blob: f3ddf7bf986372ec136f75b12436c56a2d1fee32 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_PPC
6
7#include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
8
9#include "src/base/bits.h"
10#include "src/code-stubs.h"
11#include "src/log.h"
12#include "src/macro-assembler.h"
13#include "src/profiler/cpu-profiler.h"
14#include "src/regexp/regexp-macro-assembler.h"
15#include "src/regexp/regexp-stack.h"
16#include "src/unicode.h"
17
18namespace v8 {
19namespace internal {
20
21#ifndef V8_INTERPRETED_REGEXP
22/*
23 * This assembler uses the following register assignment convention
24 * - r25: Temporarily stores the index of capture start after a matching pass
25 * for a global regexp.
26 * - r26: Pointer to current code object (Code*) including heap object tag.
27 * - r27: Current position in input, as negative offset from end of string.
28 * Please notice that this is the byte offset, not the character offset!
29 * - r28: Currently loaded character. Must be loaded using
30 * LoadCurrentCharacter before using any of the dispatch methods.
31 * - r29: Points to tip of backtrack stack
32 * - r30: End of input (points to byte after last character in input).
33 * - r31: Frame pointer. Used to access arguments, local variables and
34 * RegExp registers.
35 * - r12: IP register, used by assembler. Very volatile.
36 * - r1/sp : Points to tip of C stack.
37 *
38 * The remaining registers are free for computations.
39 * Each call to a public method should retain this convention.
40 *
41 * The stack will have the following structure:
42 * - fp[44] Isolate* isolate (address of the current isolate)
43 * - fp[40] secondary link/return address used by native call.
44 * - fp[36] lr save area (currently unused)
45 * - fp[32] backchain (currently unused)
46 * --- sp when called ---
47 * - fp[28] return address (lr).
48 * - fp[24] old frame pointer (r31).
49 * - fp[0..20] backup of registers r25..r30
50 * --- frame pointer ----
51 * - fp[-4] direct_call (if 1, direct call from JavaScript code,
52 * if 0, call through the runtime system).
53 * - fp[-8] stack_area_base (high end of the memory area to use as
54 * backtracking stack).
55 * - fp[-12] capture array size (may fit multiple sets of matches)
56 * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
57 * - fp[-20] end of input (address of end of string).
58 * - fp[-24] start of input (address of first character in string).
59 * - fp[-28] start index (character index of start).
60 * - fp[-32] void* input_string (location of a handle containing the string).
61 * - fp[-36] success counter (only for global regexps to count matches).
62 * - fp[-40] Offset of location before start of input (effectively character
63 * string start - 1). Used to initialize capture registers to a
64 * non-position.
65 * - fp[-44] At start (if 1, we are starting at the start of the
66 * string, otherwise 0)
67 * - fp[-48] register 0 (Only positions must be stored in the first
68 * - register 1 num_saved_registers_ registers)
69 * - ...
70 * - register num_registers-1
71 * --- sp ---
72 *
73 * The first num_saved_registers_ registers are initialized to point to
74 * "character -1" in the string (i.e., char_size() bytes before the first
75 * character of the string). The remaining registers start out as garbage.
76 *
77 * The data up to the return address must be placed there by the calling
78 * code and the remaining arguments are passed in registers, e.g. by calling the
79 * code entry as cast to a function with the signature:
80 * int (*match)(String* input_string,
81 * int start_index,
82 * Address start,
83 * Address end,
84 * int* capture_output_array,
85 * byte* stack_area_base,
86 * Address secondary_return_address, // Only used by native call.
87 * bool direct_call = false)
88 * The call is performed by NativeRegExpMacroAssembler::Execute()
89 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
90 * in ppc/simulator-ppc.h.
91 * When calling as a non-direct call (i.e., from C++ code), the return address
92 * area is overwritten with the LR register by the RegExp code. When doing a
93 * direct call from generated code, the return address is placed there by
94 * the calling code, as in a normal exit frame.
95 */
96
97#define __ ACCESS_MASM(masm_)
98
99RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
100 Mode mode,
101 int registers_to_save)
102 : NativeRegExpMacroAssembler(isolate, zone),
103 masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
104 CodeObjectRequired::kYes)),
105 mode_(mode),
106 num_registers_(registers_to_save),
107 num_saved_registers_(registers_to_save),
108 entry_label_(),
109 start_label_(),
110 success_label_(),
111 backtrack_label_(),
112 exit_label_(),
113 internal_failure_label_() {
114 DCHECK_EQ(0, registers_to_save % 2);
115
116// Called from C
117 __ function_descriptor();
118
119 __ b(&entry_label_); // We'll write the entry code later.
120 // If the code gets too big or corrupted, an internal exception will be
121 // raised, and we will exit right away.
122 __ bind(&internal_failure_label_);
123 __ li(r3, Operand(FAILURE));
124 __ Ret();
125 __ bind(&start_label_); // And then continue from here.
126}
127
128
129RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
130 delete masm_;
131 // Unuse labels in case we throw away the assembler without calling GetCode.
132 entry_label_.Unuse();
133 start_label_.Unuse();
134 success_label_.Unuse();
135 backtrack_label_.Unuse();
136 exit_label_.Unuse();
137 check_preempt_label_.Unuse();
138 stack_overflow_label_.Unuse();
139 internal_failure_label_.Unuse();
140}
141
142
143int RegExpMacroAssemblerPPC::stack_limit_slack() {
144 return RegExpStack::kStackLimitSlack;
145}
146
147
148void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
149 if (by != 0) {
150 __ addi(current_input_offset(), current_input_offset(),
151 Operand(by * char_size()));
152 }
153}
154
155
156void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
157 DCHECK(reg >= 0);
158 DCHECK(reg < num_registers_);
159 if (by != 0) {
160 __ LoadP(r3, register_location(reg), r0);
161 __ mov(r0, Operand(by));
162 __ add(r3, r3, r0);
163 __ StoreP(r3, register_location(reg), r0);
164 }
165}
166
167
168void RegExpMacroAssemblerPPC::Backtrack() {
169 CheckPreemption();
170 // Pop Code* offset from backtrack stack, add Code* and jump to location.
171 Pop(r3);
172 __ add(r3, r3, code_pointer());
173 __ Jump(r3);
174}
175
176
177void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
178
179
180void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
181 __ Cmpli(current_character(), Operand(c), r0);
182 BranchOrBacktrack(eq, on_equal);
183}
184
185
186void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
187 __ Cmpli(current_character(), Operand(limit), r0);
188 BranchOrBacktrack(gt, on_greater);
189}
190
191
192void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
193 __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
194 __ addi(r3, current_input_offset(), Operand(-char_size()));
195 __ cmp(r3, r4);
196 BranchOrBacktrack(eq, on_at_start);
197}
198
199
200void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
201 Label* on_not_at_start) {
202 __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
203 __ addi(r3, current_input_offset(),
204 Operand(-char_size() + cp_offset * char_size()));
205 __ cmp(r3, r4);
206 BranchOrBacktrack(ne, on_not_at_start);
207}
208
209
210void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
211 __ Cmpli(current_character(), Operand(limit), r0);
212 BranchOrBacktrack(lt, on_less);
213}
214
215
216void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
217 Label backtrack_non_equal;
218 __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
219 __ cmp(current_input_offset(), r3);
220 __ bne(&backtrack_non_equal);
221 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
222 Operand(kPointerSize));
223
224 __ bind(&backtrack_non_equal);
225 BranchOrBacktrack(eq, on_equal);
226}
227
228
229void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
230 int start_reg, bool read_backward, Label* on_no_match) {
231 Label fallthrough;
232 __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
233 __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
234 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
235
236 // At this point, the capture registers are either both set or both cleared.
237 // If the capture length is zero, then the capture is either empty or cleared.
238 // Fall through in both cases.
239 __ beq(&fallthrough, cr0);
240
241 // Check that there are enough characters left in the input.
242 if (read_backward) {
243 __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
244 __ add(r6, r6, r4);
245 __ cmp(current_input_offset(), r6);
246 BranchOrBacktrack(le, on_no_match);
247 } else {
248 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
249 BranchOrBacktrack(gt, on_no_match, cr0);
250 }
251
252 if (mode_ == LATIN1) {
253 Label success;
254 Label fail;
255 Label loop_check;
256
257 // r3 - offset of start of capture
258 // r4 - length of capture
259 __ add(r3, r3, end_of_input_address());
260 __ add(r5, end_of_input_address(), current_input_offset());
261 if (read_backward) {
262 __ sub(r5, r5, r4); // Offset by length when matching backwards.
263 }
264 __ add(r4, r3, r4);
265
266 // r3 - Address of start of capture.
267 // r4 - Address of end of capture
268 // r5 - Address of current input position.
269
270 Label loop;
271 __ bind(&loop);
272 __ lbz(r6, MemOperand(r3));
273 __ addi(r3, r3, Operand(char_size()));
274 __ lbz(r25, MemOperand(r5));
275 __ addi(r5, r5, Operand(char_size()));
276 __ cmp(r25, r6);
277 __ beq(&loop_check);
278
279 // Mismatch, try case-insensitive match (converting letters to lower-case).
280 __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
281 __ ori(r25, r25, Operand(0x20)); // Also convert input character.
282 __ cmp(r25, r6);
283 __ bne(&fail);
284 __ subi(r6, r6, Operand('a'));
285 __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
286 __ ble(&loop_check); // In range 'a'-'z'.
287 // Latin-1: Check for values in range [224,254] but not 247.
288 __ subi(r6, r6, Operand(224 - 'a'));
289 __ cmpli(r6, Operand(254 - 224));
290 __ bgt(&fail); // Weren't Latin-1 letters.
291 __ cmpi(r6, Operand(247 - 224)); // Check for 247.
292 __ beq(&fail);
293
294 __ bind(&loop_check);
295 __ cmp(r3, r4);
296 __ blt(&loop);
297 __ b(&success);
298
299 __ bind(&fail);
300 BranchOrBacktrack(al, on_no_match);
301
302 __ bind(&success);
303 // Compute new value of character position after the matched part.
304 __ sub(current_input_offset(), r5, end_of_input_address());
305 if (read_backward) {
306 __ LoadP(r3, register_location(start_reg)); // Index of start of capture
307 __ LoadP(r4,
308 register_location(start_reg + 1)); // Index of end of capture
309 __ add(current_input_offset(), current_input_offset(), r3);
310 __ sub(current_input_offset(), current_input_offset(), r4);
311 }
312 } else {
313 DCHECK(mode_ == UC16);
314 int argument_count = 4;
315 __ PrepareCallCFunction(argument_count, r5);
316
317 // r3 - offset of start of capture
318 // r4 - length of capture
319
320 // Put arguments into arguments registers.
321 // Parameters are
322 // r3: Address byte_offset1 - Address captured substring's start.
323 // r4: Address byte_offset2 - Address of current character position.
324 // r5: size_t byte_length - length of capture in bytes(!)
325 // r6: Isolate* isolate
326
327 // Address of start of capture.
328 __ add(r3, r3, end_of_input_address());
329 // Length of capture.
330 __ mr(r5, r4);
331 // Save length in callee-save register for use on return.
332 __ mr(r25, r4);
333 // Address of current input position.
334 __ add(r4, current_input_offset(), end_of_input_address());
335 if (read_backward) {
336 __ sub(r4, r4, r25);
337 }
338 // Isolate.
339 __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
340
341 {
342 AllowExternalCallThatCantCauseGC scope(masm_);
343 ExternalReference function =
344 ExternalReference::re_case_insensitive_compare_uc16(isolate());
345 __ CallCFunction(function, argument_count);
346 }
347
348 // Check if function returned non-zero for success or zero for failure.
349 __ cmpi(r3, Operand::Zero());
350 BranchOrBacktrack(eq, on_no_match);
351
352 // On success, advance position by length of capture.
353 if (read_backward) {
354 __ sub(current_input_offset(), current_input_offset(), r25);
355 } else {
356 __ add(current_input_offset(), current_input_offset(), r25);
357 }
358 }
359
360 __ bind(&fallthrough);
361}
362
363
364void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
365 bool read_backward,
366 Label* on_no_match) {
367 Label fallthrough;
368 Label success;
369
370 // Find length of back-referenced capture.
371 __ LoadP(r3, register_location(start_reg), r0);
372 __ LoadP(r4, register_location(start_reg + 1), r0);
373 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
374
375 // At this point, the capture registers are either both set or both cleared.
376 // If the capture length is zero, then the capture is either empty or cleared.
377 // Fall through in both cases.
378 __ beq(&fallthrough, cr0);
379
380 // Check that there are enough characters left in the input.
381 if (read_backward) {
382 __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
383 __ add(r6, r6, r4);
384 __ cmp(current_input_offset(), r6);
385 BranchOrBacktrack(lt, on_no_match);
386 } else {
387 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
388 BranchOrBacktrack(gt, on_no_match, cr0);
389 }
390
391 // r3 - offset of start of capture
392 // r4 - length of capture
393 __ add(r3, r3, end_of_input_address());
394 __ add(r5, end_of_input_address(), current_input_offset());
395 if (read_backward) {
396 __ sub(r5, r5, r4); // Offset by length when matching backwards.
397 }
398 __ add(r4, r4, r3);
399
400 Label loop;
401 __ bind(&loop);
402 if (mode_ == LATIN1) {
403 __ lbz(r6, MemOperand(r3));
404 __ addi(r3, r3, Operand(char_size()));
405 __ lbz(r25, MemOperand(r5));
406 __ addi(r5, r5, Operand(char_size()));
407 } else {
408 DCHECK(mode_ == UC16);
409 __ lhz(r6, MemOperand(r3));
410 __ addi(r3, r3, Operand(char_size()));
411 __ lhz(r25, MemOperand(r5));
412 __ addi(r5, r5, Operand(char_size()));
413 }
414 __ cmp(r6, r25);
415 BranchOrBacktrack(ne, on_no_match);
416 __ cmp(r3, r4);
417 __ blt(&loop);
418
419 // Move current character position to position after match.
420 __ sub(current_input_offset(), r5, end_of_input_address());
421 if (read_backward) {
422 __ LoadP(r3, register_location(start_reg)); // Index of start of capture
423 __ LoadP(r4, register_location(start_reg + 1)); // Index of end of capture
424 __ add(current_input_offset(), current_input_offset(), r3);
425 __ sub(current_input_offset(), current_input_offset(), r4);
426 }
427
428 __ bind(&fallthrough);
429}
430
431
432void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
433 Label* on_not_equal) {
434 __ Cmpli(current_character(), Operand(c), r0);
435 BranchOrBacktrack(ne, on_not_equal);
436}
437
438
439void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
440 Label* on_equal) {
441 __ mov(r0, Operand(mask));
442 if (c == 0) {
443 __ and_(r3, current_character(), r0, SetRC);
444 } else {
445 __ and_(r3, current_character(), r0);
446 __ Cmpli(r3, Operand(c), r0, cr0);
447 }
448 BranchOrBacktrack(eq, on_equal, cr0);
449}
450
451
452void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
453 unsigned mask,
454 Label* on_not_equal) {
455 __ mov(r0, Operand(mask));
456 if (c == 0) {
457 __ and_(r3, current_character(), r0, SetRC);
458 } else {
459 __ and_(r3, current_character(), r0);
460 __ Cmpli(r3, Operand(c), r0, cr0);
461 }
462 BranchOrBacktrack(ne, on_not_equal, cr0);
463}
464
465
466void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
467 uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
468 DCHECK(minus < String::kMaxUtf16CodeUnit);
469 __ subi(r3, current_character(), Operand(minus));
470 __ mov(r0, Operand(mask));
471 __ and_(r3, r3, r0);
472 __ Cmpli(r3, Operand(c), r0);
473 BranchOrBacktrack(ne, on_not_equal);
474}
475
476
477void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
478 Label* on_in_range) {
479 __ mov(r0, Operand(from));
480 __ sub(r3, current_character(), r0);
481 __ Cmpli(r3, Operand(to - from), r0);
482 BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
483}
484
485
486void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
487 Label* on_not_in_range) {
488 __ mov(r0, Operand(from));
489 __ sub(r3, current_character(), r0);
490 __ Cmpli(r3, Operand(to - from), r0);
491 BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
492}
493
494
495void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
496 Label* on_bit_set) {
497 __ mov(r3, Operand(table));
498 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
499 __ andi(r4, current_character(), Operand(kTableSize - 1));
500 __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
501 } else {
502 __ addi(r4, current_character(),
503 Operand(ByteArray::kHeaderSize - kHeapObjectTag));
504 }
505 __ lbzx(r3, MemOperand(r3, r4));
506 __ cmpi(r3, Operand::Zero());
507 BranchOrBacktrack(ne, on_bit_set);
508}
509
510
511bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
512 Label* on_no_match) {
513 // Range checks (c in min..max) are generally implemented by an unsigned
514 // (c - min) <= (max - min) check
515 switch (type) {
516 case 's':
517 // Match space-characters
518 if (mode_ == LATIN1) {
519 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
520 Label success;
521 __ cmpi(current_character(), Operand(' '));
522 __ beq(&success);
523 // Check range 0x09..0x0d
524 __ subi(r3, current_character(), Operand('\t'));
525 __ cmpli(r3, Operand('\r' - '\t'));
526 __ ble(&success);
527 // \u00a0 (NBSP).
528 __ cmpi(r3, Operand(0x00a0 - '\t'));
529 BranchOrBacktrack(ne, on_no_match);
530 __ bind(&success);
531 return true;
532 }
533 return false;
534 case 'S':
535 // The emitted code for generic character classes is good enough.
536 return false;
537 case 'd':
538 // Match ASCII digits ('0'..'9')
539 __ subi(r3, current_character(), Operand('0'));
540 __ cmpli(r3, Operand('9' - '0'));
541 BranchOrBacktrack(gt, on_no_match);
542 return true;
543 case 'D':
544 // Match non ASCII-digits
545 __ subi(r3, current_character(), Operand('0'));
546 __ cmpli(r3, Operand('9' - '0'));
547 BranchOrBacktrack(le, on_no_match);
548 return true;
549 case '.': {
550 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
551 __ xori(r3, current_character(), Operand(0x01));
552 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
553 __ subi(r3, r3, Operand(0x0b));
554 __ cmpli(r3, Operand(0x0c - 0x0b));
555 BranchOrBacktrack(le, on_no_match);
556 if (mode_ == UC16) {
557 // Compare original value to 0x2028 and 0x2029, using the already
558 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
559 // 0x201d (0x2028 - 0x0b) or 0x201e.
560 __ subi(r3, r3, Operand(0x2028 - 0x0b));
561 __ cmpli(r3, Operand(1));
562 BranchOrBacktrack(le, on_no_match);
563 }
564 return true;
565 }
566 case 'n': {
567 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
568 __ xori(r3, current_character(), Operand(0x01));
569 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
570 __ subi(r3, r3, Operand(0x0b));
571 __ cmpli(r3, Operand(0x0c - 0x0b));
572 if (mode_ == LATIN1) {
573 BranchOrBacktrack(gt, on_no_match);
574 } else {
575 Label done;
576 __ ble(&done);
577 // Compare original value to 0x2028 and 0x2029, using the already
578 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
579 // 0x201d (0x2028 - 0x0b) or 0x201e.
580 __ subi(r3, r3, Operand(0x2028 - 0x0b));
581 __ cmpli(r3, Operand(1));
582 BranchOrBacktrack(gt, on_no_match);
583 __ bind(&done);
584 }
585 return true;
586 }
587 case 'w': {
588 if (mode_ != LATIN1) {
589 // Table is 256 entries, so all Latin1 characters can be tested.
590 __ cmpi(current_character(), Operand('z'));
591 BranchOrBacktrack(gt, on_no_match);
592 }
593 ExternalReference map = ExternalReference::re_word_character_map();
594 __ mov(r3, Operand(map));
595 __ lbzx(r3, MemOperand(r3, current_character()));
596 __ cmpli(r3, Operand::Zero());
597 BranchOrBacktrack(eq, on_no_match);
598 return true;
599 }
600 case 'W': {
601 Label done;
602 if (mode_ != LATIN1) {
603 // Table is 256 entries, so all Latin1 characters can be tested.
604 __ cmpli(current_character(), Operand('z'));
605 __ bgt(&done);
606 }
607 ExternalReference map = ExternalReference::re_word_character_map();
608 __ mov(r3, Operand(map));
609 __ lbzx(r3, MemOperand(r3, current_character()));
610 __ cmpli(r3, Operand::Zero());
611 BranchOrBacktrack(ne, on_no_match);
612 if (mode_ != LATIN1) {
613 __ bind(&done);
614 }
615 return true;
616 }
617 case '*':
618 // Match any character.
619 return true;
620 // No custom implementation (yet): s(UC16), S(UC16).
621 default:
622 return false;
623 }
624}
625
626
627void RegExpMacroAssemblerPPC::Fail() {
628 __ li(r3, Operand(FAILURE));
629 __ b(&exit_label_);
630}
631
632
633Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
634 Label return_r3;
635
636 if (masm_->has_exception()) {
637 // If the code gets corrupted due to long regular expressions and lack of
638 // space on trampolines, an internal exception flag is set. If this case
639 // is detected, we will jump into exit sequence right away.
640 __ bind_to(&entry_label_, internal_failure_label_.pos());
641 } else {
642 // Finalize code - write the entry point code now we know how many
643 // registers we need.
644
645 // Entry code:
646 __ bind(&entry_label_);
647
648 // Tell the system that we have a stack frame. Because the type
649 // is MANUAL, no is generated.
650 FrameScope scope(masm_, StackFrame::MANUAL);
651
652 // Ensure register assigments are consistent with callee save mask
653 DCHECK(r25.bit() & kRegExpCalleeSaved);
654 DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
655 DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
656 DCHECK(current_character().bit() & kRegExpCalleeSaved);
657 DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
658 DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
659 DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
660
661 // Actually emit code to start a new stack frame.
662 // Push arguments
663 // Save callee-save registers.
664 // Start new stack frame.
665 // Store link register in existing stack-cell.
666 // Order here should correspond to order of offset constants in header file.
667 RegList registers_to_retain = kRegExpCalleeSaved;
668 RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
669 r7.bit() | r8.bit() | r9.bit() | r10.bit();
670 __ mflr(r0);
671 __ push(r0);
672 __ MultiPush(argument_registers | registers_to_retain);
673 // Set frame pointer in space for it if this is not a direct call
674 // from generated code.
675 __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
676 __ li(r3, Operand::Zero());
677 __ push(r3); // Make room for success counter and initialize it to 0.
678 __ push(r3); // Make room for "string start - 1" constant.
679 // Check if we have space on the stack for registers.
680 Label stack_limit_hit;
681 Label stack_ok;
682
683 ExternalReference stack_limit =
684 ExternalReference::address_of_stack_limit(isolate());
685 __ mov(r3, Operand(stack_limit));
686 __ LoadP(r3, MemOperand(r3));
687 __ sub(r3, sp, r3, LeaveOE, SetRC);
688 // Handle it if the stack pointer is already below the stack limit.
689 __ ble(&stack_limit_hit, cr0);
690 // Check if there is room for the variable number of registers above
691 // the stack limit.
692 __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
693 __ bge(&stack_ok);
694 // Exit with OutOfMemory exception. There is not enough space on the stack
695 // for our working registers.
696 __ li(r3, Operand(EXCEPTION));
697 __ b(&return_r3);
698
699 __ bind(&stack_limit_hit);
700 CallCheckStackGuardState(r3);
701 __ cmpi(r3, Operand::Zero());
702 // If returned value is non-zero, we exit with the returned value as result.
703 __ bne(&return_r3);
704
705 __ bind(&stack_ok);
706
707 // Allocate space on stack for registers.
708 __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
709 // Load string end.
710 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
711 // Load input start.
712 __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
713 // Find negative length (offset of start relative to end).
714 __ sub(current_input_offset(), r3, end_of_input_address());
715 // Set r3 to address of char before start of the input string
716 // (effectively string position -1).
717 __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
718 __ subi(r3, current_input_offset(), Operand(char_size()));
719 if (mode_ == UC16) {
720 __ ShiftLeftImm(r0, r4, Operand(1));
721 __ sub(r3, r3, r0);
722 } else {
723 __ sub(r3, r3, r4);
724 }
725 // Store this value in a local variable, for use when clearing
726 // position registers.
727 __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
728
729 // Initialize code pointer register
730 __ mov(code_pointer(), Operand(masm_->CodeObject()));
731
732 Label load_char_start_regexp, start_regexp;
733 // Load newline if index is at start, previous character otherwise.
734 __ cmpi(r4, Operand::Zero());
735 __ bne(&load_char_start_regexp);
736 __ li(current_character(), Operand('\n'));
737 __ b(&start_regexp);
738
739 // Global regexp restarts matching here.
740 __ bind(&load_char_start_regexp);
741 // Load previous char as initial value of current character register.
742 LoadCurrentCharacterUnchecked(-1, 1);
743 __ bind(&start_regexp);
744
745 // Initialize on-stack registers.
746 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
747 // Fill saved registers with initial value = start offset - 1
748 if (num_saved_registers_ > 8) {
749 // One slot beyond address of register 0.
750 __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
751 __ li(r5, Operand(num_saved_registers_));
752 __ mtctr(r5);
753 Label init_loop;
754 __ bind(&init_loop);
755 __ StorePU(r3, MemOperand(r4, -kPointerSize));
756 __ bdnz(&init_loop);
757 } else {
758 for (int i = 0; i < num_saved_registers_; i++) {
759 __ StoreP(r3, register_location(i), r0);
760 }
761 }
762 }
763
764 // Initialize backtrack stack pointer.
765 __ LoadP(backtrack_stackpointer(),
766 MemOperand(frame_pointer(), kStackHighEnd));
767
768 __ b(&start_label_);
769
770 // Exit code:
771 if (success_label_.is_linked()) {
772 // Save captures when successful.
773 __ bind(&success_label_);
774 if (num_saved_registers_ > 0) {
775 // copy captures to output
776 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
777 __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
778 __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
779 __ sub(r4, end_of_input_address(), r4);
780 // r4 is length of input in bytes.
781 if (mode_ == UC16) {
782 __ ShiftRightImm(r4, r4, Operand(1));
783 }
784 // r4 is length of input in characters.
785 __ add(r4, r4, r5);
786 // r4 is length of string in characters.
787
788 DCHECK_EQ(0, num_saved_registers_ % 2);
789 // Always an even number of capture registers. This allows us to
790 // unroll the loop once to add an operation between a load of a register
791 // and the following use of that register.
792 for (int i = 0; i < num_saved_registers_; i += 2) {
793 __ LoadP(r5, register_location(i), r0);
794 __ LoadP(r6, register_location(i + 1), r0);
795 if (i == 0 && global_with_zero_length_check()) {
796 // Keep capture start in r25 for the zero-length check later.
797 __ mr(r25, r5);
798 }
799 if (mode_ == UC16) {
800 __ ShiftRightArithImm(r5, r5, 1);
801 __ add(r5, r4, r5);
802 __ ShiftRightArithImm(r6, r6, 1);
803 __ add(r6, r4, r6);
804 } else {
805 __ add(r5, r4, r5);
806 __ add(r6, r4, r6);
807 }
808 __ stw(r5, MemOperand(r3));
809 __ addi(r3, r3, Operand(kIntSize));
810 __ stw(r6, MemOperand(r3));
811 __ addi(r3, r3, Operand(kIntSize));
812 }
813 }
814
815 if (global()) {
816 // Restart matching if the regular expression is flagged as global.
817 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
818 __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
819 __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
820 // Increment success counter.
821 __ addi(r3, r3, Operand(1));
822 __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
823 // Capture results have been stored, so the number of remaining global
824 // output registers is reduced by the number of stored captures.
825 __ subi(r4, r4, Operand(num_saved_registers_));
826 // Check whether we have enough room for another set of capture results.
827 __ cmpi(r4, Operand(num_saved_registers_));
828 __ blt(&return_r3);
829
830 __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
831 // Advance the location for output.
832 __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
833 __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
834
835 // Prepare r3 to initialize registers with its value in the next run.
836 __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
837
838 if (global_with_zero_length_check()) {
839 // Special case for zero-length matches.
840 // r25: capture start index
841 __ cmp(current_input_offset(), r25);
842 // Not a zero-length match, restart.
843 __ bne(&load_char_start_regexp);
844 // Offset from the end is zero if we already reached the end.
845 __ cmpi(current_input_offset(), Operand::Zero());
846 __ beq(&exit_label_);
847 // Advance current position after a zero-length match.
848 __ addi(current_input_offset(), current_input_offset(),
849 Operand((mode_ == UC16) ? 2 : 1));
850 }
851
852 __ b(&load_char_start_regexp);
853 } else {
854 __ li(r3, Operand(SUCCESS));
855 }
856 }
857
858 // Exit and return r3
859 __ bind(&exit_label_);
860 if (global()) {
861 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
862 }
863
864 __ bind(&return_r3);
865 // Skip sp past regexp registers and local variables..
866 __ mr(sp, frame_pointer());
867 // Restore registers r25..r31 and return (restoring lr to pc).
868 __ MultiPop(registers_to_retain);
869 __ pop(r0);
870 __ mtlr(r0);
871 __ blr();
872
873 // Backtrack code (branch target for conditional backtracks).
874 if (backtrack_label_.is_linked()) {
875 __ bind(&backtrack_label_);
876 Backtrack();
877 }
878
879 Label exit_with_exception;
880
881 // Preempt-code
882 if (check_preempt_label_.is_linked()) {
883 SafeCallTarget(&check_preempt_label_);
884
885 CallCheckStackGuardState(r3);
886 __ cmpi(r3, Operand::Zero());
887 // If returning non-zero, we should end execution with the given
888 // result as return value.
889 __ bne(&return_r3);
890
891 // String might have moved: Reload end of string from frame.
892 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
893 SafeReturn();
894 }
895
896 // Backtrack stack overflow code.
897 if (stack_overflow_label_.is_linked()) {
898 SafeCallTarget(&stack_overflow_label_);
899 // Reached if the backtrack-stack limit has been hit.
900 Label grow_failed;
901
902 // Call GrowStack(backtrack_stackpointer(), &stack_base)
903 static const int num_arguments = 3;
904 __ PrepareCallCFunction(num_arguments, r3);
905 __ mr(r3, backtrack_stackpointer());
906 __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
907 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
908 ExternalReference grow_stack =
909 ExternalReference::re_grow_stack(isolate());
910 __ CallCFunction(grow_stack, num_arguments);
911 // If return NULL, we have failed to grow the stack, and
912 // must exit with a stack-overflow exception.
913 __ cmpi(r3, Operand::Zero());
914 __ beq(&exit_with_exception);
915 // Otherwise use return value as new stack pointer.
916 __ mr(backtrack_stackpointer(), r3);
917 // Restore saved registers and continue.
918 SafeReturn();
919 }
920
921 if (exit_with_exception.is_linked()) {
922 // If any of the code above needed to exit with an exception.
923 __ bind(&exit_with_exception);
924 // Exit with Result EXCEPTION(-1) to signal thrown exception.
925 __ li(r3, Operand(EXCEPTION));
926 __ b(&return_r3);
927 }
928 }
929
930 CodeDesc code_desc;
931 masm_->GetCode(&code_desc);
932 Handle<Code> code = isolate()->factory()->NewCode(
933 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
934 PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
935 return Handle<HeapObject>::cast(code);
936}
937
938
939void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
940
941
942void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
943 Label* if_ge) {
944 __ LoadP(r3, register_location(reg), r0);
945 __ Cmpi(r3, Operand(comparand), r0);
946 BranchOrBacktrack(ge, if_ge);
947}
948
949
950void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
951 Label* if_lt) {
952 __ LoadP(r3, register_location(reg), r0);
953 __ Cmpi(r3, Operand(comparand), r0);
954 BranchOrBacktrack(lt, if_lt);
955}
956
957
958void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
959 __ LoadP(r3, register_location(reg), r0);
960 __ cmp(r3, current_input_offset());
961 BranchOrBacktrack(eq, if_eq);
962}
963
964
965RegExpMacroAssembler::IrregexpImplementation
966RegExpMacroAssemblerPPC::Implementation() {
967 return kPPCImplementation;
968}
969
970
971void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
972 Label* on_end_of_input,
973 bool check_bounds,
974 int characters) {
975 DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
976 if (check_bounds) {
977 if (cp_offset >= 0) {
978 CheckPosition(cp_offset + characters - 1, on_end_of_input);
979 } else {
980 CheckPosition(cp_offset, on_end_of_input);
981 }
982 }
983 LoadCurrentCharacterUnchecked(cp_offset, characters);
984}
985
986
987void RegExpMacroAssemblerPPC::PopCurrentPosition() {
988 Pop(current_input_offset());
989}
990
991
992void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
993 Pop(r3);
994 __ StoreP(r3, register_location(register_index), r0);
995}
996
997
998void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
999 __ mov_label_offset(r3, label);
1000 Push(r3);
1001 CheckStackLimit();
1002}
1003
1004
1005void RegExpMacroAssemblerPPC::PushCurrentPosition() {
1006 Push(current_input_offset());
1007}
1008
1009
1010void RegExpMacroAssemblerPPC::PushRegister(int register_index,
1011 StackCheckFlag check_stack_limit) {
1012 __ LoadP(r3, register_location(register_index), r0);
1013 Push(r3);
1014 if (check_stack_limit) CheckStackLimit();
1015}
1016
1017
1018void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
1019 __ LoadP(current_input_offset(), register_location(reg), r0);
1020}
1021
1022
1023void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
1024 __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1025 __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1026 __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
1027}
1028
1029
1030void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
1031 Label after_position;
1032 __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
1033 __ bge(&after_position);
1034 __ mov(current_input_offset(), Operand(-by * char_size()));
1035 // On RegExp code entry (where this operation is used), the character before
1036 // the current position is expected to be already loaded.
1037 // We have advanced the position, so it's safe to read backwards.
1038 LoadCurrentCharacterUnchecked(-1, 1);
1039 __ bind(&after_position);
1040}
1041
1042
1043void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
1044 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1045 __ mov(r3, Operand(to));
1046 __ StoreP(r3, register_location(register_index), r0);
1047}
1048
1049
1050bool RegExpMacroAssemblerPPC::Succeed() {
1051 __ b(&success_label_);
1052 return global();
1053}
1054
1055
1056void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
1057 int cp_offset) {
1058 if (cp_offset == 0) {
1059 __ StoreP(current_input_offset(), register_location(reg), r0);
1060 } else {
1061 __ mov(r0, Operand(cp_offset * char_size()));
1062 __ add(r3, current_input_offset(), r0);
1063 __ StoreP(r3, register_location(reg), r0);
1064 }
1065}
1066
1067
1068void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
1069 DCHECK(reg_from <= reg_to);
1070 __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1071 for (int reg = reg_from; reg <= reg_to; reg++) {
1072 __ StoreP(r3, register_location(reg), r0);
1073 }
1074}
1075
1076
1077void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
1078 __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
1079 __ sub(r3, backtrack_stackpointer(), r4);
1080 __ StoreP(r3, register_location(reg), r0);
1081}
1082
1083
1084// Private methods:
1085
1086void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
1087 int frame_alignment = masm_->ActivationFrameAlignment();
1088 int stack_space = kNumRequiredStackFrameSlots;
1089 int stack_passed_arguments = 1; // space for return address pointer
1090
1091 // The following stack manipulation logic is similar to
1092 // PrepareCallCFunction. However, we need an extra slot on the
1093 // stack to house the return address parameter.
1094 if (frame_alignment > kPointerSize) {
1095 // Make stack end at alignment and make room for stack arguments
1096 // -- preserving original value of sp.
1097 __ mr(scratch, sp);
1098 __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
1099 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
1100 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
1101 __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
1102 } else {
1103 // Make room for stack arguments
1104 stack_space += stack_passed_arguments;
1105 }
1106
1107 // Allocate frame with required slots to make ABI work.
1108 __ li(r0, Operand::Zero());
1109 __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
1110
1111 // RegExp code frame pointer.
1112 __ mr(r5, frame_pointer());
1113 // Code* of self.
1114 __ mov(r4, Operand(masm_->CodeObject()));
1115 // r3 will point to the return address, placed by DirectCEntry.
1116 __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
1117
1118 ExternalReference stack_guard_check =
1119 ExternalReference::re_check_stack_guard_state(isolate());
1120 __ mov(ip, Operand(stack_guard_check));
1121 DirectCEntryStub stub(isolate());
1122 stub.GenerateCall(masm_, ip);
1123
1124 // Restore the stack pointer
1125 stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
1126 if (frame_alignment > kPointerSize) {
1127 __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
1128 } else {
1129 __ addi(sp, sp, Operand(stack_space * kPointerSize));
1130 }
1131
1132 __ mov(code_pointer(), Operand(masm_->CodeObject()));
1133}
1134
1135
1136// Helper function for reading a value out of a stack frame.
1137template <typename T>
1138static T& frame_entry(Address re_frame, int frame_offset) {
1139 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1140}
1141
1142
1143template <typename T>
1144static T* frame_entry_address(Address re_frame, int frame_offset) {
1145 return reinterpret_cast<T*>(re_frame + frame_offset);
1146}
1147
1148
1149int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
1150 Code* re_code,
1151 Address re_frame) {
1152 return NativeRegExpMacroAssembler::CheckStackGuardState(
1153 frame_entry<Isolate*>(re_frame, kIsolate),
1154 frame_entry<intptr_t>(re_frame, kStartIndex),
1155 frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
1156 re_code, frame_entry_address<String*>(re_frame, kInputString),
1157 frame_entry_address<const byte*>(re_frame, kInputStart),
1158 frame_entry_address<const byte*>(re_frame, kInputEnd));
1159}
1160
1161
1162MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
1163 DCHECK(register_index < (1 << 30));
1164 if (num_registers_ <= register_index) {
1165 num_registers_ = register_index + 1;
1166 }
1167 return MemOperand(frame_pointer(),
1168 kRegisterZero - register_index * kPointerSize);
1169}
1170
1171
1172void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
1173 Label* on_outside_input) {
1174 if (cp_offset >= 0) {
1175 __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
1176 BranchOrBacktrack(ge, on_outside_input);
1177 } else {
1178 __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
1179 __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
1180 __ cmp(r3, r4);
1181 BranchOrBacktrack(le, on_outside_input);
1182 }
1183}
1184
1185
1186void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
1187 CRegister cr) {
1188 if (condition == al) { // Unconditional.
1189 if (to == NULL) {
1190 Backtrack();
1191 return;
1192 }
1193 __ b(to);
1194 return;
1195 }
1196 if (to == NULL) {
1197 __ b(condition, &backtrack_label_, cr);
1198 return;
1199 }
1200 __ b(condition, to, cr);
1201}
1202
1203
1204void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
1205 CRegister cr) {
1206 __ b(cond, to, cr, SetLK);
1207}
1208
1209
1210void RegExpMacroAssemblerPPC::SafeReturn() {
1211 __ pop(r0);
1212 __ mov(ip, Operand(masm_->CodeObject()));
1213 __ add(r0, r0, ip);
1214 __ mtlr(r0);
1215 __ blr();
1216}
1217
1218
1219void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
1220 __ bind(name);
1221 __ mflr(r0);
1222 __ mov(ip, Operand(masm_->CodeObject()));
1223 __ sub(r0, r0, ip);
1224 __ push(r0);
1225}
1226
1227
1228void RegExpMacroAssemblerPPC::Push(Register source) {
1229 DCHECK(!source.is(backtrack_stackpointer()));
1230 __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
1231}
1232
1233
1234void RegExpMacroAssemblerPPC::Pop(Register target) {
1235 DCHECK(!target.is(backtrack_stackpointer()));
1236 __ LoadP(target, MemOperand(backtrack_stackpointer()));
1237 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
1238 Operand(kPointerSize));
1239}
1240
1241
1242void RegExpMacroAssemblerPPC::CheckPreemption() {
1243 // Check for preemption.
1244 ExternalReference stack_limit =
1245 ExternalReference::address_of_stack_limit(isolate());
1246 __ mov(r3, Operand(stack_limit));
1247 __ LoadP(r3, MemOperand(r3));
1248 __ cmpl(sp, r3);
1249 SafeCall(&check_preempt_label_, le);
1250}
1251
1252
1253void RegExpMacroAssemblerPPC::CheckStackLimit() {
1254 ExternalReference stack_limit =
1255 ExternalReference::address_of_regexp_stack_limit(isolate());
1256 __ mov(r3, Operand(stack_limit));
1257 __ LoadP(r3, MemOperand(r3));
1258 __ cmpl(backtrack_stackpointer(), r3);
1259 SafeCall(&stack_overflow_label_, le);
1260}
1261
1262
1263bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
1264 return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1265}
1266
1267
1268void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
1269 int characters) {
1270 Register offset = current_input_offset();
1271 if (cp_offset != 0) {
1272 // r25 is not being used to store the capture start index at this point.
1273 __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
1274 offset = r25;
1275 }
1276 // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
1277 // and the operating system running on the target allow it.
1278 // We assume we don't want to do unaligned loads on PPC, so this function
1279 // must only be used to load a single character at a time.
1280
1281 DCHECK(characters == 1);
1282 __ add(current_character(), end_of_input_address(), offset);
1283 if (mode_ == LATIN1) {
1284 __ lbz(current_character(), MemOperand(current_character()));
1285 } else {
1286 DCHECK(mode_ == UC16);
1287 __ lhz(current_character(), MemOperand(current_character()));
1288 }
1289}
1290
1291
1292#undef __
1293
1294#endif // V8_INTERPRETED_REGEXP
1295} // namespace internal
1296} // namespace v8
1297
1298#endif // V8_TARGET_ARCH_PPC