blob: dc6c92296375e4428ecee0f2d2818112921f0445 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2015 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_HEAP_SLOTS_BUFFER_H_
6#define V8_HEAP_SLOTS_BUFFER_H_
7
8#include "src/objects.h"
9
10namespace v8 {
11namespace internal {
12
13// Forward declarations.
14class SlotsBuffer;
15
16
17// SlotsBufferAllocator manages the allocation and deallocation of slots buffer
18// chunks and links them together. Slots buffer chunks are always created by the
19// SlotsBufferAllocator.
20class SlotsBufferAllocator {
21 public:
22 SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer);
23 void DeallocateBuffer(SlotsBuffer* buffer);
24
25 void DeallocateChain(SlotsBuffer** buffer_address);
26};
27
28
29// SlotsBuffer records a sequence of slots that has to be updated
30// after live objects were relocated from evacuation candidates.
31// All slots are either untyped or typed:
32// - Untyped slots are expected to contain a tagged object pointer.
33// They are recorded by an address.
34// - Typed slots are expected to contain an encoded pointer to a heap
35// object where the way of encoding depends on the type of the slot.
36// They are recorded as a pair (SlotType, slot address).
37// We assume that zero-page is never mapped this allows us to distinguish
38// untyped slots from typed slots during iteration by a simple comparison:
39// if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it
40// is the first element of typed slot's pair.
41class SlotsBuffer {
42 public:
43 typedef Object** ObjectSlot;
44
45 explicit SlotsBuffer(SlotsBuffer* next_buffer)
46 : idx_(0), chain_length_(1), next_(next_buffer) {
47 if (next_ != NULL) {
48 chain_length_ = next_->chain_length_ + 1;
49 }
50 }
51
52 ~SlotsBuffer() {}
53
54 void Add(ObjectSlot slot) {
55 DCHECK(0 <= idx_ && idx_ < kNumberOfElements);
56#ifdef DEBUG
57 if (slot >= reinterpret_cast<ObjectSlot>(NUMBER_OF_SLOT_TYPES)) {
58 DCHECK_NOT_NULL(*slot);
59 }
60#endif
61 slots_[idx_++] = slot;
62 }
63
64 ObjectSlot Get(intptr_t i) {
65 DCHECK(i >= 0 && i < kNumberOfElements);
66 return slots_[i];
67 }
68
69 size_t Size() {
70 DCHECK(idx_ <= kNumberOfElements);
71 return idx_;
72 }
73
74 enum SlotType {
75 EMBEDDED_OBJECT_SLOT,
76 OBJECT_SLOT,
77 RELOCATED_CODE_OBJECT,
78 CELL_TARGET_SLOT,
79 CODE_TARGET_SLOT,
80 CODE_ENTRY_SLOT,
81 DEBUG_TARGET_SLOT,
82 NUMBER_OF_SLOT_TYPES
83 };
84
85 static const char* SlotTypeToString(SlotType type) {
86 switch (type) {
87 case EMBEDDED_OBJECT_SLOT:
88 return "EMBEDDED_OBJECT_SLOT";
89 case OBJECT_SLOT:
90 return "OBJECT_SLOT";
91 case RELOCATED_CODE_OBJECT:
92 return "RELOCATED_CODE_OBJECT";
93 case CELL_TARGET_SLOT:
94 return "CELL_TARGET_SLOT";
95 case CODE_TARGET_SLOT:
96 return "CODE_TARGET_SLOT";
97 case CODE_ENTRY_SLOT:
98 return "CODE_ENTRY_SLOT";
99 case DEBUG_TARGET_SLOT:
100 return "DEBUG_TARGET_SLOT";
101 case NUMBER_OF_SLOT_TYPES:
102 return "NUMBER_OF_SLOT_TYPES";
103 }
104 return "UNKNOWN SlotType";
105 }
106
107 SlotsBuffer* next() { return next_; }
108
109 static int SizeOfChain(SlotsBuffer* buffer) {
110 if (buffer == NULL) return 0;
111 return static_cast<int>(buffer->idx_ +
112 (buffer->chain_length_ - 1) * kNumberOfElements);
113 }
114
115 inline bool IsFull() { return idx_ == kNumberOfElements; }
116
117 inline bool HasSpaceForTypedSlot() { return idx_ < kNumberOfElements - 1; }
118
119 enum AdditionMode { FAIL_ON_OVERFLOW, IGNORE_OVERFLOW };
120
121 static bool ChainLengthThresholdReached(SlotsBuffer* buffer) {
122 return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold;
123 }
124
125 INLINE(static bool AddTo(SlotsBufferAllocator* allocator,
126 SlotsBuffer** buffer_address, ObjectSlot slot,
127 AdditionMode mode)) {
128 SlotsBuffer* buffer = *buffer_address;
129 if (buffer == NULL || buffer->IsFull()) {
130 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
131 allocator->DeallocateChain(buffer_address);
132 return false;
133 }
134 buffer = allocator->AllocateBuffer(buffer);
135 *buffer_address = buffer;
136 }
137 buffer->Add(slot);
138 return true;
139 }
140
141 static bool IsTypedSlot(ObjectSlot slot);
142
143 static bool AddTo(SlotsBufferAllocator* allocator,
144 SlotsBuffer** buffer_address, SlotType type, Address addr,
145 AdditionMode mode);
146
147 // Eliminates all stale entries from the slots buffer, i.e., slots that
148 // are not part of live objects anymore. This method must be called after
149 // marking, when the whole transitive closure is known and must be called
150 // before sweeping when mark bits are still intact.
151 static void RemoveInvalidSlots(Heap* heap, SlotsBuffer* buffer);
152
153 // Eliminate all slots that are within the given address range.
154 static void RemoveObjectSlots(Heap* heap, SlotsBuffer* buffer,
155 Address start_slot, Address end_slot);
156
157 // Ensures that there are no invalid slots in the chain of slots buffers.
158 static void VerifySlots(Heap* heap, SlotsBuffer* buffer);
159
160 static const int kNumberOfElements = 1021;
161
162 private:
163 static const int kChainLengthThreshold = 15;
164
165 intptr_t idx_;
166 intptr_t chain_length_;
167 SlotsBuffer* next_;
168 ObjectSlot slots_[kNumberOfElements];
169};
170
171
172} // namespace internal
173} // namespace v8
174
175#endif // V8_HEAP_SLOTS_BUFFER_H_