blob: d71f063d00aa362fac0e167eaa2271fc29d905af [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
6#define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
7
8#include "src/arm64/assembler-arm64.h"
9#include "src/macro-assembler.h"
10#include "src/regexp/regexp-macro-assembler.h"
11
12namespace v8 {
13namespace internal {
14
15
16#ifndef V8_INTERPRETED_REGEXP
17class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
18 public:
19 RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode,
20 int registers_to_save);
21 virtual ~RegExpMacroAssemblerARM64();
22 virtual void AbortedCodeGeneration() { masm_->AbortedCodeGeneration(); }
23 virtual int stack_limit_slack();
24 virtual void AdvanceCurrentPosition(int by);
25 virtual void AdvanceRegister(int reg, int by);
26 virtual void Backtrack();
27 virtual void Bind(Label* label);
28 virtual void CheckAtStart(Label* on_at_start);
29 virtual void CheckCharacter(unsigned c, Label* on_equal);
30 virtual void CheckCharacterAfterAnd(unsigned c,
31 unsigned mask,
32 Label* on_equal);
33 virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
34 virtual void CheckCharacterLT(uc16 limit, Label* on_less);
35 virtual void CheckCharacters(Vector<const uc16> str,
36 int cp_offset,
37 Label* on_failure,
38 bool check_end_of_string);
39 // A "greedy loop" is a loop that is both greedy and with a simple
40 // body. It has a particularly simple implementation.
41 virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
42 virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
43 virtual void CheckNotBackReference(int start_reg, bool read_backward,
44 Label* on_no_match);
45 virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
46 bool read_backward,
47 Label* on_no_match);
48 virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
49 virtual void CheckNotCharacterAfterAnd(unsigned c,
50 unsigned mask,
51 Label* on_not_equal);
52 virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
53 uc16 minus,
54 uc16 mask,
55 Label* on_not_equal);
56 virtual void CheckCharacterInRange(uc16 from,
57 uc16 to,
58 Label* on_in_range);
59 virtual void CheckCharacterNotInRange(uc16 from,
60 uc16 to,
61 Label* on_not_in_range);
62 virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
63
64 // Checks whether the given offset from the current position is before
65 // the end of the string.
66 virtual void CheckPosition(int cp_offset, Label* on_outside_input);
67 virtual bool CheckSpecialCharacterClass(uc16 type,
68 Label* on_no_match);
69 virtual void Fail();
70 virtual Handle<HeapObject> GetCode(Handle<String> source);
71 virtual void GoTo(Label* label);
72 virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
73 virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
74 virtual void IfRegisterEqPos(int reg, Label* if_eq);
75 virtual IrregexpImplementation Implementation();
76 virtual void LoadCurrentCharacter(int cp_offset,
77 Label* on_end_of_input,
78 bool check_bounds = true,
79 int characters = 1);
80 virtual void PopCurrentPosition();
81 virtual void PopRegister(int register_index);
82 virtual void PushBacktrack(Label* label);
83 virtual void PushCurrentPosition();
84 virtual void PushRegister(int register_index,
85 StackCheckFlag check_stack_limit);
86 virtual void ReadCurrentPositionFromRegister(int reg);
87 virtual void ReadStackPointerFromRegister(int reg);
88 virtual void SetCurrentPositionFromEnd(int by);
89 virtual void SetRegister(int register_index, int to);
90 virtual bool Succeed();
91 virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
92 virtual void ClearRegisters(int reg_from, int reg_to);
93 virtual void WriteStackPointerToRegister(int reg);
94 virtual bool CanReadUnaligned();
95
96 // Called from RegExp if the stack-guard is triggered.
97 // If the code object is relocated, the return address is fixed before
98 // returning.
99 static int CheckStackGuardState(Address* return_address,
100 Code* re_code,
101 Address re_frame,
102 int start_offset,
103 const byte** input_start,
104 const byte** input_end);
105
106 private:
107 // Above the frame pointer - Stored registers and stack passed parameters.
108 // Callee-saved registers x19-x29, where x29 is the old frame pointer.
109 static const int kCalleeSavedRegisters = 0;
110 // Return address.
111 // It is placed above the 11 callee-saved registers.
112 static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
113 static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
114 // Stack parameter placed by caller.
115 static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
116
117 // Below the frame pointer.
118 // Register parameters stored by setup code.
119 static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
120 static const int kStackBase = kDirectCall - kPointerSize;
121 static const int kOutputSize = kStackBase - kPointerSize;
122 static const int kInput = kOutputSize - kPointerSize;
123 // When adding local variables remember to push space for them in
124 // the frame in GetCode.
125 static const int kSuccessCounter = kInput - kPointerSize;
126 // First position register address on the stack. Following positions are
127 // below it. A position is a 32 bit value.
128 static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
129 // A capture is a 64 bit value holding two position.
130 static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
131
132 // Initial size of code buffer.
133 static const size_t kRegExpCodeSize = 1024;
134
135 // When initializing registers to a non-position value we can unroll
136 // the loop. Set the limit of registers to unroll.
137 static const int kNumRegistersToUnroll = 16;
138
139 // We are using x0 to x7 as a register cache. Each hardware register must
140 // contain one capture, that is two 32 bit registers. We can cache at most
141 // 16 registers.
142 static const int kNumCachedRegisters = 16;
143
144 // Load a number of characters at the given offset from the
145 // current position, into the current-character register.
146 void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
147
148 // Check whether preemption has been requested.
149 void CheckPreemption();
150
151 // Check whether we are exceeding the stack limit on the backtrack stack.
152 void CheckStackLimit();
153
154 // Generate a call to CheckStackGuardState.
155 void CallCheckStackGuardState(Register scratch);
156
157 // Location of a 32 bit position register.
158 MemOperand register_location(int register_index);
159
160 // Location of a 64 bit capture, combining two position registers.
161 MemOperand capture_location(int register_index, Register scratch);
162
163 // Register holding the current input position as negative offset from
164 // the end of the string.
165 Register current_input_offset() { return w21; }
166
167 // The register containing the current character after LoadCurrentCharacter.
168 Register current_character() { return w22; }
169
170 // Register holding address of the end of the input string.
171 Register input_end() { return x25; }
172
173 // Register holding address of the start of the input string.
174 Register input_start() { return x26; }
175
176 // Register holding the offset from the start of the string where we should
177 // start matching.
178 Register start_offset() { return w27; }
179
180 // Pointer to the output array's first element.
181 Register output_array() { return x28; }
182
183 // Register holding the frame address. Local variables, parameters and
184 // regexp registers are addressed relative to this.
185 Register frame_pointer() { return fp; }
186
187 // The register containing the backtrack stack top. Provides a meaningful
188 // name to the register.
189 Register backtrack_stackpointer() { return x23; }
190
191 // Register holding pointer to the current code object.
192 Register code_pointer() { return x20; }
193
194 // Register holding the value used for clearing capture registers.
195 Register string_start_minus_one() { return w24; }
196 // The top 32 bit of this register is used to store this value
197 // twice. This is used for clearing more than one register at a time.
198 Register twice_non_position_value() { return x24; }
199
200 // Byte size of chars in the string to match (decided by the Mode argument)
201 int char_size() { return static_cast<int>(mode_); }
202
203 // Equivalent to a conditional branch to the label, unless the label
204 // is NULL, in which case it is a conditional Backtrack.
205 void BranchOrBacktrack(Condition condition, Label* to);
206
207 // Compares reg against immmediate before calling BranchOrBacktrack.
208 // It makes use of the Cbz and Cbnz instructions.
209 void CompareAndBranchOrBacktrack(Register reg,
210 int immediate,
211 Condition condition,
212 Label* to);
213
214 inline void CallIf(Label* to, Condition condition);
215
216 // Save and restore the link register on the stack in a way that
217 // is GC-safe.
218 inline void SaveLinkRegister();
219 inline void RestoreLinkRegister();
220
221 // Pushes the value of a register on the backtrack stack. Decrements the
222 // stack pointer by a word size and stores the register's value there.
223 inline void Push(Register source);
224
225 // Pops a value from the backtrack stack. Reads the word at the stack pointer
226 // and increments it by a word size.
227 inline void Pop(Register target);
228
229 // This state indicates where the register actually is.
230 enum RegisterState {
231 STACKED, // Resides in memory.
232 CACHED_LSW, // Least Significant Word of a 64 bit hardware register.
233 CACHED_MSW // Most Significant Word of a 64 bit hardware register.
234 };
235
236 RegisterState GetRegisterState(int register_index) {
237 DCHECK(register_index >= 0);
238 if (register_index >= kNumCachedRegisters) {
239 return STACKED;
240 } else {
241 if ((register_index % 2) == 0) {
242 return CACHED_LSW;
243 } else {
244 return CACHED_MSW;
245 }
246 }
247 }
248
249 // Store helper that takes the state of the register into account.
250 inline void StoreRegister(int register_index, Register source);
251
252 // Returns a hardware W register that holds the value of the capture
253 // register.
254 //
255 // This function will try to use an existing cache register (w0-w7) for the
256 // result. Otherwise, it will load the value into maybe_result.
257 //
258 // If the returned register is anything other than maybe_result, calling code
259 // must not write to it.
260 inline Register GetRegister(int register_index, Register maybe_result);
261
262 // Returns the harware register (x0-x7) holding the value of the capture
263 // register.
264 // This assumes that the state of the register is not STACKED.
265 inline Register GetCachedRegister(int register_index);
266
267 Isolate* isolate() const { return masm_->isolate(); }
268
269 MacroAssembler* masm_;
270
271 // Which mode to generate code for (LATIN1 or UC16).
272 Mode mode_;
273
274 // One greater than maximal register index actually used.
275 int num_registers_;
276
277 // Number of registers to output at the end (the saved registers
278 // are always 0..num_saved_registers_-1)
279 int num_saved_registers_;
280
281 // Labels used internally.
282 Label entry_label_;
283 Label start_label_;
284 Label success_label_;
285 Label backtrack_label_;
286 Label exit_label_;
287 Label check_preempt_label_;
288 Label stack_overflow_label_;
289};
290
291#endif // V8_INTERPRETED_REGEXP
292
293
294} // namespace internal
295} // namespace v8
296
297#endif // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_