blob: 257804739f0b4623baa60c0123b6e5e5f9edb109 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
6#define V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_
7
8#include "src/macro-assembler.h"
9#include "src/regexp/regexp-macro-assembler.h"
10#include "src/x64/assembler-x64.h"
11
12namespace v8 {
13namespace internal {
14
15#ifndef V8_INTERPRETED_REGEXP
16
17class RegExpMacroAssemblerX64: public NativeRegExpMacroAssembler {
18 public:
19 RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone, Mode mode,
20 int registers_to_save);
21 virtual ~RegExpMacroAssemblerX64();
22 virtual int stack_limit_slack();
23 virtual void AdvanceCurrentPosition(int by);
24 virtual void AdvanceRegister(int reg, int by);
25 virtual void Backtrack();
26 virtual void Bind(Label* label);
27 virtual void CheckAtStart(Label* on_at_start);
28 virtual void CheckCharacter(uint32_t c, Label* on_equal);
29 virtual void CheckCharacterAfterAnd(uint32_t c,
30 uint32_t mask,
31 Label* on_equal);
32 virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
33 virtual void CheckCharacterLT(uc16 limit, Label* on_less);
34 // A "greedy loop" is a loop that is both greedy and with a simple
35 // body. It has a particularly simple implementation.
36 virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
37 virtual void CheckNotAtStart(int cp_offset, Label* on_not_at_start);
38 virtual void CheckNotBackReference(int start_reg, bool read_backward,
39 Label* on_no_match);
40 virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
41 bool read_backward,
42 Label* on_no_match);
43 virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal);
44 virtual void CheckNotCharacterAfterAnd(uint32_t c,
45 uint32_t mask,
46 Label* on_not_equal);
47 virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
48 uc16 minus,
49 uc16 mask,
50 Label* on_not_equal);
51 virtual void CheckCharacterInRange(uc16 from,
52 uc16 to,
53 Label* on_in_range);
54 virtual void CheckCharacterNotInRange(uc16 from,
55 uc16 to,
56 Label* on_not_in_range);
57 virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
58
59 // Checks whether the given offset from the current position is before
60 // the end of the string.
61 virtual void CheckPosition(int cp_offset, Label* on_outside_input);
62 virtual bool CheckSpecialCharacterClass(uc16 type,
63 Label* on_no_match);
64 virtual void Fail();
65 virtual Handle<HeapObject> GetCode(Handle<String> source);
66 virtual void GoTo(Label* label);
67 virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
68 virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
69 virtual void IfRegisterEqPos(int reg, Label* if_eq);
70 virtual IrregexpImplementation Implementation();
71 virtual void LoadCurrentCharacter(int cp_offset,
72 Label* on_end_of_input,
73 bool check_bounds = true,
74 int characters = 1);
75 virtual void PopCurrentPosition();
76 virtual void PopRegister(int register_index);
77 virtual void PushBacktrack(Label* label);
78 virtual void PushCurrentPosition();
79 virtual void PushRegister(int register_index,
80 StackCheckFlag check_stack_limit);
81 virtual void ReadCurrentPositionFromRegister(int reg);
82 virtual void ReadStackPointerFromRegister(int reg);
83 virtual void SetCurrentPositionFromEnd(int by);
84 virtual void SetRegister(int register_index, int to);
85 virtual bool Succeed();
86 virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
87 virtual void ClearRegisters(int reg_from, int reg_to);
88 virtual void WriteStackPointerToRegister(int reg);
89
90 static Result Match(Handle<Code> regexp,
91 Handle<String> subject,
92 int* offsets_vector,
93 int offsets_vector_length,
94 int previous_index,
95 Isolate* isolate);
96
97 static Result Execute(Code* code,
98 String* input,
99 int start_offset,
100 const byte* input_start,
101 const byte* input_end,
102 int* output,
103 bool at_start);
104
105 // Called from RegExp if the stack-guard is triggered.
106 // If the code object is relocated, the return address is fixed before
107 // returning.
108 static int CheckStackGuardState(Address* return_address,
109 Code* re_code,
110 Address re_frame);
111
112 private:
113 // Offsets from rbp of function parameters and stored registers.
114 static const int kFramePointer = 0;
115 // Above the frame pointer - function parameters and return address.
116 static const int kReturn_eip = kFramePointer + kRegisterSize;
117 static const int kFrameAlign = kReturn_eip + kRegisterSize;
118
119#ifdef _WIN64
120 // Parameters (first four passed as registers, but with room on stack).
121 // In Microsoft 64-bit Calling Convention, there is room on the callers
122 // stack (before the return address) to spill parameter registers. We
123 // use this space to store the register passed parameters.
124 static const int kInputString = kFrameAlign;
125 // StartIndex is passed as 32 bit int.
126 static const int kStartIndex = kInputString + kRegisterSize;
127 static const int kInputStart = kStartIndex + kRegisterSize;
128 static const int kInputEnd = kInputStart + kRegisterSize;
129 static const int kRegisterOutput = kInputEnd + kRegisterSize;
130 // For the case of global regular expression, we have room to store at least
131 // one set of capture results. For the case of non-global regexp, we ignore
132 // this value. NumOutputRegisters is passed as 32-bit value. The upper
133 // 32 bit of this 64-bit stack slot may contain garbage.
134 static const int kNumOutputRegisters = kRegisterOutput + kRegisterSize;
135 static const int kStackHighEnd = kNumOutputRegisters + kRegisterSize;
136 // DirectCall is passed as 32 bit int (values 0 or 1).
137 static const int kDirectCall = kStackHighEnd + kRegisterSize;
138 static const int kIsolate = kDirectCall + kRegisterSize;
139#else
140 // In AMD64 ABI Calling Convention, the first six integer parameters
141 // are passed as registers, and caller must allocate space on the stack
142 // if it wants them stored. We push the parameters after the frame pointer.
143 static const int kInputString = kFramePointer - kRegisterSize;
144 static const int kStartIndex = kInputString - kRegisterSize;
145 static const int kInputStart = kStartIndex - kRegisterSize;
146 static const int kInputEnd = kInputStart - kRegisterSize;
147 static const int kRegisterOutput = kInputEnd - kRegisterSize;
148
149 // For the case of global regular expression, we have room to store at least
150 // one set of capture results. For the case of non-global regexp, we ignore
151 // this value.
152 static const int kNumOutputRegisters = kRegisterOutput - kRegisterSize;
153 static const int kStackHighEnd = kFrameAlign;
154 static const int kDirectCall = kStackHighEnd + kRegisterSize;
155 static const int kIsolate = kDirectCall + kRegisterSize;
156#endif
157
158#ifdef _WIN64
159 // Microsoft calling convention has three callee-saved registers
160 // (that we are using). We push these after the frame pointer.
161 static const int kBackup_rsi = kFramePointer - kRegisterSize;
162 static const int kBackup_rdi = kBackup_rsi - kRegisterSize;
163 static const int kBackup_rbx = kBackup_rdi - kRegisterSize;
164 static const int kLastCalleeSaveRegister = kBackup_rbx;
165#else
166 // AMD64 Calling Convention has only one callee-save register that
167 // we use. We push this after the frame pointer (and after the
168 // parameters).
169 static const int kBackup_rbx = kNumOutputRegisters - kRegisterSize;
170 static const int kLastCalleeSaveRegister = kBackup_rbx;
171#endif
172
173 static const int kSuccessfulCaptures = kLastCalleeSaveRegister - kPointerSize;
174 // When adding local variables remember to push space for them in
175 // the frame in GetCode.
176 static const int kStringStartMinusOne = kSuccessfulCaptures - kPointerSize;
177
178 // First register address. Following registers are below it on the stack.
179 static const int kRegisterZero = kStringStartMinusOne - kPointerSize;
180
181 // Initial size of code buffer.
182 static const size_t kRegExpCodeSize = 1024;
183
184 // Load a number of characters at the given offset from the
185 // current position, into the current-character register.
186 void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
187
188 // Check whether preemption has been requested.
189 void CheckPreemption();
190
191 // Check whether we are exceeding the stack limit on the backtrack stack.
192 void CheckStackLimit();
193
194 // Generate a call to CheckStackGuardState.
195 void CallCheckStackGuardState();
196
197 // The rbp-relative location of a regexp register.
198 Operand register_location(int register_index);
199
200 // The register containing the current character after LoadCurrentCharacter.
201 inline Register current_character() { return rdx; }
202
203 // The register containing the backtrack stack top. Provides a meaningful
204 // name to the register.
205 inline Register backtrack_stackpointer() { return rcx; }
206
207 // The registers containing a self pointer to this code's Code object.
208 inline Register code_object_pointer() { return r8; }
209
210 // Byte size of chars in the string to match (decided by the Mode argument)
211 inline int char_size() { return static_cast<int>(mode_); }
212
213 // Equivalent to a conditional branch to the label, unless the label
214 // is NULL, in which case it is a conditional Backtrack.
215 void BranchOrBacktrack(Condition condition, Label* to);
216
217 void MarkPositionForCodeRelativeFixup() {
218 code_relative_fixup_positions_.Add(masm_.pc_offset(), zone());
219 }
220
221 void FixupCodeRelativePositions();
222
223 // Call and return internally in the generated code in a way that
224 // is GC-safe (i.e., doesn't leave absolute code addresses on the stack)
225 inline void SafeCall(Label* to);
226 inline void SafeCallTarget(Label* label);
227 inline void SafeReturn();
228
229 // Pushes the value of a register on the backtrack stack. Decrements the
230 // stack pointer (rcx) by a word size and stores the register's value there.
231 inline void Push(Register source);
232
233 // Pushes a value on the backtrack stack. Decrements the stack pointer (rcx)
234 // by a word size and stores the value there.
235 inline void Push(Immediate value);
236
237 // Pushes the Code object relative offset of a label on the backtrack stack
238 // (i.e., a backtrack target). Decrements the stack pointer (rcx)
239 // by a word size and stores the value there.
240 inline void Push(Label* label);
241
242 // Pops a value from the backtrack stack. Reads the word at the stack pointer
243 // (rcx) and increments it by a word size.
244 inline void Pop(Register target);
245
246 // Drops the top value from the backtrack stack without reading it.
247 // Increments the stack pointer (rcx) by a word size.
248 inline void Drop();
249
250 inline void ReadPositionFromRegister(Register dst, int reg);
251
252 Isolate* isolate() const { return masm_.isolate(); }
253
254 MacroAssembler masm_;
255 MacroAssembler::NoRootArrayScope no_root_array_scope_;
256
257 ZoneList<int> code_relative_fixup_positions_;
258
259 // Which mode to generate code for (LATIN1 or UC16).
260 Mode mode_;
261
262 // One greater than maximal register index actually used.
263 int num_registers_;
264
265 // Number of registers to output at the end (the saved registers
266 // are always 0..num_saved_registers_-1)
267 int num_saved_registers_;
268
269 // Labels used internally.
270 Label entry_label_;
271 Label start_label_;
272 Label success_label_;
273 Label backtrack_label_;
274 Label exit_label_;
275 Label check_preempt_label_;
276 Label stack_overflow_label_;
277};
278
279#endif // V8_INTERPRETED_REGEXP
280
281} // namespace internal
282} // namespace v8
283
284#endif // V8_REGEXP_X64_REGEXP_MACRO_ASSEMBLER_X64_H_