blob: 615eb67ba6459542be354eda2ecab900a787d471 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X64
6
7#include "src/ast/scopes.h"
8#include "src/code-factory.h"
9#include "src/code-stubs.h"
10#include "src/codegen.h"
11#include "src/debug/debug.h"
12#include "src/full-codegen/full-codegen.h"
13#include "src/ic/ic.h"
14#include "src/parsing/parser.h"
15
16namespace v8 {
17namespace internal {
18
19#define __ ACCESS_MASM(masm_)
20
21
22class JumpPatchSite BASE_EMBEDDED {
23 public:
24 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
25#ifdef DEBUG
26 info_emitted_ = false;
27#endif
28 }
29
30 ~JumpPatchSite() {
31 DCHECK(patch_site_.is_bound() == info_emitted_);
32 }
33
34 void EmitJumpIfNotSmi(Register reg,
35 Label* target,
36 Label::Distance near_jump = Label::kFar) {
37 __ testb(reg, Immediate(kSmiTagMask));
38 EmitJump(not_carry, target, near_jump); // Always taken before patched.
39 }
40
41 void EmitJumpIfSmi(Register reg,
42 Label* target,
43 Label::Distance near_jump = Label::kFar) {
44 __ testb(reg, Immediate(kSmiTagMask));
45 EmitJump(carry, target, near_jump); // Never taken before patched.
46 }
47
48 void EmitPatchInfo() {
49 if (patch_site_.is_bound()) {
50 int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_);
51 DCHECK(is_uint8(delta_to_patch_site));
52 __ testl(rax, Immediate(delta_to_patch_site));
53#ifdef DEBUG
54 info_emitted_ = true;
55#endif
56 } else {
57 __ nop(); // Signals no inlined code.
58 }
59 }
60
61 private:
62 // jc will be patched with jz, jnc will become jnz.
63 void EmitJump(Condition cc, Label* target, Label::Distance near_jump) {
64 DCHECK(!patch_site_.is_bound() && !info_emitted_);
65 DCHECK(cc == carry || cc == not_carry);
66 __ bind(&patch_site_);
67 __ j(cc, target, near_jump);
68 }
69
70 MacroAssembler* masm_;
71 Label patch_site_;
72#ifdef DEBUG
73 bool info_emitted_;
74#endif
75};
76
77
78// Generate code for a JS function. On entry to the function the receiver
79// and arguments have been pushed on the stack left to right, with the
80// return address on top of them. The actual argument count matches the
81// formal parameter count expected by the function.
82//
83// The live registers are:
84// o rdi: the JS function object being called (i.e. ourselves)
85// o rdx: the new target value
86// o rsi: our context
87// o rbp: our caller's frame pointer
88// o rsp: stack pointer (pointing to return address)
89//
90// The function builds a JS frame. Please see JavaScriptFrameConstants in
91// frames-x64.h for its layout.
92void FullCodeGenerator::Generate() {
93 CompilationInfo* info = info_;
94 profiling_counter_ = isolate()->factory()->NewCell(
95 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
96 SetFunctionPosition(literal());
97 Comment cmnt(masm_, "[ function compiled by full code generator");
98
99 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
100
101#ifdef DEBUG
102 if (strlen(FLAG_stop_at) > 0 &&
103 info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
104 __ int3();
105 }
106#endif
107
108 if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) {
109 StackArgumentsAccessor args(rsp, info->scope()->num_parameters());
110 __ movp(rcx, args.GetReceiverOperand());
111 __ AssertNotSmi(rcx);
112 __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rcx);
113 __ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver);
114 }
115
116 // Open a frame scope to indicate that there is a frame on the stack. The
117 // MANUAL indicates that the scope shouldn't actually generate code to set up
118 // the frame (that is done below).
119 FrameScope frame_scope(masm_, StackFrame::MANUAL);
120
121 info->set_prologue_offset(masm_->pc_offset());
122 __ Prologue(info->GeneratePreagedPrologue());
123
124 { Comment cmnt(masm_, "[ Allocate locals");
125 int locals_count = info->scope()->num_stack_slots();
126 // Generators allocate locals, if any, in context slots.
127 DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0);
128 if (locals_count == 1) {
129 __ PushRoot(Heap::kUndefinedValueRootIndex);
130 } else if (locals_count > 1) {
131 if (locals_count >= 128) {
132 Label ok;
133 __ movp(rcx, rsp);
134 __ subp(rcx, Immediate(locals_count * kPointerSize));
135 __ CompareRoot(rcx, Heap::kRealStackLimitRootIndex);
136 __ j(above_equal, &ok, Label::kNear);
137 __ CallRuntime(Runtime::kThrowStackOverflow);
138 __ bind(&ok);
139 }
140 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
141 const int kMaxPushes = 32;
142 if (locals_count >= kMaxPushes) {
143 int loop_iterations = locals_count / kMaxPushes;
144 __ movp(rcx, Immediate(loop_iterations));
145 Label loop_header;
146 __ bind(&loop_header);
147 // Do pushes.
148 for (int i = 0; i < kMaxPushes; i++) {
149 __ Push(rax);
150 }
151 // Continue loop if not done.
152 __ decp(rcx);
153 __ j(not_zero, &loop_header, Label::kNear);
154 }
155 int remaining = locals_count % kMaxPushes;
156 // Emit the remaining pushes.
157 for (int i = 0; i < remaining; i++) {
158 __ Push(rax);
159 }
160 }
161 }
162
163 bool function_in_register = true;
164
165 // Possibly allocate a local context.
166 if (info->scope()->num_heap_slots() > 0) {
167 Comment cmnt(masm_, "[ Allocate context");
168 bool need_write_barrier = true;
169 int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
170 // Argument to NewContext is the function, which is still in rdi.
171 if (info->scope()->is_script_scope()) {
172 __ Push(rdi);
173 __ Push(info->scope()->GetScopeInfo(info->isolate()));
174 __ CallRuntime(Runtime::kNewScriptContext);
175 PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG);
176 // The new target value is not used, clobbering is safe.
177 DCHECK_NULL(info->scope()->new_target_var());
178 } else {
179 if (info->scope()->new_target_var() != nullptr) {
180 __ Push(rdx); // Preserve new target.
181 }
182 if (slots <= FastNewContextStub::kMaximumSlots) {
183 FastNewContextStub stub(isolate(), slots);
184 __ CallStub(&stub);
185 // Result of FastNewContextStub is always in new space.
186 need_write_barrier = false;
187 } else {
188 __ Push(rdi);
189 __ CallRuntime(Runtime::kNewFunctionContext);
190 }
191 if (info->scope()->new_target_var() != nullptr) {
192 __ Pop(rdx); // Restore new target.
193 }
194 }
195 function_in_register = false;
196 // Context is returned in rax. It replaces the context passed to us.
197 // It's saved in the stack and kept live in rsi.
198 __ movp(rsi, rax);
199 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
200
201 // Copy any necessary parameters into the context.
202 int num_parameters = info->scope()->num_parameters();
203 int first_parameter = info->scope()->has_this_declaration() ? -1 : 0;
204 for (int i = first_parameter; i < num_parameters; i++) {
205 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
206 if (var->IsContextSlot()) {
207 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
208 (num_parameters - 1 - i) * kPointerSize;
209 // Load parameter from stack.
210 __ movp(rax, Operand(rbp, parameter_offset));
211 // Store it in the context.
212 int context_offset = Context::SlotOffset(var->index());
213 __ movp(Operand(rsi, context_offset), rax);
214 // Update the write barrier. This clobbers rax and rbx.
215 if (need_write_barrier) {
216 __ RecordWriteContextSlot(
217 rsi, context_offset, rax, rbx, kDontSaveFPRegs);
218 } else if (FLAG_debug_code) {
219 Label done;
220 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
221 __ Abort(kExpectedNewSpaceObject);
222 __ bind(&done);
223 }
224 }
225 }
226 }
227
228 // Register holding this function and new target are both trashed in case we
229 // bailout here. But since that can happen only when new target is not used
230 // and we allocate a context, the value of |function_in_register| is correct.
231 PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS);
232
233 // Possibly set up a local binding to the this function which is used in
234 // derived constructors with super calls.
235 Variable* this_function_var = scope()->this_function_var();
236 if (this_function_var != nullptr) {
237 Comment cmnt(masm_, "[ This function");
238 if (!function_in_register) {
239 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
240 // The write barrier clobbers register again, keep it marked as such.
241 }
242 SetVar(this_function_var, rdi, rbx, rcx);
243 }
244
245 // Possibly set up a local binding to the new target value.
246 Variable* new_target_var = scope()->new_target_var();
247 if (new_target_var != nullptr) {
248 Comment cmnt(masm_, "[ new.target");
249 SetVar(new_target_var, rdx, rbx, rcx);
250 }
251
252 // Possibly allocate RestParameters
253 int rest_index;
254 Variable* rest_param = scope()->rest_parameter(&rest_index);
255 if (rest_param) {
256 Comment cmnt(masm_, "[ Allocate rest parameter array");
257
258 int num_parameters = info->scope()->num_parameters();
259 int offset = num_parameters * kPointerSize;
260
261 __ Move(RestParamAccessDescriptor::parameter_count(),
262 Smi::FromInt(num_parameters));
263 __ leap(RestParamAccessDescriptor::parameter_pointer(),
264 Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
265 __ Move(RestParamAccessDescriptor::rest_parameter_index(),
266 Smi::FromInt(rest_index));
267 function_in_register = false;
268
269 RestParamAccessStub stub(isolate());
270 __ CallStub(&stub);
271
272 SetVar(rest_param, rax, rbx, rdx);
273 }
274
275 // Possibly allocate an arguments object.
276 Variable* arguments = scope()->arguments();
277 if (arguments != NULL) {
278 // Arguments object must be allocated after the context object, in
279 // case the "arguments" or ".arguments" variables are in the context.
280 Comment cmnt(masm_, "[ Allocate arguments object");
281 DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function()));
282 if (!function_in_register) {
283 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
284 }
285 // The receiver is just before the parameters on the caller's stack.
286 int num_parameters = info->scope()->num_parameters();
287 int offset = num_parameters * kPointerSize;
288 __ Move(ArgumentsAccessNewDescriptor::parameter_count(),
289 Smi::FromInt(num_parameters));
290 __ leap(ArgumentsAccessNewDescriptor::parameter_pointer(),
291 Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset));
292
293 // Arguments to ArgumentsAccessStub:
294 // function, parameter pointer, parameter count.
295 // The stub will rewrite parameter pointer and parameter count if the
296 // previous stack frame was an arguments adapter frame.
297 bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters();
298 ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType(
299 is_unmapped, literal()->has_duplicate_parameters());
300 ArgumentsAccessStub stub(isolate(), type);
301 __ CallStub(&stub);
302
303 SetVar(arguments, rax, rbx, rdx);
304 }
305
306 if (FLAG_trace) {
307 __ CallRuntime(Runtime::kTraceEnter);
308 }
309
310 // Visit the declarations and body unless there is an illegal
311 // redeclaration.
312 if (scope()->HasIllegalRedeclaration()) {
313 Comment cmnt(masm_, "[ Declarations");
314 VisitForEffect(scope()->GetIllegalRedeclaration());
315
316 } else {
317 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
318 { Comment cmnt(masm_, "[ Declarations");
319 VisitDeclarations(scope()->declarations());
320 }
321
322 // Assert that the declarations do not use ICs. Otherwise the debugger
323 // won't be able to redirect a PC at an IC to the correct IC in newly
324 // recompiled code.
325 DCHECK_EQ(0, ic_total_count_);
326
327 { Comment cmnt(masm_, "[ Stack check");
328 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
329 Label ok;
330 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
331 __ j(above_equal, &ok, Label::kNear);
332 __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
333 __ bind(&ok);
334 }
335
336 { Comment cmnt(masm_, "[ Body");
337 DCHECK(loop_depth() == 0);
338 VisitStatements(literal()->body());
339 DCHECK(loop_depth() == 0);
340 }
341 }
342
343 // Always emit a 'return undefined' in case control fell off the end of
344 // the body.
345 { Comment cmnt(masm_, "[ return <undefined>;");
346 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
347 EmitReturnSequence();
348 }
349}
350
351
352void FullCodeGenerator::ClearAccumulator() {
353 __ Set(rax, 0);
354}
355
356
357void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
358 __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
359 __ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset),
360 Smi::FromInt(-delta));
361}
362
363
364void FullCodeGenerator::EmitProfilingCounterReset() {
365 int reset_value = FLAG_interrupt_budget;
366 __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT);
367 __ Move(kScratchRegister, Smi::FromInt(reset_value));
368 __ movp(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister);
369}
370
371
372static const byte kJnsOffset = kPointerSize == kInt64Size ? 0x1d : 0x14;
373
374
375void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
376 Label* back_edge_target) {
377 Comment cmnt(masm_, "[ Back edge bookkeeping");
378 Label ok;
379
380 DCHECK(back_edge_target->is_bound());
381 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
382 int weight = Min(kMaxBackEdgeWeight,
383 Max(1, distance / kCodeSizeMultiplier));
384 EmitProfilingCounterDecrement(weight);
385
386 __ j(positive, &ok, Label::kNear);
387 {
388 PredictableCodeSizeScope predictible_code_size_scope(masm_, kJnsOffset);
389 DontEmitDebugCodeScope dont_emit_debug_code_scope(masm_);
390 __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
391
392 // Record a mapping of this PC offset to the OSR id. This is used to find
393 // the AST id from the unoptimized code in order to use it as a key into
394 // the deoptimization input data found in the optimized code.
395 RecordBackEdge(stmt->OsrEntryId());
396
397 EmitProfilingCounterReset();
398 }
399 __ bind(&ok);
400
401 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
402 // Record a mapping of the OSR id to this PC. This is used if the OSR
403 // entry becomes the target of a bailout. We don't expect it to be, but
404 // we want it to work if it is.
405 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
406}
407
408
409void FullCodeGenerator::EmitReturnSequence() {
410 Comment cmnt(masm_, "[ Return sequence");
411 if (return_label_.is_bound()) {
412 __ jmp(&return_label_);
413 } else {
414 __ bind(&return_label_);
415 if (FLAG_trace) {
416 __ Push(rax);
417 __ CallRuntime(Runtime::kTraceExit);
418 }
419 // Pretend that the exit is a backwards jump to the entry.
420 int weight = 1;
421 if (info_->ShouldSelfOptimize()) {
422 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
423 } else {
424 int distance = masm_->pc_offset();
425 weight = Min(kMaxBackEdgeWeight,
426 Max(1, distance / kCodeSizeMultiplier));
427 }
428 EmitProfilingCounterDecrement(weight);
429 Label ok;
430 __ j(positive, &ok, Label::kNear);
431 __ Push(rax);
432 __ call(isolate()->builtins()->InterruptCheck(),
433 RelocInfo::CODE_TARGET);
434 __ Pop(rax);
435 EmitProfilingCounterReset();
436 __ bind(&ok);
437
438 SetReturnPosition(literal());
439 __ leave();
440
441 int arg_count = info_->scope()->num_parameters() + 1;
442 int arguments_bytes = arg_count * kPointerSize;
443 __ Ret(arguments_bytes, rcx);
444 }
445}
446
447
448void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
449 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
450 MemOperand operand = codegen()->VarOperand(var, result_register());
451 __ Push(operand);
452}
453
454
455void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
456}
457
458
459void FullCodeGenerator::AccumulatorValueContext::Plug(
460 Heap::RootListIndex index) const {
461 __ LoadRoot(result_register(), index);
462}
463
464
465void FullCodeGenerator::StackValueContext::Plug(
466 Heap::RootListIndex index) const {
467 __ PushRoot(index);
468}
469
470
471void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
472 codegen()->PrepareForBailoutBeforeSplit(condition(),
473 true,
474 true_label_,
475 false_label_);
476 if (index == Heap::kUndefinedValueRootIndex ||
477 index == Heap::kNullValueRootIndex ||
478 index == Heap::kFalseValueRootIndex) {
479 if (false_label_ != fall_through_) __ jmp(false_label_);
480 } else if (index == Heap::kTrueValueRootIndex) {
481 if (true_label_ != fall_through_) __ jmp(true_label_);
482 } else {
483 __ LoadRoot(result_register(), index);
484 codegen()->DoTest(this);
485 }
486}
487
488
489void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
490}
491
492
493void FullCodeGenerator::AccumulatorValueContext::Plug(
494 Handle<Object> lit) const {
495 if (lit->IsSmi()) {
496 __ SafeMove(result_register(), Smi::cast(*lit));
497 } else {
498 __ Move(result_register(), lit);
499 }
500}
501
502
503void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
504 if (lit->IsSmi()) {
505 __ SafePush(Smi::cast(*lit));
506 } else {
507 __ Push(lit);
508 }
509}
510
511
512void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
513 codegen()->PrepareForBailoutBeforeSplit(condition(),
514 true,
515 true_label_,
516 false_label_);
517 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
518 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
519 if (false_label_ != fall_through_) __ jmp(false_label_);
520 } else if (lit->IsTrue() || lit->IsJSObject()) {
521 if (true_label_ != fall_through_) __ jmp(true_label_);
522 } else if (lit->IsString()) {
523 if (String::cast(*lit)->length() == 0) {
524 if (false_label_ != fall_through_) __ jmp(false_label_);
525 } else {
526 if (true_label_ != fall_through_) __ jmp(true_label_);
527 }
528 } else if (lit->IsSmi()) {
529 if (Smi::cast(*lit)->value() == 0) {
530 if (false_label_ != fall_through_) __ jmp(false_label_);
531 } else {
532 if (true_label_ != fall_through_) __ jmp(true_label_);
533 }
534 } else {
535 // For simplicity we always test the accumulator register.
536 __ Move(result_register(), lit);
537 codegen()->DoTest(this);
538 }
539}
540
541
542void FullCodeGenerator::EffectContext::DropAndPlug(int count,
543 Register reg) const {
544 DCHECK(count > 0);
545 __ Drop(count);
546}
547
548
549void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
550 int count,
551 Register reg) const {
552 DCHECK(count > 0);
553 __ Drop(count);
554 __ Move(result_register(), reg);
555}
556
557
558void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
559 Register reg) const {
560 DCHECK(count > 0);
561 if (count > 1) __ Drop(count - 1);
562 __ movp(Operand(rsp, 0), reg);
563}
564
565
566void FullCodeGenerator::TestContext::DropAndPlug(int count,
567 Register reg) const {
568 DCHECK(count > 0);
569 // For simplicity we always test the accumulator register.
570 __ Drop(count);
571 __ Move(result_register(), reg);
572 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
573 codegen()->DoTest(this);
574}
575
576
577void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
578 Label* materialize_false) const {
579 DCHECK(materialize_true == materialize_false);
580 __ bind(materialize_true);
581}
582
583
584void FullCodeGenerator::AccumulatorValueContext::Plug(
585 Label* materialize_true,
586 Label* materialize_false) const {
587 Label done;
588 __ bind(materialize_true);
589 __ Move(result_register(), isolate()->factory()->true_value());
590 __ jmp(&done, Label::kNear);
591 __ bind(materialize_false);
592 __ Move(result_register(), isolate()->factory()->false_value());
593 __ bind(&done);
594}
595
596
597void FullCodeGenerator::StackValueContext::Plug(
598 Label* materialize_true,
599 Label* materialize_false) const {
600 Label done;
601 __ bind(materialize_true);
602 __ Push(isolate()->factory()->true_value());
603 __ jmp(&done, Label::kNear);
604 __ bind(materialize_false);
605 __ Push(isolate()->factory()->false_value());
606 __ bind(&done);
607}
608
609
610void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
611 Label* materialize_false) const {
612 DCHECK(materialize_true == true_label_);
613 DCHECK(materialize_false == false_label_);
614}
615
616
617void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
618 Heap::RootListIndex value_root_index =
619 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
620 __ LoadRoot(result_register(), value_root_index);
621}
622
623
624void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
625 Heap::RootListIndex value_root_index =
626 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
627 __ PushRoot(value_root_index);
628}
629
630
631void FullCodeGenerator::TestContext::Plug(bool flag) const {
632 codegen()->PrepareForBailoutBeforeSplit(condition(),
633 true,
634 true_label_,
635 false_label_);
636 if (flag) {
637 if (true_label_ != fall_through_) __ jmp(true_label_);
638 } else {
639 if (false_label_ != fall_through_) __ jmp(false_label_);
640 }
641}
642
643
644void FullCodeGenerator::DoTest(Expression* condition,
645 Label* if_true,
646 Label* if_false,
647 Label* fall_through) {
648 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
649 CallIC(ic, condition->test_id());
650 __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
651 Split(equal, if_true, if_false, fall_through);
652}
653
654
655void FullCodeGenerator::Split(Condition cc,
656 Label* if_true,
657 Label* if_false,
658 Label* fall_through) {
659 if (if_false == fall_through) {
660 __ j(cc, if_true);
661 } else if (if_true == fall_through) {
662 __ j(NegateCondition(cc), if_false);
663 } else {
664 __ j(cc, if_true);
665 __ jmp(if_false);
666 }
667}
668
669
670MemOperand FullCodeGenerator::StackOperand(Variable* var) {
671 DCHECK(var->IsStackAllocated());
672 // Offset is negative because higher indexes are at lower addresses.
673 int offset = -var->index() * kPointerSize;
674 // Adjust by a (parameter or local) base offset.
675 if (var->IsParameter()) {
676 offset += kFPOnStackSize + kPCOnStackSize +
677 (info_->scope()->num_parameters() - 1) * kPointerSize;
678 } else {
679 offset += JavaScriptFrameConstants::kLocal0Offset;
680 }
681 return Operand(rbp, offset);
682}
683
684
685MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
686 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
687 if (var->IsContextSlot()) {
688 int context_chain_length = scope()->ContextChainLength(var->scope());
689 __ LoadContext(scratch, context_chain_length);
690 return ContextOperand(scratch, var->index());
691 } else {
692 return StackOperand(var);
693 }
694}
695
696
697void FullCodeGenerator::GetVar(Register dest, Variable* var) {
698 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
699 MemOperand location = VarOperand(var, dest);
700 __ movp(dest, location);
701}
702
703
704void FullCodeGenerator::SetVar(Variable* var,
705 Register src,
706 Register scratch0,
707 Register scratch1) {
708 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
709 DCHECK(!scratch0.is(src));
710 DCHECK(!scratch0.is(scratch1));
711 DCHECK(!scratch1.is(src));
712 MemOperand location = VarOperand(var, scratch0);
713 __ movp(location, src);
714
715 // Emit the write barrier code if the location is in the heap.
716 if (var->IsContextSlot()) {
717 int offset = Context::SlotOffset(var->index());
718 __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs);
719 }
720}
721
722
723void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
724 bool should_normalize,
725 Label* if_true,
726 Label* if_false) {
727 // Only prepare for bailouts before splits if we're in a test
728 // context. Otherwise, we let the Visit function deal with the
729 // preparation to avoid preparing with the same AST id twice.
730 if (!context()->IsTest()) return;
731
732 Label skip;
733 if (should_normalize) __ jmp(&skip, Label::kNear);
734 PrepareForBailout(expr, TOS_REG);
735 if (should_normalize) {
736 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
737 Split(equal, if_true, if_false, NULL);
738 __ bind(&skip);
739 }
740}
741
742
743void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
744 // The variable in the declaration always resides in the current context.
745 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
746 if (generate_debug_code_) {
747 // Check that we're not inside a with or catch context.
748 __ movp(rbx, FieldOperand(rsi, HeapObject::kMapOffset));
749 __ CompareRoot(rbx, Heap::kWithContextMapRootIndex);
750 __ Check(not_equal, kDeclarationInWithContext);
751 __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex);
752 __ Check(not_equal, kDeclarationInCatchContext);
753 }
754}
755
756
757void FullCodeGenerator::VisitVariableDeclaration(
758 VariableDeclaration* declaration) {
759 // If it was not possible to allocate the variable at compile time, we
760 // need to "declare" it at runtime to make sure it actually exists in the
761 // local context.
762 VariableProxy* proxy = declaration->proxy();
763 VariableMode mode = declaration->mode();
764 Variable* variable = proxy->var();
765 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
766 switch (variable->location()) {
767 case VariableLocation::GLOBAL:
768 case VariableLocation::UNALLOCATED:
769 globals_->Add(variable->name(), zone());
770 globals_->Add(variable->binding_needs_init()
771 ? isolate()->factory()->the_hole_value()
772 : isolate()->factory()->undefined_value(),
773 zone());
774 break;
775
776 case VariableLocation::PARAMETER:
777 case VariableLocation::LOCAL:
778 if (hole_init) {
779 Comment cmnt(masm_, "[ VariableDeclaration");
780 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
781 __ movp(StackOperand(variable), kScratchRegister);
782 }
783 break;
784
785 case VariableLocation::CONTEXT:
786 if (hole_init) {
787 Comment cmnt(masm_, "[ VariableDeclaration");
788 EmitDebugCheckDeclarationContext(variable);
789 __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex);
790 __ movp(ContextOperand(rsi, variable->index()), kScratchRegister);
791 // No write barrier since the hole value is in old space.
792 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
793 }
794 break;
795
796 case VariableLocation::LOOKUP: {
797 Comment cmnt(masm_, "[ VariableDeclaration");
798 __ Push(variable->name());
799 // Declaration nodes are always introduced in one of four modes.
800 DCHECK(IsDeclaredVariableMode(mode));
801 // Push initial value, if any.
802 // Note: For variables we must not push an initial value (such as
803 // 'undefined') because we may have a (legal) redeclaration and we
804 // must not destroy the current value.
805 if (hole_init) {
806 __ PushRoot(Heap::kTheHoleValueRootIndex);
807 } else {
808 __ Push(Smi::FromInt(0)); // Indicates no initial value.
809 }
810 __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
811 __ CallRuntime(Runtime::kDeclareLookupSlot);
812 break;
813 }
814 }
815}
816
817
818void FullCodeGenerator::VisitFunctionDeclaration(
819 FunctionDeclaration* declaration) {
820 VariableProxy* proxy = declaration->proxy();
821 Variable* variable = proxy->var();
822 switch (variable->location()) {
823 case VariableLocation::GLOBAL:
824 case VariableLocation::UNALLOCATED: {
825 globals_->Add(variable->name(), zone());
826 Handle<SharedFunctionInfo> function =
827 Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_);
828 // Check for stack-overflow exception.
829 if (function.is_null()) return SetStackOverflow();
830 globals_->Add(function, zone());
831 break;
832 }
833
834 case VariableLocation::PARAMETER:
835 case VariableLocation::LOCAL: {
836 Comment cmnt(masm_, "[ FunctionDeclaration");
837 VisitForAccumulatorValue(declaration->fun());
838 __ movp(StackOperand(variable), result_register());
839 break;
840 }
841
842 case VariableLocation::CONTEXT: {
843 Comment cmnt(masm_, "[ FunctionDeclaration");
844 EmitDebugCheckDeclarationContext(variable);
845 VisitForAccumulatorValue(declaration->fun());
846 __ movp(ContextOperand(rsi, variable->index()), result_register());
847 int offset = Context::SlotOffset(variable->index());
848 // We know that we have written a function, which is not a smi.
849 __ RecordWriteContextSlot(rsi,
850 offset,
851 result_register(),
852 rcx,
853 kDontSaveFPRegs,
854 EMIT_REMEMBERED_SET,
855 OMIT_SMI_CHECK);
856 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
857 break;
858 }
859
860 case VariableLocation::LOOKUP: {
861 Comment cmnt(masm_, "[ FunctionDeclaration");
862 __ Push(variable->name());
863 VisitForStackValue(declaration->fun());
864 __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes()));
865 __ CallRuntime(Runtime::kDeclareLookupSlot);
866 break;
867 }
868 }
869}
870
871
872void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
873 // Call the runtime to declare the globals.
874 __ Push(pairs);
875 __ Push(Smi::FromInt(DeclareGlobalsFlags()));
876 __ CallRuntime(Runtime::kDeclareGlobals);
877 // Return value is ignored.
878}
879
880
881void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
882 // Call the runtime to declare the modules.
883 __ Push(descriptions);
884 __ CallRuntime(Runtime::kDeclareModules);
885 // Return value is ignored.
886}
887
888
889void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
890 Comment cmnt(masm_, "[ SwitchStatement");
891 Breakable nested_statement(this, stmt);
892 SetStatementPosition(stmt);
893
894 // Keep the switch value on the stack until a case matches.
895 VisitForStackValue(stmt->tag());
896 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
897
898 ZoneList<CaseClause*>* clauses = stmt->cases();
899 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
900
901 Label next_test; // Recycled for each test.
902 // Compile all the tests with branches to their bodies.
903 for (int i = 0; i < clauses->length(); i++) {
904 CaseClause* clause = clauses->at(i);
905 clause->body_target()->Unuse();
906
907 // The default is not a test, but remember it as final fall through.
908 if (clause->is_default()) {
909 default_clause = clause;
910 continue;
911 }
912
913 Comment cmnt(masm_, "[ Case comparison");
914 __ bind(&next_test);
915 next_test.Unuse();
916
917 // Compile the label expression.
918 VisitForAccumulatorValue(clause->label());
919
920 // Perform the comparison as if via '==='.
921 __ movp(rdx, Operand(rsp, 0)); // Switch value.
922 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
923 JumpPatchSite patch_site(masm_);
924 if (inline_smi_code) {
925 Label slow_case;
926 __ movp(rcx, rdx);
927 __ orp(rcx, rax);
928 patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
929
930 __ cmpp(rdx, rax);
931 __ j(not_equal, &next_test);
932 __ Drop(1); // Switch value is no longer needed.
933 __ jmp(clause->body_target());
934 __ bind(&slow_case);
935 }
936
937 // Record position before stub call for type feedback.
938 SetExpressionPosition(clause);
939 Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT,
940 strength(language_mode())).code();
941 CallIC(ic, clause->CompareId());
942 patch_site.EmitPatchInfo();
943
944 Label skip;
945 __ jmp(&skip, Label::kNear);
946 PrepareForBailout(clause, TOS_REG);
947 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
948 __ j(not_equal, &next_test);
949 __ Drop(1);
950 __ jmp(clause->body_target());
951 __ bind(&skip);
952
953 __ testp(rax, rax);
954 __ j(not_equal, &next_test);
955 __ Drop(1); // Switch value is no longer needed.
956 __ jmp(clause->body_target());
957 }
958
959 // Discard the test value and jump to the default if present, otherwise to
960 // the end of the statement.
961 __ bind(&next_test);
962 __ Drop(1); // Switch value is no longer needed.
963 if (default_clause == NULL) {
964 __ jmp(nested_statement.break_label());
965 } else {
966 __ jmp(default_clause->body_target());
967 }
968
969 // Compile all the case bodies.
970 for (int i = 0; i < clauses->length(); i++) {
971 Comment cmnt(masm_, "[ Case body");
972 CaseClause* clause = clauses->at(i);
973 __ bind(clause->body_target());
974 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
975 VisitStatements(clause->statements());
976 }
977
978 __ bind(nested_statement.break_label());
979 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
980}
981
982
983void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
984 Comment cmnt(masm_, "[ ForInStatement");
985 SetStatementPosition(stmt, SKIP_BREAK);
986
987 FeedbackVectorSlot slot = stmt->ForInFeedbackSlot();
988
989 Label loop, exit;
990 ForIn loop_statement(this, stmt);
991 increment_loop_depth();
992
993 // Get the object to enumerate over. If the object is null or undefined, skip
994 // over the loop. See ECMA-262 version 5, section 12.6.4.
995 SetExpressionAsStatementPosition(stmt->enumerable());
996 VisitForAccumulatorValue(stmt->enumerable());
997 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
998 __ j(equal, &exit);
999 Register null_value = rdi;
1000 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1001 __ cmpp(rax, null_value);
1002 __ j(equal, &exit);
1003
1004 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1005
1006 // Convert the object to a JS object.
1007 Label convert, done_convert;
1008 __ JumpIfSmi(rax, &convert, Label::kNear);
1009 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
1010 __ j(above_equal, &done_convert, Label::kNear);
1011 __ bind(&convert);
1012 ToObjectStub stub(isolate());
1013 __ CallStub(&stub);
1014 __ bind(&done_convert);
1015 PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG);
1016 __ Push(rax);
1017
1018 // Check for proxies.
1019 Label call_runtime;
1020 __ CmpObjectType(rax, JS_PROXY_TYPE, rcx);
1021 __ j(equal, &call_runtime);
1022
1023 // Check cache validity in generated code. This is a fast case for
1024 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1025 // guarantee cache validity, call the runtime system to check cache
1026 // validity or get the property names in a fixed array.
1027 __ CheckEnumCache(null_value, &call_runtime);
1028
1029 // The enum cache is valid. Load the map of the object being
1030 // iterated over and use the cache for the iteration.
1031 Label use_cache;
1032 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
1033 __ jmp(&use_cache, Label::kNear);
1034
1035 // Get the set of properties to enumerate.
1036 __ bind(&call_runtime);
1037 __ Push(rax); // Duplicate the enumerable object on the stack.
1038 __ CallRuntime(Runtime::kGetPropertyNamesFast);
1039 PrepareForBailoutForId(stmt->EnumId(), TOS_REG);
1040
1041 // If we got a map from the runtime call, we can do a fast
1042 // modification check. Otherwise, we got a fixed array, and we have
1043 // to do a slow check.
1044 Label fixed_array;
1045 __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
1046 Heap::kMetaMapRootIndex);
1047 __ j(not_equal, &fixed_array);
1048
1049 // We got a map in register rax. Get the enumeration cache from it.
1050 __ bind(&use_cache);
1051
1052 Label no_descriptors;
1053
1054 __ EnumLength(rdx, rax);
1055 __ Cmp(rdx, Smi::FromInt(0));
1056 __ j(equal, &no_descriptors);
1057
1058 __ LoadInstanceDescriptors(rax, rcx);
1059 __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheOffset));
1060 __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset));
1061
1062 // Set up the four remaining stack slots.
1063 __ Push(rax); // Map.
1064 __ Push(rcx); // Enumeration cache.
1065 __ Push(rdx); // Number of valid entries for the map in the enum cache.
1066 __ Push(Smi::FromInt(0)); // Initial index.
1067 __ jmp(&loop);
1068
1069 __ bind(&no_descriptors);
1070 __ addp(rsp, Immediate(kPointerSize));
1071 __ jmp(&exit);
1072
1073 // We got a fixed array in register rax. Iterate through that.
1074 __ bind(&fixed_array);
1075
1076 // No need for a write barrier, we are storing a Smi in the feedback vector.
1077 __ EmitLoadTypeFeedbackVector(rbx);
1078 int vector_index = SmiFromSlot(slot)->value();
1079 __ Move(FieldOperand(rbx, FixedArray::OffsetOfElementAt(vector_index)),
1080 TypeFeedbackVector::MegamorphicSentinel(isolate()));
1081 __ movp(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object
1082 __ Push(Smi::FromInt(1)); // Smi(1) indicates slow check
1083 __ Push(rax); // Array
1084 __ movp(rax, FieldOperand(rax, FixedArray::kLengthOffset));
1085 __ Push(rax); // Fixed array length (as smi).
1086 __ Push(Smi::FromInt(0)); // Initial index.
1087
1088 // Generate code for doing the condition check.
1089 __ bind(&loop);
1090 SetExpressionAsStatementPosition(stmt->each());
1091
1092 __ movp(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index.
1093 __ cmpp(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length.
1094 __ j(above_equal, loop_statement.break_label());
1095
1096 // Get the current entry of the array into register rbx.
1097 __ movp(rbx, Operand(rsp, 2 * kPointerSize));
1098 SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2);
1099 __ movp(rbx, FieldOperand(rbx,
1100 index.reg,
1101 index.scale,
1102 FixedArray::kHeaderSize));
1103
1104 // Get the expected map from the stack or a smi in the
1105 // permanent slow case into register rdx.
1106 __ movp(rdx, Operand(rsp, 3 * kPointerSize));
1107
1108 // Check if the expected map still matches that of the enumerable.
1109 // If not, we may have to filter the key.
1110 Label update_each;
1111 __ movp(rcx, Operand(rsp, 4 * kPointerSize));
1112 __ cmpp(rdx, FieldOperand(rcx, HeapObject::kMapOffset));
1113 __ j(equal, &update_each, Label::kNear);
1114
1115 // Convert the entry to a string or null if it isn't a property
1116 // anymore. If the property has been removed while iterating, we
1117 // just skip it.
1118 __ Push(rcx); // Enumerable.
1119 __ Push(rbx); // Current entry.
1120 __ CallRuntime(Runtime::kForInFilter);
1121 PrepareForBailoutForId(stmt->FilterId(), TOS_REG);
1122 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
1123 __ j(equal, loop_statement.continue_label());
1124 __ movp(rbx, rax);
1125
1126 // Update the 'each' property or variable from the possibly filtered
1127 // entry in register rbx.
1128 __ bind(&update_each);
1129 __ movp(result_register(), rbx);
1130 // Perform the assignment as if via '='.
1131 { EffectContext context(this);
1132 EmitAssignment(stmt->each(), stmt->EachFeedbackSlot());
1133 PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS);
1134 }
1135
1136 // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body().
1137 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1138 // Generate code for the body of the loop.
1139 Visit(stmt->body());
1140
1141 // Generate code for going to the next element by incrementing the
1142 // index (smi) stored on top of the stack.
1143 __ bind(loop_statement.continue_label());
1144 __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1));
1145
1146 EmitBackEdgeBookkeeping(stmt, &loop);
1147 __ jmp(&loop);
1148
1149 // Remove the pointers stored on the stack.
1150 __ bind(loop_statement.break_label());
1151 __ addp(rsp, Immediate(5 * kPointerSize));
1152
1153 // Exit and decrement the loop depth.
1154 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1155 __ bind(&exit);
1156 decrement_loop_depth();
1157}
1158
1159
1160void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1161 bool pretenure) {
1162 // Use the fast case closure allocation code that allocates in new
1163 // space for nested functions that don't need literals cloning. If
1164 // we're running with the --always-opt or the --prepare-always-opt
1165 // flag, we need to use the runtime function so that the new function
1166 // we are creating here gets a chance to have its code optimized and
1167 // doesn't just get a copy of the existing unoptimized code.
1168 if (!FLAG_always_opt &&
1169 !FLAG_prepare_always_opt &&
1170 !pretenure &&
1171 scope()->is_function_scope() &&
1172 info->num_literals() == 0) {
1173 FastNewClosureStub stub(isolate(), info->language_mode(), info->kind());
1174 __ Move(rbx, info);
1175 __ CallStub(&stub);
1176 } else {
1177 __ Push(info);
1178 __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured
1179 : Runtime::kNewClosure);
1180 }
1181 context()->Plug(rax);
1182}
1183
1184
1185void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset,
1186 FeedbackVectorSlot slot) {
1187 DCHECK(NeedsHomeObject(initializer));
1188 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1189 __ Move(StoreDescriptor::NameRegister(),
1190 isolate()->factory()->home_object_symbol());
1191 __ movp(StoreDescriptor::ValueRegister(),
1192 Operand(rsp, offset * kPointerSize));
1193 EmitLoadStoreICSlot(slot);
1194 CallStoreIC();
1195}
1196
1197
1198void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer,
1199 int offset,
1200 FeedbackVectorSlot slot) {
1201 DCHECK(NeedsHomeObject(initializer));
1202 __ movp(StoreDescriptor::ReceiverRegister(), rax);
1203 __ Move(StoreDescriptor::NameRegister(),
1204 isolate()->factory()->home_object_symbol());
1205 __ movp(StoreDescriptor::ValueRegister(),
1206 Operand(rsp, offset * kPointerSize));
1207 EmitLoadStoreICSlot(slot);
1208 CallStoreIC();
1209}
1210
1211
1212void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1213 TypeofMode typeof_mode,
1214 Label* slow) {
1215 Register context = rsi;
1216 Register temp = rdx;
1217
1218 Scope* s = scope();
1219 while (s != NULL) {
1220 if (s->num_heap_slots() > 0) {
1221 if (s->calls_sloppy_eval()) {
1222 // Check that extension is "the hole".
1223 __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
1224 Heap::kTheHoleValueRootIndex, slow);
1225 }
1226 // Load next context in chain.
1227 __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1228 // Walk the rest of the chain without clobbering rsi.
1229 context = temp;
1230 }
1231 // If no outer scope calls eval, we do not need to check more
1232 // context extensions. If we have reached an eval scope, we check
1233 // all extensions from this point.
1234 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1235 s = s->outer_scope();
1236 }
1237
1238 if (s != NULL && s->is_eval_scope()) {
1239 // Loop up the context chain. There is no frame effect so it is
1240 // safe to use raw labels here.
1241 Label next, fast;
1242 if (!context.is(temp)) {
1243 __ movp(temp, context);
1244 }
1245 // Load map for comparison into register, outside loop.
1246 __ LoadRoot(kScratchRegister, Heap::kNativeContextMapRootIndex);
1247 __ bind(&next);
1248 // Terminate at native context.
1249 __ cmpp(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset));
1250 __ j(equal, &fast, Label::kNear);
1251 // Check that extension is "the hole".
1252 __ JumpIfNotRoot(ContextOperand(temp, Context::EXTENSION_INDEX),
1253 Heap::kTheHoleValueRootIndex, slow);
1254 // Load next context in chain.
1255 __ movp(temp, ContextOperand(temp, Context::PREVIOUS_INDEX));
1256 __ jmp(&next);
1257 __ bind(&fast);
1258 }
1259
1260 // All extension objects were empty and it is safe to use a normal global
1261 // load machinery.
1262 EmitGlobalVariableLoad(proxy, typeof_mode);
1263}
1264
1265
1266MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1267 Label* slow) {
1268 DCHECK(var->IsContextSlot());
1269 Register context = rsi;
1270 Register temp = rbx;
1271
1272 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1273 if (s->num_heap_slots() > 0) {
1274 if (s->calls_sloppy_eval()) {
1275 // Check that extension is "the hole".
1276 __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
1277 Heap::kTheHoleValueRootIndex, slow);
1278 }
1279 __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX));
1280 // Walk the rest of the chain without clobbering rsi.
1281 context = temp;
1282 }
1283 }
1284 // Check that last extension is "the hole".
1285 __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX),
1286 Heap::kTheHoleValueRootIndex, slow);
1287
1288 // This function is used only for loads, not stores, so it's safe to
1289 // return an rsi-based operand (the write barrier cannot be allowed to
1290 // destroy the rsi register).
1291 return ContextOperand(context, var->index());
1292}
1293
1294
1295void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1296 TypeofMode typeof_mode,
1297 Label* slow, Label* done) {
1298 // Generate fast-case code for variables that might be shadowed by
1299 // eval-introduced variables. Eval is used a lot without
1300 // introducing variables. In those cases, we do not want to
1301 // perform a runtime call for all variables in the scope
1302 // containing the eval.
1303 Variable* var = proxy->var();
1304 if (var->mode() == DYNAMIC_GLOBAL) {
1305 EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow);
1306 __ jmp(done);
1307 } else if (var->mode() == DYNAMIC_LOCAL) {
1308 Variable* local = var->local_if_not_shadowed();
1309 __ movp(rax, ContextSlotOperandCheckExtensions(local, slow));
1310 if (local->mode() == LET || local->mode() == CONST ||
1311 local->mode() == CONST_LEGACY) {
1312 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
1313 __ j(not_equal, done);
1314 if (local->mode() == CONST_LEGACY) {
1315 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
1316 } else { // LET || CONST
1317 __ Push(var->name());
1318 __ CallRuntime(Runtime::kThrowReferenceError);
1319 }
1320 }
1321 __ jmp(done);
1322 }
1323}
1324
1325
1326void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy,
1327 TypeofMode typeof_mode) {
1328 Variable* var = proxy->var();
1329 DCHECK(var->IsUnallocatedOrGlobalSlot() ||
1330 (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL));
1331 __ Move(LoadDescriptor::NameRegister(), var->name());
1332 __ LoadGlobalObject(LoadDescriptor::ReceiverRegister());
1333 __ Move(LoadDescriptor::SlotRegister(),
1334 SmiFromSlot(proxy->VariableFeedbackSlot()));
1335 CallLoadIC(typeof_mode);
1336}
1337
1338
1339void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy,
1340 TypeofMode typeof_mode) {
1341 // Record position before possible IC call.
1342 SetExpressionPosition(proxy);
1343 PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS);
1344 Variable* var = proxy->var();
1345
1346 // Three cases: global variables, lookup variables, and all other types of
1347 // variables.
1348 switch (var->location()) {
1349 case VariableLocation::GLOBAL:
1350 case VariableLocation::UNALLOCATED: {
1351 Comment cmnt(masm_, "[ Global variable");
1352 EmitGlobalVariableLoad(proxy, typeof_mode);
1353 context()->Plug(rax);
1354 break;
1355 }
1356
1357 case VariableLocation::PARAMETER:
1358 case VariableLocation::LOCAL:
1359 case VariableLocation::CONTEXT: {
1360 DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode);
1361 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context slot"
1362 : "[ Stack slot");
1363 if (NeedsHoleCheckForLoad(proxy)) {
1364 // Let and const need a read barrier.
1365 Label done;
1366 GetVar(rax, var);
1367 __ CompareRoot(rax, Heap::kTheHoleValueRootIndex);
1368 __ j(not_equal, &done, Label::kNear);
1369 if (var->mode() == LET || var->mode() == CONST) {
1370 // Throw a reference error when using an uninitialized let/const
1371 // binding in harmony mode.
1372 __ Push(var->name());
1373 __ CallRuntime(Runtime::kThrowReferenceError);
1374 } else {
1375 // Uninitialized legacy const bindings are unholed.
1376 DCHECK(var->mode() == CONST_LEGACY);
1377 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
1378 }
1379 __ bind(&done);
1380 context()->Plug(rax);
1381 break;
1382 }
1383 context()->Plug(var);
1384 break;
1385 }
1386
1387 case VariableLocation::LOOKUP: {
1388 Comment cmnt(masm_, "[ Lookup slot");
1389 Label done, slow;
1390 // Generate code for loading from variables potentially shadowed
1391 // by eval-introduced variables.
1392 EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done);
1393 __ bind(&slow);
1394 __ Push(rsi); // Context.
1395 __ Push(var->name());
1396 Runtime::FunctionId function_id =
1397 typeof_mode == NOT_INSIDE_TYPEOF
1398 ? Runtime::kLoadLookupSlot
1399 : Runtime::kLoadLookupSlotNoReferenceError;
1400 __ CallRuntime(function_id);
1401 __ bind(&done);
1402 context()->Plug(rax);
1403 break;
1404 }
1405 }
1406}
1407
1408
1409void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1410 Comment cmnt(masm_, "[ RegExpLiteral");
1411 __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1412 __ Move(rax, Smi::FromInt(expr->literal_index()));
1413 __ Move(rcx, expr->pattern());
1414 __ Move(rdx, Smi::FromInt(expr->flags()));
1415 FastCloneRegExpStub stub(isolate());
1416 __ CallStub(&stub);
1417 context()->Plug(rax);
1418}
1419
1420
1421void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) {
1422 Expression* expression = (property == NULL) ? NULL : property->value();
1423 if (expression == NULL) {
1424 __ PushRoot(Heap::kNullValueRootIndex);
1425 } else {
1426 VisitForStackValue(expression);
1427 if (NeedsHomeObject(expression)) {
1428 DCHECK(property->kind() == ObjectLiteral::Property::GETTER ||
1429 property->kind() == ObjectLiteral::Property::SETTER);
1430 int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3;
1431 EmitSetHomeObject(expression, offset, property->GetSlot());
1432 }
1433 }
1434}
1435
1436
1437void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1438 Comment cmnt(masm_, "[ ObjectLiteral");
1439
1440 Handle<FixedArray> constant_properties = expr->constant_properties();
1441 int flags = expr->ComputeFlags();
1442 if (MustCreateObjectLiteralWithRuntime(expr)) {
1443 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1444 __ Push(Smi::FromInt(expr->literal_index()));
1445 __ Push(constant_properties);
1446 __ Push(Smi::FromInt(flags));
1447 __ CallRuntime(Runtime::kCreateObjectLiteral);
1448 } else {
1449 __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1450 __ Move(rbx, Smi::FromInt(expr->literal_index()));
1451 __ Move(rcx, constant_properties);
1452 __ Move(rdx, Smi::FromInt(flags));
1453 FastCloneShallowObjectStub stub(isolate(), expr->properties_count());
1454 __ CallStub(&stub);
1455 }
1456 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1457
1458 // If result_saved is true the result is on top of the stack. If
1459 // result_saved is false the result is in rax.
1460 bool result_saved = false;
1461
1462 AccessorTable accessor_table(zone());
1463 int property_index = 0;
1464 for (; property_index < expr->properties()->length(); property_index++) {
1465 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1466 if (property->is_computed_name()) break;
1467 if (property->IsCompileTimeValue()) continue;
1468
1469 Literal* key = property->key()->AsLiteral();
1470 Expression* value = property->value();
1471 if (!result_saved) {
1472 __ Push(rax); // Save result on the stack
1473 result_saved = true;
1474 }
1475 switch (property->kind()) {
1476 case ObjectLiteral::Property::CONSTANT:
1477 UNREACHABLE();
1478 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1479 DCHECK(!CompileTimeValue::IsCompileTimeValue(value));
1480 // Fall through.
1481 case ObjectLiteral::Property::COMPUTED:
1482 // It is safe to use [[Put]] here because the boilerplate already
1483 // contains computed properties with an uninitialized value.
1484 if (key->value()->IsInternalizedString()) {
1485 if (property->emit_store()) {
1486 VisitForAccumulatorValue(value);
1487 DCHECK(StoreDescriptor::ValueRegister().is(rax));
1488 __ Move(StoreDescriptor::NameRegister(), key->value());
1489 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1490 EmitLoadStoreICSlot(property->GetSlot(0));
1491 CallStoreIC();
1492 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1493
1494 if (NeedsHomeObject(value)) {
1495 EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1));
1496 }
1497 } else {
1498 VisitForEffect(value);
1499 }
1500 break;
1501 }
1502 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1503 VisitForStackValue(key);
1504 VisitForStackValue(value);
1505 if (property->emit_store()) {
1506 if (NeedsHomeObject(value)) {
1507 EmitSetHomeObject(value, 2, property->GetSlot());
1508 }
1509 __ Push(Smi::FromInt(SLOPPY)); // Language mode
1510 __ CallRuntime(Runtime::kSetProperty);
1511 } else {
1512 __ Drop(3);
1513 }
1514 break;
1515 case ObjectLiteral::Property::PROTOTYPE:
1516 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1517 VisitForStackValue(value);
1518 DCHECK(property->emit_store());
1519 __ CallRuntime(Runtime::kInternalSetPrototype);
1520 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1521 NO_REGISTERS);
1522 break;
1523 case ObjectLiteral::Property::GETTER:
1524 if (property->emit_store()) {
1525 accessor_table.lookup(key)->second->getter = property;
1526 }
1527 break;
1528 case ObjectLiteral::Property::SETTER:
1529 if (property->emit_store()) {
1530 accessor_table.lookup(key)->second->setter = property;
1531 }
1532 break;
1533 }
1534 }
1535
1536 // Emit code to define accessors, using only a single call to the runtime for
1537 // each pair of corresponding getters and setters.
1538 for (AccessorTable::Iterator it = accessor_table.begin();
1539 it != accessor_table.end();
1540 ++it) {
1541 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1542 VisitForStackValue(it->first);
1543 EmitAccessor(it->second->getter);
1544 EmitAccessor(it->second->setter);
1545 __ Push(Smi::FromInt(NONE));
1546 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked);
1547 }
1548
1549 // Object literals have two parts. The "static" part on the left contains no
1550 // computed property names, and so we can compute its map ahead of time; see
1551 // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part
1552 // starts with the first computed property name, and continues with all
1553 // properties to its right. All the code from above initializes the static
1554 // component of the object literal, and arranges for the map of the result to
1555 // reflect the static order in which the keys appear. For the dynamic
1556 // properties, we compile them into a series of "SetOwnProperty" runtime
1557 // calls. This will preserve insertion order.
1558 for (; property_index < expr->properties()->length(); property_index++) {
1559 ObjectLiteral::Property* property = expr->properties()->at(property_index);
1560
1561 Expression* value = property->value();
1562 if (!result_saved) {
1563 __ Push(rax); // Save result on the stack
1564 result_saved = true;
1565 }
1566
1567 __ Push(Operand(rsp, 0)); // Duplicate receiver.
1568
1569 if (property->kind() == ObjectLiteral::Property::PROTOTYPE) {
1570 DCHECK(!property->is_computed_name());
1571 VisitForStackValue(value);
1572 DCHECK(property->emit_store());
1573 __ CallRuntime(Runtime::kInternalSetPrototype);
1574 PrepareForBailoutForId(expr->GetIdForPropertySet(property_index),
1575 NO_REGISTERS);
1576 } else {
1577 EmitPropertyKey(property, expr->GetIdForPropertyName(property_index));
1578 VisitForStackValue(value);
1579 if (NeedsHomeObject(value)) {
1580 EmitSetHomeObject(value, 2, property->GetSlot());
1581 }
1582
1583 switch (property->kind()) {
1584 case ObjectLiteral::Property::CONSTANT:
1585 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1586 case ObjectLiteral::Property::COMPUTED:
1587 if (property->emit_store()) {
1588 __ Push(Smi::FromInt(NONE));
1589 __ CallRuntime(Runtime::kDefineDataPropertyUnchecked);
1590 } else {
1591 __ Drop(3);
1592 }
1593 break;
1594
1595 case ObjectLiteral::Property::PROTOTYPE:
1596 UNREACHABLE();
1597 break;
1598
1599 case ObjectLiteral::Property::GETTER:
1600 __ Push(Smi::FromInt(NONE));
1601 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
1602 break;
1603
1604 case ObjectLiteral::Property::SETTER:
1605 __ Push(Smi::FromInt(NONE));
1606 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
1607 break;
1608 }
1609 }
1610 }
1611
1612 if (expr->has_function()) {
1613 DCHECK(result_saved);
1614 __ Push(Operand(rsp, 0));
1615 __ CallRuntime(Runtime::kToFastProperties);
1616 }
1617
1618 if (result_saved) {
1619 context()->PlugTOS();
1620 } else {
1621 context()->Plug(rax);
1622 }
1623}
1624
1625
1626void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1627 Comment cmnt(masm_, "[ ArrayLiteral");
1628
1629 Handle<FixedArray> constant_elements = expr->constant_elements();
1630 bool has_constant_fast_elements =
1631 IsFastObjectElementsKind(expr->constant_elements_kind());
1632
1633 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1634 if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) {
1635 // If the only customer of allocation sites is transitioning, then
1636 // we can turn it off if we don't have anywhere else to transition to.
1637 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1638 }
1639
1640 if (MustCreateArrayLiteralWithRuntime(expr)) {
1641 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1642 __ Push(Smi::FromInt(expr->literal_index()));
1643 __ Push(constant_elements);
1644 __ Push(Smi::FromInt(expr->ComputeFlags()));
1645 __ CallRuntime(Runtime::kCreateArrayLiteral);
1646 } else {
1647 __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
1648 __ Move(rbx, Smi::FromInt(expr->literal_index()));
1649 __ Move(rcx, constant_elements);
1650 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1651 __ CallStub(&stub);
1652 }
1653 PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG);
1654
1655 bool result_saved = false; // Is the result saved to the stack?
1656 ZoneList<Expression*>* subexprs = expr->values();
1657 int length = subexprs->length();
1658
1659 // Emit code to evaluate all the non-constant subexpressions and to store
1660 // them into the newly cloned array.
1661 int array_index = 0;
1662 for (; array_index < length; array_index++) {
1663 Expression* subexpr = subexprs->at(array_index);
1664 if (subexpr->IsSpread()) break;
1665
1666 // If the subexpression is a literal or a simple materialized literal it
1667 // is already set in the cloned array.
1668 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1669
1670 if (!result_saved) {
1671 __ Push(rax); // array literal
1672 result_saved = true;
1673 }
1674 VisitForAccumulatorValue(subexpr);
1675
1676 __ Move(StoreDescriptor::NameRegister(), Smi::FromInt(array_index));
1677 __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0));
1678 EmitLoadStoreICSlot(expr->LiteralFeedbackSlot());
1679 Handle<Code> ic =
1680 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
1681 CallIC(ic);
1682
1683 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1684 }
1685
1686 // In case the array literal contains spread expressions it has two parts. The
1687 // first part is the "static" array which has a literal index is handled
1688 // above. The second part is the part after the first spread expression
1689 // (inclusive) and these elements gets appended to the array. Note that the
1690 // number elements an iterable produces is unknown ahead of time.
1691 if (array_index < length && result_saved) {
1692 __ Pop(rax);
1693 result_saved = false;
1694 }
1695 for (; array_index < length; array_index++) {
1696 Expression* subexpr = subexprs->at(array_index);
1697
1698 __ Push(rax);
1699 if (subexpr->IsSpread()) {
1700 VisitForStackValue(subexpr->AsSpread()->expression());
1701 __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX,
1702 CALL_FUNCTION);
1703 } else {
1704 VisitForStackValue(subexpr);
1705 __ CallRuntime(Runtime::kAppendElement);
1706 }
1707
1708 PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS);
1709 }
1710
1711 if (result_saved) {
1712 context()->PlugTOS();
1713 } else {
1714 context()->Plug(rax);
1715 }
1716}
1717
1718
1719void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1720 DCHECK(expr->target()->IsValidReferenceExpressionOrThis());
1721
1722 Comment cmnt(masm_, "[ Assignment");
1723 SetExpressionPosition(expr, INSERT_BREAK);
1724
1725 Property* property = expr->target()->AsProperty();
1726 LhsKind assign_type = Property::GetAssignType(property);
1727
1728 // Evaluate LHS expression.
1729 switch (assign_type) {
1730 case VARIABLE:
1731 // Nothing to do here.
1732 break;
1733 case NAMED_PROPERTY:
1734 if (expr->is_compound()) {
1735 // We need the receiver both on the stack and in the register.
1736 VisitForStackValue(property->obj());
1737 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
1738 } else {
1739 VisitForStackValue(property->obj());
1740 }
1741 break;
1742 case NAMED_SUPER_PROPERTY:
1743 VisitForStackValue(
1744 property->obj()->AsSuperPropertyReference()->this_var());
1745 VisitForAccumulatorValue(
1746 property->obj()->AsSuperPropertyReference()->home_object());
1747 __ Push(result_register());
1748 if (expr->is_compound()) {
1749 __ Push(MemOperand(rsp, kPointerSize));
1750 __ Push(result_register());
1751 }
1752 break;
1753 case KEYED_SUPER_PROPERTY:
1754 VisitForStackValue(
1755 property->obj()->AsSuperPropertyReference()->this_var());
1756 VisitForStackValue(
1757 property->obj()->AsSuperPropertyReference()->home_object());
1758 VisitForAccumulatorValue(property->key());
1759 __ Push(result_register());
1760 if (expr->is_compound()) {
1761 __ Push(MemOperand(rsp, 2 * kPointerSize));
1762 __ Push(MemOperand(rsp, 2 * kPointerSize));
1763 __ Push(result_register());
1764 }
1765 break;
1766 case KEYED_PROPERTY: {
1767 if (expr->is_compound()) {
1768 VisitForStackValue(property->obj());
1769 VisitForStackValue(property->key());
1770 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
1771 __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
1772 } else {
1773 VisitForStackValue(property->obj());
1774 VisitForStackValue(property->key());
1775 }
1776 break;
1777 }
1778 }
1779
1780 // For compound assignments we need another deoptimization point after the
1781 // variable/property load.
1782 if (expr->is_compound()) {
1783 { AccumulatorValueContext context(this);
1784 switch (assign_type) {
1785 case VARIABLE:
1786 EmitVariableLoad(expr->target()->AsVariableProxy());
1787 PrepareForBailout(expr->target(), TOS_REG);
1788 break;
1789 case NAMED_PROPERTY:
1790 EmitNamedPropertyLoad(property);
1791 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1792 break;
1793 case NAMED_SUPER_PROPERTY:
1794 EmitNamedSuperPropertyLoad(property);
1795 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1796 break;
1797 case KEYED_SUPER_PROPERTY:
1798 EmitKeyedSuperPropertyLoad(property);
1799 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1800 break;
1801 case KEYED_PROPERTY:
1802 EmitKeyedPropertyLoad(property);
1803 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1804 break;
1805 }
1806 }
1807
1808 Token::Value op = expr->binary_op();
1809 __ Push(rax); // Left operand goes on the stack.
1810 VisitForAccumulatorValue(expr->value());
1811
1812 AccumulatorValueContext context(this);
1813 if (ShouldInlineSmiCase(op)) {
1814 EmitInlineSmiBinaryOp(expr->binary_operation(),
1815 op,
1816 expr->target(),
1817 expr->value());
1818 } else {
1819 EmitBinaryOp(expr->binary_operation(), op);
1820 }
1821 // Deoptimization point in case the binary operation may have side effects.
1822 PrepareForBailout(expr->binary_operation(), TOS_REG);
1823 } else {
1824 VisitForAccumulatorValue(expr->value());
1825 }
1826
1827 SetExpressionPosition(expr);
1828
1829 // Store the value.
1830 switch (assign_type) {
1831 case VARIABLE:
1832 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1833 expr->op(), expr->AssignmentSlot());
1834 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1835 context()->Plug(rax);
1836 break;
1837 case NAMED_PROPERTY:
1838 EmitNamedPropertyAssignment(expr);
1839 break;
1840 case NAMED_SUPER_PROPERTY:
1841 EmitNamedSuperPropertyStore(property);
1842 context()->Plug(rax);
1843 break;
1844 case KEYED_SUPER_PROPERTY:
1845 EmitKeyedSuperPropertyStore(property);
1846 context()->Plug(rax);
1847 break;
1848 case KEYED_PROPERTY:
1849 EmitKeyedPropertyAssignment(expr);
1850 break;
1851 }
1852}
1853
1854
1855void FullCodeGenerator::VisitYield(Yield* expr) {
1856 Comment cmnt(masm_, "[ Yield");
1857 SetExpressionPosition(expr);
1858
1859 // Evaluate yielded value first; the initial iterator definition depends on
1860 // this. It stays on the stack while we update the iterator.
1861 VisitForStackValue(expr->expression());
1862
1863 switch (expr->yield_kind()) {
1864 case Yield::kSuspend:
1865 // Pop value from top-of-stack slot; box result into result register.
1866 EmitCreateIteratorResult(false);
1867 __ Push(result_register());
1868 // Fall through.
1869 case Yield::kInitial: {
1870 Label suspend, continuation, post_runtime, resume;
1871
1872 __ jmp(&suspend);
1873 __ bind(&continuation);
1874 __ RecordGeneratorContinuation();
1875 __ jmp(&resume);
1876
1877 __ bind(&suspend);
1878 VisitForAccumulatorValue(expr->generator_object());
1879 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
1880 __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
1881 Smi::FromInt(continuation.pos()));
1882 __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
1883 __ movp(rcx, rsi);
1884 __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
1885 kDontSaveFPRegs);
1886 __ leap(rbx, Operand(rbp, StandardFrameConstants::kExpressionsOffset));
1887 __ cmpp(rsp, rbx);
1888 __ j(equal, &post_runtime);
1889 __ Push(rax); // generator object
1890 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
1891 __ movp(context_register(),
1892 Operand(rbp, StandardFrameConstants::kContextOffset));
1893 __ bind(&post_runtime);
1894
1895 __ Pop(result_register());
1896 EmitReturnSequence();
1897
1898 __ bind(&resume);
1899 context()->Plug(result_register());
1900 break;
1901 }
1902
1903 case Yield::kFinal: {
1904 VisitForAccumulatorValue(expr->generator_object());
1905 __ Move(FieldOperand(result_register(),
1906 JSGeneratorObject::kContinuationOffset),
1907 Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
1908 // Pop value from top-of-stack slot, box result into result register.
1909 EmitCreateIteratorResult(true);
1910 EmitUnwindBeforeReturn();
1911 EmitReturnSequence();
1912 break;
1913 }
1914
1915 case Yield::kDelegating: {
1916 VisitForStackValue(expr->generator_object());
1917
1918 // Initial stack layout is as follows:
1919 // [sp + 1 * kPointerSize] iter
1920 // [sp + 0 * kPointerSize] g
1921
1922 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
1923 Label l_next, l_call, l_loop;
1924 Register load_receiver = LoadDescriptor::ReceiverRegister();
1925 Register load_name = LoadDescriptor::NameRegister();
1926
1927 // Initial send value is undefined.
1928 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
1929 __ jmp(&l_next);
1930
1931 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
1932 __ bind(&l_catch);
1933 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
1934 __ Push(load_name);
1935 __ Push(Operand(rsp, 2 * kPointerSize)); // iter
1936 __ Push(rax); // exception
1937 __ jmp(&l_call);
1938
1939 // try { received = %yield result }
1940 // Shuffle the received result above a try handler and yield it without
1941 // re-boxing.
1942 __ bind(&l_try);
1943 __ Pop(rax); // result
1944 int handler_index = NewHandlerTableEntry();
1945 EnterTryBlock(handler_index, &l_catch);
1946 const int try_block_size = TryCatch::kElementCount * kPointerSize;
1947 __ Push(rax); // result
1948
1949 __ jmp(&l_suspend);
1950 __ bind(&l_continuation);
1951 __ RecordGeneratorContinuation();
1952 __ jmp(&l_resume);
1953
1954 __ bind(&l_suspend);
1955 const int generator_object_depth = kPointerSize + try_block_size;
1956 __ movp(rax, Operand(rsp, generator_object_depth));
1957 __ Push(rax); // g
1958 __ Push(Smi::FromInt(handler_index)); // handler-index
1959 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
1960 __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset),
1961 Smi::FromInt(l_continuation.pos()));
1962 __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi);
1963 __ movp(rcx, rsi);
1964 __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx,
1965 kDontSaveFPRegs);
1966 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2);
1967 __ movp(context_register(),
1968 Operand(rbp, StandardFrameConstants::kContextOffset));
1969 __ Pop(rax); // result
1970 EmitReturnSequence();
1971 __ bind(&l_resume); // received in rax
1972 ExitTryBlock(handler_index);
1973
1974 // receiver = iter; f = 'next'; arg = received;
1975 __ bind(&l_next);
1976
1977 __ LoadRoot(load_name, Heap::knext_stringRootIndex);
1978 __ Push(load_name); // "next"
1979 __ Push(Operand(rsp, 2 * kPointerSize)); // iter
1980 __ Push(rax); // received
1981
1982 // result = receiver[f](arg);
1983 __ bind(&l_call);
1984 __ movp(load_receiver, Operand(rsp, kPointerSize));
1985 __ Move(LoadDescriptor::SlotRegister(),
1986 SmiFromSlot(expr->KeyedLoadFeedbackSlot()));
1987 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code();
1988 CallIC(ic, TypeFeedbackId::None());
1989 __ movp(rdi, rax);
1990 __ movp(Operand(rsp, 2 * kPointerSize), rdi);
1991
1992 SetCallPosition(expr);
1993 __ Set(rax, 1);
1994 __ Call(
1995 isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined),
1996 RelocInfo::CODE_TARGET);
1997
1998 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
1999 __ Drop(1); // The function is still on the stack; drop it.
2000
2001 // if (!result.done) goto l_try;
2002 __ bind(&l_loop);
2003 __ Move(load_receiver, rax);
2004 __ Push(load_receiver); // save result
2005 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
2006 __ Move(LoadDescriptor::SlotRegister(),
2007 SmiFromSlot(expr->DoneFeedbackSlot()));
2008 CallLoadIC(NOT_INSIDE_TYPEOF); // rax=result.done
2009 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2010 CallIC(bool_ic);
2011 __ CompareRoot(result_register(), Heap::kTrueValueRootIndex);
2012 __ j(not_equal, &l_try);
2013
2014 // result.value
2015 __ Pop(load_receiver); // result
2016 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
2017 __ Move(LoadDescriptor::SlotRegister(),
2018 SmiFromSlot(expr->ValueFeedbackSlot()));
2019 CallLoadIC(NOT_INSIDE_TYPEOF); // result.value in rax
2020 context()->DropAndPlug(2, rax); // drop iter and g
2021 break;
2022 }
2023 }
2024}
2025
2026
2027void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2028 Expression *value,
2029 JSGeneratorObject::ResumeMode resume_mode) {
2030 // The value stays in rax, and is ultimately read by the resumed generator, as
2031 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2032 // is read to throw the value when the resumed generator is already closed.
2033 // rbx will hold the generator object until the activation has been resumed.
2034 VisitForStackValue(generator);
2035 VisitForAccumulatorValue(value);
2036 __ Pop(rbx);
2037
2038 // Load suspended function and context.
2039 __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset));
2040 __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset));
2041
2042 // Push receiver.
2043 __ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset));
2044
2045 // Push holes for arguments to generator function.
2046 __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2047 __ LoadSharedFunctionInfoSpecialField(rdx, rdx,
2048 SharedFunctionInfo::kFormalParameterCountOffset);
2049 __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
2050 Label push_argument_holes, push_frame;
2051 __ bind(&push_argument_holes);
2052 __ subp(rdx, Immediate(1));
2053 __ j(carry, &push_frame);
2054 __ Push(rcx);
2055 __ jmp(&push_argument_holes);
2056
2057 // Enter a new JavaScript frame, and initialize its slots as they were when
2058 // the generator was suspended.
2059 Label resume_frame, done;
2060 __ bind(&push_frame);
2061 __ call(&resume_frame);
2062 __ jmp(&done);
2063 __ bind(&resume_frame);
2064 __ pushq(rbp); // Caller's frame pointer.
2065 __ movp(rbp, rsp);
2066 __ Push(rsi); // Callee's context.
2067 __ Push(rdi); // Callee's JS Function.
2068
2069 // Load the operand stack size.
2070 __ movp(rdx, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset));
2071 __ movp(rdx, FieldOperand(rdx, FixedArray::kLengthOffset));
2072 __ SmiToInteger32(rdx, rdx);
2073
2074 // If we are sending a value and there is no operand stack, we can jump back
2075 // in directly.
2076 if (resume_mode == JSGeneratorObject::NEXT) {
2077 Label slow_resume;
2078 __ cmpp(rdx, Immediate(0));
2079 __ j(not_zero, &slow_resume);
2080 __ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
2081 __ SmiToInteger64(rcx,
2082 FieldOperand(rbx, JSGeneratorObject::kContinuationOffset));
2083 __ addp(rdx, rcx);
2084 __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset),
2085 Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
2086 __ jmp(rdx);
2087 __ bind(&slow_resume);
2088 }
2089
2090 // Otherwise, we push holes for the operand stack and call the runtime to fix
2091 // up the stack and the handlers.
2092 Label push_operand_holes, call_resume;
2093 __ bind(&push_operand_holes);
2094 __ subp(rdx, Immediate(1));
2095 __ j(carry, &call_resume);
2096 __ Push(rcx);
2097 __ jmp(&push_operand_holes);
2098 __ bind(&call_resume);
2099 __ Push(rbx);
2100 __ Push(result_register());
2101 __ Push(Smi::FromInt(resume_mode));
2102 __ CallRuntime(Runtime::kResumeJSGeneratorObject);
2103 // Not reached: the runtime call returns elsewhere.
2104 __ Abort(kGeneratorFailedToResume);
2105
2106 __ bind(&done);
2107 context()->Plug(result_register());
2108}
2109
2110
2111void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2112 Label allocate, done_allocate;
2113
2114 __ Allocate(JSIteratorResult::kSize, rax, rcx, rdx, &allocate, TAG_OBJECT);
2115 __ jmp(&done_allocate, Label::kNear);
2116
2117 __ bind(&allocate);
2118 __ Push(Smi::FromInt(JSIteratorResult::kSize));
2119 __ CallRuntime(Runtime::kAllocateInNewSpace);
2120
2121 __ bind(&done_allocate);
2122 __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, rbx);
2123 __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx);
2124 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
2125 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
2126 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx);
2127 __ Pop(FieldOperand(rax, JSIteratorResult::kValueOffset));
2128 __ LoadRoot(FieldOperand(rax, JSIteratorResult::kDoneOffset),
2129 done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
2130 STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
2131}
2132
2133
2134void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2135 SetExpressionPosition(prop);
2136 Literal* key = prop->key()->AsLiteral();
2137 DCHECK(!prop->IsSuperAccess());
2138
2139 __ Move(LoadDescriptor::NameRegister(), key->value());
2140 __ Move(LoadDescriptor::SlotRegister(),
2141 SmiFromSlot(prop->PropertyFeedbackSlot()));
2142 CallLoadIC(NOT_INSIDE_TYPEOF, language_mode());
2143}
2144
2145
2146void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
2147 // Stack: receiver, home_object
2148 SetExpressionPosition(prop);
2149 Literal* key = prop->key()->AsLiteral();
2150 DCHECK(!key->value()->IsSmi());
2151 DCHECK(prop->IsSuperAccess());
2152
2153 __ Push(key->value());
2154 __ Push(Smi::FromInt(language_mode()));
2155 __ CallRuntime(Runtime::kLoadFromSuper);
2156}
2157
2158
2159void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2160 SetExpressionPosition(prop);
2161 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code();
2162 __ Move(LoadDescriptor::SlotRegister(),
2163 SmiFromSlot(prop->PropertyFeedbackSlot()));
2164 CallIC(ic);
2165}
2166
2167
2168void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) {
2169 // Stack: receiver, home_object, key.
2170 SetExpressionPosition(prop);
2171 __ Push(Smi::FromInt(language_mode()));
2172 __ CallRuntime(Runtime::kLoadKeyedFromSuper);
2173}
2174
2175
2176void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2177 Token::Value op,
2178 Expression* left,
2179 Expression* right) {
2180 // Do combined smi check of the operands. Left operand is on the
2181 // stack (popped into rdx). Right operand is in rax but moved into
2182 // rcx to make the shifts easier.
2183 Label done, stub_call, smi_case;
2184 __ Pop(rdx);
2185 __ movp(rcx, rax);
2186 __ orp(rax, rdx);
2187 JumpPatchSite patch_site(masm_);
2188 patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear);
2189
2190 __ bind(&stub_call);
2191 __ movp(rax, rcx);
2192 Handle<Code> code =
2193 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2194 CallIC(code, expr->BinaryOperationFeedbackId());
2195 patch_site.EmitPatchInfo();
2196 __ jmp(&done, Label::kNear);
2197
2198 __ bind(&smi_case);
2199 switch (op) {
2200 case Token::SAR:
2201 __ SmiShiftArithmeticRight(rax, rdx, rcx);
2202 break;
2203 case Token::SHL:
2204 __ SmiShiftLeft(rax, rdx, rcx, &stub_call);
2205 break;
2206 case Token::SHR:
2207 __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call);
2208 break;
2209 case Token::ADD:
2210 __ SmiAdd(rax, rdx, rcx, &stub_call);
2211 break;
2212 case Token::SUB:
2213 __ SmiSub(rax, rdx, rcx, &stub_call);
2214 break;
2215 case Token::MUL:
2216 __ SmiMul(rax, rdx, rcx, &stub_call);
2217 break;
2218 case Token::BIT_OR:
2219 __ SmiOr(rax, rdx, rcx);
2220 break;
2221 case Token::BIT_AND:
2222 __ SmiAnd(rax, rdx, rcx);
2223 break;
2224 case Token::BIT_XOR:
2225 __ SmiXor(rax, rdx, rcx);
2226 break;
2227 default:
2228 UNREACHABLE();
2229 break;
2230 }
2231
2232 __ bind(&done);
2233 context()->Plug(rax);
2234}
2235
2236
2237void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) {
2238 // Constructor is in rax.
2239 DCHECK(lit != NULL);
2240 __ Push(rax);
2241
2242 // No access check is needed here since the constructor is created by the
2243 // class literal.
2244 Register scratch = rbx;
2245 __ movp(scratch, FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset));
2246 __ Push(scratch);
2247
2248 for (int i = 0; i < lit->properties()->length(); i++) {
2249 ObjectLiteral::Property* property = lit->properties()->at(i);
2250 Expression* value = property->value();
2251
2252 if (property->is_static()) {
2253 __ Push(Operand(rsp, kPointerSize)); // constructor
2254 } else {
2255 __ Push(Operand(rsp, 0)); // prototype
2256 }
2257 EmitPropertyKey(property, lit->GetIdForProperty(i));
2258
2259 // The static prototype property is read only. We handle the non computed
2260 // property name case in the parser. Since this is the only case where we
2261 // need to check for an own read only property we special case this so we do
2262 // not need to do this for every property.
2263 if (property->is_static() && property->is_computed_name()) {
2264 __ CallRuntime(Runtime::kThrowIfStaticPrototype);
2265 __ Push(rax);
2266 }
2267
2268 VisitForStackValue(value);
2269 if (NeedsHomeObject(value)) {
2270 EmitSetHomeObject(value, 2, property->GetSlot());
2271 }
2272
2273 switch (property->kind()) {
2274 case ObjectLiteral::Property::CONSTANT:
2275 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
2276 case ObjectLiteral::Property::PROTOTYPE:
2277 UNREACHABLE();
2278 case ObjectLiteral::Property::COMPUTED:
2279 __ CallRuntime(Runtime::kDefineClassMethod);
2280 break;
2281
2282 case ObjectLiteral::Property::GETTER:
2283 __ Push(Smi::FromInt(DONT_ENUM));
2284 __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked);
2285 break;
2286
2287 case ObjectLiteral::Property::SETTER:
2288 __ Push(Smi::FromInt(DONT_ENUM));
2289 __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked);
2290 break;
2291
2292 default:
2293 UNREACHABLE();
2294 }
2295 }
2296
2297 // Set both the prototype and constructor to have fast properties, and also
2298 // freeze them in strong mode.
2299 __ CallRuntime(Runtime::kFinalizeClassDefinition);
2300}
2301
2302
2303void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) {
2304 __ Pop(rdx);
2305 Handle<Code> code =
2306 CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code();
2307 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
2308 CallIC(code, expr->BinaryOperationFeedbackId());
2309 patch_site.EmitPatchInfo();
2310 context()->Plug(rax);
2311}
2312
2313
2314void FullCodeGenerator::EmitAssignment(Expression* expr,
2315 FeedbackVectorSlot slot) {
2316 DCHECK(expr->IsValidReferenceExpressionOrThis());
2317
2318 Property* prop = expr->AsProperty();
2319 LhsKind assign_type = Property::GetAssignType(prop);
2320
2321 switch (assign_type) {
2322 case VARIABLE: {
2323 Variable* var = expr->AsVariableProxy()->var();
2324 EffectContext context(this);
2325 EmitVariableAssignment(var, Token::ASSIGN, slot);
2326 break;
2327 }
2328 case NAMED_PROPERTY: {
2329 __ Push(rax); // Preserve value.
2330 VisitForAccumulatorValue(prop->obj());
2331 __ Move(StoreDescriptor::ReceiverRegister(), rax);
2332 __ Pop(StoreDescriptor::ValueRegister()); // Restore value.
2333 __ Move(StoreDescriptor::NameRegister(),
2334 prop->key()->AsLiteral()->value());
2335 EmitLoadStoreICSlot(slot);
2336 CallStoreIC();
2337 break;
2338 }
2339 case NAMED_SUPER_PROPERTY: {
2340 __ Push(rax);
2341 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2342 VisitForAccumulatorValue(
2343 prop->obj()->AsSuperPropertyReference()->home_object());
2344 // stack: value, this; rax: home_object
2345 Register scratch = rcx;
2346 Register scratch2 = rdx;
2347 __ Move(scratch, result_register()); // home_object
2348 __ movp(rax, MemOperand(rsp, kPointerSize)); // value
2349 __ movp(scratch2, MemOperand(rsp, 0)); // this
2350 __ movp(MemOperand(rsp, kPointerSize), scratch2); // this
2351 __ movp(MemOperand(rsp, 0), scratch); // home_object
2352 // stack: this, home_object; rax: value
2353 EmitNamedSuperPropertyStore(prop);
2354 break;
2355 }
2356 case KEYED_SUPER_PROPERTY: {
2357 __ Push(rax);
2358 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
2359 VisitForStackValue(
2360 prop->obj()->AsSuperPropertyReference()->home_object());
2361 VisitForAccumulatorValue(prop->key());
2362 Register scratch = rcx;
2363 Register scratch2 = rdx;
2364 __ movp(scratch2, MemOperand(rsp, 2 * kPointerSize)); // value
2365 // stack: value, this, home_object; rax: key, rdx: value
2366 __ movp(scratch, MemOperand(rsp, kPointerSize)); // this
2367 __ movp(MemOperand(rsp, 2 * kPointerSize), scratch);
2368 __ movp(scratch, MemOperand(rsp, 0)); // home_object
2369 __ movp(MemOperand(rsp, kPointerSize), scratch);
2370 __ movp(MemOperand(rsp, 0), rax);
2371 __ Move(rax, scratch2);
2372 // stack: this, home_object, key; rax: value.
2373 EmitKeyedSuperPropertyStore(prop);
2374 break;
2375 }
2376 case KEYED_PROPERTY: {
2377 __ Push(rax); // Preserve value.
2378 VisitForStackValue(prop->obj());
2379 VisitForAccumulatorValue(prop->key());
2380 __ Move(StoreDescriptor::NameRegister(), rax);
2381 __ Pop(StoreDescriptor::ReceiverRegister());
2382 __ Pop(StoreDescriptor::ValueRegister()); // Restore value.
2383 EmitLoadStoreICSlot(slot);
2384 Handle<Code> ic =
2385 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2386 CallIC(ic);
2387 break;
2388 }
2389 }
2390 context()->Plug(rax);
2391}
2392
2393
2394void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2395 Variable* var, MemOperand location) {
2396 __ movp(location, rax);
2397 if (var->IsContextSlot()) {
2398 __ movp(rdx, rax);
2399 __ RecordWriteContextSlot(
2400 rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs);
2401 }
2402}
2403
2404
2405void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op,
2406 FeedbackVectorSlot slot) {
2407 if (var->IsUnallocated()) {
2408 // Global var, const, or let.
2409 __ Move(StoreDescriptor::NameRegister(), var->name());
2410 __ LoadGlobalObject(StoreDescriptor::ReceiverRegister());
2411 EmitLoadStoreICSlot(slot);
2412 CallStoreIC();
2413
2414 } else if (var->mode() == LET && op != Token::INIT) {
2415 // Non-initializing assignment to let variable needs a write barrier.
2416 DCHECK(!var->IsLookupSlot());
2417 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2418 Label assign;
2419 MemOperand location = VarOperand(var, rcx);
2420 __ movp(rdx, location);
2421 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2422 __ j(not_equal, &assign, Label::kNear);
2423 __ Push(var->name());
2424 __ CallRuntime(Runtime::kThrowReferenceError);
2425 __ bind(&assign);
2426 EmitStoreToStackLocalOrContextSlot(var, location);
2427
2428 } else if (var->mode() == CONST && op != Token::INIT) {
2429 // Assignment to const variable needs a write barrier.
2430 DCHECK(!var->IsLookupSlot());
2431 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2432 Label const_error;
2433 MemOperand location = VarOperand(var, rcx);
2434 __ movp(rdx, location);
2435 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2436 __ j(not_equal, &const_error, Label::kNear);
2437 __ Push(var->name());
2438 __ CallRuntime(Runtime::kThrowReferenceError);
2439 __ bind(&const_error);
2440 __ CallRuntime(Runtime::kThrowConstAssignError);
2441
2442 } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) {
2443 // Initializing assignment to const {this} needs a write barrier.
2444 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2445 Label uninitialized_this;
2446 MemOperand location = VarOperand(var, rcx);
2447 __ movp(rdx, location);
2448 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2449 __ j(equal, &uninitialized_this);
2450 __ Push(var->name());
2451 __ CallRuntime(Runtime::kThrowReferenceError);
2452 __ bind(&uninitialized_this);
2453 EmitStoreToStackLocalOrContextSlot(var, location);
2454
2455 } else if (!var->is_const_mode() ||
2456 (var->mode() == CONST && op == Token::INIT)) {
2457 if (var->IsLookupSlot()) {
2458 // Assignment to var.
2459 __ Push(rax); // Value.
2460 __ Push(rsi); // Context.
2461 __ Push(var->name());
2462 __ Push(Smi::FromInt(language_mode()));
2463 __ CallRuntime(Runtime::kStoreLookupSlot);
2464 } else {
2465 // Assignment to var or initializing assignment to let/const in harmony
2466 // mode.
2467 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2468 MemOperand location = VarOperand(var, rcx);
2469 if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) {
2470 // Check for an uninitialized let binding.
2471 __ movp(rdx, location);
2472 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2473 __ Check(equal, kLetBindingReInitialization);
2474 }
2475 EmitStoreToStackLocalOrContextSlot(var, location);
2476 }
2477
2478 } else if (var->mode() == CONST_LEGACY && op == Token::INIT) {
2479 // Const initializers need a write barrier.
2480 DCHECK(!var->IsParameter()); // No const parameters.
2481 if (var->IsLookupSlot()) {
2482 __ Push(rax);
2483 __ Push(rsi);
2484 __ Push(var->name());
2485 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot);
2486 } else {
2487 DCHECK(var->IsStackLocal() || var->IsContextSlot());
2488 Label skip;
2489 MemOperand location = VarOperand(var, rcx);
2490 __ movp(rdx, location);
2491 __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex);
2492 __ j(not_equal, &skip);
2493 EmitStoreToStackLocalOrContextSlot(var, location);
2494 __ bind(&skip);
2495 }
2496
2497 } else {
2498 DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT);
2499 if (is_strict(language_mode())) {
2500 __ CallRuntime(Runtime::kThrowConstAssignError);
2501 }
2502 // Silently ignore store in sloppy mode.
2503 }
2504}
2505
2506
2507void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2508 // Assignment to a property, using a named store IC.
2509 Property* prop = expr->target()->AsProperty();
2510 DCHECK(prop != NULL);
2511 DCHECK(prop->key()->IsLiteral());
2512
2513 __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value());
2514 __ Pop(StoreDescriptor::ReceiverRegister());
2515 EmitLoadStoreICSlot(expr->AssignmentSlot());
2516 CallStoreIC();
2517
2518 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2519 context()->Plug(rax);
2520}
2521
2522
2523void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) {
2524 // Assignment to named property of super.
2525 // rax : value
2526 // stack : receiver ('this'), home_object
2527 DCHECK(prop != NULL);
2528 Literal* key = prop->key()->AsLiteral();
2529 DCHECK(key != NULL);
2530
2531 __ Push(key->value());
2532 __ Push(rax);
2533 __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict
2534 : Runtime::kStoreToSuper_Sloppy));
2535}
2536
2537
2538void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) {
2539 // Assignment to named property of super.
2540 // rax : value
2541 // stack : receiver ('this'), home_object, key
2542 DCHECK(prop != NULL);
2543
2544 __ Push(rax);
2545 __ CallRuntime((is_strict(language_mode())
2546 ? Runtime::kStoreKeyedToSuper_Strict
2547 : Runtime::kStoreKeyedToSuper_Sloppy));
2548}
2549
2550
2551void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2552 // Assignment to a property, using a keyed store IC.
2553 __ Pop(StoreDescriptor::NameRegister()); // Key.
2554 __ Pop(StoreDescriptor::ReceiverRegister());
2555 DCHECK(StoreDescriptor::ValueRegister().is(rax));
2556 Handle<Code> ic =
2557 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
2558 EmitLoadStoreICSlot(expr->AssignmentSlot());
2559 CallIC(ic);
2560
2561 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2562 context()->Plug(rax);
2563}
2564
2565
2566void FullCodeGenerator::VisitProperty(Property* expr) {
2567 Comment cmnt(masm_, "[ Property");
2568 SetExpressionPosition(expr);
2569
2570 Expression* key = expr->key();
2571
2572 if (key->IsPropertyName()) {
2573 if (!expr->IsSuperAccess()) {
2574 VisitForAccumulatorValue(expr->obj());
2575 DCHECK(!rax.is(LoadDescriptor::ReceiverRegister()));
2576 __ movp(LoadDescriptor::ReceiverRegister(), rax);
2577 EmitNamedPropertyLoad(expr);
2578 } else {
2579 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2580 VisitForStackValue(
2581 expr->obj()->AsSuperPropertyReference()->home_object());
2582 EmitNamedSuperPropertyLoad(expr);
2583 }
2584 } else {
2585 if (!expr->IsSuperAccess()) {
2586 VisitForStackValue(expr->obj());
2587 VisitForAccumulatorValue(expr->key());
2588 __ Move(LoadDescriptor::NameRegister(), rax);
2589 __ Pop(LoadDescriptor::ReceiverRegister());
2590 EmitKeyedPropertyLoad(expr);
2591 } else {
2592 VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var());
2593 VisitForStackValue(
2594 expr->obj()->AsSuperPropertyReference()->home_object());
2595 VisitForStackValue(expr->key());
2596 EmitKeyedSuperPropertyLoad(expr);
2597 }
2598 }
2599 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2600 context()->Plug(rax);
2601}
2602
2603
2604void FullCodeGenerator::CallIC(Handle<Code> code,
2605 TypeFeedbackId ast_id) {
2606 ic_total_count_++;
2607 __ call(code, RelocInfo::CODE_TARGET, ast_id);
2608}
2609
2610
2611// Code common for calls using the IC.
2612void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2613 Expression* callee = expr->expression();
2614
2615 // Get the target function.
2616 ConvertReceiverMode convert_mode;
2617 if (callee->IsVariableProxy()) {
2618 { StackValueContext context(this);
2619 EmitVariableLoad(callee->AsVariableProxy());
2620 PrepareForBailout(callee, NO_REGISTERS);
2621 }
2622 // Push undefined as receiver. This is patched in the Call builtin if it
2623 // is a sloppy mode method.
2624 __ Push(isolate()->factory()->undefined_value());
2625 convert_mode = ConvertReceiverMode::kNullOrUndefined;
2626 } else {
2627 // Load the function from the receiver.
2628 DCHECK(callee->IsProperty());
2629 DCHECK(!callee->AsProperty()->IsSuperAccess());
2630 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2631 EmitNamedPropertyLoad(callee->AsProperty());
2632 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2633 // Push the target function under the receiver.
2634 __ Push(Operand(rsp, 0));
2635 __ movp(Operand(rsp, kPointerSize), rax);
2636 convert_mode = ConvertReceiverMode::kNotNullOrUndefined;
2637 }
2638
2639 EmitCall(expr, convert_mode);
2640}
2641
2642
2643void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2644 Expression* callee = expr->expression();
2645 DCHECK(callee->IsProperty());
2646 Property* prop = callee->AsProperty();
2647 DCHECK(prop->IsSuperAccess());
2648 SetExpressionPosition(prop);
2649
2650 Literal* key = prop->key()->AsLiteral();
2651 DCHECK(!key->value()->IsSmi());
2652 // Load the function from the receiver.
2653 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2654 VisitForStackValue(super_ref->home_object());
2655 VisitForAccumulatorValue(super_ref->this_var());
2656 __ Push(rax);
2657 __ Push(rax);
2658 __ Push(Operand(rsp, kPointerSize * 2));
2659 __ Push(key->value());
2660 __ Push(Smi::FromInt(language_mode()));
2661
2662 // Stack here:
2663 // - home_object
2664 // - this (receiver)
2665 // - this (receiver) <-- LoadFromSuper will pop here and below.
2666 // - home_object
2667 // - key
2668 // - language_mode
2669 __ CallRuntime(Runtime::kLoadFromSuper);
2670
2671 // Replace home_object with target function.
2672 __ movp(Operand(rsp, kPointerSize), rax);
2673
2674 // Stack here:
2675 // - target function
2676 // - this (receiver)
2677 EmitCall(expr);
2678}
2679
2680
2681// Common code for calls using the IC.
2682void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2683 Expression* key) {
2684 // Load the key.
2685 VisitForAccumulatorValue(key);
2686
2687 Expression* callee = expr->expression();
2688
2689 // Load the function from the receiver.
2690 DCHECK(callee->IsProperty());
2691 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
2692 __ Move(LoadDescriptor::NameRegister(), rax);
2693 EmitKeyedPropertyLoad(callee->AsProperty());
2694 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2695
2696 // Push the target function under the receiver.
2697 __ Push(Operand(rsp, 0));
2698 __ movp(Operand(rsp, kPointerSize), rax);
2699
2700 EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined);
2701}
2702
2703
2704void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) {
2705 Expression* callee = expr->expression();
2706 DCHECK(callee->IsProperty());
2707 Property* prop = callee->AsProperty();
2708 DCHECK(prop->IsSuperAccess());
2709
2710 SetExpressionPosition(prop);
2711 // Load the function from the receiver.
2712 SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference();
2713 VisitForStackValue(super_ref->home_object());
2714 VisitForAccumulatorValue(super_ref->this_var());
2715 __ Push(rax);
2716 __ Push(rax);
2717 __ Push(Operand(rsp, kPointerSize * 2));
2718 VisitForStackValue(prop->key());
2719 __ Push(Smi::FromInt(language_mode()));
2720
2721 // Stack here:
2722 // - home_object
2723 // - this (receiver)
2724 // - this (receiver) <-- LoadKeyedFromSuper will pop here and below.
2725 // - home_object
2726 // - key
2727 // - language_mode
2728 __ CallRuntime(Runtime::kLoadKeyedFromSuper);
2729
2730 // Replace home_object with target function.
2731 __ movp(Operand(rsp, kPointerSize), rax);
2732
2733 // Stack here:
2734 // - target function
2735 // - this (receiver)
2736 EmitCall(expr);
2737}
2738
2739
2740void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) {
2741 // Load the arguments.
2742 ZoneList<Expression*>* args = expr->arguments();
2743 int arg_count = args->length();
2744 for (int i = 0; i < arg_count; i++) {
2745 VisitForStackValue(args->at(i));
2746 }
2747
2748 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
2749 SetCallPosition(expr);
2750 Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, mode).code();
2751 __ Move(rdx, SmiFromSlot(expr->CallFeedbackICSlot()));
2752 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
2753 // Don't assign a type feedback id to the IC, since type feedback is provided
2754 // by the vector above.
2755 CallIC(ic);
2756
2757 RecordJSReturnSite(expr);
2758
2759 // Restore context register.
2760 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2761 // Discard the function left on TOS.
2762 context()->DropAndPlug(1, rax);
2763}
2764
2765
2766void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2767 // Push copy of the first argument or undefined if it doesn't exist.
2768 if (arg_count > 0) {
2769 __ Push(Operand(rsp, arg_count * kPointerSize));
2770 } else {
2771 __ PushRoot(Heap::kUndefinedValueRootIndex);
2772 }
2773
2774 // Push the enclosing function.
2775 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
2776
2777 // Push the language mode.
2778 __ Push(Smi::FromInt(language_mode()));
2779
2780 // Push the start position of the scope the calls resides in.
2781 __ Push(Smi::FromInt(scope()->start_position()));
2782
2783 // Do the runtime call.
2784 __ CallRuntime(Runtime::kResolvePossiblyDirectEval);
2785}
2786
2787
2788// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls.
2789void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) {
2790 VariableProxy* callee = expr->expression()->AsVariableProxy();
2791 if (callee->var()->IsLookupSlot()) {
2792 Label slow, done;
2793 SetExpressionPosition(callee);
2794 // Generate code for loading from variables potentially shadowed by
2795 // eval-introduced variables.
2796 EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done);
2797 __ bind(&slow);
2798 // Call the runtime to find the function to call (returned in rax) and
2799 // the object holding it (returned in rdx).
2800 __ Push(context_register());
2801 __ Push(callee->name());
2802 __ CallRuntime(Runtime::kLoadLookupSlot);
2803 __ Push(rax); // Function.
2804 __ Push(rdx); // Receiver.
2805 PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS);
2806
2807 // If fast case code has been generated, emit code to push the function
2808 // and receiver and have the slow path jump around this code.
2809 if (done.is_linked()) {
2810 Label call;
2811 __ jmp(&call, Label::kNear);
2812 __ bind(&done);
2813 // Push function.
2814 __ Push(rax);
2815 // Pass undefined as the receiver, which is the WithBaseObject of a
2816 // non-object environment record. If the callee is sloppy, it will patch
2817 // it up to be the global receiver.
2818 __ PushRoot(Heap::kUndefinedValueRootIndex);
2819 __ bind(&call);
2820 }
2821 } else {
2822 VisitForStackValue(callee);
2823 // refEnv.WithBaseObject()
2824 __ PushRoot(Heap::kUndefinedValueRootIndex);
2825 }
2826}
2827
2828
2829void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) {
2830 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2831 // to resolve the function we need to call. Then we call the resolved
2832 // function using the given arguments.
2833 ZoneList<Expression*>* args = expr->arguments();
2834 int arg_count = args->length();
2835 PushCalleeAndWithBaseObject(expr);
2836
2837 // Push the arguments.
2838 for (int i = 0; i < arg_count; i++) {
2839 VisitForStackValue(args->at(i));
2840 }
2841
2842 // Push a copy of the function (found below the arguments) and resolve
2843 // eval.
2844 __ Push(Operand(rsp, (arg_count + 1) * kPointerSize));
2845 EmitResolvePossiblyDirectEval(arg_count);
2846
2847 // Touch up the callee.
2848 __ movp(Operand(rsp, (arg_count + 1) * kPointerSize), rax);
2849
2850 PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS);
2851
2852 SetCallPosition(expr);
2853 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
2854 __ Set(rax, arg_count);
2855 __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
2856 RecordJSReturnSite(expr);
2857 // Restore context register.
2858 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2859 context()->DropAndPlug(1, rax);
2860}
2861
2862
2863void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2864 Comment cmnt(masm_, "[ CallNew");
2865 // According to ECMA-262, section 11.2.2, page 44, the function
2866 // expression in new calls must be evaluated before the
2867 // arguments.
2868
2869 // Push constructor on the stack. If it's not a function it's used as
2870 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2871 // ignored.
2872 DCHECK(!expr->expression()->IsSuperPropertyReference());
2873 VisitForStackValue(expr->expression());
2874
2875 // Push the arguments ("left-to-right") on the stack.
2876 ZoneList<Expression*>* args = expr->arguments();
2877 int arg_count = args->length();
2878 for (int i = 0; i < arg_count; i++) {
2879 VisitForStackValue(args->at(i));
2880 }
2881
2882 // Call the construct call builtin that handles allocation and
2883 // constructor invocation.
2884 SetConstructCallPosition(expr);
2885
2886 // Load function and argument count into rdi and rax.
2887 __ Set(rax, arg_count);
2888 __ movp(rdi, Operand(rsp, arg_count * kPointerSize));
2889
2890 // Record call targets in unoptimized code, but not in the snapshot.
2891 __ EmitLoadTypeFeedbackVector(rbx);
2892 __ Move(rdx, SmiFromSlot(expr->CallNewFeedbackSlot()));
2893
2894 CallConstructStub stub(isolate());
2895 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
2896 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2897 // Restore context register.
2898 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2899 context()->Plug(rax);
2900}
2901
2902
2903void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) {
2904 SuperCallReference* super_call_ref =
2905 expr->expression()->AsSuperCallReference();
2906 DCHECK_NOT_NULL(super_call_ref);
2907
2908 // Push the super constructor target on the stack (may be null,
2909 // but the Construct builtin can deal with that properly).
2910 VisitForAccumulatorValue(super_call_ref->this_function_var());
2911 __ AssertFunction(result_register());
2912 __ movp(result_register(),
2913 FieldOperand(result_register(), HeapObject::kMapOffset));
2914 __ Push(FieldOperand(result_register(), Map::kPrototypeOffset));
2915
2916 // Push the arguments ("left-to-right") on the stack.
2917 ZoneList<Expression*>* args = expr->arguments();
2918 int arg_count = args->length();
2919 for (int i = 0; i < arg_count; i++) {
2920 VisitForStackValue(args->at(i));
2921 }
2922
2923 // Call the construct call builtin that handles allocation and
2924 // constructor invocation.
2925 SetConstructCallPosition(expr);
2926
2927 // Load new target into rdx.
2928 VisitForAccumulatorValue(super_call_ref->new_target_var());
2929 __ movp(rdx, result_register());
2930
2931 // Load function and argument count into rdi and rax.
2932 __ Set(rax, arg_count);
2933 __ movp(rdi, Operand(rsp, arg_count * kPointerSize));
2934
2935 __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2936
2937 RecordJSReturnSite(expr);
2938
2939 // Restore context register.
2940 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2941
2942 context()->Plug(rax);
2943}
2944
2945
2946void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2947 ZoneList<Expression*>* args = expr->arguments();
2948 DCHECK(args->length() == 1);
2949
2950 VisitForAccumulatorValue(args->at(0));
2951
2952 Label materialize_true, materialize_false;
2953 Label* if_true = NULL;
2954 Label* if_false = NULL;
2955 Label* fall_through = NULL;
2956 context()->PrepareTest(&materialize_true, &materialize_false,
2957 &if_true, &if_false, &fall_through);
2958
2959 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2960 __ JumpIfSmi(rax, if_true);
2961 __ jmp(if_false);
2962
2963 context()->Plug(if_true, if_false);
2964}
2965
2966
2967void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) {
2968 ZoneList<Expression*>* args = expr->arguments();
2969 DCHECK(args->length() == 1);
2970
2971 VisitForAccumulatorValue(args->at(0));
2972
2973 Label materialize_true, materialize_false;
2974 Label* if_true = NULL;
2975 Label* if_false = NULL;
2976 Label* fall_through = NULL;
2977 context()->PrepareTest(&materialize_true, &materialize_false,
2978 &if_true, &if_false, &fall_through);
2979
2980 __ JumpIfSmi(rax, if_false);
2981 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rbx);
2982 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2983 Split(above_equal, if_true, if_false, fall_through);
2984
2985 context()->Plug(if_true, if_false);
2986}
2987
2988
2989void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) {
2990 ZoneList<Expression*>* args = expr->arguments();
2991 DCHECK(args->length() == 1);
2992
2993 VisitForAccumulatorValue(args->at(0));
2994
2995 Label materialize_true, materialize_false;
2996 Label* if_true = NULL;
2997 Label* if_false = NULL;
2998 Label* fall_through = NULL;
2999 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3000 &if_false, &fall_through);
3001
3002 __ JumpIfSmi(rax, if_false);
3003 __ CmpObjectType(rax, SIMD128_VALUE_TYPE, rbx);
3004 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3005 Split(equal, if_true, if_false, fall_through);
3006
3007 context()->Plug(if_true, if_false);
3008}
3009
3010
3011void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3012 ZoneList<Expression*>* args = expr->arguments();
3013 DCHECK(args->length() == 1);
3014
3015 VisitForAccumulatorValue(args->at(0));
3016
3017 Label materialize_true, materialize_false;
3018 Label* if_true = NULL;
3019 Label* if_false = NULL;
3020 Label* fall_through = NULL;
3021 context()->PrepareTest(&materialize_true, &materialize_false,
3022 &if_true, &if_false, &fall_through);
3023
3024 __ JumpIfSmi(rax, if_false);
3025 __ CmpObjectType(rax, FIRST_FUNCTION_TYPE, rbx);
3026 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3027 Split(above_equal, if_true, if_false, fall_through);
3028
3029 context()->Plug(if_true, if_false);
3030}
3031
3032
3033void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3034 ZoneList<Expression*>* args = expr->arguments();
3035 DCHECK(args->length() == 1);
3036
3037 VisitForAccumulatorValue(args->at(0));
3038
3039 Label materialize_true, materialize_false;
3040 Label* if_true = NULL;
3041 Label* if_false = NULL;
3042 Label* fall_through = NULL;
3043 context()->PrepareTest(&materialize_true, &materialize_false,
3044 &if_true, &if_false, &fall_through);
3045
3046 Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
3047 __ CheckMap(rax, map, if_false, DO_SMI_CHECK);
3048 __ cmpl(FieldOperand(rax, HeapNumber::kExponentOffset),
3049 Immediate(0x1));
3050 __ j(no_overflow, if_false);
3051 __ cmpl(FieldOperand(rax, HeapNumber::kMantissaOffset),
3052 Immediate(0x00000000));
3053 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3054 Split(equal, if_true, if_false, fall_through);
3055
3056 context()->Plug(if_true, if_false);
3057}
3058
3059
3060void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3061 ZoneList<Expression*>* args = expr->arguments();
3062 DCHECK(args->length() == 1);
3063
3064 VisitForAccumulatorValue(args->at(0));
3065
3066 Label materialize_true, materialize_false;
3067 Label* if_true = NULL;
3068 Label* if_false = NULL;
3069 Label* fall_through = NULL;
3070 context()->PrepareTest(&materialize_true, &materialize_false,
3071 &if_true, &if_false, &fall_through);
3072
3073 __ JumpIfSmi(rax, if_false);
3074 __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx);
3075 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3076 Split(equal, if_true, if_false, fall_through);
3077
3078 context()->Plug(if_true, if_false);
3079}
3080
3081
3082void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) {
3083 ZoneList<Expression*>* args = expr->arguments();
3084 DCHECK(args->length() == 1);
3085
3086 VisitForAccumulatorValue(args->at(0));
3087
3088 Label materialize_true, materialize_false;
3089 Label* if_true = NULL;
3090 Label* if_false = NULL;
3091 Label* fall_through = NULL;
3092 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3093 &if_false, &fall_through);
3094
3095 __ JumpIfSmi(rax, if_false);
3096 __ CmpObjectType(rax, JS_TYPED_ARRAY_TYPE, rbx);
3097 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3098 Split(equal, if_true, if_false, fall_through);
3099
3100 context()->Plug(if_true, if_false);
3101}
3102
3103
3104void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3105 ZoneList<Expression*>* args = expr->arguments();
3106 DCHECK(args->length() == 1);
3107
3108 VisitForAccumulatorValue(args->at(0));
3109
3110 Label materialize_true, materialize_false;
3111 Label* if_true = NULL;
3112 Label* if_false = NULL;
3113 Label* fall_through = NULL;
3114 context()->PrepareTest(&materialize_true, &materialize_false,
3115 &if_true, &if_false, &fall_through);
3116
3117 __ JumpIfSmi(rax, if_false);
3118 __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx);
3119 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3120 Split(equal, if_true, if_false, fall_through);
3121
3122 context()->Plug(if_true, if_false);
3123}
3124
3125
3126void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) {
3127 ZoneList<Expression*>* args = expr->arguments();
3128 DCHECK(args->length() == 1);
3129
3130 VisitForAccumulatorValue(args->at(0));
3131
3132 Label materialize_true, materialize_false;
3133 Label* if_true = NULL;
3134 Label* if_false = NULL;
3135 Label* fall_through = NULL;
3136 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3137 &if_false, &fall_through);
3138
3139
3140 __ JumpIfSmi(rax, if_false);
3141 __ CmpObjectType(rax, JS_PROXY_TYPE, rbx);
3142 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3143 Split(equal, if_true, if_false, fall_through);
3144
3145 context()->Plug(if_true, if_false);
3146}
3147
3148
3149void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3150 ZoneList<Expression*>* args = expr->arguments();
3151 DCHECK(args->length() == 2);
3152
3153 // Load the two objects into registers and perform the comparison.
3154 VisitForStackValue(args->at(0));
3155 VisitForAccumulatorValue(args->at(1));
3156
3157 Label materialize_true, materialize_false;
3158 Label* if_true = NULL;
3159 Label* if_false = NULL;
3160 Label* fall_through = NULL;
3161 context()->PrepareTest(&materialize_true, &materialize_false,
3162 &if_true, &if_false, &fall_through);
3163
3164 __ Pop(rbx);
3165 __ cmpp(rax, rbx);
3166 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3167 Split(equal, if_true, if_false, fall_through);
3168
3169 context()->Plug(if_true, if_false);
3170}
3171
3172
3173void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3174 ZoneList<Expression*>* args = expr->arguments();
3175 DCHECK(args->length() == 1);
3176
3177 // ArgumentsAccessStub expects the key in rdx and the formal
3178 // parameter count in rax.
3179 VisitForAccumulatorValue(args->at(0));
3180 __ movp(rdx, rax);
3181 __ Move(rax, Smi::FromInt(info_->scope()->num_parameters()));
3182 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3183 __ CallStub(&stub);
3184 context()->Plug(rax);
3185}
3186
3187
3188void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3189 DCHECK(expr->arguments()->length() == 0);
3190
3191 Label exit;
3192 // Get the number of formal parameters.
3193 __ Move(rax, Smi::FromInt(info_->scope()->num_parameters()));
3194
3195 // Check if the calling frame is an arguments adaptor frame.
3196 __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3197 __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset),
3198 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3199 __ j(not_equal, &exit, Label::kNear);
3200
3201 // Arguments adaptor case: Read the arguments length from the
3202 // adaptor frame.
3203 __ movp(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
3204
3205 __ bind(&exit);
3206 __ AssertSmi(rax);
3207 context()->Plug(rax);
3208}
3209
3210
3211void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3212 ZoneList<Expression*>* args = expr->arguments();
3213 DCHECK(args->length() == 1);
3214 Label done, null, function, non_function_constructor;
3215
3216 VisitForAccumulatorValue(args->at(0));
3217
3218 // If the object is not a JSReceiver, we return null.
3219 __ JumpIfSmi(rax, &null, Label::kNear);
3220 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
3221 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rax);
3222 __ j(below, &null, Label::kNear);
3223
3224 // Return 'Function' for JSFunction objects.
3225 __ CmpInstanceType(rax, JS_FUNCTION_TYPE);
3226 __ j(equal, &function, Label::kNear);
3227
3228 // Check if the constructor in the map is a JS function.
3229 __ GetMapConstructor(rax, rax, rbx);
3230 __ CmpInstanceType(rbx, JS_FUNCTION_TYPE);
3231 __ j(not_equal, &non_function_constructor, Label::kNear);
3232
3233 // rax now contains the constructor function. Grab the
3234 // instance class name from there.
3235 __ movp(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
3236 __ movp(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset));
3237 __ jmp(&done, Label::kNear);
3238
3239 // Non-JS objects have class null.
3240 __ bind(&null);
3241 __ LoadRoot(rax, Heap::kNullValueRootIndex);
3242 __ jmp(&done, Label::kNear);
3243
3244 // Functions have class 'Function'.
3245 __ bind(&function);
3246 __ LoadRoot(rax, Heap::kFunction_stringRootIndex);
3247 __ jmp(&done, Label::kNear);
3248
3249 // Objects with a non-function constructor have class 'Object'.
3250 __ bind(&non_function_constructor);
3251 __ LoadRoot(rax, Heap::kObject_stringRootIndex);
3252
3253 // All done.
3254 __ bind(&done);
3255
3256 context()->Plug(rax);
3257}
3258
3259
3260void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3261 ZoneList<Expression*>* args = expr->arguments();
3262 DCHECK(args->length() == 1);
3263
3264 VisitForAccumulatorValue(args->at(0)); // Load the object.
3265
3266 Label done;
3267 // If the object is a smi return the object.
3268 __ JumpIfSmi(rax, &done);
3269 // If the object is not a value type, return the object.
3270 __ CmpObjectType(rax, JS_VALUE_TYPE, rbx);
3271 __ j(not_equal, &done);
3272 __ movp(rax, FieldOperand(rax, JSValue::kValueOffset));
3273
3274 __ bind(&done);
3275 context()->Plug(rax);
3276}
3277
3278
3279void FullCodeGenerator::EmitIsDate(CallRuntime* expr) {
3280 ZoneList<Expression*>* args = expr->arguments();
3281 DCHECK_EQ(1, args->length());
3282
3283 VisitForAccumulatorValue(args->at(0));
3284
3285 Label materialize_true, materialize_false;
3286 Label* if_true = nullptr;
3287 Label* if_false = nullptr;
3288 Label* fall_through = nullptr;
3289 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3290 &if_false, &fall_through);
3291
3292 __ JumpIfSmi(rax, if_false);
3293 __ CmpObjectType(rax, JS_DATE_TYPE, rbx);
3294 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3295 Split(equal, if_true, if_false, fall_through);
3296
3297 context()->Plug(if_true, if_false);
3298}
3299
3300
3301void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3302 ZoneList<Expression*>* args = expr->arguments();
3303 DCHECK_EQ(3, args->length());
3304
3305 Register string = rax;
3306 Register index = rbx;
3307 Register value = rcx;
3308
3309 VisitForStackValue(args->at(0)); // index
3310 VisitForStackValue(args->at(1)); // value
3311 VisitForAccumulatorValue(args->at(2)); // string
3312 __ Pop(value);
3313 __ Pop(index);
3314
3315 if (FLAG_debug_code) {
3316 __ Check(__ CheckSmi(value), kNonSmiValue);
3317 __ Check(__ CheckSmi(index), kNonSmiValue);
3318 }
3319
3320 __ SmiToInteger32(value, value);
3321 __ SmiToInteger32(index, index);
3322
3323 if (FLAG_debug_code) {
3324 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3325 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3326 }
3327
3328 __ movb(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize),
3329 value);
3330 context()->Plug(string);
3331}
3332
3333
3334void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3335 ZoneList<Expression*>* args = expr->arguments();
3336 DCHECK_EQ(3, args->length());
3337
3338 Register string = rax;
3339 Register index = rbx;
3340 Register value = rcx;
3341
3342 VisitForStackValue(args->at(0)); // index
3343 VisitForStackValue(args->at(1)); // value
3344 VisitForAccumulatorValue(args->at(2)); // string
3345 __ Pop(value);
3346 __ Pop(index);
3347
3348 if (FLAG_debug_code) {
3349 __ Check(__ CheckSmi(value), kNonSmiValue);
3350 __ Check(__ CheckSmi(index), kNonSmiValue);
3351 }
3352
3353 __ SmiToInteger32(value, value);
3354 __ SmiToInteger32(index, index);
3355
3356 if (FLAG_debug_code) {
3357 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3358 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3359 }
3360
3361 __ movw(FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize),
3362 value);
3363 context()->Plug(rax);
3364}
3365
3366
3367void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3368 ZoneList<Expression*>* args = expr->arguments();
3369 DCHECK(args->length() == 2);
3370
3371 VisitForStackValue(args->at(0)); // Load the object.
3372 VisitForAccumulatorValue(args->at(1)); // Load the value.
3373 __ Pop(rbx); // rax = value. rbx = object.
3374
3375 Label done;
3376 // If the object is a smi, return the value.
3377 __ JumpIfSmi(rbx, &done);
3378
3379 // If the object is not a value type, return the value.
3380 __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx);
3381 __ j(not_equal, &done);
3382
3383 // Store the value.
3384 __ movp(FieldOperand(rbx, JSValue::kValueOffset), rax);
3385 // Update the write barrier. Save the value as it will be
3386 // overwritten by the write barrier code and is needed afterward.
3387 __ movp(rdx, rax);
3388 __ RecordWriteField(rbx, JSValue::kValueOffset, rdx, rcx, kDontSaveFPRegs);
3389
3390 __ bind(&done);
3391 context()->Plug(rax);
3392}
3393
3394
3395void FullCodeGenerator::EmitToInteger(CallRuntime* expr) {
3396 ZoneList<Expression*>* args = expr->arguments();
3397 DCHECK_EQ(1, args->length());
3398
3399 // Load the argument into rax and convert it.
3400 VisitForAccumulatorValue(args->at(0));
3401
3402 // Convert the object to an integer.
3403 Label done_convert;
3404 __ JumpIfSmi(rax, &done_convert, Label::kNear);
3405 __ Push(rax);
3406 __ CallRuntime(Runtime::kToInteger);
3407 __ bind(&done_convert);
3408 context()->Plug(rax);
3409}
3410
3411
3412void FullCodeGenerator::EmitToName(CallRuntime* expr) {
3413 ZoneList<Expression*>* args = expr->arguments();
3414 DCHECK_EQ(1, args->length());
3415
3416 // Load the argument into rax and convert it.
3417 VisitForAccumulatorValue(args->at(0));
3418
3419 // Convert the object to a name.
3420 Label convert, done_convert;
3421 __ JumpIfSmi(rax, &convert, Label::kNear);
3422 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
3423 __ CmpObjectType(rax, LAST_NAME_TYPE, rcx);
3424 __ j(below_equal, &done_convert, Label::kNear);
3425 __ bind(&convert);
3426 __ Push(rax);
3427 __ CallRuntime(Runtime::kToName);
3428 __ bind(&done_convert);
3429 context()->Plug(rax);
3430}
3431
3432
3433void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3434 ZoneList<Expression*>* args = expr->arguments();
3435 DCHECK(args->length() == 1);
3436
3437 VisitForAccumulatorValue(args->at(0));
3438
3439 Label done;
3440 StringCharFromCodeGenerator generator(rax, rbx);
3441 generator.GenerateFast(masm_);
3442 __ jmp(&done);
3443
3444 NopRuntimeCallHelper call_helper;
3445 generator.GenerateSlow(masm_, call_helper);
3446
3447 __ bind(&done);
3448 context()->Plug(rbx);
3449}
3450
3451
3452void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3453 ZoneList<Expression*>* args = expr->arguments();
3454 DCHECK(args->length() == 2);
3455
3456 VisitForStackValue(args->at(0));
3457 VisitForAccumulatorValue(args->at(1));
3458
3459 Register object = rbx;
3460 Register index = rax;
3461 Register result = rdx;
3462
3463 __ Pop(object);
3464
3465 Label need_conversion;
3466 Label index_out_of_range;
3467 Label done;
3468 StringCharCodeAtGenerator generator(object,
3469 index,
3470 result,
3471 &need_conversion,
3472 &need_conversion,
3473 &index_out_of_range,
3474 STRING_INDEX_IS_NUMBER);
3475 generator.GenerateFast(masm_);
3476 __ jmp(&done);
3477
3478 __ bind(&index_out_of_range);
3479 // When the index is out of range, the spec requires us to return
3480 // NaN.
3481 __ LoadRoot(result, Heap::kNanValueRootIndex);
3482 __ jmp(&done);
3483
3484 __ bind(&need_conversion);
3485 // Move the undefined value into the result register, which will
3486 // trigger conversion.
3487 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3488 __ jmp(&done);
3489
3490 NopRuntimeCallHelper call_helper;
3491 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3492
3493 __ bind(&done);
3494 context()->Plug(result);
3495}
3496
3497
3498void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3499 ZoneList<Expression*>* args = expr->arguments();
3500 DCHECK(args->length() == 2);
3501
3502 VisitForStackValue(args->at(0));
3503 VisitForAccumulatorValue(args->at(1));
3504
3505 Register object = rbx;
3506 Register index = rax;
3507 Register scratch = rdx;
3508 Register result = rax;
3509
3510 __ Pop(object);
3511
3512 Label need_conversion;
3513 Label index_out_of_range;
3514 Label done;
3515 StringCharAtGenerator generator(object,
3516 index,
3517 scratch,
3518 result,
3519 &need_conversion,
3520 &need_conversion,
3521 &index_out_of_range,
3522 STRING_INDEX_IS_NUMBER);
3523 generator.GenerateFast(masm_);
3524 __ jmp(&done);
3525
3526 __ bind(&index_out_of_range);
3527 // When the index is out of range, the spec requires us to return
3528 // the empty string.
3529 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3530 __ jmp(&done);
3531
3532 __ bind(&need_conversion);
3533 // Move smi zero into the result register, which will trigger
3534 // conversion.
3535 __ Move(result, Smi::FromInt(0));
3536 __ jmp(&done);
3537
3538 NopRuntimeCallHelper call_helper;
3539 generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper);
3540
3541 __ bind(&done);
3542 context()->Plug(result);
3543}
3544
3545
3546void FullCodeGenerator::EmitCall(CallRuntime* expr) {
3547 ZoneList<Expression*>* args = expr->arguments();
3548 DCHECK_LE(2, args->length());
3549 // Push target, receiver and arguments onto the stack.
3550 for (Expression* const arg : *args) {
3551 VisitForStackValue(arg);
3552 }
3553 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3554 // Move target to rdi.
3555 int const argc = args->length() - 2;
3556 __ movp(rdi, Operand(rsp, (argc + 1) * kPointerSize));
3557 // Call the target.
3558 __ Set(rax, argc);
3559 __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
3560 // Restore context register.
3561 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3562 // Discard the function left on TOS.
3563 context()->DropAndPlug(1, rax);
3564}
3565
3566
3567void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3568 ZoneList<Expression*>* args = expr->arguments();
3569 DCHECK(args->length() == 1);
3570
3571 VisitForAccumulatorValue(args->at(0));
3572
3573 Label materialize_true, materialize_false;
3574 Label* if_true = NULL;
3575 Label* if_false = NULL;
3576 Label* fall_through = NULL;
3577 context()->PrepareTest(&materialize_true, &materialize_false,
3578 &if_true, &if_false, &fall_through);
3579
3580 __ testl(FieldOperand(rax, String::kHashFieldOffset),
3581 Immediate(String::kContainsCachedArrayIndexMask));
3582 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3583 __ j(zero, if_true);
3584 __ jmp(if_false);
3585
3586 context()->Plug(if_true, if_false);
3587}
3588
3589
3590void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3591 ZoneList<Expression*>* args = expr->arguments();
3592 DCHECK(args->length() == 1);
3593 VisitForAccumulatorValue(args->at(0));
3594
3595 __ AssertString(rax);
3596
3597 __ movl(rax, FieldOperand(rax, String::kHashFieldOffset));
3598 DCHECK(String::kHashShift >= kSmiTagSize);
3599 __ IndexFromHash(rax, rax);
3600
3601 context()->Plug(rax);
3602}
3603
3604
3605void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) {
3606 ZoneList<Expression*>* args = expr->arguments();
3607 DCHECK_EQ(1, args->length());
3608 VisitForAccumulatorValue(args->at(0));
3609 __ AssertFunction(rax);
3610 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
3611 __ movp(rax, FieldOperand(rax, Map::kPrototypeOffset));
3612 context()->Plug(rax);
3613}
3614
3615
3616void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3617 Label bailout, return_result, done, one_char_separator, long_separator,
3618 non_trivial_array, not_size_one_array, loop,
3619 loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry;
3620 ZoneList<Expression*>* args = expr->arguments();
3621 DCHECK(args->length() == 2);
3622 // We will leave the separator on the stack until the end of the function.
3623 VisitForStackValue(args->at(1));
3624 // Load this to rax (= array)
3625 VisitForAccumulatorValue(args->at(0));
3626 // All aliases of the same register have disjoint lifetimes.
3627 Register array = rax;
3628 Register elements = no_reg; // Will be rax.
3629
3630 Register index = rdx;
3631
3632 Register string_length = rcx;
3633
3634 Register string = rsi;
3635
3636 Register scratch = rbx;
3637
3638 Register array_length = rdi;
3639 Register result_pos = no_reg; // Will be rdi.
3640
3641 Operand separator_operand = Operand(rsp, 2 * kPointerSize);
3642 Operand result_operand = Operand(rsp, 1 * kPointerSize);
3643 Operand array_length_operand = Operand(rsp, 0 * kPointerSize);
3644 // Separator operand is already pushed. Make room for the two
3645 // other stack fields, and clear the direction flag in anticipation
3646 // of calling CopyBytes.
3647 __ subp(rsp, Immediate(2 * kPointerSize));
3648 __ cld();
3649 // Check that the array is a JSArray
3650 __ JumpIfSmi(array, &bailout);
3651 __ CmpObjectType(array, JS_ARRAY_TYPE, scratch);
3652 __ j(not_equal, &bailout);
3653
3654 // Check that the array has fast elements.
3655 __ CheckFastElements(scratch, &bailout);
3656
3657 // Array has fast elements, so its length must be a smi.
3658 // If the array has length zero, return the empty string.
3659 __ movp(array_length, FieldOperand(array, JSArray::kLengthOffset));
3660 __ SmiCompare(array_length, Smi::FromInt(0));
3661 __ j(not_zero, &non_trivial_array);
3662 __ LoadRoot(rax, Heap::kempty_stringRootIndex);
3663 __ jmp(&return_result);
3664
3665 // Save the array length on the stack.
3666 __ bind(&non_trivial_array);
3667 __ SmiToInteger32(array_length, array_length);
3668 __ movl(array_length_operand, array_length);
3669
3670 // Save the FixedArray containing array's elements.
3671 // End of array's live range.
3672 elements = array;
3673 __ movp(elements, FieldOperand(array, JSArray::kElementsOffset));
3674 array = no_reg;
3675
3676
3677 // Check that all array elements are sequential one-byte strings, and
3678 // accumulate the sum of their lengths, as a smi-encoded value.
3679 __ Set(index, 0);
3680 __ Set(string_length, 0);
3681 // Loop condition: while (index < array_length).
3682 // Live loop registers: index(int32), array_length(int32), string(String*),
3683 // scratch, string_length(int32), elements(FixedArray*).
3684 if (generate_debug_code_) {
3685 __ cmpp(index, array_length);
3686 __ Assert(below, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3687 }
3688 __ bind(&loop);
3689 __ movp(string, FieldOperand(elements,
3690 index,
3691 times_pointer_size,
3692 FixedArray::kHeaderSize));
3693 __ JumpIfSmi(string, &bailout);
3694 __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset));
3695 __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
3696 __ andb(scratch, Immediate(
3697 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
3698 __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag));
3699 __ j(not_equal, &bailout);
3700 __ AddSmiField(string_length,
3701 FieldOperand(string, SeqOneByteString::kLengthOffset));
3702 __ j(overflow, &bailout);
3703 __ incl(index);
3704 __ cmpl(index, array_length);
3705 __ j(less, &loop);
3706
3707 // Live registers:
3708 // string_length: Sum of string lengths.
3709 // elements: FixedArray of strings.
3710 // index: Array length.
3711 // array_length: Array length.
3712
3713 // If array_length is 1, return elements[0], a string.
3714 __ cmpl(array_length, Immediate(1));
3715 __ j(not_equal, &not_size_one_array);
3716 __ movp(rax, FieldOperand(elements, FixedArray::kHeaderSize));
3717 __ jmp(&return_result);
3718
3719 __ bind(&not_size_one_array);
3720
3721 // End of array_length live range.
3722 result_pos = array_length;
3723 array_length = no_reg;
3724
3725 // Live registers:
3726 // string_length: Sum of string lengths.
3727 // elements: FixedArray of strings.
3728 // index: Array length.
3729
3730 // Check that the separator is a sequential one-byte string.
3731 __ movp(string, separator_operand);
3732 __ JumpIfSmi(string, &bailout);
3733 __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset));
3734 __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
3735 __ andb(scratch, Immediate(
3736 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask));
3737 __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag));
3738 __ j(not_equal, &bailout);
3739
3740 // Live registers:
3741 // string_length: Sum of string lengths.
3742 // elements: FixedArray of strings.
3743 // index: Array length.
3744 // string: Separator string.
3745
3746 // Add (separator length times (array_length - 1)) to string_length.
3747 __ SmiToInteger32(scratch,
3748 FieldOperand(string, SeqOneByteString::kLengthOffset));
3749 __ decl(index);
3750 __ imull(scratch, index);
3751 __ j(overflow, &bailout);
3752 __ addl(string_length, scratch);
3753 __ j(overflow, &bailout);
3754 __ jmp(&bailout);
3755
3756 // Bailout for large object allocations.
3757 __ cmpl(string_length, Immediate(Page::kMaxRegularHeapObjectSize));
3758 __ j(greater, &bailout);
3759
3760 // Live registers and stack values:
3761 // string_length: Total length of result string.
3762 // elements: FixedArray of strings.
3763 __ AllocateOneByteString(result_pos, string_length, scratch, index, string,
3764 &bailout);
3765 __ movp(result_operand, result_pos);
3766 __ leap(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize));
3767
3768 __ movp(string, separator_operand);
3769 __ SmiCompare(FieldOperand(string, SeqOneByteString::kLengthOffset),
3770 Smi::FromInt(1));
3771 __ j(equal, &one_char_separator);
3772 __ j(greater, &long_separator);
3773
3774
3775 // Empty separator case:
3776 __ Set(index, 0);
3777 __ movl(scratch, array_length_operand);
3778 __ jmp(&loop_1_condition);
3779 // Loop condition: while (index < array_length).
3780 __ bind(&loop_1);
3781 // Each iteration of the loop concatenates one string to the result.
3782 // Live values in registers:
3783 // index: which element of the elements array we are adding to the result.
3784 // result_pos: the position to which we are currently copying characters.
3785 // elements: the FixedArray of strings we are joining.
3786 // scratch: array length.
3787
3788 // Get string = array[index].
3789 __ movp(string, FieldOperand(elements, index,
3790 times_pointer_size,
3791 FixedArray::kHeaderSize));
3792 __ SmiToInteger32(string_length,
3793 FieldOperand(string, String::kLengthOffset));
3794 __ leap(string,
3795 FieldOperand(string, SeqOneByteString::kHeaderSize));
3796 __ CopyBytes(result_pos, string, string_length);
3797 __ incl(index);
3798 __ bind(&loop_1_condition);
3799 __ cmpl(index, scratch);
3800 __ j(less, &loop_1); // Loop while (index < array_length).
3801 __ jmp(&done);
3802
3803 // Generic bailout code used from several places.
3804 __ bind(&bailout);
3805 __ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
3806 __ jmp(&return_result);
3807
3808
3809 // One-character separator case
3810 __ bind(&one_char_separator);
3811 // Get the separator one-byte character value.
3812 // Register "string" holds the separator.
3813 __ movzxbl(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize));
3814 __ Set(index, 0);
3815 // Jump into the loop after the code that copies the separator, so the first
3816 // element is not preceded by a separator
3817 __ jmp(&loop_2_entry);
3818 // Loop condition: while (index < length).
3819 __ bind(&loop_2);
3820 // Each iteration of the loop concatenates one string to the result.
3821 // Live values in registers:
3822 // elements: The FixedArray of strings we are joining.
3823 // index: which element of the elements array we are adding to the result.
3824 // result_pos: the position to which we are currently copying characters.
3825 // scratch: Separator character.
3826
3827 // Copy the separator character to the result.
3828 __ movb(Operand(result_pos, 0), scratch);
3829 __ incp(result_pos);
3830
3831 __ bind(&loop_2_entry);
3832 // Get string = array[index].
3833 __ movp(string, FieldOperand(elements, index,
3834 times_pointer_size,
3835 FixedArray::kHeaderSize));
3836 __ SmiToInteger32(string_length,
3837 FieldOperand(string, String::kLengthOffset));
3838 __ leap(string,
3839 FieldOperand(string, SeqOneByteString::kHeaderSize));
3840 __ CopyBytes(result_pos, string, string_length);
3841 __ incl(index);
3842 __ cmpl(index, array_length_operand);
3843 __ j(less, &loop_2); // End while (index < length).
3844 __ jmp(&done);
3845
3846
3847 // Long separator case (separator is more than one character).
3848 __ bind(&long_separator);
3849
3850 // Make elements point to end of elements array, and index
3851 // count from -array_length to zero, so we don't need to maintain
3852 // a loop limit.
3853 __ movl(index, array_length_operand);
3854 __ leap(elements, FieldOperand(elements, index, times_pointer_size,
3855 FixedArray::kHeaderSize));
3856 __ negq(index);
3857
3858 // Replace separator string with pointer to its first character, and
3859 // make scratch be its length.
3860 __ movp(string, separator_operand);
3861 __ SmiToInteger32(scratch,
3862 FieldOperand(string, String::kLengthOffset));
3863 __ leap(string,
3864 FieldOperand(string, SeqOneByteString::kHeaderSize));
3865 __ movp(separator_operand, string);
3866
3867 // Jump into the loop after the code that copies the separator, so the first
3868 // element is not preceded by a separator
3869 __ jmp(&loop_3_entry);
3870 // Loop condition: while (index < length).
3871 __ bind(&loop_3);
3872 // Each iteration of the loop concatenates one string to the result.
3873 // Live values in registers:
3874 // index: which element of the elements array we are adding to the result.
3875 // result_pos: the position to which we are currently copying characters.
3876 // scratch: Separator length.
3877 // separator_operand (rsp[0x10]): Address of first char of separator.
3878
3879 // Copy the separator to the result.
3880 __ movp(string, separator_operand);
3881 __ movl(string_length, scratch);
3882 __ CopyBytes(result_pos, string, string_length, 2);
3883
3884 __ bind(&loop_3_entry);
3885 // Get string = array[index].
3886 __ movp(string, Operand(elements, index, times_pointer_size, 0));
3887 __ SmiToInteger32(string_length,
3888 FieldOperand(string, String::kLengthOffset));
3889 __ leap(string,
3890 FieldOperand(string, SeqOneByteString::kHeaderSize));
3891 __ CopyBytes(result_pos, string, string_length);
3892 __ incq(index);
3893 __ j(not_equal, &loop_3); // Loop while (index < 0).
3894
3895 __ bind(&done);
3896 __ movp(rax, result_operand);
3897
3898 __ bind(&return_result);
3899 // Drop temp values from the stack, and restore context register.
3900 __ addp(rsp, Immediate(3 * kPointerSize));
3901 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3902 context()->Plug(rax);
3903}
3904
3905
3906void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
3907 DCHECK(expr->arguments()->length() == 0);
3908 ExternalReference debug_is_active =
3909 ExternalReference::debug_is_active_address(isolate());
3910 __ Move(kScratchRegister, debug_is_active);
3911 __ movzxbp(rax, Operand(kScratchRegister, 0));
3912 __ Integer32ToSmi(rax, rax);
3913 context()->Plug(rax);
3914}
3915
3916
3917void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) {
3918 ZoneList<Expression*>* args = expr->arguments();
3919 DCHECK_EQ(2, args->length());
3920 VisitForStackValue(args->at(0));
3921 VisitForStackValue(args->at(1));
3922
3923 Label runtime, done;
3924
3925 __ Allocate(JSIteratorResult::kSize, rax, rcx, rdx, &runtime, TAG_OBJECT);
3926 __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, rbx);
3927 __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx);
3928 __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
3929 __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
3930 __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx);
3931 __ Pop(FieldOperand(rax, JSIteratorResult::kDoneOffset));
3932 __ Pop(FieldOperand(rax, JSIteratorResult::kValueOffset));
3933 STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize);
3934 __ jmp(&done, Label::kNear);
3935
3936 __ bind(&runtime);
3937 __ CallRuntime(Runtime::kCreateIterResultObject);
3938
3939 __ bind(&done);
3940 context()->Plug(rax);
3941}
3942
3943
3944void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) {
3945 // Push the builtins object as receiver.
3946 __ PushRoot(Heap::kUndefinedValueRootIndex);
3947
3948 __ LoadNativeContextSlot(expr->context_index(), rax);
3949}
3950
3951
3952void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) {
3953 ZoneList<Expression*>* args = expr->arguments();
3954 int arg_count = args->length();
3955
3956 SetCallPosition(expr);
3957 __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize));
3958 __ Set(rax, arg_count);
3959 __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined),
3960 RelocInfo::CODE_TARGET);
3961}
3962
3963
3964void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
3965 ZoneList<Expression*>* args = expr->arguments();
3966 int arg_count = args->length();
3967
3968 if (expr->is_jsruntime()) {
3969 Comment cmnt(masm_, "[ CallRuntime");
3970
3971 EmitLoadJSRuntimeFunction(expr);
3972
3973 // Push the target function under the receiver.
3974 __ Push(Operand(rsp, 0));
3975 __ movp(Operand(rsp, kPointerSize), rax);
3976
3977 // Push the arguments ("left-to-right").
3978 for (int i = 0; i < arg_count; i++) {
3979 VisitForStackValue(args->at(i));
3980 }
3981
3982 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
3983 EmitCallJSRuntimeFunction(expr);
3984
3985 // Restore context register.
3986 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
3987 context()->DropAndPlug(1, rax);
3988
3989 } else {
3990 const Runtime::Function* function = expr->function();
3991 switch (function->function_id) {
3992#define CALL_INTRINSIC_GENERATOR(Name) \
3993 case Runtime::kInline##Name: { \
3994 Comment cmnt(masm_, "[ Inline" #Name); \
3995 return Emit##Name(expr); \
3996 }
3997 FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR)
3998#undef CALL_INTRINSIC_GENERATOR
3999 default: {
4000 Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic");
4001 // Push the arguments ("left-to-right").
4002 for (int i = 0; i < arg_count; i++) {
4003 VisitForStackValue(args->at(i));
4004 }
4005
4006 // Call the C runtime.
4007 PrepareForBailoutForId(expr->CallId(), NO_REGISTERS);
4008 __ CallRuntime(function, arg_count);
4009 context()->Plug(rax);
4010 }
4011 }
4012 }
4013}
4014
4015
4016void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4017 switch (expr->op()) {
4018 case Token::DELETE: {
4019 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4020 Property* property = expr->expression()->AsProperty();
4021 VariableProxy* proxy = expr->expression()->AsVariableProxy();
4022
4023 if (property != NULL) {
4024 VisitForStackValue(property->obj());
4025 VisitForStackValue(property->key());
4026 __ CallRuntime(is_strict(language_mode())
4027 ? Runtime::kDeleteProperty_Strict
4028 : Runtime::kDeleteProperty_Sloppy);
4029 context()->Plug(rax);
4030 } else if (proxy != NULL) {
4031 Variable* var = proxy->var();
4032 // Delete of an unqualified identifier is disallowed in strict mode but
4033 // "delete this" is allowed.
4034 bool is_this = var->HasThisName(isolate());
4035 DCHECK(is_sloppy(language_mode()) || is_this);
4036 if (var->IsUnallocatedOrGlobalSlot()) {
4037 __ movp(rax, NativeContextOperand());
4038 __ Push(ContextOperand(rax, Context::EXTENSION_INDEX));
4039 __ Push(var->name());
4040 __ CallRuntime(Runtime::kDeleteProperty_Sloppy);
4041 context()->Plug(rax);
4042 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4043 // Result of deleting non-global variables is false. 'this' is
4044 // not really a variable, though we implement it as one. The
4045 // subexpression does not have side effects.
4046 context()->Plug(is_this);
4047 } else {
4048 // Non-global variable. Call the runtime to try to delete from the
4049 // context where the variable was introduced.
4050 __ Push(context_register());
4051 __ Push(var->name());
4052 __ CallRuntime(Runtime::kDeleteLookupSlot);
4053 context()->Plug(rax);
4054 }
4055 } else {
4056 // Result of deleting non-property, non-variable reference is true.
4057 // The subexpression may have side effects.
4058 VisitForEffect(expr->expression());
4059 context()->Plug(true);
4060 }
4061 break;
4062 }
4063
4064 case Token::VOID: {
4065 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4066 VisitForEffect(expr->expression());
4067 context()->Plug(Heap::kUndefinedValueRootIndex);
4068 break;
4069 }
4070
4071 case Token::NOT: {
4072 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4073 if (context()->IsEffect()) {
4074 // Unary NOT has no side effects so it's only necessary to visit the
4075 // subexpression. Match the optimizing compiler by not branching.
4076 VisitForEffect(expr->expression());
4077 } else if (context()->IsTest()) {
4078 const TestContext* test = TestContext::cast(context());
4079 // The labels are swapped for the recursive call.
4080 VisitForControl(expr->expression(),
4081 test->false_label(),
4082 test->true_label(),
4083 test->fall_through());
4084 context()->Plug(test->true_label(), test->false_label());
4085 } else {
4086 // We handle value contexts explicitly rather than simply visiting
4087 // for control and plugging the control flow into the context,
4088 // because we need to prepare a pair of extra administrative AST ids
4089 // for the optimizing compiler.
4090 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4091 Label materialize_true, materialize_false, done;
4092 VisitForControl(expr->expression(),
4093 &materialize_false,
4094 &materialize_true,
4095 &materialize_true);
4096 __ bind(&materialize_true);
4097 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4098 if (context()->IsAccumulatorValue()) {
4099 __ LoadRoot(rax, Heap::kTrueValueRootIndex);
4100 } else {
4101 __ PushRoot(Heap::kTrueValueRootIndex);
4102 }
4103 __ jmp(&done, Label::kNear);
4104 __ bind(&materialize_false);
4105 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4106 if (context()->IsAccumulatorValue()) {
4107 __ LoadRoot(rax, Heap::kFalseValueRootIndex);
4108 } else {
4109 __ PushRoot(Heap::kFalseValueRootIndex);
4110 }
4111 __ bind(&done);
4112 }
4113 break;
4114 }
4115
4116 case Token::TYPEOF: {
4117 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4118 {
4119 AccumulatorValueContext context(this);
4120 VisitForTypeofValue(expr->expression());
4121 }
4122 __ movp(rbx, rax);
4123 TypeofStub typeof_stub(isolate());
4124 __ CallStub(&typeof_stub);
4125 context()->Plug(rax);
4126 break;
4127 }
4128
4129 default:
4130 UNREACHABLE();
4131 }
4132}
4133
4134
4135void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
4136 DCHECK(expr->expression()->IsValidReferenceExpressionOrThis());
4137
4138 Comment cmnt(masm_, "[ CountOperation");
4139
4140 Property* prop = expr->expression()->AsProperty();
4141 LhsKind assign_type = Property::GetAssignType(prop);
4142
4143 // Evaluate expression and get value.
4144 if (assign_type == VARIABLE) {
4145 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4146 AccumulatorValueContext context(this);
4147 EmitVariableLoad(expr->expression()->AsVariableProxy());
4148 } else {
4149 // Reserve space for result of postfix operation.
4150 if (expr->is_postfix() && !context()->IsEffect()) {
4151 __ Push(Smi::FromInt(0));
4152 }
4153 switch (assign_type) {
4154 case NAMED_PROPERTY: {
4155 VisitForStackValue(prop->obj());
4156 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0));
4157 EmitNamedPropertyLoad(prop);
4158 break;
4159 }
4160
4161 case NAMED_SUPER_PROPERTY: {
4162 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
4163 VisitForAccumulatorValue(
4164 prop->obj()->AsSuperPropertyReference()->home_object());
4165 __ Push(result_register());
4166 __ Push(MemOperand(rsp, kPointerSize));
4167 __ Push(result_register());
4168 EmitNamedSuperPropertyLoad(prop);
4169 break;
4170 }
4171
4172 case KEYED_SUPER_PROPERTY: {
4173 VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var());
4174 VisitForStackValue(
4175 prop->obj()->AsSuperPropertyReference()->home_object());
4176 VisitForAccumulatorValue(prop->key());
4177 __ Push(result_register());
4178 __ Push(MemOperand(rsp, 2 * kPointerSize));
4179 __ Push(MemOperand(rsp, 2 * kPointerSize));
4180 __ Push(result_register());
4181 EmitKeyedSuperPropertyLoad(prop);
4182 break;
4183 }
4184
4185 case KEYED_PROPERTY: {
4186 VisitForStackValue(prop->obj());
4187 VisitForStackValue(prop->key());
4188 // Leave receiver on stack
4189 __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize));
4190 // Copy of key, needed for later store.
4191 __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0));
4192 EmitKeyedPropertyLoad(prop);
4193 break;
4194 }
4195
4196 case VARIABLE:
4197 UNREACHABLE();
4198 }
4199 }
4200
4201 // We need a second deoptimization point after loading the value
4202 // in case evaluating the property load my have a side effect.
4203 if (assign_type == VARIABLE) {
4204 PrepareForBailout(expr->expression(), TOS_REG);
4205 } else {
4206 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4207 }
4208
4209 // Inline smi case if we are in a loop.
4210 Label done, stub_call;
4211 JumpPatchSite patch_site(masm_);
4212 if (ShouldInlineSmiCase(expr->op())) {
4213 Label slow;
4214 patch_site.EmitJumpIfNotSmi(rax, &slow, Label::kNear);
4215
4216 // Save result for postfix expressions.
4217 if (expr->is_postfix()) {
4218 if (!context()->IsEffect()) {
4219 // Save the result on the stack. If we have a named or keyed property
4220 // we store the result under the receiver that is currently on top
4221 // of the stack.
4222 switch (assign_type) {
4223 case VARIABLE:
4224 __ Push(rax);
4225 break;
4226 case NAMED_PROPERTY:
4227 __ movp(Operand(rsp, kPointerSize), rax);
4228 break;
4229 case NAMED_SUPER_PROPERTY:
4230 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4231 break;
4232 case KEYED_PROPERTY:
4233 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4234 break;
4235 case KEYED_SUPER_PROPERTY:
4236 __ movp(Operand(rsp, 3 * kPointerSize), rax);
4237 break;
4238 }
4239 }
4240 }
4241
4242 SmiOperationConstraints constraints =
4243 SmiOperationConstraint::kPreserveSourceRegister |
4244 SmiOperationConstraint::kBailoutOnNoOverflow;
4245 if (expr->op() == Token::INC) {
4246 __ SmiAddConstant(rax, rax, Smi::FromInt(1), constraints, &done,
4247 Label::kNear);
4248 } else {
4249 __ SmiSubConstant(rax, rax, Smi::FromInt(1), constraints, &done,
4250 Label::kNear);
4251 }
4252 __ jmp(&stub_call, Label::kNear);
4253 __ bind(&slow);
4254 }
4255 if (!is_strong(language_mode())) {
4256 ToNumberStub convert_stub(isolate());
4257 __ CallStub(&convert_stub);
4258 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4259 }
4260
4261 // Save result for postfix expressions.
4262 if (expr->is_postfix()) {
4263 if (!context()->IsEffect()) {
4264 // Save the result on the stack. If we have a named or keyed property
4265 // we store the result under the receiver that is currently on top
4266 // of the stack.
4267 switch (assign_type) {
4268 case VARIABLE:
4269 __ Push(rax);
4270 break;
4271 case NAMED_PROPERTY:
4272 __ movp(Operand(rsp, kPointerSize), rax);
4273 break;
4274 case NAMED_SUPER_PROPERTY:
4275 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4276 break;
4277 case KEYED_PROPERTY:
4278 __ movp(Operand(rsp, 2 * kPointerSize), rax);
4279 break;
4280 case KEYED_SUPER_PROPERTY:
4281 __ movp(Operand(rsp, 3 * kPointerSize), rax);
4282 break;
4283 }
4284 }
4285 }
4286
4287 SetExpressionPosition(expr);
4288
4289 // Call stub for +1/-1.
4290 __ bind(&stub_call);
4291 __ movp(rdx, rax);
4292 __ Move(rax, Smi::FromInt(1));
4293 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(),
4294 strength(language_mode())).code();
4295 CallIC(code, expr->CountBinOpFeedbackId());
4296 patch_site.EmitPatchInfo();
4297 __ bind(&done);
4298
4299 if (is_strong(language_mode())) {
4300 PrepareForBailoutForId(expr->ToNumberId(), TOS_REG);
4301 }
4302 // Store the value returned in rax.
4303 switch (assign_type) {
4304 case VARIABLE:
4305 if (expr->is_postfix()) {
4306 // Perform the assignment as if via '='.
4307 { EffectContext context(this);
4308 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4309 Token::ASSIGN, expr->CountSlot());
4310 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4311 context.Plug(rax);
4312 }
4313 // For all contexts except kEffect: We have the result on
4314 // top of the stack.
4315 if (!context()->IsEffect()) {
4316 context()->PlugTOS();
4317 }
4318 } else {
4319 // Perform the assignment as if via '='.
4320 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4321 Token::ASSIGN, expr->CountSlot());
4322 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4323 context()->Plug(rax);
4324 }
4325 break;
4326 case NAMED_PROPERTY: {
4327 __ Move(StoreDescriptor::NameRegister(),
4328 prop->key()->AsLiteral()->value());
4329 __ Pop(StoreDescriptor::ReceiverRegister());
4330 EmitLoadStoreICSlot(expr->CountSlot());
4331 CallStoreIC();
4332 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4333 if (expr->is_postfix()) {
4334 if (!context()->IsEffect()) {
4335 context()->PlugTOS();
4336 }
4337 } else {
4338 context()->Plug(rax);
4339 }
4340 break;
4341 }
4342 case NAMED_SUPER_PROPERTY: {
4343 EmitNamedSuperPropertyStore(prop);
4344 if (expr->is_postfix()) {
4345 if (!context()->IsEffect()) {
4346 context()->PlugTOS();
4347 }
4348 } else {
4349 context()->Plug(rax);
4350 }
4351 break;
4352 }
4353 case KEYED_SUPER_PROPERTY: {
4354 EmitKeyedSuperPropertyStore(prop);
4355 if (expr->is_postfix()) {
4356 if (!context()->IsEffect()) {
4357 context()->PlugTOS();
4358 }
4359 } else {
4360 context()->Plug(rax);
4361 }
4362 break;
4363 }
4364 case KEYED_PROPERTY: {
4365 __ Pop(StoreDescriptor::NameRegister());
4366 __ Pop(StoreDescriptor::ReceiverRegister());
4367 Handle<Code> ic =
4368 CodeFactory::KeyedStoreIC(isolate(), language_mode()).code();
4369 EmitLoadStoreICSlot(expr->CountSlot());
4370 CallIC(ic);
4371 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4372 if (expr->is_postfix()) {
4373 if (!context()->IsEffect()) {
4374 context()->PlugTOS();
4375 }
4376 } else {
4377 context()->Plug(rax);
4378 }
4379 break;
4380 }
4381 }
4382}
4383
4384
4385void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4386 Expression* sub_expr,
4387 Handle<String> check) {
4388 Label materialize_true, materialize_false;
4389 Label* if_true = NULL;
4390 Label* if_false = NULL;
4391 Label* fall_through = NULL;
4392 context()->PrepareTest(&materialize_true, &materialize_false,
4393 &if_true, &if_false, &fall_through);
4394
4395 { AccumulatorValueContext context(this);
4396 VisitForTypeofValue(sub_expr);
4397 }
4398 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4399
4400 Factory* factory = isolate()->factory();
4401 if (String::Equals(check, factory->number_string())) {
4402 __ JumpIfSmi(rax, if_true);
4403 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
4404 __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex);
4405 Split(equal, if_true, if_false, fall_through);
4406 } else if (String::Equals(check, factory->string_string())) {
4407 __ JumpIfSmi(rax, if_false);
4408 __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx);
4409 Split(below, if_true, if_false, fall_through);
4410 } else if (String::Equals(check, factory->symbol_string())) {
4411 __ JumpIfSmi(rax, if_false);
4412 __ CmpObjectType(rax, SYMBOL_TYPE, rdx);
4413 Split(equal, if_true, if_false, fall_through);
4414 } else if (String::Equals(check, factory->boolean_string())) {
4415 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
4416 __ j(equal, if_true);
4417 __ CompareRoot(rax, Heap::kFalseValueRootIndex);
4418 Split(equal, if_true, if_false, fall_through);
4419 } else if (String::Equals(check, factory->undefined_string())) {
4420 __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
4421 __ j(equal, if_true);
4422 __ JumpIfSmi(rax, if_false);
4423 // Check for undetectable objects => true.
4424 __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
4425 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
4426 Immediate(1 << Map::kIsUndetectable));
4427 Split(not_zero, if_true, if_false, fall_through);
4428 } else if (String::Equals(check, factory->function_string())) {
4429 __ JumpIfSmi(rax, if_false);
4430 // Check for callable and not undetectable objects => true.
4431 __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset));
4432 __ movzxbl(rdx, FieldOperand(rdx, Map::kBitFieldOffset));
4433 __ andb(rdx,
4434 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
4435 __ cmpb(rdx, Immediate(1 << Map::kIsCallable));
4436 Split(equal, if_true, if_false, fall_through);
4437 } else if (String::Equals(check, factory->object_string())) {
4438 __ JumpIfSmi(rax, if_false);
4439 __ CompareRoot(rax, Heap::kNullValueRootIndex);
4440 __ j(equal, if_true);
4441 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
4442 __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rdx);
4443 __ j(below, if_false);
4444 // Check for callable or undetectable objects => false.
4445 __ testb(FieldOperand(rdx, Map::kBitFieldOffset),
4446 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
4447 Split(zero, if_true, if_false, fall_through);
4448// clang-format off
4449#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
4450 } else if (String::Equals(check, factory->type##_string())) { \
4451 __ JumpIfSmi(rax, if_false); \
4452 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); \
4453 __ CompareRoot(rax, Heap::k##Type##MapRootIndex); \
4454 Split(equal, if_true, if_false, fall_through);
4455 SIMD128_TYPES(SIMD128_TYPE)
4456#undef SIMD128_TYPE
4457 // clang-format on
4458 } else {
4459 if (if_false != fall_through) __ jmp(if_false);
4460 }
4461 context()->Plug(if_true, if_false);
4462}
4463
4464
4465void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4466 Comment cmnt(masm_, "[ CompareOperation");
4467 SetExpressionPosition(expr);
4468
4469 // First we try a fast inlined version of the compare when one of
4470 // the operands is a literal.
4471 if (TryLiteralCompare(expr)) return;
4472
4473 // Always perform the comparison for its control flow. Pack the result
4474 // into the expression's context after the comparison is performed.
4475 Label materialize_true, materialize_false;
4476 Label* if_true = NULL;
4477 Label* if_false = NULL;
4478 Label* fall_through = NULL;
4479 context()->PrepareTest(&materialize_true, &materialize_false,
4480 &if_true, &if_false, &fall_through);
4481
4482 Token::Value op = expr->op();
4483 VisitForStackValue(expr->left());
4484 switch (op) {
4485 case Token::IN:
4486 VisitForStackValue(expr->right());
4487 __ CallRuntime(Runtime::kHasProperty);
4488 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4489 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
4490 Split(equal, if_true, if_false, fall_through);
4491 break;
4492
4493 case Token::INSTANCEOF: {
4494 VisitForAccumulatorValue(expr->right());
4495 __ Pop(rdx);
4496 InstanceOfStub stub(isolate());
4497 __ CallStub(&stub);
4498 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4499 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
4500 Split(equal, if_true, if_false, fall_through);
4501 break;
4502 }
4503
4504 default: {
4505 VisitForAccumulatorValue(expr->right());
4506 Condition cc = CompareIC::ComputeCondition(op);
4507 __ Pop(rdx);
4508
4509 bool inline_smi_code = ShouldInlineSmiCase(op);
4510 JumpPatchSite patch_site(masm_);
4511 if (inline_smi_code) {
4512 Label slow_case;
4513 __ movp(rcx, rdx);
4514 __ orp(rcx, rax);
4515 patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear);
4516 __ cmpp(rdx, rax);
4517 Split(cc, if_true, if_false, NULL);
4518 __ bind(&slow_case);
4519 }
4520
4521 Handle<Code> ic = CodeFactory::CompareIC(
4522 isolate(), op, strength(language_mode())).code();
4523 CallIC(ic, expr->CompareOperationFeedbackId());
4524 patch_site.EmitPatchInfo();
4525
4526 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4527 __ testp(rax, rax);
4528 Split(cc, if_true, if_false, fall_through);
4529 }
4530 }
4531
4532 // Convert the result of the comparison into one expected for this
4533 // expression's context.
4534 context()->Plug(if_true, if_false);
4535}
4536
4537
4538void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4539 Expression* sub_expr,
4540 NilValue nil) {
4541 Label materialize_true, materialize_false;
4542 Label* if_true = NULL;
4543 Label* if_false = NULL;
4544 Label* fall_through = NULL;
4545 context()->PrepareTest(&materialize_true, &materialize_false,
4546 &if_true, &if_false, &fall_through);
4547
4548 VisitForAccumulatorValue(sub_expr);
4549 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4550 if (expr->op() == Token::EQ_STRICT) {
4551 Heap::RootListIndex nil_value = nil == kNullValue ?
4552 Heap::kNullValueRootIndex :
4553 Heap::kUndefinedValueRootIndex;
4554 __ CompareRoot(rax, nil_value);
4555 Split(equal, if_true, if_false, fall_through);
4556 } else {
4557 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4558 CallIC(ic, expr->CompareOperationFeedbackId());
4559 __ CompareRoot(rax, Heap::kTrueValueRootIndex);
4560 Split(equal, if_true, if_false, fall_through);
4561 }
4562 context()->Plug(if_true, if_false);
4563}
4564
4565
4566void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4567 __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
4568 context()->Plug(rax);
4569}
4570
4571
4572Register FullCodeGenerator::result_register() {
4573 return rax;
4574}
4575
4576
4577Register FullCodeGenerator::context_register() {
4578 return rsi;
4579}
4580
4581
4582void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4583 DCHECK(IsAligned(frame_offset, kPointerSize));
4584 __ movp(Operand(rbp, frame_offset), value);
4585}
4586
4587
4588void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4589 __ movp(dst, ContextOperand(rsi, context_index));
4590}
4591
4592
4593void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4594 Scope* closure_scope = scope()->ClosureScope();
4595 if (closure_scope->is_script_scope() ||
4596 closure_scope->is_module_scope()) {
4597 // Contexts nested in the native context have a canonical empty function
4598 // as their closure, not the anonymous closure containing the global
4599 // code.
4600 __ movp(rax, NativeContextOperand());
4601 __ Push(ContextOperand(rax, Context::CLOSURE_INDEX));
4602 } else if (closure_scope->is_eval_scope()) {
4603 // Contexts created by a call to eval have the same closure as the
4604 // context calling eval, not the anonymous closure containing the eval
4605 // code. Fetch it from the context.
4606 __ Push(ContextOperand(rsi, Context::CLOSURE_INDEX));
4607 } else {
4608 DCHECK(closure_scope->is_function_scope());
4609 __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
4610 }
4611}
4612
4613
4614// ----------------------------------------------------------------------------
4615// Non-local control flow support.
4616
4617
4618void FullCodeGenerator::EnterFinallyBlock() {
4619 DCHECK(!result_register().is(rdx));
4620 DCHECK(!result_register().is(rcx));
4621 // Cook return address on top of stack (smi encoded Code* delta)
4622 __ PopReturnAddressTo(rdx);
4623 __ Move(rcx, masm_->CodeObject());
4624 __ subp(rdx, rcx);
4625 __ Integer32ToSmi(rdx, rdx);
4626 __ Push(rdx);
4627
4628 // Store result register while executing finally block.
4629 __ Push(result_register());
4630
4631 // Store pending message while executing finally block.
4632 ExternalReference pending_message_obj =
4633 ExternalReference::address_of_pending_message_obj(isolate());
4634 __ Load(rdx, pending_message_obj);
4635 __ Push(rdx);
4636
4637 ClearPendingMessage();
4638}
4639
4640
4641void FullCodeGenerator::ExitFinallyBlock() {
4642 DCHECK(!result_register().is(rdx));
4643 DCHECK(!result_register().is(rcx));
4644 // Restore pending message from stack.
4645 __ Pop(rdx);
4646 ExternalReference pending_message_obj =
4647 ExternalReference::address_of_pending_message_obj(isolate());
4648 __ Store(pending_message_obj, rdx);
4649
4650 // Restore result register from stack.
4651 __ Pop(result_register());
4652
4653 // Uncook return address.
4654 __ Pop(rdx);
4655 __ SmiToInteger32(rdx, rdx);
4656 __ Move(rcx, masm_->CodeObject());
4657 __ addp(rdx, rcx);
4658 __ jmp(rdx);
4659}
4660
4661
4662void FullCodeGenerator::ClearPendingMessage() {
4663 DCHECK(!result_register().is(rdx));
4664 ExternalReference pending_message_obj =
4665 ExternalReference::address_of_pending_message_obj(isolate());
4666 __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
4667 __ Store(pending_message_obj, rdx);
4668}
4669
4670
4671void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) {
4672 DCHECK(!slot.IsInvalid());
4673 __ Move(VectorStoreICTrampolineDescriptor::SlotRegister(), SmiFromSlot(slot));
4674}
4675
4676
4677#undef __
4678
4679
4680static const byte kJnsInstruction = 0x79;
4681static const byte kNopByteOne = 0x66;
4682static const byte kNopByteTwo = 0x90;
4683#ifdef DEBUG
4684static const byte kCallInstruction = 0xe8;
4685#endif
4686
4687
4688void BackEdgeTable::PatchAt(Code* unoptimized_code,
4689 Address pc,
4690 BackEdgeState target_state,
4691 Code* replacement_code) {
4692 Address call_target_address = pc - kIntSize;
4693 Address jns_instr_address = call_target_address - 3;
4694 Address jns_offset_address = call_target_address - 2;
4695
4696 switch (target_state) {
4697 case INTERRUPT:
4698 // sub <profiling_counter>, <delta> ;; Not changed
4699 // jns ok
4700 // call <interrupt stub>
4701 // ok:
4702 *jns_instr_address = kJnsInstruction;
4703 *jns_offset_address = kJnsOffset;
4704 break;
4705 case ON_STACK_REPLACEMENT:
4706 case OSR_AFTER_STACK_CHECK:
4707 // sub <profiling_counter>, <delta> ;; Not changed
4708 // nop
4709 // nop
4710 // call <on-stack replacment>
4711 // ok:
4712 *jns_instr_address = kNopByteOne;
4713 *jns_offset_address = kNopByteTwo;
4714 break;
4715 }
4716
4717 Assembler::set_target_address_at(unoptimized_code->GetIsolate(),
4718 call_target_address, unoptimized_code,
4719 replacement_code->entry());
4720 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4721 unoptimized_code, call_target_address, replacement_code);
4722}
4723
4724
4725BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4726 Isolate* isolate,
4727 Code* unoptimized_code,
4728 Address pc) {
4729 Address call_target_address = pc - kIntSize;
4730 Address jns_instr_address = call_target_address - 3;
4731 DCHECK_EQ(kCallInstruction, *(call_target_address - 1));
4732
4733 if (*jns_instr_address == kJnsInstruction) {
4734 DCHECK_EQ(kJnsOffset, *(call_target_address - 2));
4735 DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(),
4736 Assembler::target_address_at(call_target_address,
4737 unoptimized_code));
4738 return INTERRUPT;
4739 }
4740
4741 DCHECK_EQ(kNopByteOne, *jns_instr_address);
4742 DCHECK_EQ(kNopByteTwo, *(call_target_address - 2));
4743
4744 if (Assembler::target_address_at(call_target_address,
4745 unoptimized_code) ==
4746 isolate->builtins()->OnStackReplacement()->entry()) {
4747 return ON_STACK_REPLACEMENT;
4748 }
4749
4750 DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(),
4751 Assembler::target_address_at(call_target_address,
4752 unoptimized_code));
4753 return OSR_AFTER_STACK_CHECK;
4754}
4755
4756
4757} // namespace internal
4758} // namespace v8
4759
4760#endif // V8_TARGET_ARCH_X64