.cc:ProcessDeclarations.
224 void AddDeclaration(Declaration* declaration);
225
226 // ---------------------------------------------------------------------------
227 // Illegal redeclaration support.
228
229 // Set an expression node that will be executed when the scope is
230 // entered. We only keep track of one illegal redeclaration node per
231 // scope - the first one - so if you try to set it multiple times
232 // the additional requests will be silently ignored.
233 void SetIllegalRedeclaration(Expression* expression);
234
235 // Retrieve the illegal redeclaration expression. Do not call if the
236 // scope doesn't have an illegal redeclaration node.
237 Expression* GetIllegalRedeclaration();
238
239 // Check if the scope has (at least) one illegal redeclaration.
240 bool HasIllegalRedeclaration() const { return illegal_redecl_ != NULL; }
241
242 // For harmony block scoping mode: Check if the scope has conflicting var
243 // declarations, i.e. a var declaration that has been hoisted from a nested
244 // scope over a let binding of the same name.
245 Declaration* CheckConflictingVarDeclarations();
246
247 // ---------------------------------------------------------------------------
248 // Scope-specific info.
249
250 // Inform the scope that the corresponding code contains a with statement.
251 void RecordWithStatement() { scope_contains_with_ = true; }
252
253 // Inform the scope that the corresponding code contains an eval call.
254 void RecordEvalCall() { scope_calls_eval_ = true; }
255
256 // Inform the scope that the corresponding code uses "arguments".
257 void RecordArgumentsUsage() { scope_uses_arguments_ = true; }
258
259 // Inform the scope that the corresponding code uses "super".
260 void RecordSuperPropertyUsage() { scope_uses_super_property_ = true; }
261
262 // Set the language mode flag (unless disabled by a global flag).
263 void SetLanguageMode(LanguageMode language_mode) {
264 language_mode_ = language_mode;
265 }
266
267 // Set the ASM module flag.
268 void SetAsmModule() { asm_module_ = true; }
269
270 // Inform the scope that the scope may execute declarations nonlinearly.
271 // Currently, the only nonlinear scope is a switch statement. The name is
272 // more general in case something else comes up with similar control flow,
273 // for example the ability to break out of something which does not have
274 // its own lexical scope.
275 // The bit does not need to be stored on the ScopeInfo because none of
276 // the three compilers will perform hole check elimination on a variable
277 // located in VariableLocation::CONTEXT. So, direct eval and closures
278 // will not expose holes.
279 void SetNonlinear() { scope_nonlinear_ = true; }
280
281 // Position in the source where this scope begins and ends.
282 //
283 // * For the scope of a with statement
284 // with (obj) stmt
285 // start position: start position of first token of 'stmt'
286 // end position: end position of last token of 'stmt'
287 // * For the scope of a block
288 // { stmts }
289 // start position: start position of '{'
290 // end position: end position of '}'
291 // * For the scope of a function literal or decalaration
292 // function fun(a,b) { stmts }
293 // start position: start position of '('
294 // end position: end position of '}'
295 // * For the scope of a catch block
296 // try { stms } catch(e) { stmts }
297 // start position: start position of '('
298 // end position: end position of ')'
299 // * For the scope of a for-statement
300 // for (let x ...) stmt
301 // start position: start position of '('
302 // end position: end position of last token of 'stmt'
303 // * For the scope of a switch statement
304 // switch (tag) { cases }
305 // start position: start position of '{'
306 // end position: end position of '}'
307 int start_position() const { return start_position_; }
308 void set_start_position(int statement_pos) {
309 start_position_ = statement_pos;
310 }
311 int end_position() const { return end_position_; }
312 void set_end_position(int statement_pos) {
313 end_position_ = statement_pos;
314 }
315
316 // In some cases we want to force context allocation for a whole scope.
317 void ForceContextAllocation() {
318 DCHECK(!already_resolved());
319 force_context_allocation_ = true;
320 }
321 bool has_forced_context_allocation() const {
322 return force_context_allocation_;
323 }
324
325 // ---------------------------------------------------------------------------
326 // Predicates.
327
328 // Specific scope types.
329 bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; }
330 bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; }
331 bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; }
332 bool is_script_scope() const { return scope_type_ == SCRIPT_SCOPE; }
333 bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; }
334 bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; }
335 bool is_with_scope() const { return scope_type_ == WITH_SCOPE; }
336 bool is_arrow_scope() const {
337 return is_function_scope() && IsArrowFunction(function_kind_);
338 }
339 bool is_declaration_scope() const { return is_declaration_scope_; }
340
341 void set_is_declaration_scope() { is_declaration_scope_ = true; }
342
343 // Information about which scopes calls eval.
344 bool calls_eval() const { return scope_calls_eval_; }
345 bool calls_sloppy_eval() const {
346 return scope_calls_eval_ && is_sloppy(language_mode_);
347 }
348 bool outer_scope_calls_sloppy_eval() const {
349 return outer_scope_calls_sloppy_eval_;
350 }
351 bool asm_module() const { return asm_module_; }
352 bool asm_function() const { return asm_function_; }
353
354 // Is this scope inside a with statement.
355 bool inside_with() const { return scope_inside_with_; }
356
357 // Does this scope access "arguments".
358 bool uses_arguments() const { return scope_uses_arguments_; }
359 // Does this scope access "super" property (super.foo).
360 bool uses_super_property() const { return scope_uses_super_property_; }
361 // Does this scope have the potential to execute declarations non-linearly?
362 bool is_nonlinear() const { return scope_nonlinear_; }
363
364 // Whether this needs to be represented by a runtime context.
365 bool NeedsContext() const {
366 // Catch and module scopes always have heap slots.
367 DCHECK(!is_catch_scope() || num_heap_slots() > 0);
368 DCHECK(!is_module_scope() || num_heap_slots() > 0);
369 return is_with_scope() || num_heap_slots() > 0;
370 }
371
372 bool NeedsHomeObject() const {
373 return scope_uses_super_property_ ||
374 ((scope_calls_eval_ || inner_scope_calls_eval_) &&
375 (IsConciseMethod(function_kind()) ||
376 IsAccessorFunction(function_kind()) ||
377 IsClassConstructor(function_kind())));
378 }
379
380 const Scope* NearestOuterEvalScope() const {
381 if (is_eval_scope()) return this;
382 if (outer_scope() == nullptr) return nullptr;
383 return outer_scope()->NearestOuterEvalScope();
384 }
385
386 // ---------------------------------------------------------------------------
387 // Accessors.
388
389 // The type of this scope.
390 ScopeType scope_type() const { return scope_type_; }
391
392 FunctionKind function_kind() const { return function_kind_; }
393
394 // The language mode of this scope.
395 LanguageMode language_mode() const { return language_mode_; }
396
397 // The variable corresponding to the 'this' value.
398 Variable* receiver() {
399 DCHECK(has_this_declaration());
400 DCHECK_NOT_NULL(receiver_);
401 return receiver_;
402 }
403
404 // TODO(wingo): Add a GLOBAL_SCOPE scope type which will lexically allocate
405 // "this" (and no other variable) on the native context. Script scopes then
406 // will not have a "this" declaration.
407 bool has_this_declaration() const {
408 return (is_function_scope() && !is_arrow_scope()) || is_module_scope();
409 }
410
411 // The variable corresponding to the 'new.target' value.
412 Variable* new_target_var() { return new_target_; }
413
414 // The variable holding the function literal for named function
415 // literals, or NULL. Only valid for function scopes.
416 VariableDeclaration* function() const {
417 DCHECK(is_function_scope());
418 return function_;
419 }
420
421 // Parameters. The left-most parameter has index 0.
422 // Only valid for function scopes.
423 Variable* parameter(int index) const {
424 DCHECK(is_function_scope());
425 return params_[index];
426 }
427
428 // Returns the default function arity excluding default or rest parameters.
429 int default_function_length() const { return arity_; }
430
431 int num_parameters() const { return params_.length(); }
432
433 // A function can have at most one rest parameter. Returns Variable* or NULL.
434 Variable* rest_parameter(int* index) const {
435 *index = rest_index_;
436 if (rest_index_ < 0) return NULL;
437 return rest_parameter_;
438 }
439
440 bool has_rest_parameter() const { return rest_index_ >= 0; }
441
442 bool has_simple_parameters() const {
443 return has_simple_parameters_;
444 }
445
446 // TODO(caitp): manage this state in a better way. PreParser must be able to
447 // communicate that the scope is non-simple, without allocating any parameters
448 // as the Parser does. This is necessary to ensure that TC39's proposed early
449 // error can be reported consistently regardless of whether lazily parsed or
450 // not.
451 void SetHasNonSimpleParameters() {
452 DCHECK(is_function_scope());
453 has_simple_parameters_ = false;
454 }
455
456 // Retrieve `IsSimpleParameterList` of current or outer function.
457 bool HasSimpleParameters() {
458 Scope* scope = ClosureScope();
459 return !scope->is_function_scope() || scope->has_simple_parameters();
460 }
461
462 // The local variable 'arguments' if we need to allocate it; NULL otherwise.
463 Variable* arguments() const {
464 DCHECK(!is_arrow_scope() || arguments_ == nullptr);
465 return arguments_;
466 }
467
468 Variable* this_function_var() const {
469 // This is only used in derived constructors atm.
470 DCHECK(this_function_ == nullptr ||
471 (is_function_scope() && (IsClassConstructor(function_kind()) ||
472 IsConciseMethod(function_kind()) ||
473 IsAccessorFunction(function_kind()))));
474 return this_function_;
475 }
476
477 // Declarations list.
478 ZoneList<Declaration*>* declarations() { return &decls_; }
479
480 // Inner scope list.
481 ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
482
483 // The scope immediately surrounding this scope, or NULL.
484 Scope* outer_scope() const { return outer_scope_; }
485
486 // The ModuleDescriptor for this scope; only for module scopes.
487 ModuleDescriptor* module() const { return module_descriptor_; }
488
489
490 void set_class_declaration_group_start(int position) {
491 class_declaration_group_start_ = position;
492 }
493
494 int class_declaration_group_start() const {
495 return class_declaration_group_start_;
496 }
497
498 // ---------------------------------------------------------------------------
499 // Variable allocation.
500
501 // Collect stack and context allocated local variables in this scope. Note
502 // that the function variable - if present - is not collected and should be
503 // handled separately.
504 void CollectStackAndContextLocals(
505 ZoneList<Variable*>* stack_locals, ZoneList<Variable*>* context_locals,
506 ZoneList<Variable*>* context_globals,
507 ZoneList<Variable*>* strong_mode_free_variables = nullptr);
508
509 // Current number of var or const locals.
510 int num_var_or_const() { return num_var_or_const_; }
511
512 // Result of variable allocation.
513 int num_stack_slots() const { return num_stack_slots_; }
514 int num_heap_slots() const { return num_heap_slots_; }
515 int num_global_slots() const { return num_global_slots_; }
516
517 int StackLocalCount() const;
518 int ContextLocalCount() const;
519 int ContextGlobalCount() const;
520
521 // Make sure this scope and all outer scopes are eagerly compiled.
522 void ForceEagerCompilation() { force_eager_compilation_ = true; }
523
524 // Determine if we can parse a function literal in this scope lazily.
525 bool AllowsLazyParsing() const;
526
527 // Determine if we can use lazy compilation for this scope.
528 bool AllowsLazyCompilation() const;
529
530 // Determine if we can use lazy compilation for this scope without a context.
531 bool AllowsLazyCompilationWithoutContext() const;
532
533 // True if the outer context of this scope is always the native context.
534 bool HasTrivialOuterContext() const;
535
536 // The number of contexts between this and scope; zero if this == scope.
537 int ContextChainLength(Scope* scope);
538
539 // The maximum number of nested contexts required for this scope and any inner
540 // scopes.
541 int MaxNestedContextChainLength();
542
543 // Find the first function, script, eval or (declaration) block scope. This is
544 // the scope where var declarations will be hoisted to in the implementation.
545 Scope* DeclarationScope();
546
547 // Find the first non-block declaration scope. This should be either a script,
548 // function, or eval scope. Same as DeclarationScope(), but skips
549 // declaration "block" scopes. Used for differentiating associated
550 // function objects (i.e., the scope for which a function prologue allocates
551 // a context) or declaring temporaries.
552 Scope* ClosureScope();
553
554 // Find the first (non-arrow) function or script scope. This is where
555 // 'this' is bound, and what determines the function kind.
556 Scope* ReceiverScope();
557
558 Handle<ScopeInfo> GetScopeInfo(Isolate* isolate);
559
560 // Get the chain of nested scopes within this scope for the source statement
561 // position. The scopes will be added to the list from the outermost scope to
562 // the innermost scope. Only nested block, catch or with scopes are tracked
563 // and will be returned, but no inner function scopes.
564 void GetNestedScopeChain(Isolate* isolate, List<Handle<ScopeInfo> >* chain,
565 int statement_position);
566
567 void CollectNonLocals(HashMap* non_locals);
568
569 // ---------------------------------------------------------------------------
570 // Strict mode support.
571 bool IsDeclared(const AstRawString* name) {
572 // During formal parameter list parsing the scope only contains
573 // two variables inserted at initialization: "this" and "arguments".
574 // "this" is an invalid parameter name and "arguments" is invalid parameter
575 // name in strict mode. Therefore looking up with the map which includes
576 // "this" and "arguments" in addition to all formal parameters is safe.
577 return variables_.Lookup(name) != NULL;
578 }
579
580 bool IsDeclaredParameter(const AstRawString* name) {
581 // If IsSimpleParameterList is false, duplicate parameters are not allowed,
582 // however `arguments` may be allowed if function is not strict code. Thus,
583 // the assumptions explained above do not hold.
584 return params_.Contains(variables_.Lookup(name));
585 }
586
587 SloppyBlockFunctionMap* sloppy_block_function_map() {
588 return &sloppy_block_function_map_;
589 }
590
591 // Error handling.
592 void ReportMessage(int start_position, int end_position,
593 MessageTemplate::Template message,
594 const AstRawString* arg);
595
596 // ---------------------------------------------------------------------------
597 // Debugging.
598
599#ifdef DEBUG
600 void Print(int n = 0); // n = indentation; n < 0 => don't print recursively
601#endif
602
603 // ---------------------------------------------------------------------------
604 // Implementation.
605 private:
606 // Scope tree.
607 Scope* outer_scope_; // the immediately enclosing outer scope, or NULL
608 ZoneList<Scope*> inner_scopes_; // the immediately enclosed inner scopes
609
610 // The scope type.
611 ScopeType scope_type_;
612 // If the scope is a function scope, this is the function kind.
613 FunctionKind function_kind_;
614
615 // Debugging support.
616 const AstRawString* scope_name_;
617
618 // The variables declared in this scope:
619 //
620 // All user-declared variables (incl. parameters). For script scopes
621 // variables may be implicitly 'declared' by being used (possibly in
622 // an inner scope) with no intervening with statements or eval calls.
623 VariableMap variables_;
624 // Compiler-allocated (user-invisible) temporaries.
625 ZoneList<Variable*> temps_;
626 // Parameter list in source order.
627 ZoneList<Variable*> params_;
628 // Variables that must be looked up dynamically.
629 DynamicScopePart* dynamics_;
630 // Unresolved variables referred to from this scope.
631 ZoneList<VariableProxy*> unresolved_;
632 // Declarations.
633 ZoneList<Declaration*> decls_;
634 // Convenience variable.
635 Variable* receiver_;
636 // Function variable, if any; function scopes only.
637 VariableDeclaration* function_;
638 // new.target variable, function scopes only.
639 Variable* new_target_;
640 // Convenience variable; function scopes only.
641 Variable* arguments_;
642 // Convenience variable; Subclass constructor only
643 Variable* this_function_;
644 // Module descriptor; module scopes only.
645 ModuleDescriptor* module_descriptor_;
646
647 // Map of function names to lists of functions defined in sloppy blocks
648 SloppyBlockFunctionMap sloppy_block_function_map_;
649
650 // Illegal redeclaration.
651 Expression* illegal_redecl_;
652
653 // Scope-specific information computed during parsing.
654 //
655 // This scope is inside a 'with' of some outer scope.
656 bool scope_inside_with_;
657 // This scope contains a 'with' statement.
658 bool scope_contains_with_;
659 // This scope or a nested catch scope or with scope contain an 'eval' call. At
660 // the 'eval' call site this scope is the declaration scope.
661 bool scope_calls_eval_;
662 // This scope uses "arguments".
663 bool scope_uses_arguments_;
664 // This scope uses "super" property ('super.foo').
665 bool scope_uses_super_property_;
666 // This scope contains an "use asm" annotation.
667 bool asm_module_;
668 // This scope's outer context is an asm module.
669 bool asm_function_;
670 // This scope's declarations might not be executed in order (e.g., switch).
671 bool scope_nonlinear_;
672 // The language mode of this scope.
673 LanguageMode language_mode_;
674 // Source positions.
675 int start_position_;
676 int end_position_;
677
678 // Computed via PropagateScopeInfo.
679 bool outer_scope_calls_sloppy_eval_;
680 bool inner_scope_calls_eval_;
681 bool force_eager_compilation_;
682 bool force_context_allocation_;
683
684 // True if it doesn't need scope resolution (e.g., if the scope was
685 // constructed based on a serialized scope info or a catch context).
686 bool already_resolved_;
687
688 // True if it holds 'var' declarations.
689 bool is_declaration_scope_;
690
691 // Computed as variables are declared.
692 int num_var_or_const_;
693
694 // Computed via AllocateVariables; function, block and catch scopes only.
695 int num_stack_slots_;
696 int num_heap_slots_;
697 int num_global_slots_;
698
699 // Info about the parameter list of a function.
700 int arity_;
701 bool has_simple_parameters_;
702 Variable* rest_parameter_;
703 int rest_index_;
704
705 // Serialized scope info support.
706 Handle<ScopeInfo> scope_info_;
707 bool already_resolved() { return already_resolved_; }
708
709 // Create a non-local variable with a given name.
710 // These variables are looked up dynamically at runtime.
711 Variable* NonLocal(const AstRawString* name, VariableMode mode);
712
713 // Variable resolution.
714 // Possible results of a recursive variable lookup telling if and how a
715 // variable is bound. These are returned in the output parameter *binding_kind
716 // of the LookupRecursive function.
717 enum BindingKind {
718 // The variable reference could be statically resolved to a variable binding
719 // which is returned. There is no 'with' statement between the reference and
720 // the binding and no scope between the reference scope (inclusive) and
721 // binding scope (exclusive) makes a sloppy 'eval' call.
722 BOUND,
723
724 // The variable reference could be statically resolved to a variable binding
725 // which is returned. There is no 'with' statement between the reference and
726 // the binding, but some scope between the reference scope (inclusive) and
727 // binding scope (exclusive) makes a sloppy 'eval' call, that might
728 // possibly introduce variable bindings shadowing the found one. Thus the
729 // found variable binding is just a guess.
730 BOUND_EVAL_SHADOWED,
731
732 // The variable reference could not be statically resolved to any binding
733 // and thus should be considered referencing a global variable. NULL is
734 // returned. The variable reference is not inside any 'with' statement and
735 // no scope between the reference scope (inclusive) and script scope
736 // (exclusive) makes a sloppy 'eval' call.
737 UNBOUND,
738
739 // The variable reference could not be statically resolved to any binding
740 // NULL is returned. The variable reference is not inside any 'with'
741 // statement, but some scope between the reference scope (inclusive) and
742 // script scope (exclusive) makes a sloppy 'eval' call, that might
743 // possibly introduce a variable binding. Thus the reference should be
744 // considered referencing a global variable unless it is shadowed by an
745 // 'eval' introduced binding.
746 UNBOUND_EVAL_SHADOWED,
747
748 // The variable could not be statically resolved and needs to be looked up
749 // dynamically. NULL is returned. There are two possible reasons:
750 // * A 'with' statement has been encountered and there is no variable
751 // binding for the name between the variable reference and the 'with'.
752 // The variable potentially references a property of the 'with' object.
753 // * The code is being executed as part of a call to 'eval' and the calling
754 // context chain contains either a variable binding for the name or it
755 // contains a 'with' context.
756 DYNAMIC_LOOKUP
757 };
758
759 // Lookup a variable reference given by name recursively starting with this
760 // scope. If the code is executed because of a call to 'eval', the context
761 // parameter should be set to the calling context of 'eval'.
762 Variable* LookupRecursive(VariableProxy* proxy, BindingKind* binding_kind,
763 AstNodeFactory* factory);
764 MUST_USE_RESULT
765 bool ResolveVariable(ParseInfo* info, VariableProxy* proxy,
766 AstNodeFactory* factory);
767 MUST_USE_RESULT
768 bool ResolveVariablesRecursively(ParseInfo* info, AstNodeFactory* factory);
769
770 bool CheckStrongModeDeclaration(VariableProxy* proxy, Variable* var);
771
772 // If this scope is a method scope of a class, return the corresponding
773 // class variable, otherwise nullptr.
774 ClassVariable* ClassVariableForMethod() const;
775
776 // Scope analysis.
777 void PropagateScopeInfo(bool outer_scope_calls_sloppy_eval);
778 bool HasTrivialContext() const;
779
780 // Predicates.
781 bool MustAllocate(Variable* var);
782 bool MustAllocateInContext(Variable* var);
783 bool HasArgumentsParameter(Isolate* isolate);
784
785 // Variable allocation.
786 void AllocateStackSlot(Variable* var);
787 void AllocateHeapSlot(Variable* var);
788 void AllocateParameterLocals(Isolate* isolate);
789 void AllocateNonParameterLocal(Isolate* isolate, Variable* var);
790 void AllocateDeclaredGlobal(Isolate* isolate, Variable* var);
791 void AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate);
792 void AllocateVariablesRecursively(Isolate* isolate);
793 void AllocateParameter(Variable* var, int index);
794 void AllocateReceiver();
795
796 // Resolve and fill in the allocation information for all variables
797 // in this scopes. Must be called *after* all scopes have been
798 // processed (parsed) to ensure that unresolved variables can be
799 // resolved properly.
800 //
801 // In the case of code compiled and run using 'eval', the context
802 // parameter is the context in which eval was called. In all other
803 // cases the context parameter is an empty handle.
804 MUST_USE_RESULT
805 bool AllocateVariables(ParseInfo* info, AstNodeFactory* factory);
806
807 // Construct a scope based on the scope info.
808 Scope(Zone* zone, Scope* inner_scope, ScopeType type,
809 Handle<ScopeInfo> scope_info, AstValueFactory* value_factory);
810
811 // Construct a catch scope with a binding for the name.
812 Scope(Zone* zone, Scope* inner_scope, const AstRawString* catch_variable_name,
813 AstValueFactory* value_factory);
814
815 void AddInnerScope(Scope* inner_scope) {
816 if (inner_scope != NULL) {
817 inner_scopes_.Add(inner_scope, zone_);
818 inner_scope->outer_scope_ = this;
819 }
820 }
821
822 void RemoveInnerScope(Scope* inner_scope) {
823 DCHECK_NOT_NULL(inner_scope);
824 for (int i = 0; i < inner_scopes_.length(); i++) {
825 if (inner_scopes_[i] == inner_scope) {
826 inner_scopes_.Remove(i);
827 break;
828 }
829 }
830 }
831
832 void SetDefaults(ScopeType type, Scope* outer_scope,
833 Handle<ScopeInfo> scope_info,
834 FunctionKind function_kind = kNormalFunction);
835
836 AstValueFactory* ast_value_factory_;
837 Zone* zone_;
838
839 PendingCompilationErrorHandler pending_error_handler_;
840
841 // For tracking which classes are declared consecutively. Needed for strong
842 // mode.
843 int class_declaration_group_start_;
844};
845
846} // namespace internal
847} // namespace v8
848
849#endif // V8_AST_SCOPES_H_