blob: 2414f0d61cb5da1e7fda32dc1244930341738c88 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.7
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "src/crankshaft/mips/lithium-codegen-mips.h"
29
30#include "src/base/bits.h"
31#include "src/code-factory.h"
32#include "src/code-stubs.h"
33#include "src/crankshaft/hydrogen-osr.h"
34#include "src/crankshaft/mips/lithium-gap-resolver-mips.h"
35#include "src/ic/ic.h"
36#include "src/ic/stub-cache.h"
37#include "src/profiler/cpu-profiler.h"
38
39
40namespace v8 {
41namespace internal {
42
43
44class SafepointGenerator final : public CallWrapper {
45 public:
46 SafepointGenerator(LCodeGen* codegen,
47 LPointerMap* pointers,
48 Safepoint::DeoptMode mode)
49 : codegen_(codegen),
50 pointers_(pointers),
51 deopt_mode_(mode) { }
52 virtual ~SafepointGenerator() {}
53
54 void BeforeCall(int call_size) const override {}
55
56 void AfterCall() const override {
57 codegen_->RecordSafepoint(pointers_, deopt_mode_);
58 }
59
60 private:
61 LCodeGen* codegen_;
62 LPointerMap* pointers_;
63 Safepoint::DeoptMode deopt_mode_;
64};
65
66
67#define __ masm()->
68
69bool LCodeGen::GenerateCode() {
70 LPhase phase("Z_Code generation", chunk());
71 DCHECK(is_unused());
72 status_ = GENERATING;
73
74 // Open a frame scope to indicate that there is a frame on the stack. The
75 // NONE indicates that the scope shouldn't actually generate code to set up
76 // the frame (that is done in GeneratePrologue).
77 FrameScope frame_scope(masm_, StackFrame::NONE);
78
79 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
80 GenerateJumpTable() && GenerateSafepointTable();
81}
82
83
84void LCodeGen::FinishCode(Handle<Code> code) {
85 DCHECK(is_done());
86 code->set_stack_slots(GetStackSlotCount());
87 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
88 PopulateDeoptimizationData(code);
89}
90
91
92void LCodeGen::SaveCallerDoubles() {
93 DCHECK(info()->saves_caller_doubles());
94 DCHECK(NeedsEagerFrame());
95 Comment(";;; Save clobbered callee double registers");
96 int count = 0;
97 BitVector* doubles = chunk()->allocated_double_registers();
98 BitVector::Iterator save_iterator(doubles);
99 while (!save_iterator.Done()) {
100 __ sdc1(DoubleRegister::from_code(save_iterator.Current()),
101 MemOperand(sp, count * kDoubleSize));
102 save_iterator.Advance();
103 count++;
104 }
105}
106
107
108void LCodeGen::RestoreCallerDoubles() {
109 DCHECK(info()->saves_caller_doubles());
110 DCHECK(NeedsEagerFrame());
111 Comment(";;; Restore clobbered callee double registers");
112 BitVector* doubles = chunk()->allocated_double_registers();
113 BitVector::Iterator save_iterator(doubles);
114 int count = 0;
115 while (!save_iterator.Done()) {
116 __ ldc1(DoubleRegister::from_code(save_iterator.Current()),
117 MemOperand(sp, count * kDoubleSize));
118 save_iterator.Advance();
119 count++;
120 }
121}
122
123
124bool LCodeGen::GeneratePrologue() {
125 DCHECK(is_generating());
126
127 if (info()->IsOptimizing()) {
128 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
129
130#ifdef DEBUG
131 if (strlen(FLAG_stop_at) > 0 &&
132 info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
133 __ stop("stop_at");
134 }
135#endif
136
137 // a1: Callee's JS function.
138 // cp: Callee's context.
139 // fp: Caller's frame pointer.
140 // lr: Caller's pc.
141 }
142
143 info()->set_prologue_offset(masm_->pc_offset());
144 if (NeedsEagerFrame()) {
145 if (info()->IsStub()) {
146 __ StubPrologue();
147 } else {
148 __ Prologue(info()->GeneratePreagedPrologue());
149 }
150 frame_is_built_ = true;
151 }
152
153 // Reserve space for the stack slots needed by the code.
154 int slots = GetStackSlotCount();
155 if (slots > 0) {
156 if (FLAG_debug_code) {
157 __ Subu(sp, sp, Operand(slots * kPointerSize));
158 __ Push(a0, a1);
159 __ Addu(a0, sp, Operand(slots * kPointerSize));
160 __ li(a1, Operand(kSlotsZapValue));
161 Label loop;
162 __ bind(&loop);
163 __ Subu(a0, a0, Operand(kPointerSize));
164 __ sw(a1, MemOperand(a0, 2 * kPointerSize));
165 __ Branch(&loop, ne, a0, Operand(sp));
166 __ Pop(a0, a1);
167 } else {
168 __ Subu(sp, sp, Operand(slots * kPointerSize));
169 }
170 }
171
172 if (info()->saves_caller_doubles()) {
173 SaveCallerDoubles();
174 }
175 return !is_aborted();
176}
177
178
179void LCodeGen::DoPrologue(LPrologue* instr) {
180 Comment(";;; Prologue begin");
181
182 // Possibly allocate a local context.
183 if (info()->scope()->num_heap_slots() > 0) {
184 Comment(";;; Allocate local context");
185 bool need_write_barrier = true;
186 // Argument to NewContext is the function, which is in a1.
187 int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
188 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
189 if (info()->scope()->is_script_scope()) {
190 __ push(a1);
191 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
192 __ CallRuntime(Runtime::kNewScriptContext);
193 deopt_mode = Safepoint::kLazyDeopt;
194 } else if (slots <= FastNewContextStub::kMaximumSlots) {
195 FastNewContextStub stub(isolate(), slots);
196 __ CallStub(&stub);
197 // Result of FastNewContextStub is always in new space.
198 need_write_barrier = false;
199 } else {
200 __ push(a1);
201 __ CallRuntime(Runtime::kNewFunctionContext);
202 }
203 RecordSafepoint(deopt_mode);
204
205 // Context is returned in both v0. It replaces the context passed to us.
206 // It's saved in the stack and kept live in cp.
207 __ mov(cp, v0);
208 __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset));
209 // Copy any necessary parameters into the context.
210 int num_parameters = scope()->num_parameters();
211 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
212 for (int i = first_parameter; i < num_parameters; i++) {
213 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
214 if (var->IsContextSlot()) {
215 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
216 (num_parameters - 1 - i) * kPointerSize;
217 // Load parameter from stack.
218 __ lw(a0, MemOperand(fp, parameter_offset));
219 // Store it in the context.
220 MemOperand target = ContextMemOperand(cp, var->index());
221 __ sw(a0, target);
222 // Update the write barrier. This clobbers a3 and a0.
223 if (need_write_barrier) {
224 __ RecordWriteContextSlot(
225 cp, target.offset(), a0, a3, GetRAState(), kSaveFPRegs);
226 } else if (FLAG_debug_code) {
227 Label done;
228 __ JumpIfInNewSpace(cp, a0, &done);
229 __ Abort(kExpectedNewSpaceObject);
230 __ bind(&done);
231 }
232 }
233 }
234 Comment(";;; End allocate local context");
235 }
236
237 Comment(";;; Prologue end");
238}
239
240
241void LCodeGen::GenerateOsrPrologue() {
242 // Generate the OSR entry prologue at the first unknown OSR value, or if there
243 // are none, at the OSR entrypoint instruction.
244 if (osr_pc_offset_ >= 0) return;
245
246 osr_pc_offset_ = masm()->pc_offset();
247
248 // Adjust the frame size, subsuming the unoptimized frame into the
249 // optimized frame.
250 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
251 DCHECK(slots >= 0);
252 __ Subu(sp, sp, Operand(slots * kPointerSize));
253}
254
255
256void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
257 if (instr->IsCall()) {
258 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
259 }
260 if (!instr->IsLazyBailout() && !instr->IsGap()) {
261 safepoints_.BumpLastLazySafepointIndex();
262 }
263}
264
265
266bool LCodeGen::GenerateDeferredCode() {
267 DCHECK(is_generating());
268 if (deferred_.length() > 0) {
269 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
270 LDeferredCode* code = deferred_[i];
271
272 HValue* value =
273 instructions_->at(code->instruction_index())->hydrogen_value();
274 RecordAndWritePosition(
275 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
276
277 Comment(";;; <@%d,#%d> "
278 "-------------------- Deferred %s --------------------",
279 code->instruction_index(),
280 code->instr()->hydrogen_value()->id(),
281 code->instr()->Mnemonic());
282 __ bind(code->entry());
283 if (NeedsDeferredFrame()) {
284 Comment(";;; Build frame");
285 DCHECK(!frame_is_built_);
286 DCHECK(info()->IsStub());
287 frame_is_built_ = true;
288 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
289 __ li(scratch0(), Operand(Smi::FromInt(StackFrame::STUB)));
290 __ push(scratch0());
291 __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
292 Comment(";;; Deferred code");
293 }
294 code->Generate();
295 if (NeedsDeferredFrame()) {
296 Comment(";;; Destroy frame");
297 DCHECK(frame_is_built_);
298 __ pop(at);
299 __ MultiPop(cp.bit() | fp.bit() | ra.bit());
300 frame_is_built_ = false;
301 }
302 __ jmp(code->exit());
303 }
304 }
305 // Deferred code is the last part of the instruction sequence. Mark
306 // the generated code as done unless we bailed out.
307 if (!is_aborted()) status_ = DONE;
308 return !is_aborted();
309}
310
311
312bool LCodeGen::GenerateJumpTable() {
313 if (jump_table_.length() > 0) {
314 Label needs_frame, call_deopt_entry;
315
316 Comment(";;; -------------------- Jump table --------------------");
317 Address base = jump_table_[0].address;
318
319 Register entry_offset = t9;
320
321 int length = jump_table_.length();
322 for (int i = 0; i < length; i++) {
323 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
324 __ bind(&table_entry->label);
325
326 DCHECK(table_entry->bailout_type == jump_table_[0].bailout_type);
327 Address entry = table_entry->address;
328 DeoptComment(table_entry->deopt_info);
329
330 // Second-level deopt table entries are contiguous and small, so instead
331 // of loading the full, absolute address of each one, load an immediate
332 // offset which will be added to the base address later.
333 __ li(entry_offset, Operand(entry - base));
334
335 if (table_entry->needs_frame) {
336 DCHECK(!info()->saves_caller_doubles());
337 Comment(";;; call deopt with frame");
338 __ MultiPush(cp.bit() | fp.bit() | ra.bit());
339 __ Call(&needs_frame);
340 } else {
341 __ Call(&call_deopt_entry);
342 }
343 info()->LogDeoptCallPosition(masm()->pc_offset(),
344 table_entry->deopt_info.inlining_id);
345 }
346
347 if (needs_frame.is_linked()) {
348 __ bind(&needs_frame);
349 // This variant of deopt can only be used with stubs. Since we don't
350 // have a function pointer to install in the stack frame that we're
351 // building, install a special marker there instead.
352 DCHECK(info()->IsStub());
353 __ li(at, Operand(Smi::FromInt(StackFrame::STUB)));
354 __ push(at);
355 __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
356 }
357
358 Comment(";;; call deopt");
359 __ bind(&call_deopt_entry);
360
361 if (info()->saves_caller_doubles()) {
362 DCHECK(info()->IsStub());
363 RestoreCallerDoubles();
364 }
365
366 // Add the base address to the offset previously loaded in entry_offset.
367 __ Addu(entry_offset, entry_offset,
368 Operand(ExternalReference::ForDeoptEntry(base)));
369 __ Jump(entry_offset);
370 }
371 __ RecordComment("]");
372
373 // The deoptimization jump table is the last part of the instruction
374 // sequence. Mark the generated code as done unless we bailed out.
375 if (!is_aborted()) status_ = DONE;
376 return !is_aborted();
377}
378
379
380bool LCodeGen::GenerateSafepointTable() {
381 DCHECK(is_done());
382 safepoints_.Emit(masm(), GetStackSlotCount());
383 return !is_aborted();
384}
385
386
387Register LCodeGen::ToRegister(int index) const {
388 return Register::from_code(index);
389}
390
391
392DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
393 return DoubleRegister::from_code(index);
394}
395
396
397Register LCodeGen::ToRegister(LOperand* op) const {
398 DCHECK(op->IsRegister());
399 return ToRegister(op->index());
400}
401
402
403Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
404 if (op->IsRegister()) {
405 return ToRegister(op->index());
406 } else if (op->IsConstantOperand()) {
407 LConstantOperand* const_op = LConstantOperand::cast(op);
408 HConstant* constant = chunk_->LookupConstant(const_op);
409 Handle<Object> literal = constant->handle(isolate());
410 Representation r = chunk_->LookupLiteralRepresentation(const_op);
411 if (r.IsInteger32()) {
412 AllowDeferredHandleDereference get_number;
413 DCHECK(literal->IsNumber());
414 __ li(scratch, Operand(static_cast<int32_t>(literal->Number())));
415 } else if (r.IsSmi()) {
416 DCHECK(constant->HasSmiValue());
417 __ li(scratch, Operand(Smi::FromInt(constant->Integer32Value())));
418 } else if (r.IsDouble()) {
419 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
420 } else {
421 DCHECK(r.IsSmiOrTagged());
422 __ li(scratch, literal);
423 }
424 return scratch;
425 } else if (op->IsStackSlot()) {
426 __ lw(scratch, ToMemOperand(op));
427 return scratch;
428 }
429 UNREACHABLE();
430 return scratch;
431}
432
433
434DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
435 DCHECK(op->IsDoubleRegister());
436 return ToDoubleRegister(op->index());
437}
438
439
440DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
441 FloatRegister flt_scratch,
442 DoubleRegister dbl_scratch) {
443 if (op->IsDoubleRegister()) {
444 return ToDoubleRegister(op->index());
445 } else if (op->IsConstantOperand()) {
446 LConstantOperand* const_op = LConstantOperand::cast(op);
447 HConstant* constant = chunk_->LookupConstant(const_op);
448 Handle<Object> literal = constant->handle(isolate());
449 Representation r = chunk_->LookupLiteralRepresentation(const_op);
450 if (r.IsInteger32()) {
451 DCHECK(literal->IsNumber());
452 __ li(at, Operand(static_cast<int32_t>(literal->Number())));
453 __ mtc1(at, flt_scratch);
454 __ cvt_d_w(dbl_scratch, flt_scratch);
455 return dbl_scratch;
456 } else if (r.IsDouble()) {
457 Abort(kUnsupportedDoubleImmediate);
458 } else if (r.IsTagged()) {
459 Abort(kUnsupportedTaggedImmediate);
460 }
461 } else if (op->IsStackSlot()) {
462 MemOperand mem_op = ToMemOperand(op);
463 __ ldc1(dbl_scratch, mem_op);
464 return dbl_scratch;
465 }
466 UNREACHABLE();
467 return dbl_scratch;
468}
469
470
471Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
472 HConstant* constant = chunk_->LookupConstant(op);
473 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
474 return constant->handle(isolate());
475}
476
477
478bool LCodeGen::IsInteger32(LConstantOperand* op) const {
479 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
480}
481
482
483bool LCodeGen::IsSmi(LConstantOperand* op) const {
484 return chunk_->LookupLiteralRepresentation(op).IsSmi();
485}
486
487
488int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
489 return ToRepresentation(op, Representation::Integer32());
490}
491
492
493int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
494 const Representation& r) const {
495 HConstant* constant = chunk_->LookupConstant(op);
496 int32_t value = constant->Integer32Value();
497 if (r.IsInteger32()) return value;
498 DCHECK(r.IsSmiOrTagged());
499 return reinterpret_cast<int32_t>(Smi::FromInt(value));
500}
501
502
503Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
504 HConstant* constant = chunk_->LookupConstant(op);
505 return Smi::FromInt(constant->Integer32Value());
506}
507
508
509double LCodeGen::ToDouble(LConstantOperand* op) const {
510 HConstant* constant = chunk_->LookupConstant(op);
511 DCHECK(constant->HasDoubleValue());
512 return constant->DoubleValue();
513}
514
515
516Operand LCodeGen::ToOperand(LOperand* op) {
517 if (op->IsConstantOperand()) {
518 LConstantOperand* const_op = LConstantOperand::cast(op);
519 HConstant* constant = chunk()->LookupConstant(const_op);
520 Representation r = chunk_->LookupLiteralRepresentation(const_op);
521 if (r.IsSmi()) {
522 DCHECK(constant->HasSmiValue());
523 return Operand(Smi::FromInt(constant->Integer32Value()));
524 } else if (r.IsInteger32()) {
525 DCHECK(constant->HasInteger32Value());
526 return Operand(constant->Integer32Value());
527 } else if (r.IsDouble()) {
528 Abort(kToOperandUnsupportedDoubleImmediate);
529 }
530 DCHECK(r.IsTagged());
531 return Operand(constant->handle(isolate()));
532 } else if (op->IsRegister()) {
533 return Operand(ToRegister(op));
534 } else if (op->IsDoubleRegister()) {
535 Abort(kToOperandIsDoubleRegisterUnimplemented);
536 return Operand(0);
537 }
538 // Stack slots not implemented, use ToMemOperand instead.
539 UNREACHABLE();
540 return Operand(0);
541}
542
543
544static int ArgumentsOffsetWithoutFrame(int index) {
545 DCHECK(index < 0);
546 return -(index + 1) * kPointerSize;
547}
548
549
550MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
551 DCHECK(!op->IsRegister());
552 DCHECK(!op->IsDoubleRegister());
553 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
554 if (NeedsEagerFrame()) {
555 return MemOperand(fp, StackSlotOffset(op->index()));
556 } else {
557 // Retrieve parameter without eager stack-frame relative to the
558 // stack-pointer.
559 return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
560 }
561}
562
563
564MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
565 DCHECK(op->IsDoubleStackSlot());
566 if (NeedsEagerFrame()) {
567 return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
568 } else {
569 // Retrieve parameter without eager stack-frame relative to the
570 // stack-pointer.
571 return MemOperand(
572 sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
573 }
574}
575
576
577void LCodeGen::WriteTranslation(LEnvironment* environment,
578 Translation* translation) {
579 if (environment == NULL) return;
580
581 // The translation includes one command per value in the environment.
582 int translation_size = environment->translation_size();
583
584 WriteTranslation(environment->outer(), translation);
585 WriteTranslationFrame(environment, translation);
586
587 int object_index = 0;
588 int dematerialized_index = 0;
589 for (int i = 0; i < translation_size; ++i) {
590 LOperand* value = environment->values()->at(i);
591 AddToTranslation(
592 environment, translation, value, environment->HasTaggedValueAt(i),
593 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
594 }
595}
596
597
598void LCodeGen::AddToTranslation(LEnvironment* environment,
599 Translation* translation,
600 LOperand* op,
601 bool is_tagged,
602 bool is_uint32,
603 int* object_index_pointer,
604 int* dematerialized_index_pointer) {
605 if (op == LEnvironment::materialization_marker()) {
606 int object_index = (*object_index_pointer)++;
607 if (environment->ObjectIsDuplicateAt(object_index)) {
608 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
609 translation->DuplicateObject(dupe_of);
610 return;
611 }
612 int object_length = environment->ObjectLengthAt(object_index);
613 if (environment->ObjectIsArgumentsAt(object_index)) {
614 translation->BeginArgumentsObject(object_length);
615 } else {
616 translation->BeginCapturedObject(object_length);
617 }
618 int dematerialized_index = *dematerialized_index_pointer;
619 int env_offset = environment->translation_size() + dematerialized_index;
620 *dematerialized_index_pointer += object_length;
621 for (int i = 0; i < object_length; ++i) {
622 LOperand* value = environment->values()->at(env_offset + i);
623 AddToTranslation(environment,
624 translation,
625 value,
626 environment->HasTaggedValueAt(env_offset + i),
627 environment->HasUint32ValueAt(env_offset + i),
628 object_index_pointer,
629 dematerialized_index_pointer);
630 }
631 return;
632 }
633
634 if (op->IsStackSlot()) {
635 int index = op->index();
636 if (index >= 0) {
637 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
638 }
639 if (is_tagged) {
640 translation->StoreStackSlot(index);
641 } else if (is_uint32) {
642 translation->StoreUint32StackSlot(index);
643 } else {
644 translation->StoreInt32StackSlot(index);
645 }
646 } else if (op->IsDoubleStackSlot()) {
647 int index = op->index();
648 if (index >= 0) {
649 index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
650 }
651 translation->StoreDoubleStackSlot(index);
652 } else if (op->IsRegister()) {
653 Register reg = ToRegister(op);
654 if (is_tagged) {
655 translation->StoreRegister(reg);
656 } else if (is_uint32) {
657 translation->StoreUint32Register(reg);
658 } else {
659 translation->StoreInt32Register(reg);
660 }
661 } else if (op->IsDoubleRegister()) {
662 DoubleRegister reg = ToDoubleRegister(op);
663 translation->StoreDoubleRegister(reg);
664 } else if (op->IsConstantOperand()) {
665 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
666 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
667 translation->StoreLiteral(src_index);
668 } else {
669 UNREACHABLE();
670 }
671}
672
673
674void LCodeGen::CallCode(Handle<Code> code,
675 RelocInfo::Mode mode,
676 LInstruction* instr) {
677 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
678}
679
680
681void LCodeGen::CallCodeGeneric(Handle<Code> code,
682 RelocInfo::Mode mode,
683 LInstruction* instr,
684 SafepointMode safepoint_mode) {
685 DCHECK(instr != NULL);
686 __ Call(code, mode);
687 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
688}
689
690
691void LCodeGen::CallRuntime(const Runtime::Function* function,
692 int num_arguments,
693 LInstruction* instr,
694 SaveFPRegsMode save_doubles) {
695 DCHECK(instr != NULL);
696
697 __ CallRuntime(function, num_arguments, save_doubles);
698
699 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
700}
701
702
703void LCodeGen::LoadContextFromDeferred(LOperand* context) {
704 if (context->IsRegister()) {
705 __ Move(cp, ToRegister(context));
706 } else if (context->IsStackSlot()) {
707 __ lw(cp, ToMemOperand(context));
708 } else if (context->IsConstantOperand()) {
709 HConstant* constant =
710 chunk_->LookupConstant(LConstantOperand::cast(context));
711 __ li(cp, Handle<Object>::cast(constant->handle(isolate())));
712 } else {
713 UNREACHABLE();
714 }
715}
716
717
718void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
719 int argc,
720 LInstruction* instr,
721 LOperand* context) {
722 LoadContextFromDeferred(context);
723 __ CallRuntimeSaveDoubles(id);
724 RecordSafepointWithRegisters(
725 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
726}
727
728
729void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
730 Safepoint::DeoptMode mode) {
731 environment->set_has_been_used();
732 if (!environment->HasBeenRegistered()) {
733 // Physical stack frame layout:
734 // -x ............. -4 0 ..................................... y
735 // [incoming arguments] [spill slots] [pushed outgoing arguments]
736
737 // Layout of the environment:
738 // 0 ..................................................... size-1
739 // [parameters] [locals] [expression stack including arguments]
740
741 // Layout of the translation:
742 // 0 ........................................................ size - 1 + 4
743 // [expression stack including arguments] [locals] [4 words] [parameters]
744 // |>------------ translation_size ------------<|
745
746 int frame_count = 0;
747 int jsframe_count = 0;
748 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
749 ++frame_count;
750 if (e->frame_type() == JS_FUNCTION) {
751 ++jsframe_count;
752 }
753 }
754 Translation translation(&translations_, frame_count, jsframe_count, zone());
755 WriteTranslation(environment, &translation);
756 int deoptimization_index = deoptimizations_.length();
757 int pc_offset = masm()->pc_offset();
758 environment->Register(deoptimization_index,
759 translation.index(),
760 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
761 deoptimizations_.Add(environment, zone());
762 }
763}
764
765
766void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
767 Deoptimizer::DeoptReason deopt_reason,
768 Deoptimizer::BailoutType bailout_type,
769 Register src1, const Operand& src2) {
770 LEnvironment* environment = instr->environment();
771 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
772 DCHECK(environment->HasBeenRegistered());
773 int id = environment->deoptimization_index();
774 Address entry =
775 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
776 if (entry == NULL) {
777 Abort(kBailoutWasNotPrepared);
778 return;
779 }
780
781 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
782 Register scratch = scratch0();
783 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
784 Label no_deopt;
785 __ Push(a1, scratch);
786 __ li(scratch, Operand(count));
787 __ lw(a1, MemOperand(scratch));
788 __ Subu(a1, a1, Operand(1));
789 __ Branch(&no_deopt, ne, a1, Operand(zero_reg));
790 __ li(a1, Operand(FLAG_deopt_every_n_times));
791 __ sw(a1, MemOperand(scratch));
792 __ Pop(a1, scratch);
793
794 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
795 __ bind(&no_deopt);
796 __ sw(a1, MemOperand(scratch));
797 __ Pop(a1, scratch);
798 }
799
800 if (info()->ShouldTrapOnDeopt()) {
801 Label skip;
802 if (condition != al) {
803 __ Branch(&skip, NegateCondition(condition), src1, src2);
804 }
805 __ stop("trap_on_deopt");
806 __ bind(&skip);
807 }
808
809 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
810
811 DCHECK(info()->IsStub() || frame_is_built_);
812 // Go through jump table if we need to handle condition, build frame, or
813 // restore caller doubles.
814 if (condition == al && frame_is_built_ &&
815 !info()->saves_caller_doubles()) {
816 DeoptComment(deopt_info);
817 __ Call(entry, RelocInfo::RUNTIME_ENTRY, condition, src1, src2);
818 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
819 } else {
820 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
821 !frame_is_built_);
822 // We often have several deopts to the same entry, reuse the last
823 // jump entry if this is the case.
824 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
825 jump_table_.is_empty() ||
826 !table_entry.IsEquivalentTo(jump_table_.last())) {
827 jump_table_.Add(table_entry, zone());
828 }
829 __ Branch(&jump_table_.last().label, condition, src1, src2);
830 }
831}
832
833
834void LCodeGen::DeoptimizeIf(Condition condition, LInstruction* instr,
835 Deoptimizer::DeoptReason deopt_reason,
836 Register src1, const Operand& src2) {
837 Deoptimizer::BailoutType bailout_type = info()->IsStub()
838 ? Deoptimizer::LAZY
839 : Deoptimizer::EAGER;
840 DeoptimizeIf(condition, instr, deopt_reason, bailout_type, src1, src2);
841}
842
843
844void LCodeGen::RecordSafepointWithLazyDeopt(
845 LInstruction* instr, SafepointMode safepoint_mode) {
846 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
847 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
848 } else {
849 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
850 RecordSafepointWithRegisters(
851 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
852 }
853}
854
855
856void LCodeGen::RecordSafepoint(
857 LPointerMap* pointers,
858 Safepoint::Kind kind,
859 int arguments,
860 Safepoint::DeoptMode deopt_mode) {
861 DCHECK(expected_safepoint_kind_ == kind);
862
863 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
864 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
865 kind, arguments, deopt_mode);
866 for (int i = 0; i < operands->length(); i++) {
867 LOperand* pointer = operands->at(i);
868 if (pointer->IsStackSlot()) {
869 safepoint.DefinePointerSlot(pointer->index(), zone());
870 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
871 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
872 }
873 }
874}
875
876
877void LCodeGen::RecordSafepoint(LPointerMap* pointers,
878 Safepoint::DeoptMode deopt_mode) {
879 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
880}
881
882
883void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
884 LPointerMap empty_pointers(zone());
885 RecordSafepoint(&empty_pointers, deopt_mode);
886}
887
888
889void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
890 int arguments,
891 Safepoint::DeoptMode deopt_mode) {
892 RecordSafepoint(
893 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
894}
895
896
897void LCodeGen::RecordAndWritePosition(int position) {
898 if (position == RelocInfo::kNoPosition) return;
899 masm()->positions_recorder()->RecordPosition(position);
900 masm()->positions_recorder()->WriteRecordedPositions();
901}
902
903
904static const char* LabelType(LLabel* label) {
905 if (label->is_loop_header()) return " (loop header)";
906 if (label->is_osr_entry()) return " (OSR entry)";
907 return "";
908}
909
910
911void LCodeGen::DoLabel(LLabel* label) {
912 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
913 current_instruction_,
914 label->hydrogen_value()->id(),
915 label->block_id(),
916 LabelType(label));
917 __ bind(label->label());
918 current_block_ = label->block_id();
919 DoGap(label);
920}
921
922
923void LCodeGen::DoParallelMove(LParallelMove* move) {
924 resolver_.Resolve(move);
925}
926
927
928void LCodeGen::DoGap(LGap* gap) {
929 for (int i = LGap::FIRST_INNER_POSITION;
930 i <= LGap::LAST_INNER_POSITION;
931 i++) {
932 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
933 LParallelMove* move = gap->GetParallelMove(inner_pos);
934 if (move != NULL) DoParallelMove(move);
935 }
936}
937
938
939void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
940 DoGap(instr);
941}
942
943
944void LCodeGen::DoParameter(LParameter* instr) {
945 // Nothing to do.
946}
947
948
949void LCodeGen::DoCallStub(LCallStub* instr) {
950 DCHECK(ToRegister(instr->context()).is(cp));
951 DCHECK(ToRegister(instr->result()).is(v0));
952 switch (instr->hydrogen()->major_key()) {
953 case CodeStub::RegExpExec: {
954 RegExpExecStub stub(isolate());
955 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
956 break;
957 }
958 case CodeStub::SubString: {
959 SubStringStub stub(isolate());
960 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
961 break;
962 }
963 default:
964 UNREACHABLE();
965 }
966}
967
968
969void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
970 GenerateOsrPrologue();
971}
972
973
974void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
975 Register dividend = ToRegister(instr->dividend());
976 int32_t divisor = instr->divisor();
977 DCHECK(dividend.is(ToRegister(instr->result())));
978
979 // Theoretically, a variation of the branch-free code for integer division by
980 // a power of 2 (calculating the remainder via an additional multiplication
981 // (which gets simplified to an 'and') and subtraction) should be faster, and
982 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
983 // indicate that positive dividends are heavily favored, so the branching
984 // version performs better.
985 HMod* hmod = instr->hydrogen();
986 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
987 Label dividend_is_not_negative, done;
988
989 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
990 __ Branch(&dividend_is_not_negative, ge, dividend, Operand(zero_reg));
991 // Note: The code below even works when right contains kMinInt.
992 __ subu(dividend, zero_reg, dividend);
993 __ And(dividend, dividend, Operand(mask));
994 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
995 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
996 Operand(zero_reg));
997 }
998 __ Branch(USE_DELAY_SLOT, &done);
999 __ subu(dividend, zero_reg, dividend);
1000 }
1001
1002 __ bind(&dividend_is_not_negative);
1003 __ And(dividend, dividend, Operand(mask));
1004 __ bind(&done);
1005}
1006
1007
1008void LCodeGen::DoModByConstI(LModByConstI* instr) {
1009 Register dividend = ToRegister(instr->dividend());
1010 int32_t divisor = instr->divisor();
1011 Register result = ToRegister(instr->result());
1012 DCHECK(!dividend.is(result));
1013
1014 if (divisor == 0) {
1015 DeoptimizeIf(al, instr);
1016 return;
1017 }
1018
1019 __ TruncatingDiv(result, dividend, Abs(divisor));
1020 __ Mul(result, result, Operand(Abs(divisor)));
1021 __ Subu(result, dividend, Operand(result));
1022
1023 // Check for negative zero.
1024 HMod* hmod = instr->hydrogen();
1025 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1026 Label remainder_not_zero;
1027 __ Branch(&remainder_not_zero, ne, result, Operand(zero_reg));
1028 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, dividend,
1029 Operand(zero_reg));
1030 __ bind(&remainder_not_zero);
1031 }
1032}
1033
1034
1035void LCodeGen::DoModI(LModI* instr) {
1036 HMod* hmod = instr->hydrogen();
1037 const Register left_reg = ToRegister(instr->left());
1038 const Register right_reg = ToRegister(instr->right());
1039 const Register result_reg = ToRegister(instr->result());
1040
1041 // div runs in the background while we check for special cases.
1042 __ Mod(result_reg, left_reg, right_reg);
1043
1044 Label done;
1045 // Check for x % 0, we have to deopt in this case because we can't return a
1046 // NaN.
1047 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1048 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, right_reg,
1049 Operand(zero_reg));
1050 }
1051
1052 // Check for kMinInt % -1, div will return kMinInt, which is not what we
1053 // want. We have to deopt if we care about -0, because we can't return that.
1054 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1055 Label no_overflow_possible;
1056 __ Branch(&no_overflow_possible, ne, left_reg, Operand(kMinInt));
1057 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1058 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, right_reg, Operand(-1));
1059 } else {
1060 __ Branch(&no_overflow_possible, ne, right_reg, Operand(-1));
1061 __ Branch(USE_DELAY_SLOT, &done);
1062 __ mov(result_reg, zero_reg);
1063 }
1064 __ bind(&no_overflow_possible);
1065 }
1066
1067 // If we care about -0, test if the dividend is <0 and the result is 0.
1068 __ Branch(&done, ge, left_reg, Operand(zero_reg));
1069 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1070 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result_reg,
1071 Operand(zero_reg));
1072 }
1073 __ bind(&done);
1074}
1075
1076
1077void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1078 Register dividend = ToRegister(instr->dividend());
1079 int32_t divisor = instr->divisor();
1080 Register result = ToRegister(instr->result());
1081 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1082 DCHECK(!result.is(dividend));
1083
1084 // Check for (0 / -x) that will produce negative zero.
1085 HDiv* hdiv = instr->hydrogen();
1086 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1087 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1088 Operand(zero_reg));
1089 }
1090 // Check for (kMinInt / -1).
1091 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1092 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, dividend, Operand(kMinInt));
1093 }
1094 // Deoptimize if remainder will not be 0.
1095 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1096 divisor != 1 && divisor != -1) {
1097 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1098 __ And(at, dividend, Operand(mask));
1099 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, at, Operand(zero_reg));
1100 }
1101
1102 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1103 __ Subu(result, zero_reg, dividend);
1104 return;
1105 }
1106 uint16_t shift = WhichPowerOf2Abs(divisor);
1107 if (shift == 0) {
1108 __ Move(result, dividend);
1109 } else if (shift == 1) {
1110 __ srl(result, dividend, 31);
1111 __ Addu(result, dividend, Operand(result));
1112 } else {
1113 __ sra(result, dividend, 31);
1114 __ srl(result, result, 32 - shift);
1115 __ Addu(result, dividend, Operand(result));
1116 }
1117 if (shift > 0) __ sra(result, result, shift);
1118 if (divisor < 0) __ Subu(result, zero_reg, result);
1119}
1120
1121
1122void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1123 Register dividend = ToRegister(instr->dividend());
1124 int32_t divisor = instr->divisor();
1125 Register result = ToRegister(instr->result());
1126 DCHECK(!dividend.is(result));
1127
1128 if (divisor == 0) {
1129 DeoptimizeIf(al, instr);
1130 return;
1131 }
1132
1133 // Check for (0 / -x) that will produce negative zero.
1134 HDiv* hdiv = instr->hydrogen();
1135 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1136 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1137 Operand(zero_reg));
1138 }
1139
1140 __ TruncatingDiv(result, dividend, Abs(divisor));
1141 if (divisor < 0) __ Subu(result, zero_reg, result);
1142
1143 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1144 __ Mul(scratch0(), result, Operand(divisor));
1145 __ Subu(scratch0(), scratch0(), dividend);
1146 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, scratch0(),
1147 Operand(zero_reg));
1148 }
1149}
1150
1151
1152// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1153void LCodeGen::DoDivI(LDivI* instr) {
1154 HBinaryOperation* hdiv = instr->hydrogen();
1155 Register dividend = ToRegister(instr->dividend());
1156 Register divisor = ToRegister(instr->divisor());
1157 const Register result = ToRegister(instr->result());
1158 Register remainder = ToRegister(instr->temp());
1159
1160 // On MIPS div is asynchronous - it will run in the background while we
1161 // check for special cases.
1162 __ Div(remainder, result, dividend, divisor);
1163
1164 // Check for x / 0.
1165 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1166 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
1167 Operand(zero_reg));
1168 }
1169
1170 // Check for (0 / -x) that will produce negative zero.
1171 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1172 Label left_not_zero;
1173 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1174 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
1175 Operand(zero_reg));
1176 __ bind(&left_not_zero);
1177 }
1178
1179 // Check for (kMinInt / -1).
1180 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1181 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1182 Label left_not_min_int;
1183 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1184 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
1185 __ bind(&left_not_min_int);
1186 }
1187
1188 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1189 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, remainder,
1190 Operand(zero_reg));
1191 }
1192}
1193
1194
1195void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1196 DoubleRegister addend = ToDoubleRegister(instr->addend());
1197 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1198 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1199
1200 // This is computed in-place.
1201 DCHECK(addend.is(ToDoubleRegister(instr->result())));
1202
1203 __ madd_d(addend, addend, multiplier, multiplicand);
1204}
1205
1206
1207void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1208 Register dividend = ToRegister(instr->dividend());
1209 Register result = ToRegister(instr->result());
1210 int32_t divisor = instr->divisor();
1211 Register scratch = result.is(dividend) ? scratch0() : dividend;
1212 DCHECK(!result.is(dividend) || !scratch.is(dividend));
1213
1214 // If the divisor is 1, return the dividend.
1215 if (divisor == 1) {
1216 __ Move(result, dividend);
1217 return;
1218 }
1219
1220 // If the divisor is positive, things are easy: There can be no deopts and we
1221 // can simply do an arithmetic right shift.
1222 uint16_t shift = WhichPowerOf2Abs(divisor);
1223 if (divisor > 1) {
1224 __ sra(result, dividend, shift);
1225 return;
1226 }
1227
1228 // If the divisor is negative, we have to negate and handle edge cases.
1229
1230 // dividend can be the same register as result so save the value of it
1231 // for checking overflow.
1232 __ Move(scratch, dividend);
1233
1234 __ Subu(result, zero_reg, dividend);
1235 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1236 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
1237 }
1238
1239 // Dividing by -1 is basically negation, unless we overflow.
1240 __ Xor(scratch, scratch, result);
1241 if (divisor == -1) {
1242 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1243 DeoptimizeIf(ge, instr, Deoptimizer::kOverflow, scratch,
1244 Operand(zero_reg));
1245 }
1246 return;
1247 }
1248
1249 // If the negation could not overflow, simply shifting is OK.
1250 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1251 __ sra(result, result, shift);
1252 return;
1253 }
1254
1255 Label no_overflow, done;
1256 __ Branch(&no_overflow, lt, scratch, Operand(zero_reg));
1257 __ li(result, Operand(kMinInt / divisor));
1258 __ Branch(&done);
1259 __ bind(&no_overflow);
1260 __ sra(result, result, shift);
1261 __ bind(&done);
1262}
1263
1264
1265void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1266 Register dividend = ToRegister(instr->dividend());
1267 int32_t divisor = instr->divisor();
1268 Register result = ToRegister(instr->result());
1269 DCHECK(!dividend.is(result));
1270
1271 if (divisor == 0) {
1272 DeoptimizeIf(al, instr);
1273 return;
1274 }
1275
1276 // Check for (0 / -x) that will produce negative zero.
1277 HMathFloorOfDiv* hdiv = instr->hydrogen();
1278 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1279 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, dividend,
1280 Operand(zero_reg));
1281 }
1282
1283 // Easy case: We need no dynamic check for the dividend and the flooring
1284 // division is the same as the truncating division.
1285 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1286 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1287 __ TruncatingDiv(result, dividend, Abs(divisor));
1288 if (divisor < 0) __ Subu(result, zero_reg, result);
1289 return;
1290 }
1291
1292 // In the general case we may need to adjust before and after the truncating
1293 // division to get a flooring division.
1294 Register temp = ToRegister(instr->temp());
1295 DCHECK(!temp.is(dividend) && !temp.is(result));
1296 Label needs_adjustment, done;
1297 __ Branch(&needs_adjustment, divisor > 0 ? lt : gt,
1298 dividend, Operand(zero_reg));
1299 __ TruncatingDiv(result, dividend, Abs(divisor));
1300 if (divisor < 0) __ Subu(result, zero_reg, result);
1301 __ jmp(&done);
1302 __ bind(&needs_adjustment);
1303 __ Addu(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1304 __ TruncatingDiv(result, temp, Abs(divisor));
1305 if (divisor < 0) __ Subu(result, zero_reg, result);
1306 __ Subu(result, result, Operand(1));
1307 __ bind(&done);
1308}
1309
1310
1311// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1312void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1313 HBinaryOperation* hdiv = instr->hydrogen();
1314 Register dividend = ToRegister(instr->dividend());
1315 Register divisor = ToRegister(instr->divisor());
1316 const Register result = ToRegister(instr->result());
1317 Register remainder = scratch0();
1318 // On MIPS div is asynchronous - it will run in the background while we
1319 // check for special cases.
1320 __ Div(remainder, result, dividend, divisor);
1321
1322 // Check for x / 0.
1323 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1324 DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero, divisor,
1325 Operand(zero_reg));
1326 }
1327
1328 // Check for (0 / -x) that will produce negative zero.
1329 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1330 Label left_not_zero;
1331 __ Branch(&left_not_zero, ne, dividend, Operand(zero_reg));
1332 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, divisor,
1333 Operand(zero_reg));
1334 __ bind(&left_not_zero);
1335 }
1336
1337 // Check for (kMinInt / -1).
1338 if (hdiv->CheckFlag(HValue::kCanOverflow) &&
1339 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1340 Label left_not_min_int;
1341 __ Branch(&left_not_min_int, ne, dividend, Operand(kMinInt));
1342 DeoptimizeIf(eq, instr, Deoptimizer::kOverflow, divisor, Operand(-1));
1343 __ bind(&left_not_min_int);
1344 }
1345
1346 // We performed a truncating division. Correct the result if necessary.
1347 Label done;
1348 __ Branch(&done, eq, remainder, Operand(zero_reg), USE_DELAY_SLOT);
1349 __ Xor(remainder, remainder, Operand(divisor));
1350 __ Branch(&done, ge, remainder, Operand(zero_reg));
1351 __ Subu(result, result, Operand(1));
1352 __ bind(&done);
1353}
1354
1355
1356void LCodeGen::DoMulI(LMulI* instr) {
1357 Register scratch = scratch0();
1358 Register result = ToRegister(instr->result());
1359 // Note that result may alias left.
1360 Register left = ToRegister(instr->left());
1361 LOperand* right_op = instr->right();
1362
1363 bool bailout_on_minus_zero =
1364 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1365 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1366
1367 if (right_op->IsConstantOperand()) {
1368 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1369
1370 if (bailout_on_minus_zero && (constant < 0)) {
1371 // The case of a null constant will be handled separately.
1372 // If constant is negative and left is null, the result should be -0.
1373 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, left, Operand(zero_reg));
1374 }
1375
1376 switch (constant) {
1377 case -1:
1378 if (overflow) {
1379 Label no_overflow;
1380 __ SubBranchNoOvf(result, zero_reg, Operand(left), &no_overflow);
1381 DeoptimizeIf(al, instr);
1382 __ bind(&no_overflow);
1383 } else {
1384 __ Subu(result, zero_reg, left);
1385 }
1386 break;
1387 case 0:
1388 if (bailout_on_minus_zero) {
1389 // If left is strictly negative and the constant is null, the
1390 // result is -0. Deoptimize if required, otherwise return 0.
1391 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, left,
1392 Operand(zero_reg));
1393 }
1394 __ mov(result, zero_reg);
1395 break;
1396 case 1:
1397 // Nothing to do.
1398 __ Move(result, left);
1399 break;
1400 default:
1401 // Multiplying by powers of two and powers of two plus or minus
1402 // one can be done faster with shifted operands.
1403 // For other constants we emit standard code.
1404 int32_t mask = constant >> 31;
1405 uint32_t constant_abs = (constant + mask) ^ mask;
1406
1407 if (base::bits::IsPowerOfTwo32(constant_abs)) {
1408 int32_t shift = WhichPowerOf2(constant_abs);
1409 __ sll(result, left, shift);
1410 // Correct the sign of the result if the constant is negative.
1411 if (constant < 0) __ Subu(result, zero_reg, result);
1412 } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
1413 int32_t shift = WhichPowerOf2(constant_abs - 1);
1414 __ sll(scratch, left, shift);
1415 __ Addu(result, scratch, left);
1416 // Correct the sign of the result if the constant is negative.
1417 if (constant < 0) __ Subu(result, zero_reg, result);
1418 } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
1419 int32_t shift = WhichPowerOf2(constant_abs + 1);
1420 __ sll(scratch, left, shift);
1421 __ Subu(result, scratch, left);
1422 // Correct the sign of the result if the constant is negative.
1423 if (constant < 0) __ Subu(result, zero_reg, result);
1424 } else {
1425 // Generate standard code.
1426 __ li(at, constant);
1427 __ Mul(result, left, at);
1428 }
1429 }
1430
1431 } else {
1432 DCHECK(right_op->IsRegister());
1433 Register right = ToRegister(right_op);
1434
1435 if (overflow) {
1436 // hi:lo = left * right.
1437 if (instr->hydrogen()->representation().IsSmi()) {
1438 __ SmiUntag(result, left);
1439 __ Mul(scratch, result, result, right);
1440 } else {
1441 __ Mul(scratch, result, left, right);
1442 }
1443 __ sra(at, result, 31);
1444 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, scratch, Operand(at));
1445 } else {
1446 if (instr->hydrogen()->representation().IsSmi()) {
1447 __ SmiUntag(result, left);
1448 __ Mul(result, result, right);
1449 } else {
1450 __ Mul(result, left, right);
1451 }
1452 }
1453
1454 if (bailout_on_minus_zero) {
1455 Label done;
1456 __ Xor(at, left, right);
1457 __ Branch(&done, ge, at, Operand(zero_reg));
1458 // Bail out if the result is minus zero.
1459 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, result,
1460 Operand(zero_reg));
1461 __ bind(&done);
1462 }
1463 }
1464}
1465
1466
1467void LCodeGen::DoBitI(LBitI* instr) {
1468 LOperand* left_op = instr->left();
1469 LOperand* right_op = instr->right();
1470 DCHECK(left_op->IsRegister());
1471 Register left = ToRegister(left_op);
1472 Register result = ToRegister(instr->result());
1473 Operand right(no_reg);
1474
1475 if (right_op->IsStackSlot()) {
1476 right = Operand(EmitLoadRegister(right_op, at));
1477 } else {
1478 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1479 right = ToOperand(right_op);
1480 }
1481
1482 switch (instr->op()) {
1483 case Token::BIT_AND:
1484 __ And(result, left, right);
1485 break;
1486 case Token::BIT_OR:
1487 __ Or(result, left, right);
1488 break;
1489 case Token::BIT_XOR:
1490 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1491 __ Nor(result, zero_reg, left);
1492 } else {
1493 __ Xor(result, left, right);
1494 }
1495 break;
1496 default:
1497 UNREACHABLE();
1498 break;
1499 }
1500}
1501
1502
1503void LCodeGen::DoShiftI(LShiftI* instr) {
1504 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1505 // result may alias either of them.
1506 LOperand* right_op = instr->right();
1507 Register left = ToRegister(instr->left());
1508 Register result = ToRegister(instr->result());
1509 Register scratch = scratch0();
1510
1511 if (right_op->IsRegister()) {
1512 // No need to mask the right operand on MIPS, it is built into the variable
1513 // shift instructions.
1514 switch (instr->op()) {
1515 case Token::ROR:
1516 __ Ror(result, left, Operand(ToRegister(right_op)));
1517 break;
1518 case Token::SAR:
1519 __ srav(result, left, ToRegister(right_op));
1520 break;
1521 case Token::SHR:
1522 __ srlv(result, left, ToRegister(right_op));
1523 if (instr->can_deopt()) {
1524 DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, result,
1525 Operand(zero_reg));
1526 }
1527 break;
1528 case Token::SHL:
1529 __ sllv(result, left, ToRegister(right_op));
1530 break;
1531 default:
1532 UNREACHABLE();
1533 break;
1534 }
1535 } else {
1536 // Mask the right_op operand.
1537 int value = ToInteger32(LConstantOperand::cast(right_op));
1538 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1539 switch (instr->op()) {
1540 case Token::ROR:
1541 if (shift_count != 0) {
1542 __ Ror(result, left, Operand(shift_count));
1543 } else {
1544 __ Move(result, left);
1545 }
1546 break;
1547 case Token::SAR:
1548 if (shift_count != 0) {
1549 __ sra(result, left, shift_count);
1550 } else {
1551 __ Move(result, left);
1552 }
1553 break;
1554 case Token::SHR:
1555 if (shift_count != 0) {
1556 __ srl(result, left, shift_count);
1557 } else {
1558 if (instr->can_deopt()) {
1559 __ And(at, left, Operand(0x80000000));
1560 DeoptimizeIf(ne, instr, Deoptimizer::kNegativeValue, at,
1561 Operand(zero_reg));
1562 }
1563 __ Move(result, left);
1564 }
1565 break;
1566 case Token::SHL:
1567 if (shift_count != 0) {
1568 if (instr->hydrogen_value()->representation().IsSmi() &&
1569 instr->can_deopt()) {
1570 if (shift_count != 1) {
1571 __ sll(result, left, shift_count - 1);
1572 __ SmiTagCheckOverflow(result, result, scratch);
1573 } else {
1574 __ SmiTagCheckOverflow(result, left, scratch);
1575 }
1576 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, scratch,
1577 Operand(zero_reg));
1578 } else {
1579 __ sll(result, left, shift_count);
1580 }
1581 } else {
1582 __ Move(result, left);
1583 }
1584 break;
1585 default:
1586 UNREACHABLE();
1587 break;
1588 }
1589 }
1590}
1591
1592
1593void LCodeGen::DoSubI(LSubI* instr) {
1594 LOperand* left = instr->left();
1595 LOperand* right = instr->right();
1596 LOperand* result = instr->result();
1597 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1598
1599 if (!can_overflow) {
1600 if (right->IsStackSlot()) {
1601 Register right_reg = EmitLoadRegister(right, at);
1602 __ Subu(ToRegister(result), ToRegister(left), Operand(right_reg));
1603 } else {
1604 DCHECK(right->IsRegister() || right->IsConstantOperand());
1605 __ Subu(ToRegister(result), ToRegister(left), ToOperand(right));
1606 }
1607 } else { // can_overflow.
1608 Register scratch = scratch0();
1609 Label no_overflow_label;
1610 if (right->IsStackSlot()) {
1611 Register right_reg = EmitLoadRegister(right, scratch);
1612 __ SubBranchNoOvf(ToRegister(result), ToRegister(left),
1613 Operand(right_reg), &no_overflow_label);
1614 } else {
1615 DCHECK(right->IsRegister() || right->IsConstantOperand());
1616 __ SubBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1617 &no_overflow_label, scratch);
1618 }
1619 DeoptimizeIf(al, instr);
1620 __ bind(&no_overflow_label);
1621 }
1622}
1623
1624
1625void LCodeGen::DoConstantI(LConstantI* instr) {
1626 __ li(ToRegister(instr->result()), Operand(instr->value()));
1627}
1628
1629
1630void LCodeGen::DoConstantS(LConstantS* instr) {
1631 __ li(ToRegister(instr->result()), Operand(instr->value()));
1632}
1633
1634
1635void LCodeGen::DoConstantD(LConstantD* instr) {
1636 DCHECK(instr->result()->IsDoubleRegister());
1637 DoubleRegister result = ToDoubleRegister(instr->result());
1638 double v = instr->value();
1639 __ Move(result, v);
1640}
1641
1642
1643void LCodeGen::DoConstantE(LConstantE* instr) {
1644 __ li(ToRegister(instr->result()), Operand(instr->value()));
1645}
1646
1647
1648void LCodeGen::DoConstantT(LConstantT* instr) {
1649 Handle<Object> object = instr->value(isolate());
1650 AllowDeferredHandleDereference smi_check;
1651 __ li(ToRegister(instr->result()), object);
1652}
1653
1654
1655void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1656 Register result = ToRegister(instr->result());
1657 Register map = ToRegister(instr->value());
1658 __ EnumLength(result, map);
1659}
1660
1661
1662MemOperand LCodeGen::BuildSeqStringOperand(Register string,
1663 LOperand* index,
1664 String::Encoding encoding) {
1665 if (index->IsConstantOperand()) {
1666 int offset = ToInteger32(LConstantOperand::cast(index));
1667 if (encoding == String::TWO_BYTE_ENCODING) {
1668 offset *= kUC16Size;
1669 }
1670 STATIC_ASSERT(kCharSize == 1);
1671 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1672 }
1673 Register scratch = scratch0();
1674 DCHECK(!scratch.is(string));
1675 DCHECK(!scratch.is(ToRegister(index)));
1676 if (encoding == String::ONE_BYTE_ENCODING) {
1677 __ Addu(scratch, string, ToRegister(index));
1678 } else {
1679 STATIC_ASSERT(kUC16Size == 2);
1680 __ sll(scratch, ToRegister(index), 1);
1681 __ Addu(scratch, string, scratch);
1682 }
1683 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1684}
1685
1686
1687void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1688 String::Encoding encoding = instr->hydrogen()->encoding();
1689 Register string = ToRegister(instr->string());
1690 Register result = ToRegister(instr->result());
1691
1692 if (FLAG_debug_code) {
1693 Register scratch = scratch0();
1694 __ lw(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
1695 __ lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1696
1697 __ And(scratch, scratch,
1698 Operand(kStringRepresentationMask | kStringEncodingMask));
1699 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1700 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1701 __ Subu(at, scratch, Operand(encoding == String::ONE_BYTE_ENCODING
1702 ? one_byte_seq_type : two_byte_seq_type));
1703 __ Check(eq, kUnexpectedStringType, at, Operand(zero_reg));
1704 }
1705
1706 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1707 if (encoding == String::ONE_BYTE_ENCODING) {
1708 __ lbu(result, operand);
1709 } else {
1710 __ lhu(result, operand);
1711 }
1712}
1713
1714
1715void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1716 String::Encoding encoding = instr->hydrogen()->encoding();
1717 Register string = ToRegister(instr->string());
1718 Register value = ToRegister(instr->value());
1719
1720 if (FLAG_debug_code) {
1721 Register scratch = scratch0();
1722 Register index = ToRegister(instr->index());
1723 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1724 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1725 int encoding_mask =
1726 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1727 ? one_byte_seq_type : two_byte_seq_type;
1728 __ EmitSeqStringSetCharCheck(string, index, value, scratch, encoding_mask);
1729 }
1730
1731 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1732 if (encoding == String::ONE_BYTE_ENCODING) {
1733 __ sb(value, operand);
1734 } else {
1735 __ sh(value, operand);
1736 }
1737}
1738
1739
1740void LCodeGen::DoAddI(LAddI* instr) {
1741 LOperand* left = instr->left();
1742 LOperand* right = instr->right();
1743 LOperand* result = instr->result();
1744 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1745
1746 if (!can_overflow) {
1747 if (right->IsStackSlot()) {
1748 Register right_reg = EmitLoadRegister(right, at);
1749 __ Addu(ToRegister(result), ToRegister(left), Operand(right_reg));
1750 } else {
1751 DCHECK(right->IsRegister() || right->IsConstantOperand());
1752 __ Addu(ToRegister(result), ToRegister(left), ToOperand(right));
1753 }
1754 } else { // can_overflow.
1755 Register scratch = scratch1();
1756 Label no_overflow_label;
1757 if (right->IsStackSlot()) {
1758 Register right_reg = EmitLoadRegister(right, scratch);
1759 __ AddBranchNoOvf(ToRegister(result), ToRegister(left),
1760 Operand(right_reg), &no_overflow_label);
1761 } else {
1762 DCHECK(right->IsRegister() || right->IsConstantOperand());
1763 __ AddBranchNoOvf(ToRegister(result), ToRegister(left), ToOperand(right),
1764 &no_overflow_label, scratch);
1765 }
1766 DeoptimizeIf(al, instr);
1767 __ bind(&no_overflow_label);
1768 }
1769}
1770
1771
1772void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1773 LOperand* left = instr->left();
1774 LOperand* right = instr->right();
1775 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1776 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
1777 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1778 Register left_reg = ToRegister(left);
1779 Register right_reg = EmitLoadRegister(right, scratch0());
1780 Register result_reg = ToRegister(instr->result());
1781 Label return_right, done;
1782 Register scratch = scratch1();
1783 __ Slt(scratch, left_reg, Operand(right_reg));
1784 if (condition == ge) {
1785 __ Movz(result_reg, left_reg, scratch);
1786 __ Movn(result_reg, right_reg, scratch);
1787 } else {
1788 DCHECK(condition == le);
1789 __ Movn(result_reg, left_reg, scratch);
1790 __ Movz(result_reg, right_reg, scratch);
1791 }
1792 } else {
1793 DCHECK(instr->hydrogen()->representation().IsDouble());
1794 FPURegister left_reg = ToDoubleRegister(left);
1795 FPURegister right_reg = ToDoubleRegister(right);
1796 FPURegister result_reg = ToDoubleRegister(instr->result());
1797 Label check_nan_left, check_zero, return_left, return_right, done;
1798 __ BranchF(&check_zero, &check_nan_left, eq, left_reg, right_reg);
1799 __ BranchF(&return_left, NULL, condition, left_reg, right_reg);
1800 __ Branch(&return_right);
1801
1802 __ bind(&check_zero);
1803 // left == right != 0.
1804 __ BranchF(&return_left, NULL, ne, left_reg, kDoubleRegZero);
1805 // At this point, both left and right are either 0 or -0.
1806 if (operation == HMathMinMax::kMathMin) {
1807 __ neg_d(left_reg, left_reg);
1808 __ sub_d(result_reg, left_reg, right_reg);
1809 __ neg_d(result_reg, result_reg);
1810 } else {
1811 __ add_d(result_reg, left_reg, right_reg);
1812 }
1813 __ Branch(&done);
1814
1815 __ bind(&check_nan_left);
1816 // left == NaN.
1817 __ BranchF(NULL, &return_left, eq, left_reg, left_reg);
1818 __ bind(&return_right);
1819 if (!right_reg.is(result_reg)) {
1820 __ mov_d(result_reg, right_reg);
1821 }
1822 __ Branch(&done);
1823
1824 __ bind(&return_left);
1825 if (!left_reg.is(result_reg)) {
1826 __ mov_d(result_reg, left_reg);
1827 }
1828 __ bind(&done);
1829 }
1830}
1831
1832
1833void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1834 DoubleRegister left = ToDoubleRegister(instr->left());
1835 DoubleRegister right = ToDoubleRegister(instr->right());
1836 DoubleRegister result = ToDoubleRegister(instr->result());
1837 switch (instr->op()) {
1838 case Token::ADD:
1839 __ add_d(result, left, right);
1840 break;
1841 case Token::SUB:
1842 __ sub_d(result, left, right);
1843 break;
1844 case Token::MUL:
1845 __ mul_d(result, left, right);
1846 break;
1847 case Token::DIV:
1848 __ div_d(result, left, right);
1849 break;
1850 case Token::MOD: {
1851 // Save a0-a3 on the stack.
1852 RegList saved_regs = a0.bit() | a1.bit() | a2.bit() | a3.bit();
1853 __ MultiPush(saved_regs);
1854
1855 __ PrepareCallCFunction(0, 2, scratch0());
1856 __ MovToFloatParameters(left, right);
1857 __ CallCFunction(
1858 ExternalReference::mod_two_doubles_operation(isolate()),
1859 0, 2);
1860 // Move the result in the double result register.
1861 __ MovFromFloatResult(result);
1862
1863 // Restore saved register.
1864 __ MultiPop(saved_regs);
1865 break;
1866 }
1867 default:
1868 UNREACHABLE();
1869 break;
1870 }
1871}
1872
1873
1874void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1875 DCHECK(ToRegister(instr->context()).is(cp));
1876 DCHECK(ToRegister(instr->left()).is(a1));
1877 DCHECK(ToRegister(instr->right()).is(a0));
1878 DCHECK(ToRegister(instr->result()).is(v0));
1879
1880 Handle<Code> code =
1881 CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
1882 CallCode(code, RelocInfo::CODE_TARGET, instr);
1883 // Other arch use a nop here, to signal that there is no inlined
1884 // patchable code. Mips does not need the nop, since our marker
1885 // instruction (andi zero_reg) will never be used in normal code.
1886}
1887
1888
1889template<class InstrType>
1890void LCodeGen::EmitBranch(InstrType instr,
1891 Condition condition,
1892 Register src1,
1893 const Operand& src2) {
1894 int left_block = instr->TrueDestination(chunk_);
1895 int right_block = instr->FalseDestination(chunk_);
1896
1897 int next_block = GetNextEmittedBlock();
1898 if (right_block == left_block || condition == al) {
1899 EmitGoto(left_block);
1900 } else if (left_block == next_block) {
1901 __ Branch(chunk_->GetAssemblyLabel(right_block),
1902 NegateCondition(condition), src1, src2);
1903 } else if (right_block == next_block) {
1904 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
1905 } else {
1906 __ Branch(chunk_->GetAssemblyLabel(left_block), condition, src1, src2);
1907 __ Branch(chunk_->GetAssemblyLabel(right_block));
1908 }
1909}
1910
1911
1912template<class InstrType>
1913void LCodeGen::EmitBranchF(InstrType instr,
1914 Condition condition,
1915 FPURegister src1,
1916 FPURegister src2) {
1917 int right_block = instr->FalseDestination(chunk_);
1918 int left_block = instr->TrueDestination(chunk_);
1919
1920 int next_block = GetNextEmittedBlock();
1921 if (right_block == left_block) {
1922 EmitGoto(left_block);
1923 } else if (left_block == next_block) {
1924 __ BranchF(chunk_->GetAssemblyLabel(right_block), NULL,
1925 NegateFpuCondition(condition), src1, src2);
1926 } else if (right_block == next_block) {
1927 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
1928 condition, src1, src2);
1929 } else {
1930 __ BranchF(chunk_->GetAssemblyLabel(left_block), NULL,
1931 condition, src1, src2);
1932 __ Branch(chunk_->GetAssemblyLabel(right_block));
1933 }
1934}
1935
1936
1937template <class InstrType>
1938void LCodeGen::EmitTrueBranch(InstrType instr, Condition condition,
1939 Register src1, const Operand& src2) {
1940 int true_block = instr->TrueDestination(chunk_);
1941 __ Branch(chunk_->GetAssemblyLabel(true_block), condition, src1, src2);
1942}
1943
1944
1945template <class InstrType>
1946void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition,
1947 Register src1, const Operand& src2) {
1948 int false_block = instr->FalseDestination(chunk_);
1949 __ Branch(chunk_->GetAssemblyLabel(false_block), condition, src1, src2);
1950}
1951
1952
1953template<class InstrType>
1954void LCodeGen::EmitFalseBranchF(InstrType instr,
1955 Condition condition,
1956 FPURegister src1,
1957 FPURegister src2) {
1958 int false_block = instr->FalseDestination(chunk_);
1959 __ BranchF(chunk_->GetAssemblyLabel(false_block), NULL,
1960 condition, src1, src2);
1961}
1962
1963
1964void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
1965 __ stop("LDebugBreak");
1966}
1967
1968
1969void LCodeGen::DoBranch(LBranch* instr) {
1970 Representation r = instr->hydrogen()->value()->representation();
1971 if (r.IsInteger32() || r.IsSmi()) {
1972 DCHECK(!info()->IsStub());
1973 Register reg = ToRegister(instr->value());
1974 EmitBranch(instr, ne, reg, Operand(zero_reg));
1975 } else if (r.IsDouble()) {
1976 DCHECK(!info()->IsStub());
1977 DoubleRegister reg = ToDoubleRegister(instr->value());
1978 // Test the double value. Zero and NaN are false.
1979 EmitBranchF(instr, ogl, reg, kDoubleRegZero);
1980 } else {
1981 DCHECK(r.IsTagged());
1982 Register reg = ToRegister(instr->value());
1983 HType type = instr->hydrogen()->value()->type();
1984 if (type.IsBoolean()) {
1985 DCHECK(!info()->IsStub());
1986 __ LoadRoot(at, Heap::kTrueValueRootIndex);
1987 EmitBranch(instr, eq, reg, Operand(at));
1988 } else if (type.IsSmi()) {
1989 DCHECK(!info()->IsStub());
1990 EmitBranch(instr, ne, reg, Operand(zero_reg));
1991 } else if (type.IsJSArray()) {
1992 DCHECK(!info()->IsStub());
1993 EmitBranch(instr, al, zero_reg, Operand(zero_reg));
1994 } else if (type.IsHeapNumber()) {
1995 DCHECK(!info()->IsStub());
1996 DoubleRegister dbl_scratch = double_scratch0();
1997 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
1998 // Test the double value. Zero and NaN are false.
1999 EmitBranchF(instr, ogl, dbl_scratch, kDoubleRegZero);
2000 } else if (type.IsString()) {
2001 DCHECK(!info()->IsStub());
2002 __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
2003 EmitBranch(instr, ne, at, Operand(zero_reg));
2004 } else {
2005 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2006 // Avoid deopts in the case where we've never executed this path before.
2007 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2008
2009 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2010 // undefined -> false.
2011 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
2012 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2013 }
2014 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2015 // Boolean -> its value.
2016 __ LoadRoot(at, Heap::kTrueValueRootIndex);
2017 __ Branch(instr->TrueLabel(chunk_), eq, reg, Operand(at));
2018 __ LoadRoot(at, Heap::kFalseValueRootIndex);
2019 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2020 }
2021 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2022 // 'null' -> false.
2023 __ LoadRoot(at, Heap::kNullValueRootIndex);
2024 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(at));
2025 }
2026
2027 if (expected.Contains(ToBooleanStub::SMI)) {
2028 // Smis: 0 -> false, all other -> true.
2029 __ Branch(instr->FalseLabel(chunk_), eq, reg, Operand(zero_reg));
2030 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2031 } else if (expected.NeedsMap()) {
2032 // If we need a map later and have a Smi -> deopt.
2033 __ SmiTst(reg, at);
2034 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
2035 }
2036
2037 const Register map = scratch0();
2038 if (expected.NeedsMap()) {
2039 __ lw(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2040 if (expected.CanBeUndetectable()) {
2041 // Undetectable -> false.
2042 __ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
2043 __ And(at, at, Operand(1 << Map::kIsUndetectable));
2044 __ Branch(instr->FalseLabel(chunk_), ne, at, Operand(zero_reg));
2045 }
2046 }
2047
2048 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2049 // spec object -> true.
2050 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2051 __ Branch(instr->TrueLabel(chunk_),
2052 ge, at, Operand(FIRST_JS_RECEIVER_TYPE));
2053 }
2054
2055 if (expected.Contains(ToBooleanStub::STRING)) {
2056 // String value -> false iff empty.
2057 Label not_string;
2058 __ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
2059 __ Branch(&not_string, ge , at, Operand(FIRST_NONSTRING_TYPE));
2060 __ lw(at, FieldMemOperand(reg, String::kLengthOffset));
2061 __ Branch(instr->TrueLabel(chunk_), ne, at, Operand(zero_reg));
2062 __ Branch(instr->FalseLabel(chunk_));
2063 __ bind(&not_string);
2064 }
2065
2066 if (expected.Contains(ToBooleanStub::SYMBOL)) {
2067 // Symbol value -> true.
2068 const Register scratch = scratch1();
2069 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2070 __ Branch(instr->TrueLabel(chunk_), eq, scratch, Operand(SYMBOL_TYPE));
2071 }
2072
2073 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
2074 // SIMD value -> true.
2075 const Register scratch = scratch1();
2076 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2077 __ Branch(instr->TrueLabel(chunk_), eq, scratch,
2078 Operand(SIMD128_VALUE_TYPE));
2079 }
2080
2081 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2082 // heap number -> false iff +0, -0, or NaN.
2083 DoubleRegister dbl_scratch = double_scratch0();
2084 Label not_heap_number;
2085 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
2086 __ Branch(&not_heap_number, ne, map, Operand(at));
2087 __ ldc1(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2088 __ BranchF(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2089 ne, dbl_scratch, kDoubleRegZero);
2090 // Falls through if dbl_scratch == 0.
2091 __ Branch(instr->FalseLabel(chunk_));
2092 __ bind(&not_heap_number);
2093 }
2094
2095 if (!expected.IsGeneric()) {
2096 // We've seen something for the first time -> deopt.
2097 // This can only happen if we are not generic already.
2098 DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject, zero_reg,
2099 Operand(zero_reg));
2100 }
2101 }
2102 }
2103}
2104
2105
2106void LCodeGen::EmitGoto(int block) {
2107 if (!IsNextEmittedBlock(block)) {
2108 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2109 }
2110}
2111
2112
2113void LCodeGen::DoGoto(LGoto* instr) {
2114 EmitGoto(instr->block_id());
2115}
2116
2117
2118Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2119 Condition cond = kNoCondition;
2120 switch (op) {
2121 case Token::EQ:
2122 case Token::EQ_STRICT:
2123 cond = eq;
2124 break;
2125 case Token::NE:
2126 case Token::NE_STRICT:
2127 cond = ne;
2128 break;
2129 case Token::LT:
2130 cond = is_unsigned ? lo : lt;
2131 break;
2132 case Token::GT:
2133 cond = is_unsigned ? hi : gt;
2134 break;
2135 case Token::LTE:
2136 cond = is_unsigned ? ls : le;
2137 break;
2138 case Token::GTE:
2139 cond = is_unsigned ? hs : ge;
2140 break;
2141 case Token::IN:
2142 case Token::INSTANCEOF:
2143 default:
2144 UNREACHABLE();
2145 }
2146 return cond;
2147}
2148
2149
2150void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2151 LOperand* left = instr->left();
2152 LOperand* right = instr->right();
2153 bool is_unsigned =
2154 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2155 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2156 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2157
2158 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2159 // We can statically evaluate the comparison.
2160 double left_val = ToDouble(LConstantOperand::cast(left));
2161 double right_val = ToDouble(LConstantOperand::cast(right));
2162 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2163 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2164 EmitGoto(next_block);
2165 } else {
2166 if (instr->is_double()) {
2167 // Compare left and right as doubles and load the
2168 // resulting flags into the normal status register.
2169 FPURegister left_reg = ToDoubleRegister(left);
2170 FPURegister right_reg = ToDoubleRegister(right);
2171
2172 // If a NaN is involved, i.e. the result is unordered,
2173 // jump to false block label.
2174 __ BranchF(NULL, instr->FalseLabel(chunk_), eq,
2175 left_reg, right_reg);
2176
2177 EmitBranchF(instr, cond, left_reg, right_reg);
2178 } else {
2179 Register cmp_left;
2180 Operand cmp_right = Operand(0);
2181
2182 if (right->IsConstantOperand()) {
2183 int32_t value = ToInteger32(LConstantOperand::cast(right));
2184 if (instr->hydrogen_value()->representation().IsSmi()) {
2185 cmp_left = ToRegister(left);
2186 cmp_right = Operand(Smi::FromInt(value));
2187 } else {
2188 cmp_left = ToRegister(left);
2189 cmp_right = Operand(value);
2190 }
2191 } else if (left->IsConstantOperand()) {
2192 int32_t value = ToInteger32(LConstantOperand::cast(left));
2193 if (instr->hydrogen_value()->representation().IsSmi()) {
2194 cmp_left = ToRegister(right);
2195 cmp_right = Operand(Smi::FromInt(value));
2196 } else {
2197 cmp_left = ToRegister(right);
2198 cmp_right = Operand(value);
2199 }
2200 // We commuted the operands, so commute the condition.
2201 cond = CommuteCondition(cond);
2202 } else {
2203 cmp_left = ToRegister(left);
2204 cmp_right = Operand(ToRegister(right));
2205 }
2206
2207 EmitBranch(instr, cond, cmp_left, cmp_right);
2208 }
2209 }
2210}
2211
2212
2213void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2214 Register left = ToRegister(instr->left());
2215 Register right = ToRegister(instr->right());
2216
2217 EmitBranch(instr, eq, left, Operand(right));
2218}
2219
2220
2221void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2222 if (instr->hydrogen()->representation().IsTagged()) {
2223 Register input_reg = ToRegister(instr->object());
2224 __ li(at, Operand(factory()->the_hole_value()));
2225 EmitBranch(instr, eq, input_reg, Operand(at));
2226 return;
2227 }
2228
2229 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2230 EmitFalseBranchF(instr, eq, input_reg, input_reg);
2231
2232 Register scratch = scratch0();
2233 __ FmoveHigh(scratch, input_reg);
2234 EmitBranch(instr, eq, scratch, Operand(kHoleNanUpper32));
2235}
2236
2237
2238void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2239 Representation rep = instr->hydrogen()->value()->representation();
2240 DCHECK(!rep.IsInteger32());
2241 Register scratch = ToRegister(instr->temp());
2242
2243 if (rep.IsDouble()) {
2244 DoubleRegister value = ToDoubleRegister(instr->value());
2245 EmitFalseBranchF(instr, ne, value, kDoubleRegZero);
2246 __ FmoveHigh(scratch, value);
2247 __ li(at, 0x80000000);
2248 } else {
2249 Register value = ToRegister(instr->value());
2250 __ CheckMap(value,
2251 scratch,
2252 Heap::kHeapNumberMapRootIndex,
2253 instr->FalseLabel(chunk()),
2254 DO_SMI_CHECK);
2255 __ lw(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
2256 EmitFalseBranch(instr, ne, scratch, Operand(0x80000000));
2257 __ lw(scratch, FieldMemOperand(value, HeapNumber::kMantissaOffset));
2258 __ mov(at, zero_reg);
2259 }
2260 EmitBranch(instr, eq, scratch, Operand(at));
2261}
2262
2263
2264Condition LCodeGen::EmitIsString(Register input,
2265 Register temp1,
2266 Label* is_not_string,
2267 SmiCheck check_needed = INLINE_SMI_CHECK) {
2268 if (check_needed == INLINE_SMI_CHECK) {
2269 __ JumpIfSmi(input, is_not_string);
2270 }
2271 __ GetObjectType(input, temp1, temp1);
2272
2273 return lt;
2274}
2275
2276
2277void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2278 Register reg = ToRegister(instr->value());
2279 Register temp1 = ToRegister(instr->temp());
2280
2281 SmiCheck check_needed =
2282 instr->hydrogen()->value()->type().IsHeapObject()
2283 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2284 Condition true_cond =
2285 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2286
2287 EmitBranch(instr, true_cond, temp1,
2288 Operand(FIRST_NONSTRING_TYPE));
2289}
2290
2291
2292void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2293 Register input_reg = EmitLoadRegister(instr->value(), at);
2294 __ And(at, input_reg, kSmiTagMask);
2295 EmitBranch(instr, eq, at, Operand(zero_reg));
2296}
2297
2298
2299void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2300 Register input = ToRegister(instr->value());
2301 Register temp = ToRegister(instr->temp());
2302
2303 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2304 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2305 }
2306 __ lw(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2307 __ lbu(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2308 __ And(at, temp, Operand(1 << Map::kIsUndetectable));
2309 EmitBranch(instr, ne, at, Operand(zero_reg));
2310}
2311
2312
2313static Condition ComputeCompareCondition(Token::Value op) {
2314 switch (op) {
2315 case Token::EQ_STRICT:
2316 case Token::EQ:
2317 return eq;
2318 case Token::LT:
2319 return lt;
2320 case Token::GT:
2321 return gt;
2322 case Token::LTE:
2323 return le;
2324 case Token::GTE:
2325 return ge;
2326 default:
2327 UNREACHABLE();
2328 return kNoCondition;
2329 }
2330}
2331
2332
2333void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2334 DCHECK(ToRegister(instr->context()).is(cp));
2335 DCHECK(ToRegister(instr->left()).is(a1));
2336 DCHECK(ToRegister(instr->right()).is(a0));
2337
2338 Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
2339 CallCode(code, RelocInfo::CODE_TARGET, instr);
2340
2341 EmitBranch(instr, ComputeCompareCondition(instr->op()), v0,
2342 Operand(zero_reg));
2343}
2344
2345
2346static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2347 InstanceType from = instr->from();
2348 InstanceType to = instr->to();
2349 if (from == FIRST_TYPE) return to;
2350 DCHECK(from == to || to == LAST_TYPE);
2351 return from;
2352}
2353
2354
2355static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2356 InstanceType from = instr->from();
2357 InstanceType to = instr->to();
2358 if (from == to) return eq;
2359 if (to == LAST_TYPE) return hs;
2360 if (from == FIRST_TYPE) return ls;
2361 UNREACHABLE();
2362 return eq;
2363}
2364
2365
2366void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2367 Register scratch = scratch0();
2368 Register input = ToRegister(instr->value());
2369
2370 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2371 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2372 }
2373
2374 __ GetObjectType(input, scratch, scratch);
2375 EmitBranch(instr,
2376 BranchCondition(instr->hydrogen()),
2377 scratch,
2378 Operand(TestType(instr->hydrogen())));
2379}
2380
2381
2382void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2383 Register input = ToRegister(instr->value());
2384 Register result = ToRegister(instr->result());
2385
2386 __ AssertString(input);
2387
2388 __ lw(result, FieldMemOperand(input, String::kHashFieldOffset));
2389 __ IndexFromHash(result, result);
2390}
2391
2392
2393void LCodeGen::DoHasCachedArrayIndexAndBranch(
2394 LHasCachedArrayIndexAndBranch* instr) {
2395 Register input = ToRegister(instr->value());
2396 Register scratch = scratch0();
2397
2398 __ lw(scratch,
2399 FieldMemOperand(input, String::kHashFieldOffset));
2400 __ And(at, scratch, Operand(String::kContainsCachedArrayIndexMask));
2401 EmitBranch(instr, eq, at, Operand(zero_reg));
2402}
2403
2404
2405// Branches to a label or falls through with the answer in flags. Trashes
2406// the temp registers, but not the input.
2407void LCodeGen::EmitClassOfTest(Label* is_true,
2408 Label* is_false,
2409 Handle<String>class_name,
2410 Register input,
2411 Register temp,
2412 Register temp2) {
2413 DCHECK(!input.is(temp));
2414 DCHECK(!input.is(temp2));
2415 DCHECK(!temp.is(temp2));
2416
2417 __ JumpIfSmi(input, is_false);
2418 __ GetObjectType(input, temp, temp2);
2419 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2420 __ Branch(is_true, eq, temp2, Operand(JS_FUNCTION_TYPE));
2421 } else {
2422 __ Branch(is_false, eq, temp2, Operand(JS_FUNCTION_TYPE));
2423 }
2424
2425 // Check if the constructor in the map is a function.
2426 Register instance_type = scratch1();
2427 DCHECK(!instance_type.is(temp));
2428 __ GetMapConstructor(temp, temp, temp2, instance_type);
2429
2430 // Objects with a non-function constructor have class 'Object'.
2431 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2432 __ Branch(is_true, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2433 } else {
2434 __ Branch(is_false, ne, instance_type, Operand(JS_FUNCTION_TYPE));
2435 }
2436
2437 // temp now contains the constructor function. Grab the
2438 // instance class name from there.
2439 __ lw(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2440 __ lw(temp, FieldMemOperand(temp,
2441 SharedFunctionInfo::kInstanceClassNameOffset));
2442 // The class name we are testing against is internalized since it's a literal.
2443 // The name in the constructor is internalized because of the way the context
2444 // is booted. This routine isn't expected to work for random API-created
2445 // classes and it doesn't have to because you can't access it with natives
2446 // syntax. Since both sides are internalized it is sufficient to use an
2447 // identity comparison.
2448
2449 // End with the address of this class_name instance in temp register.
2450 // On MIPS, the caller must do the comparison with Handle<String>class_name.
2451}
2452
2453
2454void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2455 Register input = ToRegister(instr->value());
2456 Register temp = scratch0();
2457 Register temp2 = ToRegister(instr->temp());
2458 Handle<String> class_name = instr->hydrogen()->class_name();
2459
2460 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2461 class_name, input, temp, temp2);
2462
2463 EmitBranch(instr, eq, temp, Operand(class_name));
2464}
2465
2466
2467void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2468 Register reg = ToRegister(instr->value());
2469 Register temp = ToRegister(instr->temp());
2470
2471 __ lw(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2472 EmitBranch(instr, eq, temp, Operand(instr->map()));
2473}
2474
2475
2476void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2477 DCHECK(ToRegister(instr->context()).is(cp));
2478 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2479 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2480 DCHECK(ToRegister(instr->result()).is(v0));
2481 InstanceOfStub stub(isolate());
2482 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2483}
2484
2485
2486void LCodeGen::DoHasInPrototypeChainAndBranch(
2487 LHasInPrototypeChainAndBranch* instr) {
2488 Register const object = ToRegister(instr->object());
2489 Register const object_map = scratch0();
2490 Register const object_instance_type = scratch1();
2491 Register const object_prototype = object_map;
2492 Register const prototype = ToRegister(instr->prototype());
2493
2494 // The {object} must be a spec object. It's sufficient to know that {object}
2495 // is not a smi, since all other non-spec objects have {null} prototypes and
2496 // will be ruled out below.
2497 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2498 __ SmiTst(object, at);
2499 EmitFalseBranch(instr, eq, at, Operand(zero_reg));
2500 }
2501
2502 // Loop through the {object}s prototype chain looking for the {prototype}.
2503 __ lw(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
2504 Label loop;
2505 __ bind(&loop);
2506
2507 // Deoptimize if the object needs to be access checked.
2508 __ lbu(object_instance_type,
2509 FieldMemOperand(object_map, Map::kBitFieldOffset));
2510 __ And(object_instance_type, object_instance_type,
2511 Operand(1 << Map::kIsAccessCheckNeeded));
2512 DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck, object_instance_type,
2513 Operand(zero_reg));
2514 // Deoptimize for proxies.
2515 __ lbu(object_instance_type,
2516 FieldMemOperand(object_map, Map::kInstanceTypeOffset));
2517 DeoptimizeIf(eq, instr, Deoptimizer::kProxy, object_instance_type,
2518 Operand(JS_PROXY_TYPE));
2519
2520 __ lw(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset));
2521 EmitTrueBranch(instr, eq, object_prototype, Operand(prototype));
2522 __ LoadRoot(at, Heap::kNullValueRootIndex);
2523 EmitFalseBranch(instr, eq, object_prototype, Operand(at));
2524 __ Branch(USE_DELAY_SLOT, &loop);
2525 __ lw(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset));
2526}
2527
2528
2529void LCodeGen::DoCmpT(LCmpT* instr) {
2530 DCHECK(ToRegister(instr->context()).is(cp));
2531 Token::Value op = instr->op();
2532
2533 Handle<Code> ic =
2534 CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
2535 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2536 // On MIPS there is no need for a "no inlined smi code" marker (nop).
2537
2538 Condition condition = ComputeCompareCondition(op);
2539 // A minor optimization that relies on LoadRoot always emitting one
2540 // instruction.
2541 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm());
2542 Label done, check;
2543 __ Branch(USE_DELAY_SLOT, &done, condition, v0, Operand(zero_reg));
2544 __ bind(&check);
2545 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2546 DCHECK_EQ(1, masm()->InstructionsGeneratedSince(&check));
2547 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2548 __ bind(&done);
2549}
2550
2551
2552void LCodeGen::DoReturn(LReturn* instr) {
2553 if (FLAG_trace && info()->IsOptimizing()) {
2554 // Push the return value on the stack as the parameter.
2555 // Runtime::TraceExit returns its parameter in v0. We're leaving the code
2556 // managed by the register allocator and tearing down the frame, it's
2557 // safe to write to the context register.
2558 __ push(v0);
2559 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2560 __ CallRuntime(Runtime::kTraceExit);
2561 }
2562 if (info()->saves_caller_doubles()) {
2563 RestoreCallerDoubles();
2564 }
2565 if (NeedsEagerFrame()) {
2566 __ mov(sp, fp);
2567 __ Pop(ra, fp);
2568 }
2569 if (instr->has_constant_parameter_count()) {
2570 int parameter_count = ToInteger32(instr->constant_parameter_count());
2571 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2572 if (sp_delta != 0) {
2573 __ Addu(sp, sp, Operand(sp_delta));
2574 }
2575 } else {
2576 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2577 Register reg = ToRegister(instr->parameter_count());
2578 // The argument count parameter is a smi
2579 __ SmiUntag(reg);
2580 __ sll(at, reg, kPointerSizeLog2);
2581 __ Addu(sp, sp, at);
2582 }
2583
2584 __ Jump(ra);
2585}
2586
2587
2588template <class T>
2589void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2590 Register vector_register = ToRegister(instr->temp_vector());
2591 Register slot_register = LoadWithVectorDescriptor::SlotRegister();
2592 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2593 DCHECK(slot_register.is(a0));
2594
2595 AllowDeferredHandleDereference vector_structure_check;
2596 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2597 __ li(vector_register, vector);
2598 // No need to allocate this register.
2599 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2600 int index = vector->GetIndex(slot);
2601 __ li(slot_register, Operand(Smi::FromInt(index)));
2602}
2603
2604
2605template <class T>
2606void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2607 Register vector_register = ToRegister(instr->temp_vector());
2608 Register slot_register = ToRegister(instr->temp_slot());
2609
2610 AllowDeferredHandleDereference vector_structure_check;
2611 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2612 __ li(vector_register, vector);
2613 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2614 int index = vector->GetIndex(slot);
2615 __ li(slot_register, Operand(Smi::FromInt(index)));
2616}
2617
2618
2619void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2620 DCHECK(ToRegister(instr->context()).is(cp));
2621 DCHECK(ToRegister(instr->global_object())
2622 .is(LoadDescriptor::ReceiverRegister()));
2623 DCHECK(ToRegister(instr->result()).is(v0));
2624
2625 __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
2626 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
2627 Handle<Code> ic =
2628 CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
2629 SLOPPY, PREMONOMORPHIC).code();
2630 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2631}
2632
2633
2634void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2635 Register context = ToRegister(instr->context());
2636 Register result = ToRegister(instr->result());
2637
2638 __ lw(result, ContextMemOperand(context, instr->slot_index()));
2639 if (instr->hydrogen()->RequiresHoleCheck()) {
2640 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2641
2642 if (instr->hydrogen()->DeoptimizesOnHole()) {
2643 DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
2644 } else {
2645 Label is_not_hole;
2646 __ Branch(&is_not_hole, ne, result, Operand(at));
2647 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2648 __ bind(&is_not_hole);
2649 }
2650 }
2651}
2652
2653
2654void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2655 Register context = ToRegister(instr->context());
2656 Register value = ToRegister(instr->value());
2657 Register scratch = scratch0();
2658 MemOperand target = ContextMemOperand(context, instr->slot_index());
2659
2660 Label skip_assignment;
2661
2662 if (instr->hydrogen()->RequiresHoleCheck()) {
2663 __ lw(scratch, target);
2664 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2665
2666 if (instr->hydrogen()->DeoptimizesOnHole()) {
2667 DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch, Operand(at));
2668 } else {
2669 __ Branch(&skip_assignment, ne, scratch, Operand(at));
2670 }
2671 }
2672
2673 __ sw(value, target);
2674 if (instr->hydrogen()->NeedsWriteBarrier()) {
2675 SmiCheck check_needed =
2676 instr->hydrogen()->value()->type().IsHeapObject()
2677 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2678 __ RecordWriteContextSlot(context,
2679 target.offset(),
2680 value,
2681 scratch0(),
2682 GetRAState(),
2683 kSaveFPRegs,
2684 EMIT_REMEMBERED_SET,
2685 check_needed);
2686 }
2687
2688 __ bind(&skip_assignment);
2689}
2690
2691
2692void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2693 HObjectAccess access = instr->hydrogen()->access();
2694 int offset = access.offset();
2695 Register object = ToRegister(instr->object());
2696
2697 if (access.IsExternalMemory()) {
2698 Register result = ToRegister(instr->result());
2699 MemOperand operand = MemOperand(object, offset);
2700 __ Load(result, operand, access.representation());
2701 return;
2702 }
2703
2704 if (instr->hydrogen()->representation().IsDouble()) {
2705 DoubleRegister result = ToDoubleRegister(instr->result());
2706 __ ldc1(result, FieldMemOperand(object, offset));
2707 return;
2708 }
2709
2710 Register result = ToRegister(instr->result());
2711 if (!access.IsInobject()) {
2712 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
2713 object = result;
2714 }
2715 MemOperand operand = FieldMemOperand(object, offset);
2716 __ Load(result, operand, access.representation());
2717}
2718
2719
2720void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2721 DCHECK(ToRegister(instr->context()).is(cp));
2722 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2723 DCHECK(ToRegister(instr->result()).is(v0));
2724
2725 // Name is always in a2.
2726 __ li(LoadDescriptor::NameRegister(), Operand(instr->name()));
2727 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
2728 Handle<Code> ic =
2729 CodeFactory::LoadICInOptimizedCode(
2730 isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
2731 instr->hydrogen()->initialization_state()).code();
2732 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2733}
2734
2735
2736void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2737 Register scratch = scratch0();
2738 Register function = ToRegister(instr->function());
2739 Register result = ToRegister(instr->result());
2740
2741 // Get the prototype or initial map from the function.
2742 __ lw(result,
2743 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2744
2745 // Check that the function has a prototype or an initial map.
2746 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
2747 DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(at));
2748
2749 // If the function does not have an initial map, we're done.
2750 Label done;
2751 __ GetObjectType(result, scratch, scratch);
2752 __ Branch(&done, ne, scratch, Operand(MAP_TYPE));
2753
2754 // Get the prototype from the initial map.
2755 __ lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
2756
2757 // All done.
2758 __ bind(&done);
2759}
2760
2761
2762void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2763 Register result = ToRegister(instr->result());
2764 __ LoadRoot(result, instr->index());
2765}
2766
2767
2768void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2769 Register arguments = ToRegister(instr->arguments());
2770 Register result = ToRegister(instr->result());
2771 // There are two words between the frame pointer and the last argument.
2772 // Subtracting from length accounts for one of them add one more.
2773 if (instr->length()->IsConstantOperand()) {
2774 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2775 if (instr->index()->IsConstantOperand()) {
2776 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2777 int index = (const_length - const_index) + 1;
2778 __ lw(result, MemOperand(arguments, index * kPointerSize));
2779 } else {
2780 Register index = ToRegister(instr->index());
2781 __ li(at, Operand(const_length + 1));
2782 __ Subu(result, at, index);
2783 __ sll(at, result, kPointerSizeLog2);
2784 __ Addu(at, arguments, at);
2785 __ lw(result, MemOperand(at));
2786 }
2787 } else if (instr->index()->IsConstantOperand()) {
2788 Register length = ToRegister(instr->length());
2789 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2790 int loc = const_index - 1;
2791 if (loc != 0) {
2792 __ Subu(result, length, Operand(loc));
2793 __ sll(at, result, kPointerSizeLog2);
2794 __ Addu(at, arguments, at);
2795 __ lw(result, MemOperand(at));
2796 } else {
2797 __ sll(at, length, kPointerSizeLog2);
2798 __ Addu(at, arguments, at);
2799 __ lw(result, MemOperand(at));
2800 }
2801 } else {
2802 Register length = ToRegister(instr->length());
2803 Register index = ToRegister(instr->index());
2804 __ Subu(result, length, index);
2805 __ Addu(result, result, 1);
2806 __ sll(at, result, kPointerSizeLog2);
2807 __ Addu(at, arguments, at);
2808 __ lw(result, MemOperand(at));
2809 }
2810}
2811
2812
2813void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2814 Register external_pointer = ToRegister(instr->elements());
2815 Register key = no_reg;
2816 ElementsKind elements_kind = instr->elements_kind();
2817 bool key_is_constant = instr->key()->IsConstantOperand();
2818 int constant_key = 0;
2819 if (key_is_constant) {
2820 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2821 if (constant_key & 0xF0000000) {
2822 Abort(kArrayIndexConstantValueTooBig);
2823 }
2824 } else {
2825 key = ToRegister(instr->key());
2826 }
2827 int element_size_shift = ElementsKindToShiftSize(elements_kind);
2828 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2829 ? (element_size_shift - kSmiTagSize) : element_size_shift;
2830 int base_offset = instr->base_offset();
2831
2832 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
2833 FPURegister result = ToDoubleRegister(instr->result());
2834 if (key_is_constant) {
2835 __ Addu(scratch0(), external_pointer, constant_key << element_size_shift);
2836 } else {
2837 __ sll(scratch0(), key, shift_size);
2838 __ Addu(scratch0(), scratch0(), external_pointer);
2839 }
2840 if (elements_kind == FLOAT32_ELEMENTS) {
2841 __ lwc1(result, MemOperand(scratch0(), base_offset));
2842 __ cvt_d_s(result, result);
2843 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
2844 __ ldc1(result, MemOperand(scratch0(), base_offset));
2845 }
2846 } else {
2847 Register result = ToRegister(instr->result());
2848 MemOperand mem_operand = PrepareKeyedOperand(
2849 key, external_pointer, key_is_constant, constant_key,
2850 element_size_shift, shift_size, base_offset);
2851 switch (elements_kind) {
2852 case INT8_ELEMENTS:
2853 __ lb(result, mem_operand);
2854 break;
2855 case UINT8_ELEMENTS:
2856 case UINT8_CLAMPED_ELEMENTS:
2857 __ lbu(result, mem_operand);
2858 break;
2859 case INT16_ELEMENTS:
2860 __ lh(result, mem_operand);
2861 break;
2862 case UINT16_ELEMENTS:
2863 __ lhu(result, mem_operand);
2864 break;
2865 case INT32_ELEMENTS:
2866 __ lw(result, mem_operand);
2867 break;
2868 case UINT32_ELEMENTS:
2869 __ lw(result, mem_operand);
2870 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2871 DeoptimizeIf(Ugreater_equal, instr, Deoptimizer::kNegativeValue,
2872 result, Operand(0x80000000));
2873 }
2874 break;
2875 case FLOAT32_ELEMENTS:
2876 case FLOAT64_ELEMENTS:
2877 case FAST_DOUBLE_ELEMENTS:
2878 case FAST_ELEMENTS:
2879 case FAST_SMI_ELEMENTS:
2880 case FAST_HOLEY_DOUBLE_ELEMENTS:
2881 case FAST_HOLEY_ELEMENTS:
2882 case FAST_HOLEY_SMI_ELEMENTS:
2883 case DICTIONARY_ELEMENTS:
2884 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2885 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
2886 UNREACHABLE();
2887 break;
2888 }
2889 }
2890}
2891
2892
2893void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2894 Register elements = ToRegister(instr->elements());
2895 bool key_is_constant = instr->key()->IsConstantOperand();
2896 Register key = no_reg;
2897 DoubleRegister result = ToDoubleRegister(instr->result());
2898 Register scratch = scratch0();
2899
2900 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
2901
2902 int base_offset = instr->base_offset();
2903 if (key_is_constant) {
2904 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
2905 if (constant_key & 0xF0000000) {
2906 Abort(kArrayIndexConstantValueTooBig);
2907 }
2908 base_offset += constant_key * kDoubleSize;
2909 }
2910 __ Addu(scratch, elements, Operand(base_offset));
2911
2912 if (!key_is_constant) {
2913 key = ToRegister(instr->key());
2914 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
2915 ? (element_size_shift - kSmiTagSize) : element_size_shift;
2916 __ sll(at, key, shift_size);
2917 __ Addu(scratch, scratch, at);
2918 }
2919
2920 __ ldc1(result, MemOperand(scratch));
2921
2922 if (instr->hydrogen()->RequiresHoleCheck()) {
2923 __ lw(scratch, MemOperand(scratch, kHoleNanUpper32Offset));
2924 DeoptimizeIf(eq, instr, Deoptimizer::kHole, scratch,
2925 Operand(kHoleNanUpper32));
2926 }
2927}
2928
2929
2930void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2931 Register elements = ToRegister(instr->elements());
2932 Register result = ToRegister(instr->result());
2933 Register scratch = scratch0();
2934 Register store_base = scratch;
2935 int offset = instr->base_offset();
2936
2937 if (instr->key()->IsConstantOperand()) {
2938 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
2939 offset += ToInteger32(const_operand) * kPointerSize;
2940 store_base = elements;
2941 } else {
2942 Register key = ToRegister(instr->key());
2943 // Even though the HLoadKeyed instruction forces the input
2944 // representation for the key to be an integer, the input gets replaced
2945 // during bound check elimination with the index argument to the bounds
2946 // check, which can be tagged, so that case must be handled here, too.
2947 if (instr->hydrogen()->key()->representation().IsSmi()) {
2948 __ sll(scratch, key, kPointerSizeLog2 - kSmiTagSize);
2949 __ addu(scratch, elements, scratch);
2950 } else {
2951 __ sll(scratch, key, kPointerSizeLog2);
2952 __ addu(scratch, elements, scratch);
2953 }
2954 }
2955 __ lw(result, MemOperand(store_base, offset));
2956
2957 // Check for the hole value.
2958 if (instr->hydrogen()->RequiresHoleCheck()) {
2959 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
2960 __ SmiTst(result, scratch);
2961 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch,
2962 Operand(zero_reg));
2963 } else {
2964 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2965 DeoptimizeIf(eq, instr, Deoptimizer::kHole, result, Operand(scratch));
2966 }
2967 } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2968 DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
2969 Label done;
2970 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
2971 __ Branch(&done, ne, result, Operand(scratch));
2972 if (info()->IsStub()) {
2973 // A stub can safely convert the hole to undefined only if the array
2974 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
2975 // it needs to bail out.
2976 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2977 __ lw(result, FieldMemOperand(result, Cell::kValueOffset));
2978 DeoptimizeIf(ne, instr, Deoptimizer::kHole, result,
2979 Operand(Smi::FromInt(Isolate::kArrayProtectorValid)));
2980 }
2981 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2982 __ bind(&done);
2983 }
2984}
2985
2986
2987void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2988 if (instr->is_fixed_typed_array()) {
2989 DoLoadKeyedExternalArray(instr);
2990 } else if (instr->hydrogen()->representation().IsDouble()) {
2991 DoLoadKeyedFixedDoubleArray(instr);
2992 } else {
2993 DoLoadKeyedFixedArray(instr);
2994 }
2995}
2996
2997
2998MemOperand LCodeGen::PrepareKeyedOperand(Register key,
2999 Register base,
3000 bool key_is_constant,
3001 int constant_key,
3002 int element_size,
3003 int shift_size,
3004 int base_offset) {
3005 if (key_is_constant) {
3006 return MemOperand(base, (constant_key << element_size) + base_offset);
3007 }
3008
3009 if (base_offset == 0) {
3010 if (shift_size >= 0) {
3011 __ sll(scratch0(), key, shift_size);
3012 __ Addu(scratch0(), base, scratch0());
3013 return MemOperand(scratch0());
3014 } else {
3015 DCHECK_EQ(-1, shift_size);
3016 __ srl(scratch0(), key, 1);
3017 __ Addu(scratch0(), base, scratch0());
3018 return MemOperand(scratch0());
3019 }
3020 }
3021
3022 if (shift_size >= 0) {
3023 __ sll(scratch0(), key, shift_size);
3024 __ Addu(scratch0(), base, scratch0());
3025 return MemOperand(scratch0(), base_offset);
3026 } else {
3027 DCHECK_EQ(-1, shift_size);
3028 __ sra(scratch0(), key, 1);
3029 __ Addu(scratch0(), base, scratch0());
3030 return MemOperand(scratch0(), base_offset);
3031 }
3032}
3033
3034
3035void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3036 DCHECK(ToRegister(instr->context()).is(cp));
3037 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3038 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3039
3040 if (instr->hydrogen()->HasVectorAndSlot()) {
3041 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3042 }
3043
3044 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
3045 isolate(), instr->hydrogen()->language_mode(),
3046 instr->hydrogen()->initialization_state()).code();
3047 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3048}
3049
3050
3051void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3052 Register scratch = scratch0();
3053 Register temp = scratch1();
3054 Register result = ToRegister(instr->result());
3055
3056 if (instr->hydrogen()->from_inlined()) {
3057 __ Subu(result, sp, 2 * kPointerSize);
3058 } else {
3059 // Check if the calling frame is an arguments adaptor frame.
3060 Label done, adapted;
3061 __ lw(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3062 __ lw(result, MemOperand(scratch, StandardFrameConstants::kContextOffset));
3063 __ Xor(temp, result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3064
3065 // Result is the frame pointer for the frame if not adapted and for the real
3066 // frame below the adaptor frame if adapted.
3067 __ Movn(result, fp, temp); // Move only if temp is not equal to zero (ne).
3068 __ Movz(result, scratch, temp); // Move only if temp is equal to zero (eq).
3069 }
3070}
3071
3072
3073void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3074 Register elem = ToRegister(instr->elements());
3075 Register result = ToRegister(instr->result());
3076
3077 Label done;
3078
3079 // If no arguments adaptor frame the number of arguments is fixed.
3080 __ Addu(result, zero_reg, Operand(scope()->num_parameters()));
3081 __ Branch(&done, eq, fp, Operand(elem));
3082
3083 // Arguments adaptor frame present. Get argument length from there.
3084 __ lw(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3085 __ lw(result,
3086 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3087 __ SmiUntag(result);
3088
3089 // Argument length is in result register.
3090 __ bind(&done);
3091}
3092
3093
3094void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3095 Register receiver = ToRegister(instr->receiver());
3096 Register function = ToRegister(instr->function());
3097 Register result = ToRegister(instr->result());
3098 Register scratch = scratch0();
3099
3100 // If the receiver is null or undefined, we have to pass the global
3101 // object as a receiver to normal functions. Values have to be
3102 // passed unchanged to builtins and strict-mode functions.
3103 Label global_object, result_in_receiver;
3104
3105 if (!instr->hydrogen()->known_function()) {
3106 // Do not transform the receiver to object for strict mode
3107 // functions.
3108 __ lw(scratch,
3109 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3110 __ lw(scratch,
3111 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3112
3113 // Do not transform the receiver to object for builtins.
3114 int32_t strict_mode_function_mask =
3115 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize);
3116 int32_t native_mask = 1 << (SharedFunctionInfo::kNative + kSmiTagSize);
3117 __ And(scratch, scratch, Operand(strict_mode_function_mask | native_mask));
3118 __ Branch(&result_in_receiver, ne, scratch, Operand(zero_reg));
3119 }
3120
3121 // Normal function. Replace undefined or null with global receiver.
3122 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3123 __ Branch(&global_object, eq, receiver, Operand(scratch));
3124 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3125 __ Branch(&global_object, eq, receiver, Operand(scratch));
3126
3127 // Deoptimize if the receiver is not a JS object.
3128 __ SmiTst(receiver, scratch);
3129 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, scratch, Operand(zero_reg));
3130
3131 __ GetObjectType(receiver, scratch, scratch);
3132 DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject, scratch,
3133 Operand(FIRST_JS_RECEIVER_TYPE));
3134
3135 __ Branch(&result_in_receiver);
3136 __ bind(&global_object);
3137 __ lw(result, FieldMemOperand(function, JSFunction::kContextOffset));
3138 __ lw(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
3139 __ lw(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
3140
3141 if (result.is(receiver)) {
3142 __ bind(&result_in_receiver);
3143 } else {
3144 Label result_ok;
3145 __ Branch(&result_ok);
3146 __ bind(&result_in_receiver);
3147 __ mov(result, receiver);
3148 __ bind(&result_ok);
3149 }
3150}
3151
3152
3153void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3154 Register receiver = ToRegister(instr->receiver());
3155 Register function = ToRegister(instr->function());
3156 Register length = ToRegister(instr->length());
3157 Register elements = ToRegister(instr->elements());
3158 Register scratch = scratch0();
3159 DCHECK(receiver.is(a0)); // Used for parameter count.
3160 DCHECK(function.is(a1)); // Required by InvokeFunction.
3161 DCHECK(ToRegister(instr->result()).is(v0));
3162
3163 // Copy the arguments to this function possibly from the
3164 // adaptor frame below it.
3165 const uint32_t kArgumentsLimit = 1 * KB;
3166 DeoptimizeIf(hi, instr, Deoptimizer::kTooManyArguments, length,
3167 Operand(kArgumentsLimit));
3168
3169 // Push the receiver and use the register to keep the original
3170 // number of arguments.
3171 __ push(receiver);
3172 __ Move(receiver, length);
3173 // The arguments are at a one pointer size offset from elements.
3174 __ Addu(elements, elements, Operand(1 * kPointerSize));
3175
3176 // Loop through the arguments pushing them onto the execution
3177 // stack.
3178 Label invoke, loop;
3179 // length is a small non-negative integer, due to the test above.
3180 __ Branch(USE_DELAY_SLOT, &invoke, eq, length, Operand(zero_reg));
3181 __ sll(scratch, length, 2);
3182 __ bind(&loop);
3183 __ Addu(scratch, elements, scratch);
3184 __ lw(scratch, MemOperand(scratch));
3185 __ push(scratch);
3186 __ Subu(length, length, Operand(1));
3187 __ Branch(USE_DELAY_SLOT, &loop, ne, length, Operand(zero_reg));
3188 __ sll(scratch, length, 2);
3189
3190 __ bind(&invoke);
3191 DCHECK(instr->HasPointerMap());
3192 LPointerMap* pointers = instr->pointer_map();
3193 SafepointGenerator safepoint_generator(
3194 this, pointers, Safepoint::kLazyDeopt);
3195 // The number of arguments is stored in receiver which is a0, as expected
3196 // by InvokeFunction.
3197 ParameterCount actual(receiver);
3198 __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
3199 safepoint_generator);
3200}
3201
3202
3203void LCodeGen::DoPushArgument(LPushArgument* instr) {
3204 LOperand* argument = instr->value();
3205 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3206 Abort(kDoPushArgumentNotImplementedForDoubleType);
3207 } else {
3208 Register argument_reg = EmitLoadRegister(argument, at);
3209 __ push(argument_reg);
3210 }
3211}
3212
3213
3214void LCodeGen::DoDrop(LDrop* instr) {
3215 __ Drop(instr->count());
3216}
3217
3218
3219void LCodeGen::DoThisFunction(LThisFunction* instr) {
3220 Register result = ToRegister(instr->result());
3221 __ lw(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3222}
3223
3224
3225void LCodeGen::DoContext(LContext* instr) {
3226 // If there is a non-return use, the context must be moved to a register.
3227 Register result = ToRegister(instr->result());
3228 if (info()->IsOptimizing()) {
3229 __ lw(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3230 } else {
3231 // If there is no frame, the context must be in cp.
3232 DCHECK(result.is(cp));
3233 }
3234}
3235
3236
3237void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3238 DCHECK(ToRegister(instr->context()).is(cp));
3239 __ li(scratch0(), instr->hydrogen()->pairs());
3240 __ li(scratch1(), Operand(Smi::FromInt(instr->hydrogen()->flags())));
3241 __ Push(scratch0(), scratch1());
3242 CallRuntime(Runtime::kDeclareGlobals, instr);
3243}
3244
3245
3246void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3247 int formal_parameter_count, int arity,
3248 LInstruction* instr) {
3249 bool dont_adapt_arguments =
3250 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3251 bool can_invoke_directly =
3252 dont_adapt_arguments || formal_parameter_count == arity;
3253
3254 Register function_reg = a1;
3255 LPointerMap* pointers = instr->pointer_map();
3256
3257 if (can_invoke_directly) {
3258 // Change context.
3259 __ lw(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
3260
3261 // Always initialize new target and number of actual arguments.
3262 __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
3263 __ li(a0, Operand(arity));
3264
3265 // Invoke function.
3266 __ lw(at, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
3267 __ Call(at);
3268
3269 // Set up deoptimization.
3270 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3271 } else {
3272 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3273 ParameterCount count(arity);
3274 ParameterCount expected(formal_parameter_count);
3275 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
3276 }
3277}
3278
3279
3280void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3281 DCHECK(instr->context() != NULL);
3282 DCHECK(ToRegister(instr->context()).is(cp));
3283 Register input = ToRegister(instr->value());
3284 Register result = ToRegister(instr->result());
3285 Register scratch = scratch0();
3286
3287 // Deoptimize if not a heap number.
3288 __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3289 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3290 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch, Operand(at));
3291
3292 Label done;
3293 Register exponent = scratch0();
3294 scratch = no_reg;
3295 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3296 // Check the sign of the argument. If the argument is positive, just
3297 // return it.
3298 __ Move(result, input);
3299 __ And(at, exponent, Operand(HeapNumber::kSignMask));
3300 __ Branch(&done, eq, at, Operand(zero_reg));
3301
3302 // Input is negative. Reverse its sign.
3303 // Preserve the value of all registers.
3304 {
3305 PushSafepointRegistersScope scope(this);
3306
3307 // Registers were saved at the safepoint, so we can use
3308 // many scratch registers.
3309 Register tmp1 = input.is(a1) ? a0 : a1;
3310 Register tmp2 = input.is(a2) ? a0 : a2;
3311 Register tmp3 = input.is(a3) ? a0 : a3;
3312 Register tmp4 = input.is(t0) ? a0 : t0;
3313
3314 // exponent: floating point exponent value.
3315
3316 Label allocated, slow;
3317 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3318 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3319 __ Branch(&allocated);
3320
3321 // Slow case: Call the runtime system to do the number allocation.
3322 __ bind(&slow);
3323
3324 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3325 instr->context());
3326 // Set the pointer to the new heap number in tmp.
3327 if (!tmp1.is(v0))
3328 __ mov(tmp1, v0);
3329 // Restore input_reg after call to runtime.
3330 __ LoadFromSafepointRegisterSlot(input, input);
3331 __ lw(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3332
3333 __ bind(&allocated);
3334 // exponent: floating point exponent value.
3335 // tmp1: allocated heap number.
3336 __ And(exponent, exponent, Operand(~HeapNumber::kSignMask));
3337 __ sw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3338 __ lw(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3339 __ sw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3340
3341 __ StoreToSafepointRegisterSlot(tmp1, result);
3342 }
3343
3344 __ bind(&done);
3345}
3346
3347
3348void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3349 Register input = ToRegister(instr->value());
3350 Register result = ToRegister(instr->result());
3351 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
3352 Label done;
3353 __ Branch(USE_DELAY_SLOT, &done, ge, input, Operand(zero_reg));
3354 __ mov(result, input);
3355 __ subu(result, zero_reg, input);
3356 // Overflow if result is still negative, i.e. 0x80000000.
3357 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, result, Operand(zero_reg));
3358 __ bind(&done);
3359}
3360
3361
3362void LCodeGen::DoMathAbs(LMathAbs* instr) {
3363 // Class for deferred case.
3364 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3365 public:
3366 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3367 : LDeferredCode(codegen), instr_(instr) { }
3368 void Generate() override {
3369 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3370 }
3371 LInstruction* instr() override { return instr_; }
3372
3373 private:
3374 LMathAbs* instr_;
3375 };
3376
3377 Representation r = instr->hydrogen()->value()->representation();
3378 if (r.IsDouble()) {
3379 FPURegister input = ToDoubleRegister(instr->value());
3380 FPURegister result = ToDoubleRegister(instr->result());
3381 __ abs_d(result, input);
3382 } else if (r.IsSmiOrInteger32()) {
3383 EmitIntegerMathAbs(instr);
3384 } else {
3385 // Representation is tagged.
3386 DeferredMathAbsTaggedHeapNumber* deferred =
3387 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3388 Register input = ToRegister(instr->value());
3389 // Smi check.
3390 __ JumpIfNotSmi(input, deferred->entry());
3391 // If smi, handle it directly.
3392 EmitIntegerMathAbs(instr);
3393 __ bind(deferred->exit());
3394 }
3395}
3396
3397
3398void LCodeGen::DoMathFloor(LMathFloor* instr) {
3399 DoubleRegister input = ToDoubleRegister(instr->value());
3400 Register result = ToRegister(instr->result());
3401 Register scratch1 = scratch0();
3402 Register except_flag = ToRegister(instr->temp());
3403
3404 __ EmitFPUTruncate(kRoundToMinusInf,
3405 result,
3406 input,
3407 scratch1,
3408 double_scratch0(),
3409 except_flag);
3410
3411 // Deopt if the operation did not succeed.
3412 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
3413 Operand(zero_reg));
3414
3415 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3416 // Test for -0.
3417 Label done;
3418 __ Branch(&done, ne, result, Operand(zero_reg));
3419 __ Mfhc1(scratch1, input);
3420 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
3421 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
3422 Operand(zero_reg));
3423 __ bind(&done);
3424 }
3425}
3426
3427
3428void LCodeGen::DoMathRound(LMathRound* instr) {
3429 DoubleRegister input = ToDoubleRegister(instr->value());
3430 Register result = ToRegister(instr->result());
3431 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3432 Register scratch = scratch0();
3433 Label done, check_sign_on_zero;
3434
3435 // Extract exponent bits.
3436 __ Mfhc1(result, input);
3437 __ Ext(scratch,
3438 result,
3439 HeapNumber::kExponentShift,
3440 HeapNumber::kExponentBits);
3441
3442 // If the number is in ]-0.5, +0.5[, the result is +/- 0.
3443 Label skip1;
3444 __ Branch(&skip1, gt, scratch, Operand(HeapNumber::kExponentBias - 2));
3445 __ mov(result, zero_reg);
3446 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3447 __ Branch(&check_sign_on_zero);
3448 } else {
3449 __ Branch(&done);
3450 }
3451 __ bind(&skip1);
3452
3453 // The following conversion will not work with numbers
3454 // outside of ]-2^32, 2^32[.
3455 DeoptimizeIf(ge, instr, Deoptimizer::kOverflow, scratch,
3456 Operand(HeapNumber::kExponentBias + 32));
3457
3458 // Save the original sign for later comparison.
3459 __ And(scratch, result, Operand(HeapNumber::kSignMask));
3460
3461 __ Move(double_scratch0(), 0.5);
3462 __ add_d(double_scratch0(), input, double_scratch0());
3463
3464 // Check sign of the result: if the sign changed, the input
3465 // value was in ]0.5, 0[ and the result should be -0.
3466 __ Mfhc1(result, double_scratch0());
3467 __ Xor(result, result, Operand(scratch));
3468 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3469 // ARM uses 'mi' here, which is 'lt'
3470 DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero, result, Operand(zero_reg));
3471 } else {
3472 Label skip2;
3473 // ARM uses 'mi' here, which is 'lt'
3474 // Negating it results in 'ge'
3475 __ Branch(&skip2, ge, result, Operand(zero_reg));
3476 __ mov(result, zero_reg);
3477 __ Branch(&done);
3478 __ bind(&skip2);
3479 }
3480
3481 Register except_flag = scratch;
3482 __ EmitFPUTruncate(kRoundToMinusInf,
3483 result,
3484 double_scratch0(),
3485 at,
3486 double_scratch1,
3487 except_flag);
3488
3489 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
3490 Operand(zero_reg));
3491
3492 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3493 // Test for -0.
3494 __ Branch(&done, ne, result, Operand(zero_reg));
3495 __ bind(&check_sign_on_zero);
3496 __ Mfhc1(scratch, input);
3497 __ And(scratch, scratch, Operand(HeapNumber::kSignMask));
3498 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch,
3499 Operand(zero_reg));
3500 }
3501 __ bind(&done);
3502}
3503
3504
3505void LCodeGen::DoMathFround(LMathFround* instr) {
3506 DoubleRegister input = ToDoubleRegister(instr->value());
3507 DoubleRegister result = ToDoubleRegister(instr->result());
3508 __ cvt_s_d(result.low(), input);
3509 __ cvt_d_s(result, result.low());
3510}
3511
3512
3513void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3514 DoubleRegister input = ToDoubleRegister(instr->value());
3515 DoubleRegister result = ToDoubleRegister(instr->result());
3516 __ sqrt_d(result, input);
3517}
3518
3519
3520void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3521 DoubleRegister input = ToDoubleRegister(instr->value());
3522 DoubleRegister result = ToDoubleRegister(instr->result());
3523 DoubleRegister temp = ToDoubleRegister(instr->temp());
3524
3525 DCHECK(!input.is(result));
3526
3527 // Note that according to ECMA-262 15.8.2.13:
3528 // Math.pow(-Infinity, 0.5) == Infinity
3529 // Math.sqrt(-Infinity) == NaN
3530 Label done;
3531 __ Move(temp, static_cast<double>(-V8_INFINITY));
3532 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, temp, input);
3533 // Set up Infinity in the delay slot.
3534 // result is overwritten if the branch is not taken.
3535 __ neg_d(result, temp);
3536
3537 // Add +0 to convert -0 to +0.
3538 __ add_d(result, input, kDoubleRegZero);
3539 __ sqrt_d(result, result);
3540 __ bind(&done);
3541}
3542
3543
3544void LCodeGen::DoPower(LPower* instr) {
3545 Representation exponent_type = instr->hydrogen()->right()->representation();
3546 // Having marked this as a call, we can use any registers.
3547 // Just make sure that the input/output registers are the expected ones.
3548 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3549 DCHECK(!instr->right()->IsDoubleRegister() ||
3550 ToDoubleRegister(instr->right()).is(f4));
3551 DCHECK(!instr->right()->IsRegister() ||
3552 ToRegister(instr->right()).is(tagged_exponent));
3553 DCHECK(ToDoubleRegister(instr->left()).is(f2));
3554 DCHECK(ToDoubleRegister(instr->result()).is(f0));
3555
3556 if (exponent_type.IsSmi()) {
3557 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3558 __ CallStub(&stub);
3559 } else if (exponent_type.IsTagged()) {
3560 Label no_deopt;
3561 __ JumpIfSmi(tagged_exponent, &no_deopt);
3562 DCHECK(!t3.is(tagged_exponent));
3563 __ lw(t3, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
3564 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
3565 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, t3, Operand(at));
3566 __ bind(&no_deopt);
3567 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3568 __ CallStub(&stub);
3569 } else if (exponent_type.IsInteger32()) {
3570 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3571 __ CallStub(&stub);
3572 } else {
3573 DCHECK(exponent_type.IsDouble());
3574 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3575 __ CallStub(&stub);
3576 }
3577}
3578
3579
3580void LCodeGen::DoMathExp(LMathExp* instr) {
3581 DoubleRegister input = ToDoubleRegister(instr->value());
3582 DoubleRegister result = ToDoubleRegister(instr->result());
3583 DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
3584 DoubleRegister double_scratch2 = double_scratch0();
3585 Register temp1 = ToRegister(instr->temp1());
3586 Register temp2 = ToRegister(instr->temp2());
3587
3588 MathExpGenerator::EmitMathExp(
3589 masm(), input, result, double_scratch1, double_scratch2,
3590 temp1, temp2, scratch0());
3591}
3592
3593
3594void LCodeGen::DoMathLog(LMathLog* instr) {
3595 __ PrepareCallCFunction(0, 1, scratch0());
3596 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3597 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
3598 0, 1);
3599 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3600}
3601
3602
3603void LCodeGen::DoMathClz32(LMathClz32* instr) {
3604 Register input = ToRegister(instr->value());
3605 Register result = ToRegister(instr->result());
3606 __ Clz(result, input);
3607}
3608
3609
3610void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3611 DCHECK(ToRegister(instr->context()).is(cp));
3612 DCHECK(ToRegister(instr->function()).is(a1));
3613 DCHECK(instr->HasPointerMap());
3614
3615 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3616 if (known_function.is_null()) {
3617 LPointerMap* pointers = instr->pointer_map();
3618 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3619 ParameterCount count(instr->arity());
3620 __ InvokeFunction(a1, no_reg, count, CALL_FUNCTION, generator);
3621 } else {
3622 CallKnownFunction(known_function,
3623 instr->hydrogen()->formal_parameter_count(),
3624 instr->arity(), instr);
3625 }
3626}
3627
3628
3629void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3630 DCHECK(ToRegister(instr->result()).is(v0));
3631
3632 if (instr->hydrogen()->IsTailCall()) {
3633 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
3634
3635 if (instr->target()->IsConstantOperand()) {
3636 LConstantOperand* target = LConstantOperand::cast(instr->target());
3637 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3638 __ Jump(code, RelocInfo::CODE_TARGET);
3639 } else {
3640 DCHECK(instr->target()->IsRegister());
3641 Register target = ToRegister(instr->target());
3642 __ Addu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3643 __ Jump(target);
3644 }
3645 } else {
3646 LPointerMap* pointers = instr->pointer_map();
3647 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3648
3649 if (instr->target()->IsConstantOperand()) {
3650 LConstantOperand* target = LConstantOperand::cast(instr->target());
3651 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3652 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3653 __ Call(code, RelocInfo::CODE_TARGET);
3654 } else {
3655 DCHECK(instr->target()->IsRegister());
3656 Register target = ToRegister(instr->target());
3657 generator.BeforeCall(__ CallSize(target));
3658 __ Addu(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3659 __ Call(target);
3660 }
3661 generator.AfterCall();
3662 }
3663}
3664
3665
3666void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3667 DCHECK(ToRegister(instr->function()).is(a1));
3668 DCHECK(ToRegister(instr->result()).is(v0));
3669
3670 // Change context.
3671 __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
3672
3673 // Always initialize new target and number of actual arguments.
3674 __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
3675 __ li(a0, Operand(instr->arity()));
3676
3677 // Load the code entry address
3678 __ lw(at, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
3679 __ Call(at);
3680
3681 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3682}
3683
3684
3685void LCodeGen::DoCallFunction(LCallFunction* instr) {
3686 DCHECK(ToRegister(instr->context()).is(cp));
3687 DCHECK(ToRegister(instr->function()).is(a1));
3688 DCHECK(ToRegister(instr->result()).is(v0));
3689
3690 int arity = instr->arity();
3691 ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
3692 if (instr->hydrogen()->HasVectorAndSlot()) {
3693 Register slot_register = ToRegister(instr->temp_slot());
3694 Register vector_register = ToRegister(instr->temp_vector());
3695 DCHECK(slot_register.is(a3));
3696 DCHECK(vector_register.is(a2));
3697
3698 AllowDeferredHandleDereference vector_structure_check;
3699 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3700 int index = vector->GetIndex(instr->hydrogen()->slot());
3701
3702 __ li(vector_register, vector);
3703 __ li(slot_register, Operand(Smi::FromInt(index)));
3704
3705 Handle<Code> ic =
3706 CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
3707 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3708 } else {
3709 __ li(a0, Operand(arity));
3710 CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
3711 }
3712}
3713
3714
3715void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3716 DCHECK(ToRegister(instr->context()).is(cp));
3717 DCHECK(ToRegister(instr->constructor()).is(a1));
3718 DCHECK(ToRegister(instr->result()).is(v0));
3719
3720 __ li(a0, Operand(instr->arity()));
3721 if (instr->arity() == 1) {
3722 // We only need the allocation site for the case we have a length argument.
3723 // The case may bail out to the runtime, which will determine the correct
3724 // elements kind with the site.
3725 __ li(a2, instr->hydrogen()->site());
3726 } else {
3727 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
3728 }
3729 ElementsKind kind = instr->hydrogen()->elements_kind();
3730 AllocationSiteOverrideMode override_mode =
3731 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3732 ? DISABLE_ALLOCATION_SITES
3733 : DONT_OVERRIDE;
3734
3735 if (instr->arity() == 0) {
3736 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3737 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3738 } else if (instr->arity() == 1) {
3739 Label done;
3740 if (IsFastPackedElementsKind(kind)) {
3741 Label packed_case;
3742 // We might need a change here,
3743 // look at the first argument.
3744 __ lw(t1, MemOperand(sp, 0));
3745 __ Branch(&packed_case, eq, t1, Operand(zero_reg));
3746
3747 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3748 ArraySingleArgumentConstructorStub stub(isolate(),
3749 holey_kind,
3750 override_mode);
3751 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3752 __ jmp(&done);
3753 __ bind(&packed_case);
3754 }
3755
3756 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3757 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3758 __ bind(&done);
3759 } else {
3760 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3761 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3762 }
3763}
3764
3765
3766void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3767 CallRuntime(instr->function(), instr->arity(), instr);
3768}
3769
3770
3771void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3772 Register function = ToRegister(instr->function());
3773 Register code_object = ToRegister(instr->code_object());
3774 __ Addu(code_object, code_object,
3775 Operand(Code::kHeaderSize - kHeapObjectTag));
3776 __ sw(code_object,
3777 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
3778}
3779
3780
3781void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3782 Register result = ToRegister(instr->result());
3783 Register base = ToRegister(instr->base_object());
3784 if (instr->offset()->IsConstantOperand()) {
3785 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3786 __ Addu(result, base, Operand(ToInteger32(offset)));
3787 } else {
3788 Register offset = ToRegister(instr->offset());
3789 __ Addu(result, base, offset);
3790 }
3791}
3792
3793
3794void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3795 Representation representation = instr->representation();
3796
3797 Register object = ToRegister(instr->object());
3798 Register scratch = scratch0();
3799 HObjectAccess access = instr->hydrogen()->access();
3800 int offset = access.offset();
3801
3802 if (access.IsExternalMemory()) {
3803 Register value = ToRegister(instr->value());
3804 MemOperand operand = MemOperand(object, offset);
3805 __ Store(value, operand, representation);
3806 return;
3807 }
3808
3809 __ AssertNotSmi(object);
3810
3811 DCHECK(!representation.IsSmi() ||
3812 !instr->value()->IsConstantOperand() ||
3813 IsSmi(LConstantOperand::cast(instr->value())));
3814 if (representation.IsDouble()) {
3815 DCHECK(access.IsInobject());
3816 DCHECK(!instr->hydrogen()->has_transition());
3817 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
3818 DoubleRegister value = ToDoubleRegister(instr->value());
3819 __ sdc1(value, FieldMemOperand(object, offset));
3820 return;
3821 }
3822
3823 if (instr->hydrogen()->has_transition()) {
3824 Handle<Map> transition = instr->hydrogen()->transition_map();
3825 AddDeprecationDependency(transition);
3826 __ li(scratch, Operand(transition));
3827 __ sw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3828 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3829 Register temp = ToRegister(instr->temp());
3830 // Update the write barrier for the map field.
3831 __ RecordWriteForMap(object,
3832 scratch,
3833 temp,
3834 GetRAState(),
3835 kSaveFPRegs);
3836 }
3837 }
3838
3839 // Do the store.
3840 Register value = ToRegister(instr->value());
3841 if (access.IsInobject()) {
3842 MemOperand operand = FieldMemOperand(object, offset);
3843 __ Store(value, operand, representation);
3844 if (instr->hydrogen()->NeedsWriteBarrier()) {
3845 // Update the write barrier for the object for in-object properties.
3846 __ RecordWriteField(object,
3847 offset,
3848 value,
3849 scratch,
3850 GetRAState(),
3851 kSaveFPRegs,
3852 EMIT_REMEMBERED_SET,
3853 instr->hydrogen()->SmiCheckForWriteBarrier(),
3854 instr->hydrogen()->PointersToHereCheckForValue());
3855 }
3856 } else {
3857 __ lw(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
3858 MemOperand operand = FieldMemOperand(scratch, offset);
3859 __ Store(value, operand, representation);
3860 if (instr->hydrogen()->NeedsWriteBarrier()) {
3861 // Update the write barrier for the properties array.
3862 // object is used as a scratch register.
3863 __ RecordWriteField(scratch,
3864 offset,
3865 value,
3866 object,
3867 GetRAState(),
3868 kSaveFPRegs,
3869 EMIT_REMEMBERED_SET,
3870 instr->hydrogen()->SmiCheckForWriteBarrier(),
3871 instr->hydrogen()->PointersToHereCheckForValue());
3872 }
3873 }
3874}
3875
3876
3877void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3878 DCHECK(ToRegister(instr->context()).is(cp));
3879 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
3880 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
3881
3882 if (instr->hydrogen()->HasVectorAndSlot()) {
3883 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
3884 }
3885
3886 __ li(StoreDescriptor::NameRegister(), Operand(instr->name()));
3887 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
3888 isolate(), instr->language_mode(),
3889 instr->hydrogen()->initialization_state()).code();
3890 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3891}
3892
3893
3894void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3895 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs;
3896 Operand operand(0);
3897 Register reg;
3898 if (instr->index()->IsConstantOperand()) {
3899 operand = ToOperand(instr->index());
3900 reg = ToRegister(instr->length());
3901 cc = CommuteCondition(cc);
3902 } else {
3903 reg = ToRegister(instr->index());
3904 operand = ToOperand(instr->length());
3905 }
3906 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3907 Label done;
3908 __ Branch(&done, NegateCondition(cc), reg, operand);
3909 __ stop("eliminated bounds check failed");
3910 __ bind(&done);
3911 } else {
3912 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds, reg, operand);
3913 }
3914}
3915
3916
3917void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3918 Register external_pointer = ToRegister(instr->elements());
3919 Register key = no_reg;
3920 ElementsKind elements_kind = instr->elements_kind();
3921 bool key_is_constant = instr->key()->IsConstantOperand();
3922 int constant_key = 0;
3923 if (key_is_constant) {
3924 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3925 if (constant_key & 0xF0000000) {
3926 Abort(kArrayIndexConstantValueTooBig);
3927 }
3928 } else {
3929 key = ToRegister(instr->key());
3930 }
3931 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3932 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3933 ? (element_size_shift - kSmiTagSize) : element_size_shift;
3934 int base_offset = instr->base_offset();
3935
3936 if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
3937 Register address = scratch0();
3938 FPURegister value(ToDoubleRegister(instr->value()));
3939 if (key_is_constant) {
3940 if (constant_key != 0) {
3941 __ Addu(address, external_pointer,
3942 Operand(constant_key << element_size_shift));
3943 } else {
3944 address = external_pointer;
3945 }
3946 } else {
3947 __ sll(address, key, shift_size);
3948 __ Addu(address, external_pointer, address);
3949 }
3950
3951 if (elements_kind == FLOAT32_ELEMENTS) {
3952 __ cvt_s_d(double_scratch0(), value);
3953 __ swc1(double_scratch0(), MemOperand(address, base_offset));
3954 } else { // Storing doubles, not floats.
3955 __ sdc1(value, MemOperand(address, base_offset));
3956 }
3957 } else {
3958 Register value(ToRegister(instr->value()));
3959 MemOperand mem_operand = PrepareKeyedOperand(
3960 key, external_pointer, key_is_constant, constant_key,
3961 element_size_shift, shift_size,
3962 base_offset);
3963 switch (elements_kind) {
3964 case UINT8_ELEMENTS:
3965 case UINT8_CLAMPED_ELEMENTS:
3966 case INT8_ELEMENTS:
3967 __ sb(value, mem_operand);
3968 break;
3969 case INT16_ELEMENTS:
3970 case UINT16_ELEMENTS:
3971 __ sh(value, mem_operand);
3972 break;
3973 case INT32_ELEMENTS:
3974 case UINT32_ELEMENTS:
3975 __ sw(value, mem_operand);
3976 break;
3977 case FLOAT32_ELEMENTS:
3978 case FLOAT64_ELEMENTS:
3979 case FAST_DOUBLE_ELEMENTS:
3980 case FAST_ELEMENTS:
3981 case FAST_SMI_ELEMENTS:
3982 case FAST_HOLEY_DOUBLE_ELEMENTS:
3983 case FAST_HOLEY_ELEMENTS:
3984 case FAST_HOLEY_SMI_ELEMENTS:
3985 case DICTIONARY_ELEMENTS:
3986 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
3987 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
3988 UNREACHABLE();
3989 break;
3990 }
3991 }
3992}
3993
3994
3995void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
3996 DoubleRegister value = ToDoubleRegister(instr->value());
3997 Register elements = ToRegister(instr->elements());
3998 Register scratch = scratch0();
3999 Register scratch_1 = scratch1();
4000 DoubleRegister double_scratch = double_scratch0();
4001 bool key_is_constant = instr->key()->IsConstantOperand();
4002 int base_offset = instr->base_offset();
4003 Label not_nan, done;
4004
4005 // Calculate the effective address of the slot in the array to store the
4006 // double value.
4007 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4008 if (key_is_constant) {
4009 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4010 if (constant_key & 0xF0000000) {
4011 Abort(kArrayIndexConstantValueTooBig);
4012 }
4013 __ Addu(scratch, elements,
4014 Operand((constant_key << element_size_shift) + base_offset));
4015 } else {
4016 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
4017 ? (element_size_shift - kSmiTagSize) : element_size_shift;
4018 __ Addu(scratch, elements, Operand(base_offset));
4019 __ sll(at, ToRegister(instr->key()), shift_size);
4020 __ Addu(scratch, scratch, at);
4021 }
4022
4023 if (instr->NeedsCanonicalization()) {
4024 Label is_nan;
4025 // Check for NaN. All NaNs must be canonicalized.
4026 __ BranchF(NULL, &is_nan, eq, value, value);
4027 __ Branch(&not_nan);
4028
4029 // Only load canonical NaN if the comparison above set the overflow.
4030 __ bind(&is_nan);
4031 __ LoadRoot(scratch_1, Heap::kNanValueRootIndex);
4032 __ ldc1(double_scratch,
4033 FieldMemOperand(scratch_1, HeapNumber::kValueOffset));
4034 __ sdc1(double_scratch, MemOperand(scratch, 0));
4035 __ Branch(&done);
4036 }
4037
4038 __ bind(&not_nan);
4039 __ sdc1(value, MemOperand(scratch, 0));
4040 __ bind(&done);
4041}
4042
4043
4044void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4045 Register value = ToRegister(instr->value());
4046 Register elements = ToRegister(instr->elements());
4047 Register key = instr->key()->IsRegister() ? ToRegister(instr->key())
4048 : no_reg;
4049 Register scratch = scratch0();
4050 Register store_base = scratch;
4051 int offset = instr->base_offset();
4052
4053 // Do the store.
4054 if (instr->key()->IsConstantOperand()) {
4055 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
4056 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4057 offset += ToInteger32(const_operand) * kPointerSize;
4058 store_base = elements;
4059 } else {
4060 // Even though the HLoadKeyed instruction forces the input
4061 // representation for the key to be an integer, the input gets replaced
4062 // during bound check elimination with the index argument to the bounds
4063 // check, which can be tagged, so that case must be handled here, too.
4064 if (instr->hydrogen()->key()->representation().IsSmi()) {
4065 __ sll(scratch, key, kPointerSizeLog2 - kSmiTagSize);
4066 __ addu(scratch, elements, scratch);
4067 } else {
4068 __ sll(scratch, key, kPointerSizeLog2);
4069 __ addu(scratch, elements, scratch);
4070 }
4071 }
4072 __ sw(value, MemOperand(store_base, offset));
4073
4074 if (instr->hydrogen()->NeedsWriteBarrier()) {
4075 SmiCheck check_needed =
4076 instr->hydrogen()->value()->type().IsHeapObject()
4077 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4078 // Compute address of modified element and store it into key register.
4079 __ Addu(key, store_base, Operand(offset));
4080 __ RecordWrite(elements,
4081 key,
4082 value,
4083 GetRAState(),
4084 kSaveFPRegs,
4085 EMIT_REMEMBERED_SET,
4086 check_needed,
4087 instr->hydrogen()->PointersToHereCheckForValue());
4088 }
4089}
4090
4091
4092void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4093 // By cases: external, fast double
4094 if (instr->is_fixed_typed_array()) {
4095 DoStoreKeyedExternalArray(instr);
4096 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4097 DoStoreKeyedFixedDoubleArray(instr);
4098 } else {
4099 DoStoreKeyedFixedArray(instr);
4100 }
4101}
4102
4103
4104void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4105 DCHECK(ToRegister(instr->context()).is(cp));
4106 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4107 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4108 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4109
4110 if (instr->hydrogen()->HasVectorAndSlot()) {
4111 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4112 }
4113
4114 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4115 isolate(), instr->language_mode(),
4116 instr->hydrogen()->initialization_state()).code();
4117 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4118}
4119
4120
4121void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4122 class DeferredMaybeGrowElements final : public LDeferredCode {
4123 public:
4124 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4125 : LDeferredCode(codegen), instr_(instr) {}
4126 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4127 LInstruction* instr() override { return instr_; }
4128
4129 private:
4130 LMaybeGrowElements* instr_;
4131 };
4132
4133 Register result = v0;
4134 DeferredMaybeGrowElements* deferred =
4135 new (zone()) DeferredMaybeGrowElements(this, instr);
4136 LOperand* key = instr->key();
4137 LOperand* current_capacity = instr->current_capacity();
4138
4139 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4140 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4141 DCHECK(key->IsConstantOperand() || key->IsRegister());
4142 DCHECK(current_capacity->IsConstantOperand() ||
4143 current_capacity->IsRegister());
4144
4145 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4146 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4147 int32_t constant_capacity =
4148 ToInteger32(LConstantOperand::cast(current_capacity));
4149 if (constant_key >= constant_capacity) {
4150 // Deferred case.
4151 __ jmp(deferred->entry());
4152 }
4153 } else if (key->IsConstantOperand()) {
4154 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4155 __ Branch(deferred->entry(), le, ToRegister(current_capacity),
4156 Operand(constant_key));
4157 } else if (current_capacity->IsConstantOperand()) {
4158 int32_t constant_capacity =
4159 ToInteger32(LConstantOperand::cast(current_capacity));
4160 __ Branch(deferred->entry(), ge, ToRegister(key),
4161 Operand(constant_capacity));
4162 } else {
4163 __ Branch(deferred->entry(), ge, ToRegister(key),
4164 Operand(ToRegister(current_capacity)));
4165 }
4166
4167 if (instr->elements()->IsRegister()) {
4168 __ mov(result, ToRegister(instr->elements()));
4169 } else {
4170 __ lw(result, ToMemOperand(instr->elements()));
4171 }
4172
4173 __ bind(deferred->exit());
4174}
4175
4176
4177void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4178 // TODO(3095996): Get rid of this. For now, we need to make the
4179 // result register contain a valid pointer because it is already
4180 // contained in the register pointer map.
4181 Register result = v0;
4182 __ mov(result, zero_reg);
4183
4184 // We have to call a stub.
4185 {
4186 PushSafepointRegistersScope scope(this);
4187 if (instr->object()->IsRegister()) {
4188 __ mov(result, ToRegister(instr->object()));
4189 } else {
4190 __ lw(result, ToMemOperand(instr->object()));
4191 }
4192
4193 LOperand* key = instr->key();
4194 if (key->IsConstantOperand()) {
4195 __ li(a3, Operand(ToSmi(LConstantOperand::cast(key))));
4196 } else {
4197 __ mov(a3, ToRegister(key));
4198 __ SmiTag(a3);
4199 }
4200
4201 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4202 instr->hydrogen()->kind());
4203 __ mov(a0, result);
4204 __ CallStub(&stub);
4205 RecordSafepointWithLazyDeopt(
4206 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4207 __ StoreToSafepointRegisterSlot(result, result);
4208 }
4209
4210 // Deopt on smi, which means the elements array changed to dictionary mode.
4211 __ SmiTst(result, at);
4212 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
4213}
4214
4215
4216void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4217 Register object_reg = ToRegister(instr->object());
4218 Register scratch = scratch0();
4219
4220 Handle<Map> from_map = instr->original_map();
4221 Handle<Map> to_map = instr->transitioned_map();
4222 ElementsKind from_kind = instr->from_kind();
4223 ElementsKind to_kind = instr->to_kind();
4224
4225 Label not_applicable;
4226 __ lw(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4227 __ Branch(&not_applicable, ne, scratch, Operand(from_map));
4228
4229 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4230 Register new_map_reg = ToRegister(instr->new_map_temp());
4231 __ li(new_map_reg, Operand(to_map));
4232 __ sw(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4233 // Write barrier.
4234 __ RecordWriteForMap(object_reg,
4235 new_map_reg,
4236 scratch,
4237 GetRAState(),
4238 kDontSaveFPRegs);
4239 } else {
4240 DCHECK(object_reg.is(a0));
4241 DCHECK(ToRegister(instr->context()).is(cp));
4242 PushSafepointRegistersScope scope(this);
4243 __ li(a1, Operand(to_map));
4244 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4245 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4246 __ CallStub(&stub);
4247 RecordSafepointWithRegisters(
4248 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
4249 }
4250 __ bind(&not_applicable);
4251}
4252
4253
4254void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4255 Register object = ToRegister(instr->object());
4256 Register temp = ToRegister(instr->temp());
4257 Label no_memento_found;
4258 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found,
4259 ne, &no_memento_found);
4260 DeoptimizeIf(al, instr);
4261 __ bind(&no_memento_found);
4262}
4263
4264
4265void LCodeGen::DoStringAdd(LStringAdd* instr) {
4266 DCHECK(ToRegister(instr->context()).is(cp));
4267 DCHECK(ToRegister(instr->left()).is(a1));
4268 DCHECK(ToRegister(instr->right()).is(a0));
4269 StringAddStub stub(isolate(),
4270 instr->hydrogen()->flags(),
4271 instr->hydrogen()->pretenure_flag());
4272 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4273}
4274
4275
4276void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4277 class DeferredStringCharCodeAt final : public LDeferredCode {
4278 public:
4279 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4280 : LDeferredCode(codegen), instr_(instr) { }
4281 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4282 LInstruction* instr() override { return instr_; }
4283
4284 private:
4285 LStringCharCodeAt* instr_;
4286 };
4287
4288 DeferredStringCharCodeAt* deferred =
4289 new(zone()) DeferredStringCharCodeAt(this, instr);
4290 StringCharLoadGenerator::Generate(masm(),
4291 ToRegister(instr->string()),
4292 ToRegister(instr->index()),
4293 ToRegister(instr->result()),
4294 deferred->entry());
4295 __ bind(deferred->exit());
4296}
4297
4298
4299void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4300 Register string = ToRegister(instr->string());
4301 Register result = ToRegister(instr->result());
4302 Register scratch = scratch0();
4303
4304 // TODO(3095996): Get rid of this. For now, we need to make the
4305 // result register contain a valid pointer because it is already
4306 // contained in the register pointer map.
4307 __ mov(result, zero_reg);
4308
4309 PushSafepointRegistersScope scope(this);
4310 __ push(string);
4311 // Push the index as a smi. This is safe because of the checks in
4312 // DoStringCharCodeAt above.
4313 if (instr->index()->IsConstantOperand()) {
4314 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4315 __ Addu(scratch, zero_reg, Operand(Smi::FromInt(const_index)));
4316 __ push(scratch);
4317 } else {
4318 Register index = ToRegister(instr->index());
4319 __ SmiTag(index);
4320 __ push(index);
4321 }
4322 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4323 instr->context());
4324 __ AssertSmi(v0);
4325 __ SmiUntag(v0);
4326 __ StoreToSafepointRegisterSlot(v0, result);
4327}
4328
4329
4330void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4331 class DeferredStringCharFromCode final : public LDeferredCode {
4332 public:
4333 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4334 : LDeferredCode(codegen), instr_(instr) { }
4335 void Generate() override {
4336 codegen()->DoDeferredStringCharFromCode(instr_);
4337 }
4338 LInstruction* instr() override { return instr_; }
4339
4340 private:
4341 LStringCharFromCode* instr_;
4342 };
4343
4344 DeferredStringCharFromCode* deferred =
4345 new(zone()) DeferredStringCharFromCode(this, instr);
4346
4347 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4348 Register char_code = ToRegister(instr->char_code());
4349 Register result = ToRegister(instr->result());
4350 Register scratch = scratch0();
4351 DCHECK(!char_code.is(result));
4352
4353 __ Branch(deferred->entry(), hi,
4354 char_code, Operand(String::kMaxOneByteCharCode));
4355 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4356 __ sll(scratch, char_code, kPointerSizeLog2);
4357 __ Addu(result, result, scratch);
4358 __ lw(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4359 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4360 __ Branch(deferred->entry(), eq, result, Operand(scratch));
4361 __ bind(deferred->exit());
4362}
4363
4364
4365void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4366 Register char_code = ToRegister(instr->char_code());
4367 Register result = ToRegister(instr->result());
4368
4369 // TODO(3095996): Get rid of this. For now, we need to make the
4370 // result register contain a valid pointer because it is already
4371 // contained in the register pointer map.
4372 __ mov(result, zero_reg);
4373
4374 PushSafepointRegistersScope scope(this);
4375 __ SmiTag(char_code);
4376 __ push(char_code);
4377 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4378 instr->context());
4379 __ StoreToSafepointRegisterSlot(v0, result);
4380}
4381
4382
4383void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4384 LOperand* input = instr->value();
4385 DCHECK(input->IsRegister() || input->IsStackSlot());
4386 LOperand* output = instr->result();
4387 DCHECK(output->IsDoubleRegister());
4388 FPURegister single_scratch = double_scratch0().low();
4389 if (input->IsStackSlot()) {
4390 Register scratch = scratch0();
4391 __ lw(scratch, ToMemOperand(input));
4392 __ mtc1(scratch, single_scratch);
4393 } else {
4394 __ mtc1(ToRegister(input), single_scratch);
4395 }
4396 __ cvt_d_w(ToDoubleRegister(output), single_scratch);
4397}
4398
4399
4400void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4401 LOperand* input = instr->value();
4402 LOperand* output = instr->result();
4403
4404 __ Cvt_d_uw(ToDoubleRegister(output), ToRegister(input), f22);
4405}
4406
4407
4408void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4409 class DeferredNumberTagI final : public LDeferredCode {
4410 public:
4411 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4412 : LDeferredCode(codegen), instr_(instr) { }
4413 void Generate() override {
4414 codegen()->DoDeferredNumberTagIU(instr_,
4415 instr_->value(),
4416 instr_->temp1(),
4417 instr_->temp2(),
4418 SIGNED_INT32);
4419 }
4420 LInstruction* instr() override { return instr_; }
4421
4422 private:
4423 LNumberTagI* instr_;
4424 };
4425
4426 Register src = ToRegister(instr->value());
4427 Register dst = ToRegister(instr->result());
4428 Register overflow = scratch0();
4429
4430 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4431 __ SmiTagCheckOverflow(dst, src, overflow);
4432 __ BranchOnOverflow(deferred->entry(), overflow);
4433 __ bind(deferred->exit());
4434}
4435
4436
4437void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4438 class DeferredNumberTagU final : public LDeferredCode {
4439 public:
4440 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4441 : LDeferredCode(codegen), instr_(instr) { }
4442 void Generate() override {
4443 codegen()->DoDeferredNumberTagIU(instr_,
4444 instr_->value(),
4445 instr_->temp1(),
4446 instr_->temp2(),
4447 UNSIGNED_INT32);
4448 }
4449 LInstruction* instr() override { return instr_; }
4450
4451 private:
4452 LNumberTagU* instr_;
4453 };
4454
4455 Register input = ToRegister(instr->value());
4456 Register result = ToRegister(instr->result());
4457
4458 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4459 __ Branch(deferred->entry(), hi, input, Operand(Smi::kMaxValue));
4460 __ SmiTag(result, input);
4461 __ bind(deferred->exit());
4462}
4463
4464
4465void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4466 LOperand* value,
4467 LOperand* temp1,
4468 LOperand* temp2,
4469 IntegerSignedness signedness) {
4470 Label done, slow;
4471 Register src = ToRegister(value);
4472 Register dst = ToRegister(instr->result());
4473 Register tmp1 = scratch0();
4474 Register tmp2 = ToRegister(temp1);
4475 Register tmp3 = ToRegister(temp2);
4476 DoubleRegister dbl_scratch = double_scratch0();
4477
4478 if (signedness == SIGNED_INT32) {
4479 // There was overflow, so bits 30 and 31 of the original integer
4480 // disagree. Try to allocate a heap number in new space and store
4481 // the value in there. If that fails, call the runtime system.
4482 if (dst.is(src)) {
4483 __ SmiUntag(src, dst);
4484 __ Xor(src, src, Operand(0x80000000));
4485 }
4486 __ mtc1(src, dbl_scratch);
4487 __ cvt_d_w(dbl_scratch, dbl_scratch);
4488 } else {
4489 __ Cvt_d_uw(dbl_scratch, src, f22);
4490 }
4491
4492 if (FLAG_inline_new) {
4493 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4494 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, DONT_TAG_RESULT);
4495 __ Branch(&done);
4496 }
4497
4498 // Slow case: Call the runtime system to do the number allocation.
4499 __ bind(&slow);
4500 {
4501 // TODO(3095996): Put a valid pointer value in the stack slot where the
4502 // result register is stored, as this register is in the pointer map, but
4503 // contains an integer value.
4504 __ mov(dst, zero_reg);
4505
4506 // Preserve the value of all registers.
4507 PushSafepointRegistersScope scope(this);
4508
4509 // NumberTagI and NumberTagD use the context from the frame, rather than
4510 // the environment's HContext or HInlinedContext value.
4511 // They only call Runtime::kAllocateHeapNumber.
4512 // The corresponding HChange instructions are added in a phase that does
4513 // not have easy access to the local context.
4514 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4515 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4516 RecordSafepointWithRegisters(
4517 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4518 __ Subu(v0, v0, kHeapObjectTag);
4519 __ StoreToSafepointRegisterSlot(v0, dst);
4520 }
4521
4522
4523 // Done. Put the value in dbl_scratch into the value of the allocated heap
4524 // number.
4525 __ bind(&done);
4526 __ sdc1(dbl_scratch, MemOperand(dst, HeapNumber::kValueOffset));
4527 __ Addu(dst, dst, kHeapObjectTag);
4528}
4529
4530
4531void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4532 class DeferredNumberTagD final : public LDeferredCode {
4533 public:
4534 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4535 : LDeferredCode(codegen), instr_(instr) { }
4536 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4537 LInstruction* instr() override { return instr_; }
4538
4539 private:
4540 LNumberTagD* instr_;
4541 };
4542
4543 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4544 Register scratch = scratch0();
4545 Register reg = ToRegister(instr->result());
4546 Register temp1 = ToRegister(instr->temp());
4547 Register temp2 = ToRegister(instr->temp2());
4548
4549 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4550 if (FLAG_inline_new) {
4551 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4552 // We want the untagged address first for performance
4553 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
4554 DONT_TAG_RESULT);
4555 } else {
4556 __ Branch(deferred->entry());
4557 }
4558 __ bind(deferred->exit());
4559 __ sdc1(input_reg, MemOperand(reg, HeapNumber::kValueOffset));
4560 // Now that we have finished with the object's real address tag it
4561 __ Addu(reg, reg, kHeapObjectTag);
4562}
4563
4564
4565void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4566 // TODO(3095996): Get rid of this. For now, we need to make the
4567 // result register contain a valid pointer because it is already
4568 // contained in the register pointer map.
4569 Register reg = ToRegister(instr->result());
4570 __ mov(reg, zero_reg);
4571
4572 PushSafepointRegistersScope scope(this);
4573 // NumberTagI and NumberTagD use the context from the frame, rather than
4574 // the environment's HContext or HInlinedContext value.
4575 // They only call Runtime::kAllocateHeapNumber.
4576 // The corresponding HChange instructions are added in a phase that does
4577 // not have easy access to the local context.
4578 __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4579 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4580 RecordSafepointWithRegisters(
4581 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4582 __ Subu(v0, v0, kHeapObjectTag);
4583 __ StoreToSafepointRegisterSlot(v0, reg);
4584}
4585
4586
4587void LCodeGen::DoSmiTag(LSmiTag* instr) {
4588 HChange* hchange = instr->hydrogen();
4589 Register input = ToRegister(instr->value());
4590 Register output = ToRegister(instr->result());
4591 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4592 hchange->value()->CheckFlag(HValue::kUint32)) {
4593 __ And(at, input, Operand(0xc0000000));
4594 DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
4595 }
4596 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4597 !hchange->value()->CheckFlag(HValue::kUint32)) {
4598 __ SmiTagCheckOverflow(output, input, at);
4599 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, at, Operand(zero_reg));
4600 } else {
4601 __ SmiTag(output, input);
4602 }
4603}
4604
4605
4606void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4607 Register scratch = scratch0();
4608 Register input = ToRegister(instr->value());
4609 Register result = ToRegister(instr->result());
4610 if (instr->needs_check()) {
4611 STATIC_ASSERT(kHeapObjectTag == 1);
4612 // If the input is a HeapObject, value of scratch won't be zero.
4613 __ And(scratch, input, Operand(kHeapObjectTag));
4614 __ SmiUntag(result, input);
4615 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, scratch, Operand(zero_reg));
4616 } else {
4617 __ SmiUntag(result, input);
4618 }
4619}
4620
4621
4622void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4623 DoubleRegister result_reg,
4624 NumberUntagDMode mode) {
4625 bool can_convert_undefined_to_nan =
4626 instr->hydrogen()->can_convert_undefined_to_nan();
4627 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4628
4629 Register scratch = scratch0();
4630 Label convert, load_smi, done;
4631 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4632 // Smi check.
4633 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
4634 // Heap number map check.
4635 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4636 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4637 if (can_convert_undefined_to_nan) {
4638 __ Branch(&convert, ne, scratch, Operand(at));
4639 } else {
4640 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch,
4641 Operand(at));
4642 }
4643 // Load heap number.
4644 __ ldc1(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4645 if (deoptimize_on_minus_zero) {
4646 __ mfc1(at, result_reg.low());
4647 __ Branch(&done, ne, at, Operand(zero_reg));
4648 __ Mfhc1(scratch, result_reg);
4649 DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, scratch,
4650 Operand(HeapNumber::kSignMask));
4651 }
4652 __ Branch(&done);
4653 if (can_convert_undefined_to_nan) {
4654 __ bind(&convert);
4655 // Convert undefined (and hole) to NaN.
4656 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4657 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
4658 Operand(at));
4659 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4660 __ ldc1(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4661 __ Branch(&done);
4662 }
4663 } else {
4664 __ SmiUntag(scratch, input_reg);
4665 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4666 }
4667 // Smi to double register conversion
4668 __ bind(&load_smi);
4669 // scratch: untagged value of input_reg
4670 __ mtc1(scratch, result_reg);
4671 __ cvt_d_w(result_reg, result_reg);
4672 __ bind(&done);
4673}
4674
4675
4676void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4677 Register input_reg = ToRegister(instr->value());
4678 Register scratch1 = scratch0();
4679 Register scratch2 = ToRegister(instr->temp());
4680 DoubleRegister double_scratch = double_scratch0();
4681 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4682
4683 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4684 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4685
4686 Label done;
4687
4688 // The input is a tagged HeapObject.
4689 // Heap number map check.
4690 __ lw(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4691 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
4692 // This 'at' value and scratch1 map value are used for tests in both clauses
4693 // of the if.
4694
4695 if (instr->truncating()) {
4696 // Performs a truncating conversion of a floating point number as used by
4697 // the JS bitwise operations.
4698 Label no_heap_number, check_bools, check_false;
4699 // Check HeapNumber map.
4700 __ Branch(USE_DELAY_SLOT, &no_heap_number, ne, scratch1, Operand(at));
4701 __ mov(scratch2, input_reg); // In delay slot.
4702 __ TruncateHeapNumberToI(input_reg, scratch2);
4703 __ Branch(&done);
4704
4705 // Check for Oddballs. Undefined/False is converted to zero and True to one
4706 // for truncating conversions.
4707 __ bind(&no_heap_number);
4708 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4709 __ Branch(&check_bools, ne, input_reg, Operand(at));
4710 DCHECK(ToRegister(instr->result()).is(input_reg));
4711 __ Branch(USE_DELAY_SLOT, &done);
4712 __ mov(input_reg, zero_reg); // In delay slot.
4713
4714 __ bind(&check_bools);
4715 __ LoadRoot(at, Heap::kTrueValueRootIndex);
4716 __ Branch(&check_false, ne, scratch2, Operand(at));
4717 __ Branch(USE_DELAY_SLOT, &done);
4718 __ li(input_reg, Operand(1)); // In delay slot.
4719
4720 __ bind(&check_false);
4721 __ LoadRoot(at, Heap::kFalseValueRootIndex);
4722 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean,
4723 scratch2, Operand(at));
4724 __ Branch(USE_DELAY_SLOT, &done);
4725 __ mov(input_reg, zero_reg); // In delay slot.
4726 } else {
4727 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber, scratch1,
4728 Operand(at));
4729
4730 // Load the double value.
4731 __ ldc1(double_scratch,
4732 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4733
4734 Register except_flag = scratch2;
4735 __ EmitFPUTruncate(kRoundToZero,
4736 input_reg,
4737 double_scratch,
4738 scratch1,
4739 double_scratch2,
4740 except_flag,
4741 kCheckForInexactConversion);
4742
4743 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
4744 Operand(zero_reg));
4745
4746 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4747 __ Branch(&done, ne, input_reg, Operand(zero_reg));
4748
4749 __ Mfhc1(scratch1, double_scratch);
4750 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4751 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
4752 Operand(zero_reg));
4753 }
4754 }
4755 __ bind(&done);
4756}
4757
4758
4759void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4760 class DeferredTaggedToI final : public LDeferredCode {
4761 public:
4762 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4763 : LDeferredCode(codegen), instr_(instr) { }
4764 void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
4765 LInstruction* instr() override { return instr_; }
4766
4767 private:
4768 LTaggedToI* instr_;
4769 };
4770
4771 LOperand* input = instr->value();
4772 DCHECK(input->IsRegister());
4773 DCHECK(input->Equals(instr->result()));
4774
4775 Register input_reg = ToRegister(input);
4776
4777 if (instr->hydrogen()->value()->representation().IsSmi()) {
4778 __ SmiUntag(input_reg);
4779 } else {
4780 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4781
4782 // Let the deferred code handle the HeapObject case.
4783 __ JumpIfNotSmi(input_reg, deferred->entry());
4784
4785 // Smi to int32 conversion.
4786 __ SmiUntag(input_reg);
4787 __ bind(deferred->exit());
4788 }
4789}
4790
4791
4792void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4793 LOperand* input = instr->value();
4794 DCHECK(input->IsRegister());
4795 LOperand* result = instr->result();
4796 DCHECK(result->IsDoubleRegister());
4797
4798 Register input_reg = ToRegister(input);
4799 DoubleRegister result_reg = ToDoubleRegister(result);
4800
4801 HValue* value = instr->hydrogen()->value();
4802 NumberUntagDMode mode = value->representation().IsSmi()
4803 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4804
4805 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4806}
4807
4808
4809void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4810 Register result_reg = ToRegister(instr->result());
4811 Register scratch1 = scratch0();
4812 DoubleRegister double_input = ToDoubleRegister(instr->value());
4813
4814 if (instr->truncating()) {
4815 __ TruncateDoubleToI(result_reg, double_input);
4816 } else {
4817 Register except_flag = LCodeGen::scratch1();
4818
4819 __ EmitFPUTruncate(kRoundToMinusInf,
4820 result_reg,
4821 double_input,
4822 scratch1,
4823 double_scratch0(),
4824 except_flag,
4825 kCheckForInexactConversion);
4826
4827 // Deopt if the operation did not succeed (except_flag != 0).
4828 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
4829 Operand(zero_reg));
4830
4831 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4832 Label done;
4833 __ Branch(&done, ne, result_reg, Operand(zero_reg));
4834 __ Mfhc1(scratch1, double_input);
4835 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4836 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
4837 Operand(zero_reg));
4838 __ bind(&done);
4839 }
4840 }
4841}
4842
4843
4844void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4845 Register result_reg = ToRegister(instr->result());
4846 Register scratch1 = LCodeGen::scratch0();
4847 DoubleRegister double_input = ToDoubleRegister(instr->value());
4848
4849 if (instr->truncating()) {
4850 __ TruncateDoubleToI(result_reg, double_input);
4851 } else {
4852 Register except_flag = LCodeGen::scratch1();
4853
4854 __ EmitFPUTruncate(kRoundToMinusInf,
4855 result_reg,
4856 double_input,
4857 scratch1,
4858 double_scratch0(),
4859 except_flag,
4860 kCheckForInexactConversion);
4861
4862 // Deopt if the operation did not succeed (except_flag != 0).
4863 DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN, except_flag,
4864 Operand(zero_reg));
4865
4866 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4867 Label done;
4868 __ Branch(&done, ne, result_reg, Operand(zero_reg));
4869 __ Mfhc1(scratch1, double_input);
4870 __ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
4871 DeoptimizeIf(ne, instr, Deoptimizer::kMinusZero, scratch1,
4872 Operand(zero_reg));
4873 __ bind(&done);
4874 }
4875 }
4876 __ SmiTagCheckOverflow(result_reg, result_reg, scratch1);
4877 DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, scratch1, Operand(zero_reg));
4878}
4879
4880
4881void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4882 LOperand* input = instr->value();
4883 __ SmiTst(ToRegister(input), at);
4884 DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, at, Operand(zero_reg));
4885}
4886
4887
4888void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4889 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4890 LOperand* input = instr->value();
4891 __ SmiTst(ToRegister(input), at);
4892 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
4893 }
4894}
4895
4896
4897void LCodeGen::DoCheckArrayBufferNotNeutered(
4898 LCheckArrayBufferNotNeutered* instr) {
4899 Register view = ToRegister(instr->view());
4900 Register scratch = scratch0();
4901
4902 __ lw(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
4903 __ lw(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
4904 __ And(at, scratch, 1 << JSArrayBuffer::WasNeutered::kShift);
4905 DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, at, Operand(zero_reg));
4906}
4907
4908
4909void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4910 Register input = ToRegister(instr->value());
4911 Register scratch = scratch0();
4912
4913 __ GetObjectType(input, scratch, scratch);
4914
4915 if (instr->hydrogen()->is_interval_check()) {
4916 InstanceType first;
4917 InstanceType last;
4918 instr->hydrogen()->GetCheckInterval(&first, &last);
4919
4920 // If there is only one type in the interval check for equality.
4921 if (first == last) {
4922 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
4923 Operand(first));
4924 } else {
4925 DeoptimizeIf(lo, instr, Deoptimizer::kWrongInstanceType, scratch,
4926 Operand(first));
4927 // Omit check for the last type.
4928 if (last != LAST_TYPE) {
4929 DeoptimizeIf(hi, instr, Deoptimizer::kWrongInstanceType, scratch,
4930 Operand(last));
4931 }
4932 }
4933 } else {
4934 uint8_t mask;
4935 uint8_t tag;
4936 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4937
4938 if (base::bits::IsPowerOfTwo32(mask)) {
4939 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4940 __ And(at, scratch, mask);
4941 DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType,
4942 at, Operand(zero_reg));
4943 } else {
4944 __ And(scratch, scratch, Operand(mask));
4945 DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType, scratch,
4946 Operand(tag));
4947 }
4948 }
4949}
4950
4951
4952void LCodeGen::DoCheckValue(LCheckValue* instr) {
4953 Register reg = ToRegister(instr->value());
4954 Handle<HeapObject> object = instr->hydrogen()->object().handle();
4955 AllowDeferredHandleDereference smi_check;
4956 if (isolate()->heap()->InNewSpace(*object)) {
4957 Register reg = ToRegister(instr->value());
4958 Handle<Cell> cell = isolate()->factory()->NewCell(object);
4959 __ li(at, Operand(cell));
4960 __ lw(at, FieldMemOperand(at, Cell::kValueOffset));
4961 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(at));
4962 } else {
4963 DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch, reg, Operand(object));
4964 }
4965}
4966
4967
4968void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4969 {
4970 PushSafepointRegistersScope scope(this);
4971 __ push(object);
4972 __ mov(cp, zero_reg);
4973 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4974 RecordSafepointWithRegisters(
4975 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4976 __ StoreToSafepointRegisterSlot(v0, scratch0());
4977 }
4978 __ SmiTst(scratch0(), at);
4979 DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, at,
4980 Operand(zero_reg));
4981}
4982
4983
4984void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4985 class DeferredCheckMaps final : public LDeferredCode {
4986 public:
4987 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4988 : LDeferredCode(codegen), instr_(instr), object_(object) {
4989 SetExit(check_maps());
4990 }
4991 void Generate() override {
4992 codegen()->DoDeferredInstanceMigration(instr_, object_);
4993 }
4994 Label* check_maps() { return &check_maps_; }
4995 LInstruction* instr() override { return instr_; }
4996
4997 private:
4998 LCheckMaps* instr_;
4999 Label check_maps_;
5000 Register object_;
5001 };
5002
5003 if (instr->hydrogen()->IsStabilityCheck()) {
5004 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5005 for (int i = 0; i < maps->size(); ++i) {
5006 AddStabilityDependency(maps->at(i).handle());
5007 }
5008 return;
5009 }
5010
5011 Register map_reg = scratch0();
5012 LOperand* input = instr->value();
5013 DCHECK(input->IsRegister());
5014 Register reg = ToRegister(input);
5015 __ lw(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
5016
5017 DeferredCheckMaps* deferred = NULL;
5018 if (instr->hydrogen()->HasMigrationTarget()) {
5019 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5020 __ bind(deferred->check_maps());
5021 }
5022
5023 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5024 Label success;
5025 for (int i = 0; i < maps->size() - 1; i++) {
5026 Handle<Map> map = maps->at(i).handle();
5027 __ CompareMapAndBranch(map_reg, map, &success, eq, &success);
5028 }
5029 Handle<Map> map = maps->at(maps->size() - 1).handle();
5030 // Do the CompareMap() directly within the Branch() and DeoptimizeIf().
5031 if (instr->hydrogen()->HasMigrationTarget()) {
5032 __ Branch(deferred->entry(), ne, map_reg, Operand(map));
5033 } else {
5034 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map_reg, Operand(map));
5035 }
5036
5037 __ bind(&success);
5038}
5039
5040
5041void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5042 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5043 Register result_reg = ToRegister(instr->result());
5044 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5045 __ ClampDoubleToUint8(result_reg, value_reg, temp_reg);
5046}
5047
5048
5049void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5050 Register unclamped_reg = ToRegister(instr->unclamped());
5051 Register result_reg = ToRegister(instr->result());
5052 __ ClampUint8(result_reg, unclamped_reg);
5053}
5054
5055
5056void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5057 Register scratch = scratch0();
5058 Register input_reg = ToRegister(instr->unclamped());
5059 Register result_reg = ToRegister(instr->result());
5060 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5061 Label is_smi, done, heap_number;
5062
5063 // Both smi and heap number cases are handled.
5064 __ UntagAndJumpIfSmi(scratch, input_reg, &is_smi);
5065
5066 // Check for heap number
5067 __ lw(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5068 __ Branch(&heap_number, eq, scratch, Operand(factory()->heap_number_map()));
5069
5070 // Check for undefined. Undefined is converted to zero for clamping
5071 // conversions.
5072 DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined, input_reg,
5073 Operand(factory()->undefined_value()));
5074 __ mov(result_reg, zero_reg);
5075 __ jmp(&done);
5076
5077 // Heap number
5078 __ bind(&heap_number);
5079 __ ldc1(double_scratch0(), FieldMemOperand(input_reg,
5080 HeapNumber::kValueOffset));
5081 __ ClampDoubleToUint8(result_reg, double_scratch0(), temp_reg);
5082 __ jmp(&done);
5083
5084 __ bind(&is_smi);
5085 __ ClampUint8(result_reg, scratch);
5086
5087 __ bind(&done);
5088}
5089
5090
5091void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5092 DoubleRegister value_reg = ToDoubleRegister(instr->value());
5093 Register result_reg = ToRegister(instr->result());
5094 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5095 __ FmoveHigh(result_reg, value_reg);
5096 } else {
5097 __ FmoveLow(result_reg, value_reg);
5098 }
5099}
5100
5101
5102void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5103 Register hi_reg = ToRegister(instr->hi());
5104 Register lo_reg = ToRegister(instr->lo());
5105 DoubleRegister result_reg = ToDoubleRegister(instr->result());
5106 __ Move(result_reg, lo_reg, hi_reg);
5107}
5108
5109
5110void LCodeGen::DoAllocate(LAllocate* instr) {
5111 class DeferredAllocate final : public LDeferredCode {
5112 public:
5113 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5114 : LDeferredCode(codegen), instr_(instr) { }
5115 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5116 LInstruction* instr() override { return instr_; }
5117
5118 private:
5119 LAllocate* instr_;
5120 };
5121
5122 DeferredAllocate* deferred =
5123 new(zone()) DeferredAllocate(this, instr);
5124
5125 Register result = ToRegister(instr->result());
5126 Register scratch = ToRegister(instr->temp1());
5127 Register scratch2 = ToRegister(instr->temp2());
5128
5129 // Allocate memory for the object.
5130 AllocationFlags flags = TAG_OBJECT;
5131 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5132 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5133 }
5134 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5135 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5136 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5137 }
5138 if (instr->size()->IsConstantOperand()) {
5139 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5140 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5141 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5142 } else {
5143 Register size = ToRegister(instr->size());
5144 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5145 }
5146
5147 __ bind(deferred->exit());
5148
5149 if (instr->hydrogen()->MustPrefillWithFiller()) {
5150 STATIC_ASSERT(kHeapObjectTag == 1);
5151 if (instr->size()->IsConstantOperand()) {
5152 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5153 __ li(scratch, Operand(size - kHeapObjectTag));
5154 } else {
5155 __ Subu(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5156 }
5157 __ li(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5158 Label loop;
5159 __ bind(&loop);
5160 __ Subu(scratch, scratch, Operand(kPointerSize));
5161 __ Addu(at, result, Operand(scratch));
5162 __ sw(scratch2, MemOperand(at));
5163 __ Branch(&loop, ge, scratch, Operand(zero_reg));
5164 }
5165}
5166
5167
5168void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5169 Register result = ToRegister(instr->result());
5170
5171 // TODO(3095996): Get rid of this. For now, we need to make the
5172 // result register contain a valid pointer because it is already
5173 // contained in the register pointer map.
5174 __ mov(result, zero_reg);
5175
5176 PushSafepointRegistersScope scope(this);
5177 if (instr->size()->IsRegister()) {
5178 Register size = ToRegister(instr->size());
5179 DCHECK(!size.is(result));
5180 __ SmiTag(size);
5181 __ push(size);
5182 } else {
5183 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5184 if (size >= 0 && size <= Smi::kMaxValue) {
5185 __ Push(Smi::FromInt(size));
5186 } else {
5187 // We should never get here at runtime => abort
5188 __ stop("invalid allocation size");
5189 return;
5190 }
5191 }
5192
5193 int flags = AllocateDoubleAlignFlag::encode(
5194 instr->hydrogen()->MustAllocateDoubleAligned());
5195 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5196 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5197 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5198 } else {
5199 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5200 }
5201 __ Push(Smi::FromInt(flags));
5202
5203 CallRuntimeFromDeferred(
5204 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5205 __ StoreToSafepointRegisterSlot(v0, result);
5206}
5207
5208
5209void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5210 DCHECK(ToRegister(instr->value()).is(a0));
5211 DCHECK(ToRegister(instr->result()).is(v0));
5212 __ push(a0);
5213 CallRuntime(Runtime::kToFastProperties, 1, instr);
5214}
5215
5216
5217void LCodeGen::DoTypeof(LTypeof* instr) {
5218 DCHECK(ToRegister(instr->value()).is(a3));
5219 DCHECK(ToRegister(instr->result()).is(v0));
5220 Label end, do_call;
5221 Register value_register = ToRegister(instr->value());
5222 __ JumpIfNotSmi(value_register, &do_call);
5223 __ li(v0, Operand(isolate()->factory()->number_string()));
5224 __ jmp(&end);
5225 __ bind(&do_call);
5226 TypeofStub stub(isolate());
5227 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5228 __ bind(&end);
5229}
5230
5231
5232void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5233 Register input = ToRegister(instr->value());
5234
5235 Register cmp1 = no_reg;
5236 Operand cmp2 = Operand(no_reg);
5237
5238 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_),
5239 instr->FalseLabel(chunk_),
5240 input,
5241 instr->type_literal(),
5242 &cmp1,
5243 &cmp2);
5244
5245 DCHECK(cmp1.is_valid());
5246 DCHECK(!cmp2.is_reg() || cmp2.rm().is_valid());
5247
5248 if (final_branch_condition != kNoCondition) {
5249 EmitBranch(instr, final_branch_condition, cmp1, cmp2);
5250 }
5251}
5252
5253
5254Condition LCodeGen::EmitTypeofIs(Label* true_label,
5255 Label* false_label,
5256 Register input,
5257 Handle<String> type_name,
5258 Register* cmp1,
5259 Operand* cmp2) {
5260 // This function utilizes the delay slot heavily. This is used to load
5261 // values that are always usable without depending on the type of the input
5262 // register.
5263 Condition final_branch_condition = kNoCondition;
5264 Register scratch = scratch0();
5265 Factory* factory = isolate()->factory();
5266 if (String::Equals(type_name, factory->number_string())) {
5267 __ JumpIfSmi(input, true_label);
5268 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
5269 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
5270 *cmp1 = input;
5271 *cmp2 = Operand(at);
5272 final_branch_condition = eq;
5273
5274 } else if (String::Equals(type_name, factory->string_string())) {
5275 __ JumpIfSmi(input, false_label);
5276 __ GetObjectType(input, input, scratch);
5277 *cmp1 = scratch;
5278 *cmp2 = Operand(FIRST_NONSTRING_TYPE);
5279 final_branch_condition = lt;
5280
5281 } else if (String::Equals(type_name, factory->symbol_string())) {
5282 __ JumpIfSmi(input, false_label);
5283 __ GetObjectType(input, input, scratch);
5284 *cmp1 = scratch;
5285 *cmp2 = Operand(SYMBOL_TYPE);
5286 final_branch_condition = eq;
5287
5288 } else if (String::Equals(type_name, factory->boolean_string())) {
5289 __ LoadRoot(at, Heap::kTrueValueRootIndex);
5290 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5291 __ LoadRoot(at, Heap::kFalseValueRootIndex);
5292 *cmp1 = at;
5293 *cmp2 = Operand(input);
5294 final_branch_condition = eq;
5295
5296 } else if (String::Equals(type_name, factory->undefined_string())) {
5297 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
5298 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5299 // The first instruction of JumpIfSmi is an And - it is safe in the delay
5300 // slot.
5301 __ JumpIfSmi(input, false_label);
5302 // Check for undetectable objects => true.
5303 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset));
5304 __ lbu(at, FieldMemOperand(input, Map::kBitFieldOffset));
5305 __ And(at, at, 1 << Map::kIsUndetectable);
5306 *cmp1 = at;
5307 *cmp2 = Operand(zero_reg);
5308 final_branch_condition = ne;
5309
5310 } else if (String::Equals(type_name, factory->function_string())) {
5311 __ JumpIfSmi(input, false_label);
5312 __ lw(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5313 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5314 __ And(scratch, scratch,
5315 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5316 *cmp1 = scratch;
5317 *cmp2 = Operand(1 << Map::kIsCallable);
5318 final_branch_condition = eq;
5319
5320 } else if (String::Equals(type_name, factory->object_string())) {
5321 __ JumpIfSmi(input, false_label);
5322 __ LoadRoot(at, Heap::kNullValueRootIndex);
5323 __ Branch(USE_DELAY_SLOT, true_label, eq, at, Operand(input));
5324 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5325 __ GetObjectType(input, scratch, scratch1());
5326 __ Branch(false_label, lt, scratch1(), Operand(FIRST_JS_RECEIVER_TYPE));
5327 // Check for callable or undetectable objects => false.
5328 __ lbu(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5329 __ And(at, scratch,
5330 Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5331 *cmp1 = at;
5332 *cmp2 = Operand(zero_reg);
5333 final_branch_condition = eq;
5334
5335// clang-format off
5336#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5337 } else if (String::Equals(type_name, factory->type##_string())) { \
5338 __ JumpIfSmi(input, false_label); \
5339 __ lw(input, FieldMemOperand(input, HeapObject::kMapOffset)); \
5340 __ LoadRoot(at, Heap::k##Type##MapRootIndex); \
5341 *cmp1 = input; \
5342 *cmp2 = Operand(at); \
5343 final_branch_condition = eq;
5344 SIMD128_TYPES(SIMD128_TYPE)
5345#undef SIMD128_TYPE
5346 // clang-format on
5347
5348 } else {
5349 *cmp1 = at;
5350 *cmp2 = Operand(zero_reg); // Set to valid regs, to avoid caller assertion.
5351 __ Branch(false_label);
5352 }
5353
5354 return final_branch_condition;
5355}
5356
5357
5358void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5359 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5360 // Ensure that we have enough space after the previous lazy-bailout
5361 // instruction for patching the code here.
5362 int current_pc = masm()->pc_offset();
5363 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5364 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5365 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5366 while (padding_size > 0) {
5367 __ nop();
5368 padding_size -= Assembler::kInstrSize;
5369 }
5370 }
5371 }
5372 last_lazy_deopt_pc_ = masm()->pc_offset();
5373}
5374
5375
5376void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5377 last_lazy_deopt_pc_ = masm()->pc_offset();
5378 DCHECK(instr->HasEnvironment());
5379 LEnvironment* env = instr->environment();
5380 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5381 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5382}
5383
5384
5385void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5386 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5387 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5388 // needed return address), even though the implementation of LAZY and EAGER is
5389 // now identical. When LAZY is eventually completely folded into EAGER, remove
5390 // the special case below.
5391 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5392 type = Deoptimizer::LAZY;
5393 }
5394
5395 DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type, zero_reg,
5396 Operand(zero_reg));
5397}
5398
5399
5400void LCodeGen::DoDummy(LDummy* instr) {
5401 // Nothing to see here, move on!
5402}
5403
5404
5405void LCodeGen::DoDummyUse(LDummyUse* instr) {
5406 // Nothing to see here, move on!
5407}
5408
5409
5410void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5411 PushSafepointRegistersScope scope(this);
5412 LoadContextFromDeferred(instr->context());
5413 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5414 RecordSafepointWithLazyDeopt(
5415 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5416 DCHECK(instr->HasEnvironment());
5417 LEnvironment* env = instr->environment();
5418 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5419}
5420
5421
5422void LCodeGen::DoStackCheck(LStackCheck* instr) {
5423 class DeferredStackCheck final : public LDeferredCode {
5424 public:
5425 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5426 : LDeferredCode(codegen), instr_(instr) { }
5427 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5428 LInstruction* instr() override { return instr_; }
5429
5430 private:
5431 LStackCheck* instr_;
5432 };
5433
5434 DCHECK(instr->HasEnvironment());
5435 LEnvironment* env = instr->environment();
5436 // There is no LLazyBailout instruction for stack-checks. We have to
5437 // prepare for lazy deoptimization explicitly here.
5438 if (instr->hydrogen()->is_function_entry()) {
5439 // Perform stack overflow check.
5440 Label done;
5441 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5442 __ Branch(&done, hs, sp, Operand(at));
5443 DCHECK(instr->context()->IsRegister());
5444 DCHECK(ToRegister(instr->context()).is(cp));
5445 CallCode(isolate()->builtins()->StackCheck(),
5446 RelocInfo::CODE_TARGET,
5447 instr);
5448 __ bind(&done);
5449 } else {
5450 DCHECK(instr->hydrogen()->is_backwards_branch());
5451 // Perform stack overflow check if this goto needs it before jumping.
5452 DeferredStackCheck* deferred_stack_check =
5453 new(zone()) DeferredStackCheck(this, instr);
5454 __ LoadRoot(at, Heap::kStackLimitRootIndex);
5455 __ Branch(deferred_stack_check->entry(), lo, sp, Operand(at));
5456 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5457 __ bind(instr->done_label());
5458 deferred_stack_check->SetExit(instr->done_label());
5459 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5460 // Don't record a deoptimization index for the safepoint here.
5461 // This will be done explicitly when emitting call and the safepoint in
5462 // the deferred code.
5463 }
5464}
5465
5466
5467void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5468 // This is a pseudo-instruction that ensures that the environment here is
5469 // properly registered for deoptimization and records the assembler's PC
5470 // offset.
5471 LEnvironment* environment = instr->environment();
5472
5473 // If the environment were already registered, we would have no way of
5474 // backpatching it with the spill slot operands.
5475 DCHECK(!environment->HasBeenRegistered());
5476 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5477
5478 GenerateOsrPrologue();
5479}
5480
5481
5482void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5483 Register result = ToRegister(instr->result());
5484 Register object = ToRegister(instr->object());
5485 __ And(at, object, kSmiTagMask);
5486 DeoptimizeIf(eq, instr, Deoptimizer::kSmi, at, Operand(zero_reg));
5487
5488 STATIC_ASSERT(JS_PROXY_TYPE == FIRST_JS_RECEIVER_TYPE);
5489 __ GetObjectType(object, a1, a1);
5490 DeoptimizeIf(le, instr, Deoptimizer::kNotAJavaScriptObject, a1,
5491 Operand(JS_PROXY_TYPE));
5492
5493 Label use_cache, call_runtime;
5494 DCHECK(object.is(a0));
5495 Register null_value = t1;
5496 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5497 __ CheckEnumCache(null_value, &call_runtime);
5498
5499 __ lw(result, FieldMemOperand(object, HeapObject::kMapOffset));
5500 __ Branch(&use_cache);
5501
5502 // Get the set of properties to enumerate.
5503 __ bind(&call_runtime);
5504 __ push(object);
5505 CallRuntime(Runtime::kGetPropertyNamesFast, instr);
5506
5507 __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
5508 DCHECK(result.is(v0));
5509 __ LoadRoot(at, Heap::kMetaMapRootIndex);
5510 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, a1, Operand(at));
5511 __ bind(&use_cache);
5512}
5513
5514
5515void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5516 Register map = ToRegister(instr->map());
5517 Register result = ToRegister(instr->result());
5518 Label load_cache, done;
5519 __ EnumLength(result, map);
5520 __ Branch(&load_cache, ne, result, Operand(Smi::FromInt(0)));
5521 __ li(result, Operand(isolate()->factory()->empty_fixed_array()));
5522 __ jmp(&done);
5523
5524 __ bind(&load_cache);
5525 __ LoadInstanceDescriptors(map, result);
5526 __ lw(result,
5527 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5528 __ lw(result,
5529 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5530 DeoptimizeIf(eq, instr, Deoptimizer::kNoCache, result, Operand(zero_reg));
5531
5532 __ bind(&done);
5533}
5534
5535
5536void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5537 Register object = ToRegister(instr->value());
5538 Register map = ToRegister(instr->map());
5539 __ lw(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5540 DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap, map, Operand(scratch0()));
5541}
5542
5543
5544void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5545 Register result,
5546 Register object,
5547 Register index) {
5548 PushSafepointRegistersScope scope(this);
5549 __ Push(object, index);
5550 __ mov(cp, zero_reg);
5551 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5552 RecordSafepointWithRegisters(
5553 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5554 __ StoreToSafepointRegisterSlot(v0, result);
5555}
5556
5557
5558void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5559 class DeferredLoadMutableDouble final : public LDeferredCode {
5560 public:
5561 DeferredLoadMutableDouble(LCodeGen* codegen,
5562 LLoadFieldByIndex* instr,
5563 Register result,
5564 Register object,
5565 Register index)
5566 : LDeferredCode(codegen),
5567 instr_(instr),
5568 result_(result),
5569 object_(object),
5570 index_(index) {
5571 }
5572 void Generate() override {
5573 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5574 }
5575 LInstruction* instr() override { return instr_; }
5576
5577 private:
5578 LLoadFieldByIndex* instr_;
5579 Register result_;
5580 Register object_;
5581 Register index_;
5582 };
5583
5584 Register object = ToRegister(instr->object());
5585 Register index = ToRegister(instr->index());
5586 Register result = ToRegister(instr->result());
5587 Register scratch = scratch0();
5588
5589 DeferredLoadMutableDouble* deferred;
5590 deferred = new(zone()) DeferredLoadMutableDouble(
5591 this, instr, result, object, index);
5592
5593 Label out_of_object, done;
5594
5595 __ And(scratch, index, Operand(Smi::FromInt(1)));
5596 __ Branch(deferred->entry(), ne, scratch, Operand(zero_reg));
5597 __ sra(index, index, 1);
5598
5599 __ Branch(USE_DELAY_SLOT, &out_of_object, lt, index, Operand(zero_reg));
5600 __ sll(scratch, index, kPointerSizeLog2 - kSmiTagSize); // In delay slot.
5601
5602 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
5603 __ Addu(scratch, object, scratch);
5604 __ lw(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5605
5606 __ Branch(&done);
5607
5608 __ bind(&out_of_object);
5609 __ lw(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5610 // Index is equal to negated out of object property index plus 1.
5611 __ Subu(scratch, result, scratch);
5612 __ lw(result, FieldMemOperand(scratch,
5613 FixedArray::kHeaderSize - kPointerSize));
5614 __ bind(deferred->exit());
5615 __ bind(&done);
5616}
5617
5618
5619void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5620 Register context = ToRegister(instr->context());
5621 __ sw(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
5622}
5623
5624
5625void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5626 Handle<ScopeInfo> scope_info = instr->scope_info();
5627 __ li(at, scope_info);
5628 __ Push(at, ToRegister(instr->function()));
5629 CallRuntime(Runtime::kPushBlockContext, instr);
5630 RecordSafepoint(Safepoint::kNoLazyDeopt);
5631}
5632
5633
5634#undef __
5635
5636} // namespace internal
5637} // namespace v8