blob: b1705df9be0fff3b6dabc6210fd855a1c36b90d5 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
Leon Clarked91b9f72010-01-27 17:25:45 +000033// The original source code covered by the above license above has been
34// modified significantly by Google Inc.
35// Copyright 2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +000036
37#include "v8.h"
38
Leon Clarkef7060e22010-06-03 12:02:55 +010039#if defined(V8_TARGET_ARCH_ARM)
40
Steve Blocka7e24c12009-10-30 11:49:00 +000041#include "arm/assembler-arm-inl.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
Steve Blockd0582a62009-12-15 09:54:21 +000047// Safe default is no features.
48unsigned CpuFeatures::supported_ = 0;
49unsigned CpuFeatures::enabled_ = 0;
50unsigned CpuFeatures::found_by_runtime_probing_ = 0;
51
Andrei Popescu402d9372010-02-26 13:31:12 +000052
53#ifdef __arm__
54static uint64_t CpuFeaturesImpliedByCompiler() {
55 uint64_t answer = 0;
56#ifdef CAN_USE_ARMV7_INSTRUCTIONS
57 answer |= 1u << ARMv7;
58#endif // def CAN_USE_ARMV7_INSTRUCTIONS
59 // If the compiler is allowed to use VFP then we can use VFP too in our code
60 // generation even when generating snapshots. This won't work for cross
61 // compilation.
62#if defined(__VFP_FP__) && !defined(__SOFTFP__)
63 answer |= 1u << VFP3;
64#endif // defined(__VFP_FP__) && !defined(__SOFTFP__)
65#ifdef CAN_USE_VFP_INSTRUCTIONS
66 answer |= 1u << VFP3;
67#endif // def CAN_USE_VFP_INSTRUCTIONS
68 return answer;
69}
70#endif // def __arm__
71
72
Steve Blockd0582a62009-12-15 09:54:21 +000073void CpuFeatures::Probe() {
Andrei Popescu402d9372010-02-26 13:31:12 +000074#ifndef __arm__
Andrei Popescu31002712010-02-23 13:46:05 +000075 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled.
76 if (FLAG_enable_vfp3) {
Steve Block6ded16b2010-05-10 14:33:55 +010077 supported_ |= 1u << VFP3;
Andrei Popescu31002712010-02-23 13:46:05 +000078 }
79 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
80 if (FLAG_enable_armv7) {
Steve Block6ded16b2010-05-10 14:33:55 +010081 supported_ |= 1u << ARMv7;
Andrei Popescu31002712010-02-23 13:46:05 +000082 }
Andrei Popescu402d9372010-02-26 13:31:12 +000083#else // def __arm__
Steve Blockd0582a62009-12-15 09:54:21 +000084 if (Serializer::enabled()) {
Andrei Popescu402d9372010-02-26 13:31:12 +000085 supported_ |= OS::CpuFeaturesImpliedByPlatform();
86 supported_ |= CpuFeaturesImpliedByCompiler();
Steve Blockd0582a62009-12-15 09:54:21 +000087 return; // No features if we might serialize.
88 }
89
90 if (OS::ArmCpuHasFeature(VFP3)) {
91 // This implementation also sets the VFP flags if
92 // runtime detection of VFP returns true.
93 supported_ |= 1u << VFP3;
94 found_by_runtime_probing_ |= 1u << VFP3;
95 }
Andrei Popescu31002712010-02-23 13:46:05 +000096
97 if (OS::ArmCpuHasFeature(ARMv7)) {
98 supported_ |= 1u << ARMv7;
99 found_by_runtime_probing_ |= 1u << ARMv7;
100 }
Steve Block6ded16b2010-05-10 14:33:55 +0100101#endif
Steve Blockd0582a62009-12-15 09:54:21 +0000102}
103
104
Steve Blocka7e24c12009-10-30 11:49:00 +0000105// -----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000106// Implementation of RelocInfo
107
108const int RelocInfo::kApplyMask = 0;
109
110
Leon Clarkef7060e22010-06-03 12:02:55 +0100111bool RelocInfo::IsCodedSpecially() {
112 // The deserializer needs to know whether a pointer is specially coded. Being
113 // specially coded on ARM means that it is a movw/movt instruction. We don't
114 // generate those yet.
115 return false;
116}
117
118
119
Steve Blocka7e24c12009-10-30 11:49:00 +0000120void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
121 // Patch the code at the current address with the supplied instructions.
122 Instr* pc = reinterpret_cast<Instr*>(pc_);
123 Instr* instr = reinterpret_cast<Instr*>(instructions);
124 for (int i = 0; i < instruction_count; i++) {
125 *(pc + i) = *(instr + i);
126 }
127
128 // Indicate that code has changed.
129 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
130}
131
132
133// Patch the code at the current PC with a call to the target address.
134// Additional guard instructions can be added if required.
135void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
136 // Patch the code at the current address with a call to the target.
137 UNIMPLEMENTED();
138}
139
140
141// -----------------------------------------------------------------------------
142// Implementation of Operand and MemOperand
143// See assembler-arm-inl.h for inlined constructors
144
145Operand::Operand(Handle<Object> handle) {
146 rm_ = no_reg;
147 // Verify all Objects referred by code are NOT in new space.
148 Object* obj = *handle;
149 ASSERT(!Heap::InNewSpace(obj));
150 if (obj->IsHeapObject()) {
151 imm32_ = reinterpret_cast<intptr_t>(handle.location());
152 rmode_ = RelocInfo::EMBEDDED_OBJECT;
153 } else {
154 // no relocation needed
155 imm32_ = reinterpret_cast<intptr_t>(obj);
156 rmode_ = RelocInfo::NONE;
157 }
158}
159
160
161Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
162 ASSERT(is_uint5(shift_imm));
163 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
164 rm_ = rm;
165 rs_ = no_reg;
166 shift_op_ = shift_op;
167 shift_imm_ = shift_imm & 31;
168 if (shift_op == RRX) {
169 // encoded as ROR with shift_imm == 0
170 ASSERT(shift_imm == 0);
171 shift_op_ = ROR;
172 shift_imm_ = 0;
173 }
174}
175
176
177Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
178 ASSERT(shift_op != RRX);
179 rm_ = rm;
180 rs_ = no_reg;
181 shift_op_ = shift_op;
182 rs_ = rs;
183}
184
185
186MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
187 rn_ = rn;
188 rm_ = no_reg;
189 offset_ = offset;
190 am_ = am;
191}
192
193MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
194 rn_ = rn;
195 rm_ = rm;
196 shift_op_ = LSL;
197 shift_imm_ = 0;
198 am_ = am;
199}
200
201
202MemOperand::MemOperand(Register rn, Register rm,
203 ShiftOp shift_op, int shift_imm, AddrMode am) {
204 ASSERT(is_uint5(shift_imm));
205 rn_ = rn;
206 rm_ = rm;
207 shift_op_ = shift_op;
208 shift_imm_ = shift_imm & 31;
209 am_ = am;
210}
211
212
213// -----------------------------------------------------------------------------
Andrei Popescu31002712010-02-23 13:46:05 +0000214// Implementation of Assembler.
Steve Blocka7e24c12009-10-30 11:49:00 +0000215
Andrei Popescu31002712010-02-23 13:46:05 +0000216// Instruction encoding bits.
Steve Blocka7e24c12009-10-30 11:49:00 +0000217enum {
218 H = 1 << 5, // halfword (or byte)
219 S6 = 1 << 6, // signed (or unsigned)
220 L = 1 << 20, // load (or store)
221 S = 1 << 20, // set condition code (or leave unchanged)
222 W = 1 << 21, // writeback base register (or leave unchanged)
223 A = 1 << 21, // accumulate in multiply instruction (or not)
224 B = 1 << 22, // unsigned byte (or word)
225 N = 1 << 22, // long (or short)
226 U = 1 << 23, // positive (or negative) offset/index
227 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
228 I = 1 << 25, // immediate shifter operand (or not)
229
230 B4 = 1 << 4,
231 B5 = 1 << 5,
Steve Blockd0582a62009-12-15 09:54:21 +0000232 B6 = 1 << 6,
Steve Blocka7e24c12009-10-30 11:49:00 +0000233 B7 = 1 << 7,
234 B8 = 1 << 8,
Steve Blockd0582a62009-12-15 09:54:21 +0000235 B9 = 1 << 9,
Steve Blocka7e24c12009-10-30 11:49:00 +0000236 B12 = 1 << 12,
237 B16 = 1 << 16,
Steve Blockd0582a62009-12-15 09:54:21 +0000238 B18 = 1 << 18,
239 B19 = 1 << 19,
Steve Blocka7e24c12009-10-30 11:49:00 +0000240 B20 = 1 << 20,
241 B21 = 1 << 21,
242 B22 = 1 << 22,
243 B23 = 1 << 23,
244 B24 = 1 << 24,
245 B25 = 1 << 25,
246 B26 = 1 << 26,
247 B27 = 1 << 27,
248
Andrei Popescu31002712010-02-23 13:46:05 +0000249 // Instruction bit masks.
Steve Blocka7e24c12009-10-30 11:49:00 +0000250 RdMask = 15 << 12, // in str instruction
251 CondMask = 15 << 28,
252 CoprocessorMask = 15 << 8,
253 OpCodeMask = 15 << 21, // in data-processing instructions
254 Imm24Mask = (1 << 24) - 1,
255 Off12Mask = (1 << 12) - 1,
Andrei Popescu31002712010-02-23 13:46:05 +0000256 // Reserved condition.
Steve Blocka7e24c12009-10-30 11:49:00 +0000257 nv = 15 << 28
258};
259
260
261// add(sp, sp, 4) instruction (aka Pop())
262static const Instr kPopInstruction =
263 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
264// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
265// register r is not encoded.
266static const Instr kPushRegPattern =
267 al | B26 | 4 | NegPreIndex | sp.code() * B16;
268// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
269// register r is not encoded.
270static const Instr kPopRegPattern =
271 al | B26 | L | 4 | PostIndex | sp.code() * B16;
272// mov lr, pc
273const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12;
Steve Block6ded16b2010-05-10 14:33:55 +0100274// ldr rd, [pc, #offset]
275const Instr kLdrPCMask = CondMask | 15 * B24 | 7 * B20 | 15 * B16;
276const Instr kLdrPCPattern = al | 5 * B24 | L | pc.code() * B16;
277// blxcc rm
278const Instr kBlxRegMask =
279 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
280const Instr kBlxRegPattern =
281 B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | 3 * B4;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100282const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
283const Instr kMovMvnPattern = 0xd * B21;
284const Instr kMovMvnFlip = B22;
285const Instr kMovLeaveCCMask = 0xdff * B16;
286const Instr kMovLeaveCCPattern = 0x1a0 * B16;
287const Instr kMovwMask = 0xff * B20;
288const Instr kMovwPattern = 0x30 * B20;
289const Instr kMovwLeaveCCFlip = 0x5 * B21;
290const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
291const Instr kCmpCmnPattern = 0x15 * B20;
292const Instr kCmpCmnFlip = B21;
293const Instr kALUMask = 0x6f * B21;
294const Instr kAddPattern = 0x4 * B21;
295const Instr kSubPattern = 0x2 * B21;
296const Instr kBicPattern = 0xe * B21;
297const Instr kAndPattern = 0x0 * B21;
298const Instr kAddSubFlip = 0x6 * B21;
299const Instr kAndBicFlip = 0xe * B21;
300
Leon Clarkef7060e22010-06-03 12:02:55 +0100301// A mask for the Rd register for push, pop, ldr, str instructions.
302const Instr kRdMask = 0x0000f000;
303static const int kRdShift = 12;
304static const Instr kLdrRegFpOffsetPattern =
305 al | B26 | L | Offset | fp.code() * B16;
306static const Instr kStrRegFpOffsetPattern =
307 al | B26 | Offset | fp.code() * B16;
308static const Instr kLdrRegFpNegOffsetPattern =
309 al | B26 | L | NegOffset | fp.code() * B16;
310static const Instr kStrRegFpNegOffsetPattern =
311 al | B26 | NegOffset | fp.code() * B16;
312static const Instr kLdrStrInstrTypeMask = 0xffff0000;
313static const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
314static const Instr kLdrStrOffsetMask = 0x00000fff;
Steve Blocka7e24c12009-10-30 11:49:00 +0000315
Andrei Popescu31002712010-02-23 13:46:05 +0000316// Spare buffer.
Steve Blocka7e24c12009-10-30 11:49:00 +0000317static const int kMinimalBufferSize = 4*KB;
318static byte* spare_buffer_ = NULL;
319
320Assembler::Assembler(void* buffer, int buffer_size) {
321 if (buffer == NULL) {
Andrei Popescu31002712010-02-23 13:46:05 +0000322 // Do our own buffer management.
Steve Blocka7e24c12009-10-30 11:49:00 +0000323 if (buffer_size <= kMinimalBufferSize) {
324 buffer_size = kMinimalBufferSize;
325
326 if (spare_buffer_ != NULL) {
327 buffer = spare_buffer_;
328 spare_buffer_ = NULL;
329 }
330 }
331 if (buffer == NULL) {
332 buffer_ = NewArray<byte>(buffer_size);
333 } else {
334 buffer_ = static_cast<byte*>(buffer);
335 }
336 buffer_size_ = buffer_size;
337 own_buffer_ = true;
338
339 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000340 // Use externally provided buffer instead.
Steve Blocka7e24c12009-10-30 11:49:00 +0000341 ASSERT(buffer_size > 0);
342 buffer_ = static_cast<byte*>(buffer);
343 buffer_size_ = buffer_size;
344 own_buffer_ = false;
345 }
346
Andrei Popescu31002712010-02-23 13:46:05 +0000347 // Setup buffer pointers.
Steve Blocka7e24c12009-10-30 11:49:00 +0000348 ASSERT(buffer_ != NULL);
349 pc_ = buffer_;
350 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
351 num_prinfo_ = 0;
352 next_buffer_check_ = 0;
Steve Block6ded16b2010-05-10 14:33:55 +0100353 const_pool_blocked_nesting_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000354 no_const_pool_before_ = 0;
355 last_const_pool_end_ = 0;
356 last_bound_pos_ = 0;
357 current_statement_position_ = RelocInfo::kNoPosition;
358 current_position_ = RelocInfo::kNoPosition;
359 written_statement_position_ = current_statement_position_;
360 written_position_ = current_position_;
361}
362
363
364Assembler::~Assembler() {
Steve Block6ded16b2010-05-10 14:33:55 +0100365 ASSERT(const_pool_blocked_nesting_ == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000366 if (own_buffer_) {
367 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
368 spare_buffer_ = buffer_;
369 } else {
370 DeleteArray(buffer_);
371 }
372 }
373}
374
375
376void Assembler::GetCode(CodeDesc* desc) {
Andrei Popescu31002712010-02-23 13:46:05 +0000377 // Emit constant pool if necessary.
Steve Blocka7e24c12009-10-30 11:49:00 +0000378 CheckConstPool(true, false);
379 ASSERT(num_prinfo_ == 0);
380
Andrei Popescu31002712010-02-23 13:46:05 +0000381 // Setup code descriptor.
Steve Blocka7e24c12009-10-30 11:49:00 +0000382 desc->buffer = buffer_;
383 desc->buffer_size = buffer_size_;
384 desc->instr_size = pc_offset();
385 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
386}
387
388
389void Assembler::Align(int m) {
390 ASSERT(m >= 4 && IsPowerOf2(m));
391 while ((pc_offset() & (m - 1)) != 0) {
392 nop();
393 }
394}
395
396
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100397void Assembler::CodeTargetAlign() {
398 // Preferred alignment of jump targets on some ARM chips.
399 Align(8);
400}
401
402
Steve Block6ded16b2010-05-10 14:33:55 +0100403bool Assembler::IsNop(Instr instr, int type) {
404 // Check for mov rx, rx.
405 ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
406 return instr == (al | 13*B21 | type*B12 | type);
407}
408
409
410bool Assembler::IsBranch(Instr instr) {
411 return (instr & (B27 | B25)) == (B27 | B25);
412}
413
414
415int Assembler::GetBranchOffset(Instr instr) {
416 ASSERT(IsBranch(instr));
417 // Take the jump offset in the lower 24 bits, sign extend it and multiply it
418 // with 4 to get the offset in bytes.
419 return ((instr & Imm24Mask) << 8) >> 6;
420}
421
422
423bool Assembler::IsLdrRegisterImmediate(Instr instr) {
424 return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
425}
426
427
428int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
429 ASSERT(IsLdrRegisterImmediate(instr));
430 bool positive = (instr & B23) == B23;
431 int offset = instr & Off12Mask; // Zero extended offset.
432 return positive ? offset : -offset;
433}
434
435
436Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
437 ASSERT(IsLdrRegisterImmediate(instr));
438 bool positive = offset >= 0;
439 if (!positive) offset = -offset;
440 ASSERT(is_uint12(offset));
441 // Set bit indicating whether the offset should be added.
442 instr = (instr & ~B23) | (positive ? B23 : 0);
443 // Set the actual offset.
444 return (instr & ~Off12Mask) | offset;
445}
446
447
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100448bool Assembler::IsStrRegisterImmediate(Instr instr) {
449 return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
450}
451
452
453Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
454 ASSERT(IsStrRegisterImmediate(instr));
455 bool positive = offset >= 0;
456 if (!positive) offset = -offset;
457 ASSERT(is_uint12(offset));
458 // Set bit indicating whether the offset should be added.
459 instr = (instr & ~B23) | (positive ? B23 : 0);
460 // Set the actual offset.
461 return (instr & ~Off12Mask) | offset;
462}
463
464
465bool Assembler::IsAddRegisterImmediate(Instr instr) {
466 return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
467}
468
469
470Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
471 ASSERT(IsAddRegisterImmediate(instr));
472 ASSERT(offset >= 0);
473 ASSERT(is_uint12(offset));
474 // Set the offset.
475 return (instr & ~Off12Mask) | offset;
476}
477
478
Leon Clarkef7060e22010-06-03 12:02:55 +0100479Register Assembler::GetRd(Instr instr) {
480 Register reg;
481 reg.code_ = ((instr & kRdMask) >> kRdShift);
482 return reg;
483}
484
485
486bool Assembler::IsPush(Instr instr) {
487 return ((instr & ~kRdMask) == kPushRegPattern);
488}
489
490
491bool Assembler::IsPop(Instr instr) {
492 return ((instr & ~kRdMask) == kPopRegPattern);
493}
494
495
496bool Assembler::IsStrRegFpOffset(Instr instr) {
497 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
498}
499
500
501bool Assembler::IsLdrRegFpOffset(Instr instr) {
502 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
503}
504
505
506bool Assembler::IsStrRegFpNegOffset(Instr instr) {
507 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
508}
509
510
511bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
512 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
513}
514
515
Steve Blocka7e24c12009-10-30 11:49:00 +0000516// Labels refer to positions in the (to be) generated code.
517// There are bound, linked, and unused labels.
518//
519// Bound labels refer to known positions in the already
520// generated code. pos() is the position the label refers to.
521//
522// Linked labels refer to unknown positions in the code
523// to be generated; pos() is the position of the last
524// instruction using the label.
525
526
527// The link chain is terminated by a negative code position (must be aligned)
528const int kEndOfChain = -4;
529
530
531int Assembler::target_at(int pos) {
532 Instr instr = instr_at(pos);
533 if ((instr & ~Imm24Mask) == 0) {
534 // Emitted label constant, not part of a branch.
535 return instr - (Code::kHeaderSize - kHeapObjectTag);
536 }
537 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
538 int imm26 = ((instr & Imm24Mask) << 8) >> 6;
Steve Block6ded16b2010-05-10 14:33:55 +0100539 if ((instr & CondMask) == nv && (instr & B24) != 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000540 // blx uses bit 24 to encode bit 2 of imm26
541 imm26 += 2;
Steve Block6ded16b2010-05-10 14:33:55 +0100542 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000543 return pos + kPcLoadDelta + imm26;
544}
545
546
547void Assembler::target_at_put(int pos, int target_pos) {
548 Instr instr = instr_at(pos);
549 if ((instr & ~Imm24Mask) == 0) {
550 ASSERT(target_pos == kEndOfChain || target_pos >= 0);
551 // Emitted label constant, not part of a branch.
552 // Make label relative to Code* of generated Code object.
553 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
554 return;
555 }
556 int imm26 = target_pos - (pos + kPcLoadDelta);
557 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
558 if ((instr & CondMask) == nv) {
559 // blx uses bit 24 to encode bit 2 of imm26
560 ASSERT((imm26 & 1) == 0);
561 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24;
562 } else {
563 ASSERT((imm26 & 3) == 0);
564 instr &= ~Imm24Mask;
565 }
566 int imm24 = imm26 >> 2;
567 ASSERT(is_int24(imm24));
568 instr_at_put(pos, instr | (imm24 & Imm24Mask));
569}
570
571
572void Assembler::print(Label* L) {
573 if (L->is_unused()) {
574 PrintF("unused label\n");
575 } else if (L->is_bound()) {
576 PrintF("bound label to %d\n", L->pos());
577 } else if (L->is_linked()) {
578 Label l = *L;
579 PrintF("unbound label");
580 while (l.is_linked()) {
581 PrintF("@ %d ", l.pos());
582 Instr instr = instr_at(l.pos());
583 if ((instr & ~Imm24Mask) == 0) {
584 PrintF("value\n");
585 } else {
586 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
587 int cond = instr & CondMask;
588 const char* b;
589 const char* c;
590 if (cond == nv) {
591 b = "blx";
592 c = "";
593 } else {
594 if ((instr & B24) != 0)
595 b = "bl";
596 else
597 b = "b";
598
599 switch (cond) {
600 case eq: c = "eq"; break;
601 case ne: c = "ne"; break;
602 case hs: c = "hs"; break;
603 case lo: c = "lo"; break;
604 case mi: c = "mi"; break;
605 case pl: c = "pl"; break;
606 case vs: c = "vs"; break;
607 case vc: c = "vc"; break;
608 case hi: c = "hi"; break;
609 case ls: c = "ls"; break;
610 case ge: c = "ge"; break;
611 case lt: c = "lt"; break;
612 case gt: c = "gt"; break;
613 case le: c = "le"; break;
614 case al: c = ""; break;
615 default:
616 c = "";
617 UNREACHABLE();
618 }
619 }
620 PrintF("%s%s\n", b, c);
621 }
622 next(&l);
623 }
624 } else {
625 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
626 }
627}
628
629
630void Assembler::bind_to(Label* L, int pos) {
631 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
632 while (L->is_linked()) {
633 int fixup_pos = L->pos();
634 next(L); // call next before overwriting link with target at fixup_pos
635 target_at_put(fixup_pos, pos);
636 }
637 L->bind_to(pos);
638
639 // Keep track of the last bound label so we don't eliminate any instructions
640 // before a bound label.
641 if (pos > last_bound_pos_)
642 last_bound_pos_ = pos;
643}
644
645
646void Assembler::link_to(Label* L, Label* appendix) {
647 if (appendix->is_linked()) {
648 if (L->is_linked()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000649 // Append appendix to L's list.
Steve Blocka7e24c12009-10-30 11:49:00 +0000650 int fixup_pos;
651 int link = L->pos();
652 do {
653 fixup_pos = link;
654 link = target_at(fixup_pos);
655 } while (link > 0);
656 ASSERT(link == kEndOfChain);
657 target_at_put(fixup_pos, appendix->pos());
658 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000659 // L is empty, simply use appendix.
Steve Blocka7e24c12009-10-30 11:49:00 +0000660 *L = *appendix;
661 }
662 }
663 appendix->Unuse(); // appendix should not be used anymore
664}
665
666
667void Assembler::bind(Label* L) {
668 ASSERT(!L->is_bound()); // label can only be bound once
669 bind_to(L, pc_offset());
670}
671
672
673void Assembler::next(Label* L) {
674 ASSERT(L->is_linked());
675 int link = target_at(L->pos());
676 if (link > 0) {
677 L->link_to(link);
678 } else {
679 ASSERT(link == kEndOfChain);
680 L->Unuse();
681 }
682}
683
684
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100685static Instr EncodeMovwImmediate(uint32_t immediate) {
686 ASSERT(immediate < 0x10000);
687 return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
688}
689
690
Andrei Popescu31002712010-02-23 13:46:05 +0000691// Low-level code emission routines depending on the addressing mode.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100692// If this returns true then you have to use the rotate_imm and immed_8
693// that it returns, because it may have already changed the instruction
694// to match them!
Steve Blocka7e24c12009-10-30 11:49:00 +0000695static bool fits_shifter(uint32_t imm32,
696 uint32_t* rotate_imm,
697 uint32_t* immed_8,
698 Instr* instr) {
Andrei Popescu31002712010-02-23 13:46:05 +0000699 // imm32 must be unsigned.
Steve Blocka7e24c12009-10-30 11:49:00 +0000700 for (int rot = 0; rot < 16; rot++) {
701 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
702 if ((imm8 <= 0xff)) {
703 *rotate_imm = rot;
704 *immed_8 = imm8;
705 return true;
706 }
707 }
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100708 // If the opcode is one with a complementary version and the complementary
709 // immediate fits, change the opcode.
710 if (instr != NULL) {
711 if ((*instr & kMovMvnMask) == kMovMvnPattern) {
712 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
713 *instr ^= kMovMvnFlip;
714 return true;
715 } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
716 if (CpuFeatures::IsSupported(ARMv7)) {
717 if (imm32 < 0x10000) {
718 *instr ^= kMovwLeaveCCFlip;
719 *instr |= EncodeMovwImmediate(imm32);
720 *rotate_imm = *immed_8 = 0; // Not used for movw.
721 return true;
722 }
723 }
724 }
725 } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
726 if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
727 *instr ^= kCmpCmnFlip;
728 return true;
729 }
730 } else {
731 Instr alu_insn = (*instr & kALUMask);
732 if (alu_insn == kAddPattern ||
733 alu_insn == kSubPattern) {
734 if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
735 *instr ^= kAddSubFlip;
736 return true;
737 }
738 } else if (alu_insn == kAndPattern ||
739 alu_insn == kBicPattern) {
740 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
741 *instr ^= kAndBicFlip;
742 return true;
743 }
744 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000745 }
746 }
747 return false;
748}
749
750
751// We have to use the temporary register for things that can be relocated even
752// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
753// space. There is no guarantee that the relocated location can be similarly
754// encoded.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100755static bool MustUseConstantPool(RelocInfo::Mode rmode) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000756 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
Steve Blockd0582a62009-12-15 09:54:21 +0000757#ifdef DEBUG
758 if (!Serializer::enabled()) {
759 Serializer::TooLateToEnableNow();
760 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000761#endif // def DEBUG
Steve Blocka7e24c12009-10-30 11:49:00 +0000762 return Serializer::enabled();
763 } else if (rmode == RelocInfo::NONE) {
764 return false;
765 }
766 return true;
767}
768
769
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100770bool Operand::is_single_instruction() const {
771 if (rm_.is_valid()) return true;
772 if (MustUseConstantPool(rmode_)) return false;
773 uint32_t dummy1, dummy2;
774 return fits_shifter(imm32_, &dummy1, &dummy2, NULL);
775}
776
777
Steve Blocka7e24c12009-10-30 11:49:00 +0000778void Assembler::addrmod1(Instr instr,
779 Register rn,
780 Register rd,
781 const Operand& x) {
782 CheckBuffer();
783 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0);
784 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000785 // Immediate.
Steve Blocka7e24c12009-10-30 11:49:00 +0000786 uint32_t rotate_imm;
787 uint32_t immed_8;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100788 if (MustUseConstantPool(x.rmode_) ||
Steve Blocka7e24c12009-10-30 11:49:00 +0000789 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
790 // The immediate operand cannot be encoded as a shifter operand, so load
791 // it first to register ip and change the original instruction to use ip.
792 // However, if the original instruction is a 'mov rd, x' (not setting the
Andrei Popescu31002712010-02-23 13:46:05 +0000793 // condition code), then replace it with a 'ldr rd, [pc]'.
Steve Blocka7e24c12009-10-30 11:49:00 +0000794 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
795 Condition cond = static_cast<Condition>(instr & CondMask);
796 if ((instr & ~CondMask) == 13*B21) { // mov, S not set
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100797 if (MustUseConstantPool(x.rmode_) ||
798 !CpuFeatures::IsSupported(ARMv7)) {
799 RecordRelocInfo(x.rmode_, x.imm32_);
800 ldr(rd, MemOperand(pc, 0), cond);
801 } else {
802 // Will probably use movw, will certainly not use constant pool.
803 mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
804 movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
805 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000806 } else {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100807 // If this is not a mov or mvn instruction we may still be able to avoid
808 // a constant pool entry by using mvn or movw.
809 if (!MustUseConstantPool(x.rmode_) &&
810 (instr & kMovMvnMask) != kMovMvnPattern) {
811 mov(ip, x, LeaveCC, cond);
812 } else {
813 RecordRelocInfo(x.rmode_, x.imm32_);
814 ldr(ip, MemOperand(pc, 0), cond);
815 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000816 addrmod1(instr, rn, rd, Operand(ip));
817 }
818 return;
819 }
820 instr |= I | rotate_imm*B8 | immed_8;
821 } else if (!x.rs_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000822 // Immediate shift.
Steve Blocka7e24c12009-10-30 11:49:00 +0000823 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
824 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000825 // Register shift.
Steve Blocka7e24c12009-10-30 11:49:00 +0000826 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
827 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
828 }
829 emit(instr | rn.code()*B16 | rd.code()*B12);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100830 if (rn.is(pc) || x.rm_.is(pc)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000831 // Block constant pool emission for one instruction after reading pc.
Steve Blocka7e24c12009-10-30 11:49:00 +0000832 BlockConstPoolBefore(pc_offset() + kInstrSize);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100833 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000834}
835
836
837void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
838 ASSERT((instr & ~(CondMask | B | L)) == B26);
839 int am = x.am_;
840 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000841 // Immediate offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000842 int offset_12 = x.offset_;
843 if (offset_12 < 0) {
844 offset_12 = -offset_12;
845 am ^= U;
846 }
847 if (!is_uint12(offset_12)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000848 // Immediate offset cannot be encoded, load it first to register ip
849 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000850 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
851 mov(ip, Operand(x.offset_), LeaveCC,
852 static_cast<Condition>(instr & CondMask));
853 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
854 return;
855 }
856 ASSERT(offset_12 >= 0); // no masking needed
857 instr |= offset_12;
858 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000859 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
Steve Blocka7e24c12009-10-30 11:49:00 +0000860 // register offset the constructors make sure than both shift_imm_
Andrei Popescu31002712010-02-23 13:46:05 +0000861 // and shift_op_ are initialized.
Steve Blocka7e24c12009-10-30 11:49:00 +0000862 ASSERT(!x.rm_.is(pc));
863 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
864 }
865 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
866 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
867}
868
869
870void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
871 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7));
872 ASSERT(x.rn_.is_valid());
873 int am = x.am_;
874 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000875 // Immediate offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000876 int offset_8 = x.offset_;
877 if (offset_8 < 0) {
878 offset_8 = -offset_8;
879 am ^= U;
880 }
881 if (!is_uint8(offset_8)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000882 // Immediate offset cannot be encoded, load it first to register ip
883 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000884 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
885 mov(ip, Operand(x.offset_), LeaveCC,
886 static_cast<Condition>(instr & CondMask));
887 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
888 return;
889 }
890 ASSERT(offset_8 >= 0); // no masking needed
891 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
892 } else if (x.shift_imm_ != 0) {
Andrei Popescu31002712010-02-23 13:46:05 +0000893 // Scaled register offset not supported, load index first
894 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000895 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
896 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
897 static_cast<Condition>(instr & CondMask));
898 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
899 return;
900 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000901 // Register offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000902 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
903 instr |= x.rm_.code();
904 }
905 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
906 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
907}
908
909
910void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
911 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27);
912 ASSERT(rl != 0);
913 ASSERT(!rn.is(pc));
914 emit(instr | rn.code()*B16 | rl);
915}
916
917
918void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
Andrei Popescu31002712010-02-23 13:46:05 +0000919 // Unindexed addressing is not encoded by this function.
Steve Blocka7e24c12009-10-30 11:49:00 +0000920 ASSERT_EQ((B27 | B26),
921 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L)));
922 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
923 int am = x.am_;
924 int offset_8 = x.offset_;
925 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
926 offset_8 >>= 2;
927 if (offset_8 < 0) {
928 offset_8 = -offset_8;
929 am ^= U;
930 }
931 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
932 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
933
Andrei Popescu31002712010-02-23 13:46:05 +0000934 // Post-indexed addressing requires W == 1; different than in addrmod2/3.
Steve Blocka7e24c12009-10-30 11:49:00 +0000935 if ((am & P) == 0)
936 am |= W;
937
938 ASSERT(offset_8 >= 0); // no masking needed
939 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
940}
941
942
943int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
944 int target_pos;
945 if (L->is_bound()) {
946 target_pos = L->pos();
947 } else {
948 if (L->is_linked()) {
949 target_pos = L->pos(); // L's link
950 } else {
951 target_pos = kEndOfChain;
952 }
953 L->link_to(pc_offset());
954 }
955
956 // Block the emission of the constant pool, since the branch instruction must
Andrei Popescu31002712010-02-23 13:46:05 +0000957 // be emitted at the pc offset recorded by the label.
Steve Blocka7e24c12009-10-30 11:49:00 +0000958 BlockConstPoolBefore(pc_offset() + kInstrSize);
959 return target_pos - (pc_offset() + kPcLoadDelta);
960}
961
962
963void Assembler::label_at_put(Label* L, int at_offset) {
964 int target_pos;
965 if (L->is_bound()) {
966 target_pos = L->pos();
967 } else {
968 if (L->is_linked()) {
969 target_pos = L->pos(); // L's link
970 } else {
971 target_pos = kEndOfChain;
972 }
973 L->link_to(at_offset);
974 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
975 }
976}
977
978
Andrei Popescu31002712010-02-23 13:46:05 +0000979// Branch instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +0000980void Assembler::b(int branch_offset, Condition cond) {
981 ASSERT((branch_offset & 3) == 0);
982 int imm24 = branch_offset >> 2;
983 ASSERT(is_int24(imm24));
984 emit(cond | B27 | B25 | (imm24 & Imm24Mask));
985
Steve Block6ded16b2010-05-10 14:33:55 +0100986 if (cond == al) {
Andrei Popescu31002712010-02-23 13:46:05 +0000987 // Dead code is a good location to emit the constant pool.
Steve Blocka7e24c12009-10-30 11:49:00 +0000988 CheckConstPool(false, false);
Steve Block6ded16b2010-05-10 14:33:55 +0100989 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000990}
991
992
993void Assembler::bl(int branch_offset, Condition cond) {
994 ASSERT((branch_offset & 3) == 0);
995 int imm24 = branch_offset >> 2;
996 ASSERT(is_int24(imm24));
997 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask));
998}
999
1000
1001void Assembler::blx(int branch_offset) { // v5 and above
1002 WriteRecordedPositions();
1003 ASSERT((branch_offset & 1) == 0);
1004 int h = ((branch_offset & 2) >> 1)*B24;
1005 int imm24 = branch_offset >> 2;
1006 ASSERT(is_int24(imm24));
1007 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask));
1008}
1009
1010
1011void Assembler::blx(Register target, Condition cond) { // v5 and above
1012 WriteRecordedPositions();
1013 ASSERT(!target.is(pc));
1014 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code());
1015}
1016
1017
1018void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
1019 WriteRecordedPositions();
1020 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
1021 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code());
1022}
1023
1024
Andrei Popescu31002712010-02-23 13:46:05 +00001025// Data-processing instructions.
1026
Steve Blocka7e24c12009-10-30 11:49:00 +00001027void Assembler::and_(Register dst, Register src1, const Operand& src2,
1028 SBit s, Condition cond) {
1029 addrmod1(cond | 0*B21 | s, src1, dst, src2);
1030}
1031
1032
1033void Assembler::eor(Register dst, Register src1, const Operand& src2,
1034 SBit s, Condition cond) {
1035 addrmod1(cond | 1*B21 | s, src1, dst, src2);
1036}
1037
1038
1039void Assembler::sub(Register dst, Register src1, const Operand& src2,
1040 SBit s, Condition cond) {
1041 addrmod1(cond | 2*B21 | s, src1, dst, src2);
1042}
1043
1044
1045void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1046 SBit s, Condition cond) {
1047 addrmod1(cond | 3*B21 | s, src1, dst, src2);
1048}
1049
1050
1051void Assembler::add(Register dst, Register src1, const Operand& src2,
1052 SBit s, Condition cond) {
1053 addrmod1(cond | 4*B21 | s, src1, dst, src2);
1054
1055 // Eliminate pattern: push(r), pop()
1056 // str(src, MemOperand(sp, 4, NegPreIndex), al);
1057 // add(sp, sp, Operand(kPointerSize));
1058 // Both instructions can be eliminated.
Leon Clarkef7060e22010-06-03 12:02:55 +01001059 if (can_peephole_optimize(2) &&
Andrei Popescu31002712010-02-23 13:46:05 +00001060 // Pattern.
Steve Blocka7e24c12009-10-30 11:49:00 +00001061 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
1062 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) {
1063 pc_ -= 2 * kInstrSize;
Leon Clarkef7060e22010-06-03 12:02:55 +01001064 if (FLAG_print_peephole_optimization) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001065 PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
1066 }
1067 }
1068}
1069
1070
1071void Assembler::adc(Register dst, Register src1, const Operand& src2,
1072 SBit s, Condition cond) {
1073 addrmod1(cond | 5*B21 | s, src1, dst, src2);
1074}
1075
1076
1077void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1078 SBit s, Condition cond) {
1079 addrmod1(cond | 6*B21 | s, src1, dst, src2);
1080}
1081
1082
1083void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1084 SBit s, Condition cond) {
1085 addrmod1(cond | 7*B21 | s, src1, dst, src2);
1086}
1087
1088
1089void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
1090 addrmod1(cond | 8*B21 | S, src1, r0, src2);
1091}
1092
1093
1094void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
1095 addrmod1(cond | 9*B21 | S, src1, r0, src2);
1096}
1097
1098
1099void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
1100 addrmod1(cond | 10*B21 | S, src1, r0, src2);
1101}
1102
1103
1104void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
1105 addrmod1(cond | 11*B21 | S, src1, r0, src2);
1106}
1107
1108
1109void Assembler::orr(Register dst, Register src1, const Operand& src2,
1110 SBit s, Condition cond) {
1111 addrmod1(cond | 12*B21 | s, src1, dst, src2);
1112}
1113
1114
1115void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1116 if (dst.is(pc)) {
1117 WriteRecordedPositions();
1118 }
Steve Block6ded16b2010-05-10 14:33:55 +01001119 // Don't allow nop instructions in the form mov rn, rn to be generated using
1120 // the mov instruction. They must be generated using nop(int)
1121 // pseudo instructions.
1122 ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
Steve Blocka7e24c12009-10-30 11:49:00 +00001123 addrmod1(cond | 13*B21 | s, r0, dst, src);
1124}
1125
1126
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01001127void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1128 ASSERT(immediate < 0x10000);
1129 mov(reg, Operand(immediate), LeaveCC, cond);
1130}
1131
1132
1133void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1134 emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1135}
1136
1137
Steve Blocka7e24c12009-10-30 11:49:00 +00001138void Assembler::bic(Register dst, Register src1, const Operand& src2,
1139 SBit s, Condition cond) {
1140 addrmod1(cond | 14*B21 | s, src1, dst, src2);
1141}
1142
1143
1144void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
1145 addrmod1(cond | 15*B21 | s, r0, dst, src);
1146}
1147
1148
Andrei Popescu31002712010-02-23 13:46:05 +00001149// Multiply instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001150void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1151 SBit s, Condition cond) {
1152 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1153 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1154 src2.code()*B8 | B7 | B4 | src1.code());
1155}
1156
1157
1158void Assembler::mul(Register dst, Register src1, Register src2,
1159 SBit s, Condition cond) {
1160 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1161 // dst goes in bits 16-19 for this instruction!
1162 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1163}
1164
1165
1166void Assembler::smlal(Register dstL,
1167 Register dstH,
1168 Register src1,
1169 Register src2,
1170 SBit s,
1171 Condition cond) {
1172 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1173 ASSERT(!dstL.is(dstH));
1174 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1175 src2.code()*B8 | B7 | B4 | src1.code());
1176}
1177
1178
1179void Assembler::smull(Register dstL,
1180 Register dstH,
1181 Register src1,
1182 Register src2,
1183 SBit s,
1184 Condition cond) {
1185 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1186 ASSERT(!dstL.is(dstH));
1187 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1188 src2.code()*B8 | B7 | B4 | src1.code());
1189}
1190
1191
1192void Assembler::umlal(Register dstL,
1193 Register dstH,
1194 Register src1,
1195 Register src2,
1196 SBit s,
1197 Condition cond) {
1198 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1199 ASSERT(!dstL.is(dstH));
1200 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1201 src2.code()*B8 | B7 | B4 | src1.code());
1202}
1203
1204
1205void Assembler::umull(Register dstL,
1206 Register dstH,
1207 Register src1,
1208 Register src2,
1209 SBit s,
1210 Condition cond) {
1211 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1212 ASSERT(!dstL.is(dstH));
1213 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1214 src2.code()*B8 | B7 | B4 | src1.code());
1215}
1216
1217
Andrei Popescu31002712010-02-23 13:46:05 +00001218// Miscellaneous arithmetic instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001219void Assembler::clz(Register dst, Register src, Condition cond) {
1220 // v5 and above.
1221 ASSERT(!dst.is(pc) && !src.is(pc));
1222 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
1223 15*B8 | B4 | src.code());
1224}
1225
1226
Kristian Monsen50ef84f2010-07-29 15:18:00 +01001227// Saturating instructions.
1228
1229// Unsigned saturate.
1230void Assembler::usat(Register dst,
1231 int satpos,
1232 const Operand& src,
1233 Condition cond) {
1234 // v6 and above.
1235 ASSERT(CpuFeatures::IsSupported(ARMv7));
1236 ASSERT(!dst.is(pc) && !src.rm_.is(pc));
1237 ASSERT((satpos >= 0) && (satpos <= 31));
1238 ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1239 ASSERT(src.rs_.is(no_reg));
1240
1241 int sh = 0;
1242 if (src.shift_op_ == ASR) {
1243 sh = 1;
1244 }
1245
1246 emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1247 src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1248}
1249
1250
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001251// Bitfield manipulation instructions.
1252
1253// Unsigned bit field extract.
1254// Extracts #width adjacent bits from position #lsb in a register, and
1255// writes them to the low bits of a destination register.
1256// ubfx dst, src, #lsb, #width
1257void Assembler::ubfx(Register dst,
1258 Register src,
1259 int lsb,
1260 int width,
1261 Condition cond) {
1262 // v7 and above.
1263 ASSERT(CpuFeatures::IsSupported(ARMv7));
1264 ASSERT(!dst.is(pc) && !src.is(pc));
1265 ASSERT((lsb >= 0) && (lsb <= 31));
1266 ASSERT((width >= 1) && (width <= (32 - lsb)));
1267 emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1268 lsb*B7 | B6 | B4 | src.code());
1269}
1270
1271
1272// Signed bit field extract.
1273// Extracts #width adjacent bits from position #lsb in a register, and
1274// writes them to the low bits of a destination register. The extracted
1275// value is sign extended to fill the destination register.
1276// sbfx dst, src, #lsb, #width
1277void Assembler::sbfx(Register dst,
1278 Register src,
1279 int lsb,
1280 int width,
1281 Condition cond) {
1282 // v7 and above.
1283 ASSERT(CpuFeatures::IsSupported(ARMv7));
1284 ASSERT(!dst.is(pc) && !src.is(pc));
1285 ASSERT((lsb >= 0) && (lsb <= 31));
1286 ASSERT((width >= 1) && (width <= (32 - lsb)));
1287 emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1288 lsb*B7 | B6 | B4 | src.code());
1289}
1290
1291
1292// Bit field clear.
1293// Sets #width adjacent bits at position #lsb in the destination register
1294// to zero, preserving the value of the other bits.
1295// bfc dst, #lsb, #width
1296void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1297 // v7 and above.
1298 ASSERT(CpuFeatures::IsSupported(ARMv7));
1299 ASSERT(!dst.is(pc));
1300 ASSERT((lsb >= 0) && (lsb <= 31));
1301 ASSERT((width >= 1) && (width <= (32 - lsb)));
1302 int msb = lsb + width - 1;
1303 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1304}
1305
1306
1307// Bit field insert.
1308// Inserts #width adjacent bits from the low bits of the source register
1309// into position #lsb of the destination register.
1310// bfi dst, src, #lsb, #width
1311void Assembler::bfi(Register dst,
1312 Register src,
1313 int lsb,
1314 int width,
1315 Condition cond) {
1316 // v7 and above.
1317 ASSERT(CpuFeatures::IsSupported(ARMv7));
1318 ASSERT(!dst.is(pc) && !src.is(pc));
1319 ASSERT((lsb >= 0) && (lsb <= 31));
1320 ASSERT((width >= 1) && (width <= (32 - lsb)));
1321 int msb = lsb + width - 1;
1322 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1323 src.code());
1324}
1325
1326
Andrei Popescu31002712010-02-23 13:46:05 +00001327// Status register access instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001328void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1329 ASSERT(!dst.is(pc));
1330 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1331}
1332
1333
1334void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1335 Condition cond) {
1336 ASSERT(fields >= B16 && fields < B20); // at least one field set
1337 Instr instr;
1338 if (!src.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +00001339 // Immediate.
Steve Blocka7e24c12009-10-30 11:49:00 +00001340 uint32_t rotate_imm;
1341 uint32_t immed_8;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01001342 if (MustUseConstantPool(src.rmode_) ||
Steve Blocka7e24c12009-10-30 11:49:00 +00001343 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
Andrei Popescu31002712010-02-23 13:46:05 +00001344 // Immediate operand cannot be encoded, load it first to register ip.
Steve Blocka7e24c12009-10-30 11:49:00 +00001345 RecordRelocInfo(src.rmode_, src.imm32_);
1346 ldr(ip, MemOperand(pc, 0), cond);
1347 msr(fields, Operand(ip), cond);
1348 return;
1349 }
1350 instr = I | rotate_imm*B8 | immed_8;
1351 } else {
1352 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
1353 instr = src.rm_.code();
1354 }
1355 emit(cond | instr | B24 | B21 | fields | 15*B12);
1356}
1357
1358
Andrei Popescu31002712010-02-23 13:46:05 +00001359// Load/Store instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001360void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1361 if (dst.is(pc)) {
1362 WriteRecordedPositions();
1363 }
1364 addrmod2(cond | B26 | L, dst, src);
1365
Leon Clarkef7060e22010-06-03 12:02:55 +01001366 // Eliminate pattern: push(ry), pop(rx)
1367 // str(ry, MemOperand(sp, 4, NegPreIndex), al)
1368 // ldr(rx, MemOperand(sp, 4, PostIndex), al)
1369 // Both instructions can be eliminated if ry = rx.
1370 // If ry != rx, a register copy from ry to rx is inserted
1371 // after eliminating the push and the pop instructions.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001372 if (can_peephole_optimize(2)) {
1373 Instr push_instr = instr_at(pc_ - 2 * kInstrSize);
1374 Instr pop_instr = instr_at(pc_ - 1 * kInstrSize);
Leon Clarkef7060e22010-06-03 12:02:55 +01001375
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001376 if (IsPush(push_instr) && IsPop(pop_instr)) {
1377 if ((pop_instr & kRdMask) != (push_instr & kRdMask)) {
1378 // For consecutive push and pop on different registers,
1379 // we delete both the push & pop and insert a register move.
1380 // push ry, pop rx --> mov rx, ry
1381 Register reg_pushed, reg_popped;
1382 reg_pushed = GetRd(push_instr);
1383 reg_popped = GetRd(pop_instr);
1384 pc_ -= 2 * kInstrSize;
1385 // Insert a mov instruction, which is better than a pair of push & pop
1386 mov(reg_popped, reg_pushed);
1387 if (FLAG_print_peephole_optimization) {
1388 PrintF("%x push/pop (diff reg) replaced by a reg move\n",
1389 pc_offset());
1390 }
1391 } else {
1392 // For consecutive push and pop on the same register,
1393 // both the push and the pop can be deleted.
1394 pc_ -= 2 * kInstrSize;
1395 if (FLAG_print_peephole_optimization) {
1396 PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
1397 }
Leon Clarkef7060e22010-06-03 12:02:55 +01001398 }
1399 }
1400 }
1401
1402 if (can_peephole_optimize(2)) {
1403 Instr str_instr = instr_at(pc_ - 2 * kInstrSize);
1404 Instr ldr_instr = instr_at(pc_ - 1 * kInstrSize);
1405
1406 if ((IsStrRegFpOffset(str_instr) &&
1407 IsLdrRegFpOffset(ldr_instr)) ||
1408 (IsStrRegFpNegOffset(str_instr) &&
1409 IsLdrRegFpNegOffset(ldr_instr))) {
1410 if ((ldr_instr & kLdrStrInstrArgumentMask) ==
1411 (str_instr & kLdrStrInstrArgumentMask)) {
1412 // Pattern: Ldr/str same fp+offset, same register.
1413 //
1414 // The following:
1415 // str rx, [fp, #-12]
1416 // ldr rx, [fp, #-12]
1417 //
1418 // Becomes:
1419 // str rx, [fp, #-12]
1420
1421 pc_ -= 1 * kInstrSize;
1422 if (FLAG_print_peephole_optimization) {
1423 PrintF("%x str/ldr (fp + same offset), same reg\n", pc_offset());
1424 }
1425 } else if ((ldr_instr & kLdrStrOffsetMask) ==
1426 (str_instr & kLdrStrOffsetMask)) {
1427 // Pattern: Ldr/str same fp+offset, different register.
1428 //
1429 // The following:
1430 // str rx, [fp, #-12]
1431 // ldr ry, [fp, #-12]
1432 //
1433 // Becomes:
1434 // str rx, [fp, #-12]
1435 // mov ry, rx
1436
1437 Register reg_stored, reg_loaded;
1438 reg_stored = GetRd(str_instr);
1439 reg_loaded = GetRd(ldr_instr);
1440 pc_ -= 1 * kInstrSize;
1441 // Insert a mov instruction, which is better than ldr.
1442 mov(reg_loaded, reg_stored);
1443 if (FLAG_print_peephole_optimization) {
1444 PrintF("%x str/ldr (fp + same offset), diff reg \n", pc_offset());
1445 }
1446 }
1447 }
1448 }
1449
1450 if (can_peephole_optimize(3)) {
1451 Instr mem_write_instr = instr_at(pc_ - 3 * kInstrSize);
1452 Instr ldr_instr = instr_at(pc_ - 2 * kInstrSize);
1453 Instr mem_read_instr = instr_at(pc_ - 1 * kInstrSize);
1454 if (IsPush(mem_write_instr) &&
1455 IsPop(mem_read_instr)) {
1456 if ((IsLdrRegFpOffset(ldr_instr) ||
1457 IsLdrRegFpNegOffset(ldr_instr))) {
1458 if ((mem_write_instr & kRdMask) ==
1459 (mem_read_instr & kRdMask)) {
1460 // Pattern: push & pop from/to same register,
1461 // with a fp+offset ldr in between
1462 //
1463 // The following:
1464 // str rx, [sp, #-4]!
1465 // ldr rz, [fp, #-24]
1466 // ldr rx, [sp], #+4
1467 //
1468 // Becomes:
1469 // if(rx == rz)
1470 // delete all
1471 // else
1472 // ldr rz, [fp, #-24]
1473
1474 if ((mem_write_instr & kRdMask) == (ldr_instr & kRdMask)) {
1475 pc_ -= 3 * kInstrSize;
1476 } else {
1477 pc_ -= 3 * kInstrSize;
1478 // Reinsert back the ldr rz.
1479 emit(ldr_instr);
1480 }
1481 if (FLAG_print_peephole_optimization) {
1482 PrintF("%x push/pop -dead ldr fp+offset in middle\n", pc_offset());
1483 }
1484 } else {
1485 // Pattern: push & pop from/to different registers
1486 // with a fp+offset ldr in between
1487 //
1488 // The following:
1489 // str rx, [sp, #-4]!
1490 // ldr rz, [fp, #-24]
1491 // ldr ry, [sp], #+4
1492 //
1493 // Becomes:
1494 // if(ry == rz)
1495 // mov ry, rx;
1496 // else if(rx != rz)
1497 // ldr rz, [fp, #-24]
1498 // mov ry, rx
1499 // else if((ry != rz) || (rx == rz)) becomes:
1500 // mov ry, rx
1501 // ldr rz, [fp, #-24]
1502
1503 Register reg_pushed, reg_popped;
1504 if ((mem_read_instr & kRdMask) == (ldr_instr & kRdMask)) {
1505 reg_pushed = GetRd(mem_write_instr);
1506 reg_popped = GetRd(mem_read_instr);
1507 pc_ -= 3 * kInstrSize;
1508 mov(reg_popped, reg_pushed);
1509 } else if ((mem_write_instr & kRdMask)
1510 != (ldr_instr & kRdMask)) {
1511 reg_pushed = GetRd(mem_write_instr);
1512 reg_popped = GetRd(mem_read_instr);
1513 pc_ -= 3 * kInstrSize;
1514 emit(ldr_instr);
1515 mov(reg_popped, reg_pushed);
1516 } else if (((mem_read_instr & kRdMask)
1517 != (ldr_instr & kRdMask)) ||
1518 ((mem_write_instr & kRdMask)
1519 == (ldr_instr & kRdMask)) ) {
1520 reg_pushed = GetRd(mem_write_instr);
1521 reg_popped = GetRd(mem_read_instr);
1522 pc_ -= 3 * kInstrSize;
1523 mov(reg_popped, reg_pushed);
1524 emit(ldr_instr);
1525 }
1526 if (FLAG_print_peephole_optimization) {
1527 PrintF("%x push/pop (ldr fp+off in middle)\n", pc_offset());
1528 }
1529 }
1530 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001531 }
1532 }
1533}
1534
1535
1536void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1537 addrmod2(cond | B26, src, dst);
1538
1539 // Eliminate pattern: pop(), push(r)
1540 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
1541 // -> str r, [sp, 0], al
Leon Clarkef7060e22010-06-03 12:02:55 +01001542 if (can_peephole_optimize(2) &&
Andrei Popescu31002712010-02-23 13:46:05 +00001543 // Pattern.
Steve Blocka7e24c12009-10-30 11:49:00 +00001544 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
1545 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
1546 pc_ -= 2 * kInstrSize;
1547 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
Leon Clarkef7060e22010-06-03 12:02:55 +01001548 if (FLAG_print_peephole_optimization) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001549 PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
1550 }
1551 }
1552}
1553
1554
1555void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1556 addrmod2(cond | B26 | B | L, dst, src);
1557}
1558
1559
1560void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1561 addrmod2(cond | B26 | B, src, dst);
1562}
1563
1564
1565void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1566 addrmod3(cond | L | B7 | H | B4, dst, src);
1567}
1568
1569
1570void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1571 addrmod3(cond | B7 | H | B4, src, dst);
1572}
1573
1574
1575void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1576 addrmod3(cond | L | B7 | S6 | B4, dst, src);
1577}
1578
1579
1580void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1581 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1582}
1583
1584
Leon Clarkef7060e22010-06-03 12:02:55 +01001585void Assembler::ldrd(Register dst1, Register dst2,
1586 const MemOperand& src, Condition cond) {
1587 ASSERT(CpuFeatures::IsEnabled(ARMv7));
Kristian Monsen25f61362010-05-21 11:50:48 +01001588 ASSERT(src.rm().is(no_reg));
Leon Clarkef7060e22010-06-03 12:02:55 +01001589 ASSERT(!dst1.is(lr)); // r14.
1590 ASSERT_EQ(0, dst1.code() % 2);
1591 ASSERT_EQ(dst1.code() + 1, dst2.code());
1592 addrmod3(cond | B7 | B6 | B4, dst1, src);
Kristian Monsen25f61362010-05-21 11:50:48 +01001593}
1594
1595
Leon Clarkef7060e22010-06-03 12:02:55 +01001596void Assembler::strd(Register src1, Register src2,
1597 const MemOperand& dst, Condition cond) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001598 ASSERT(dst.rm().is(no_reg));
Leon Clarkef7060e22010-06-03 12:02:55 +01001599 ASSERT(!src1.is(lr)); // r14.
1600 ASSERT_EQ(0, src1.code() % 2);
1601 ASSERT_EQ(src1.code() + 1, src2.code());
1602 ASSERT(CpuFeatures::IsEnabled(ARMv7));
1603 addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
Kristian Monsen25f61362010-05-21 11:50:48 +01001604}
1605
Andrei Popescu31002712010-02-23 13:46:05 +00001606// Load/Store multiple instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001607void Assembler::ldm(BlockAddrMode am,
1608 Register base,
1609 RegList dst,
1610 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001611 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
Steve Blocka7e24c12009-10-30 11:49:00 +00001612 ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
1613
1614 addrmod4(cond | B27 | am | L, base, dst);
1615
Andrei Popescu31002712010-02-23 13:46:05 +00001616 // Emit the constant pool after a function return implemented by ldm ..{..pc}.
Steve Blocka7e24c12009-10-30 11:49:00 +00001617 if (cond == al && (dst & pc.bit()) != 0) {
1618 // There is a slight chance that the ldm instruction was actually a call,
1619 // in which case it would be wrong to return into the constant pool; we
1620 // recognize this case by checking if the emission of the pool was blocked
1621 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1622 // the case, we emit a jump over the pool.
1623 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1624 }
1625}
1626
1627
1628void Assembler::stm(BlockAddrMode am,
1629 Register base,
1630 RegList src,
1631 Condition cond) {
1632 addrmod4(cond | B27 | am, base, src);
1633}
1634
1635
Andrei Popescu31002712010-02-23 13:46:05 +00001636// Exception-generating instructions and debugging support.
Steve Blocka7e24c12009-10-30 11:49:00 +00001637void Assembler::stop(const char* msg) {
Andrei Popescu402d9372010-02-26 13:31:12 +00001638#ifndef __arm__
Steve Blocka7e24c12009-10-30 11:49:00 +00001639 // The simulator handles these special instructions and stops execution.
1640 emit(15 << 28 | ((intptr_t) msg));
Andrei Popescu402d9372010-02-26 13:31:12 +00001641#else // def __arm__
1642#ifdef CAN_USE_ARMV5_INSTRUCTIONS
Steve Blocka7e24c12009-10-30 11:49:00 +00001643 bkpt(0);
Andrei Popescu402d9372010-02-26 13:31:12 +00001644#else // ndef CAN_USE_ARMV5_INSTRUCTIONS
1645 swi(0x9f0001);
1646#endif // ndef CAN_USE_ARMV5_INSTRUCTIONS
1647#endif // def __arm__
Steve Blocka7e24c12009-10-30 11:49:00 +00001648}
1649
1650
1651void Assembler::bkpt(uint32_t imm16) { // v5 and above
1652 ASSERT(is_uint16(imm16));
1653 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf));
1654}
1655
1656
1657void Assembler::swi(uint32_t imm24, Condition cond) {
1658 ASSERT(is_uint24(imm24));
1659 emit(cond | 15*B24 | imm24);
1660}
1661
1662
Andrei Popescu31002712010-02-23 13:46:05 +00001663// Coprocessor instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001664void Assembler::cdp(Coprocessor coproc,
1665 int opcode_1,
1666 CRegister crd,
1667 CRegister crn,
1668 CRegister crm,
1669 int opcode_2,
1670 Condition cond) {
1671 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
1672 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
1673 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
1674}
1675
1676
1677void Assembler::cdp2(Coprocessor coproc,
1678 int opcode_1,
1679 CRegister crd,
1680 CRegister crn,
1681 CRegister crm,
1682 int opcode_2) { // v5 and above
1683 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv));
1684}
1685
1686
1687void Assembler::mcr(Coprocessor coproc,
1688 int opcode_1,
1689 Register rd,
1690 CRegister crn,
1691 CRegister crm,
1692 int opcode_2,
1693 Condition cond) {
1694 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1695 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
1696 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1697}
1698
1699
1700void Assembler::mcr2(Coprocessor coproc,
1701 int opcode_1,
1702 Register rd,
1703 CRegister crn,
1704 CRegister crm,
1705 int opcode_2) { // v5 and above
1706 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
1707}
1708
1709
1710void Assembler::mrc(Coprocessor coproc,
1711 int opcode_1,
1712 Register rd,
1713 CRegister crn,
1714 CRegister crm,
1715 int opcode_2,
1716 Condition cond) {
1717 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1718 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
1719 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1720}
1721
1722
1723void Assembler::mrc2(Coprocessor coproc,
1724 int opcode_1,
1725 Register rd,
1726 CRegister crn,
1727 CRegister crm,
1728 int opcode_2) { // v5 and above
1729 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
1730}
1731
1732
1733void Assembler::ldc(Coprocessor coproc,
1734 CRegister crd,
1735 const MemOperand& src,
1736 LFlag l,
1737 Condition cond) {
1738 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
1739}
1740
1741
1742void Assembler::ldc(Coprocessor coproc,
1743 CRegister crd,
1744 Register rn,
1745 int option,
1746 LFlag l,
1747 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001748 // Unindexed addressing.
Steve Blocka7e24c12009-10-30 11:49:00 +00001749 ASSERT(is_uint8(option));
1750 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
1751 coproc*B8 | (option & 255));
1752}
1753
1754
1755void Assembler::ldc2(Coprocessor coproc,
1756 CRegister crd,
1757 const MemOperand& src,
1758 LFlag l) { // v5 and above
1759 ldc(coproc, crd, src, l, static_cast<Condition>(nv));
1760}
1761
1762
1763void Assembler::ldc2(Coprocessor coproc,
1764 CRegister crd,
1765 Register rn,
1766 int option,
1767 LFlag l) { // v5 and above
1768 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
1769}
1770
1771
1772void Assembler::stc(Coprocessor coproc,
1773 CRegister crd,
1774 const MemOperand& dst,
1775 LFlag l,
1776 Condition cond) {
1777 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
1778}
1779
1780
1781void Assembler::stc(Coprocessor coproc,
1782 CRegister crd,
1783 Register rn,
1784 int option,
1785 LFlag l,
1786 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001787 // Unindexed addressing.
Steve Blocka7e24c12009-10-30 11:49:00 +00001788 ASSERT(is_uint8(option));
1789 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
1790 coproc*B8 | (option & 255));
1791}
1792
1793
1794void Assembler::stc2(Coprocessor
1795 coproc, CRegister crd,
1796 const MemOperand& dst,
1797 LFlag l) { // v5 and above
1798 stc(coproc, crd, dst, l, static_cast<Condition>(nv));
1799}
1800
1801
1802void Assembler::stc2(Coprocessor coproc,
1803 CRegister crd,
1804 Register rn,
1805 int option,
1806 LFlag l) { // v5 and above
1807 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
1808}
1809
1810
Steve Blockd0582a62009-12-15 09:54:21 +00001811// Support for VFP.
Leon Clarked91b9f72010-01-27 17:25:45 +00001812void Assembler::vldr(const DwVfpRegister dst,
1813 const Register base,
1814 int offset,
1815 const Condition cond) {
1816 // Ddst = MEM(Rbase + offset).
1817 // Instruction details available in ARM DDI 0406A, A8-628.
1818 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) |
1819 // Vdst(15-12) | 1011(11-8) | offset
1820 ASSERT(CpuFeatures::IsEnabled(VFP3));
1821 ASSERT(offset % 4 == 0);
Steve Block6ded16b2010-05-10 14:33:55 +01001822 ASSERT((offset / 4) < 256);
Leon Clarked91b9f72010-01-27 17:25:45 +00001823 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 |
1824 0xB*B8 | ((offset / 4) & 255));
1825}
1826
1827
Steve Block6ded16b2010-05-10 14:33:55 +01001828void Assembler::vldr(const SwVfpRegister dst,
1829 const Register base,
1830 int offset,
1831 const Condition cond) {
1832 // Sdst = MEM(Rbase + offset).
1833 // Instruction details available in ARM DDI 0406A, A8-628.
1834 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) |
1835 // Vdst(15-12) | 1010(11-8) | offset
1836 ASSERT(CpuFeatures::IsEnabled(VFP3));
1837 ASSERT(offset % 4 == 0);
1838 ASSERT((offset / 4) < 256);
1839 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 |
1840 0xA*B8 | ((offset / 4) & 255));
1841}
1842
1843
Leon Clarked91b9f72010-01-27 17:25:45 +00001844void Assembler::vstr(const DwVfpRegister src,
1845 const Register base,
1846 int offset,
1847 const Condition cond) {
1848 // MEM(Rbase + offset) = Dsrc.
1849 // Instruction details available in ARM DDI 0406A, A8-786.
1850 // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) |
1851 // Vsrc(15-12) | 1011(11-8) | (offset/4)
1852 ASSERT(CpuFeatures::IsEnabled(VFP3));
1853 ASSERT(offset % 4 == 0);
Steve Block6ded16b2010-05-10 14:33:55 +01001854 ASSERT((offset / 4) < 256);
Leon Clarked91b9f72010-01-27 17:25:45 +00001855 emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 |
1856 0xB*B8 | ((offset / 4) & 255));
1857}
1858
1859
Ben Murdoch3bec4d22010-07-22 14:51:16 +01001860static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
1861 uint64_t i;
1862 memcpy(&i, &d, 8);
1863
1864 *lo = i & 0xffffffff;
1865 *hi = i >> 32;
1866}
1867
1868// Only works for little endian floating point formats.
1869// We don't support VFP on the mixed endian floating point platform.
1870static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
1871 ASSERT(CpuFeatures::IsEnabled(VFP3));
1872
1873 // VMOV can accept an immediate of the form:
1874 //
1875 // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
1876 //
1877 // The immediate is encoded using an 8-bit quantity, comprised of two
1878 // 4-bit fields. For an 8-bit immediate of the form:
1879 //
1880 // [abcdefgh]
1881 //
1882 // where a is the MSB and h is the LSB, an immediate 64-bit double can be
1883 // created of the form:
1884 //
1885 // [aBbbbbbb,bbcdefgh,00000000,00000000,
1886 // 00000000,00000000,00000000,00000000]
1887 //
1888 // where B = ~b.
1889 //
1890
1891 uint32_t lo, hi;
1892 DoubleAsTwoUInt32(d, &lo, &hi);
1893
1894 // The most obvious constraint is the long block of zeroes.
1895 if ((lo != 0) || ((hi & 0xffff) != 0)) {
1896 return false;
1897 }
1898
1899 // Bits 62:55 must be all clear or all set.
1900 if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
1901 return false;
1902 }
1903
1904 // Bit 63 must be NOT bit 62.
1905 if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
1906 return false;
1907 }
1908
1909 // Create the encoded immediate in the form:
1910 // [00000000,0000abcd,00000000,0000efgh]
1911 *encoding = (hi >> 16) & 0xf; // Low nybble.
1912 *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
1913 *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
1914
1915 return true;
1916}
1917
1918
1919void Assembler::vmov(const DwVfpRegister dst,
1920 double imm,
1921 const Condition cond) {
1922 // Dd = immediate
1923 // Instruction details available in ARM DDI 0406B, A8-640.
1924 ASSERT(CpuFeatures::IsEnabled(VFP3));
1925
1926 uint32_t enc;
1927 if (FitsVMOVDoubleImmediate(imm, &enc)) {
1928 // The double can be encoded in the instruction.
1929 emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
1930 } else {
1931 // Synthesise the double from ARM immediates. This could be implemented
1932 // using vldr from a constant pool.
1933 uint32_t lo, hi;
1934 DoubleAsTwoUInt32(imm, &lo, &hi);
1935
1936 if (lo == hi) {
1937 // If the lo and hi parts of the double are equal, the literal is easier
1938 // to create. This is the case with 0.0.
1939 mov(ip, Operand(lo));
1940 vmov(dst, ip, ip);
1941 } else {
1942 // Move the low part of the double into the lower of the corresponsing S
1943 // registers of D register dst.
1944 mov(ip, Operand(lo));
1945 vmov(dst.low(), ip, cond);
1946
1947 // Move the high part of the double into the higher of the corresponsing S
1948 // registers of D register dst.
1949 mov(ip, Operand(hi));
1950 vmov(dst.high(), ip, cond);
1951 }
1952 }
1953}
1954
1955
1956void Assembler::vmov(const SwVfpRegister dst,
1957 const SwVfpRegister src,
1958 const Condition cond) {
1959 // Sd = Sm
1960 // Instruction details available in ARM DDI 0406B, A8-642.
1961 ASSERT(CpuFeatures::IsEnabled(VFP3));
1962 emit(cond | 0xE*B24 | 0xB*B20 |
1963 dst.code()*B12 | 0x5*B9 | B6 | src.code());
1964}
1965
1966
Leon Clarkee46be812010-01-19 14:06:41 +00001967void Assembler::vmov(const DwVfpRegister dst,
Steve Block8defd9f2010-07-08 12:39:36 +01001968 const DwVfpRegister src,
1969 const Condition cond) {
1970 // Dd = Dm
1971 // Instruction details available in ARM DDI 0406B, A8-642.
Ben Murdoch3bec4d22010-07-22 14:51:16 +01001972 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Block8defd9f2010-07-08 12:39:36 +01001973 emit(cond | 0xE*B24 | 0xB*B20 |
1974 dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
1975}
1976
1977
1978void Assembler::vmov(const DwVfpRegister dst,
Leon Clarkee46be812010-01-19 14:06:41 +00001979 const Register src1,
1980 const Register src2,
1981 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00001982 // Dm = <Rt,Rt2>.
1983 // Instruction details available in ARM DDI 0406A, A8-646.
1984 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
1985 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
1986 ASSERT(CpuFeatures::IsEnabled(VFP3));
1987 ASSERT(!src1.is(pc) && !src2.is(pc));
1988 emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
1989 src1.code()*B12 | 0xB*B8 | B4 | dst.code());
1990}
1991
1992
Leon Clarkee46be812010-01-19 14:06:41 +00001993void Assembler::vmov(const Register dst1,
1994 const Register dst2,
1995 const DwVfpRegister src,
1996 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00001997 // <Rt,Rt2> = Dm.
1998 // Instruction details available in ARM DDI 0406A, A8-646.
1999 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2000 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
2001 ASSERT(CpuFeatures::IsEnabled(VFP3));
2002 ASSERT(!dst1.is(pc) && !dst2.is(pc));
2003 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2004 dst1.code()*B12 | 0xB*B8 | B4 | src.code());
2005}
2006
2007
Leon Clarkee46be812010-01-19 14:06:41 +00002008void Assembler::vmov(const SwVfpRegister dst,
Steve Blockd0582a62009-12-15 09:54:21 +00002009 const Register src,
Steve Blockd0582a62009-12-15 09:54:21 +00002010 const Condition cond) {
2011 // Sn = Rt.
2012 // Instruction details available in ARM DDI 0406A, A8-642.
2013 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2014 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2015 ASSERT(CpuFeatures::IsEnabled(VFP3));
2016 ASSERT(!src.is(pc));
2017 emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 |
2018 src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4);
2019}
2020
2021
Leon Clarkee46be812010-01-19 14:06:41 +00002022void Assembler::vmov(const Register dst,
2023 const SwVfpRegister src,
Steve Blockd0582a62009-12-15 09:54:21 +00002024 const Condition cond) {
2025 // Rt = Sn.
2026 // Instruction details available in ARM DDI 0406A, A8-642.
2027 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2028 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
2029 ASSERT(CpuFeatures::IsEnabled(VFP3));
2030 ASSERT(!dst.is(pc));
2031 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 |
2032 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4);
2033}
2034
2035
Steve Block6ded16b2010-05-10 14:33:55 +01002036// Type of data to read from or write to VFP register.
2037// Used as specifier in generic vcvt instruction.
2038enum VFPType { S32, U32, F32, F64 };
2039
2040
2041static bool IsSignedVFPType(VFPType type) {
2042 switch (type) {
2043 case S32:
2044 return true;
2045 case U32:
2046 return false;
2047 default:
2048 UNREACHABLE();
2049 return false;
2050 }
Steve Blockd0582a62009-12-15 09:54:21 +00002051}
2052
2053
Steve Block6ded16b2010-05-10 14:33:55 +01002054static bool IsIntegerVFPType(VFPType type) {
2055 switch (type) {
2056 case S32:
2057 case U32:
2058 return true;
2059 case F32:
2060 case F64:
2061 return false;
2062 default:
2063 UNREACHABLE();
2064 return false;
2065 }
2066}
2067
2068
2069static bool IsDoubleVFPType(VFPType type) {
2070 switch (type) {
2071 case F32:
2072 return false;
2073 case F64:
2074 return true;
2075 default:
2076 UNREACHABLE();
2077 return false;
2078 }
2079}
2080
2081
2082// Depending on split_last_bit split binary representation of reg_code into Vm:M
2083// or M:Vm form (where M is single bit).
2084static void SplitRegCode(bool split_last_bit,
2085 int reg_code,
2086 int* vm,
2087 int* m) {
2088 if (split_last_bit) {
2089 *m = reg_code & 0x1;
2090 *vm = reg_code >> 1;
2091 } else {
2092 *m = (reg_code & 0x10) >> 4;
2093 *vm = reg_code & 0x0F;
2094 }
2095}
2096
2097
2098// Encode vcvt.src_type.dst_type instruction.
2099static Instr EncodeVCVT(const VFPType dst_type,
2100 const int dst_code,
2101 const VFPType src_type,
2102 const int src_code,
2103 const Condition cond) {
2104 if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2105 // Conversion between IEEE floating point and 32-bit integer.
2106 // Instruction details available in ARM DDI 0406B, A8.6.295.
2107 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2108 // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2109 ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2110
2111 int sz, opc2, D, Vd, M, Vm, op;
2112
2113 if (IsIntegerVFPType(dst_type)) {
2114 opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2115 sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2116 op = 1; // round towards zero
2117 SplitRegCode(!IsDoubleVFPType(src_type), src_code, &Vm, &M);
2118 SplitRegCode(true, dst_code, &Vd, &D);
2119 } else {
2120 ASSERT(IsIntegerVFPType(src_type));
2121
2122 opc2 = 0x0;
2123 sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2124 op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
2125 SplitRegCode(true, src_code, &Vm, &M);
2126 SplitRegCode(!IsDoubleVFPType(dst_type), dst_code, &Vd, &D);
2127 }
2128
2129 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2130 Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2131 } else {
2132 // Conversion between IEEE double and single precision.
2133 // Instruction details available in ARM DDI 0406B, A8.6.298.
2134 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2135 // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2136 int sz, D, Vd, M, Vm;
2137
2138 ASSERT(IsDoubleVFPType(dst_type) != IsDoubleVFPType(src_type));
2139 sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
2140 SplitRegCode(IsDoubleVFPType(src_type), dst_code, &Vd, &D);
2141 SplitRegCode(!IsDoubleVFPType(src_type), src_code, &Vm, &M);
2142
2143 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2144 Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2145 }
2146}
2147
2148
2149void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2150 const SwVfpRegister src,
2151 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00002152 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Block6ded16b2010-05-10 14:33:55 +01002153 emit(EncodeVCVT(F64, dst.code(), S32, src.code(), cond));
2154}
2155
2156
2157void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2158 const SwVfpRegister src,
2159 const Condition cond) {
2160 ASSERT(CpuFeatures::IsEnabled(VFP3));
2161 emit(EncodeVCVT(F32, dst.code(), S32, src.code(), cond));
2162}
2163
2164
2165void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2166 const SwVfpRegister src,
2167 const Condition cond) {
2168 ASSERT(CpuFeatures::IsEnabled(VFP3));
2169 emit(EncodeVCVT(F64, dst.code(), U32, src.code(), cond));
2170}
2171
2172
2173void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2174 const DwVfpRegister src,
2175 const Condition cond) {
2176 ASSERT(CpuFeatures::IsEnabled(VFP3));
2177 emit(EncodeVCVT(S32, dst.code(), F64, src.code(), cond));
2178}
2179
2180
2181void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2182 const DwVfpRegister src,
2183 const Condition cond) {
2184 ASSERT(CpuFeatures::IsEnabled(VFP3));
2185 emit(EncodeVCVT(U32, dst.code(), F64, src.code(), cond));
2186}
2187
2188
2189void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2190 const SwVfpRegister src,
2191 const Condition cond) {
2192 ASSERT(CpuFeatures::IsEnabled(VFP3));
2193 emit(EncodeVCVT(F64, dst.code(), F32, src.code(), cond));
2194}
2195
2196
2197void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2198 const DwVfpRegister src,
2199 const Condition cond) {
2200 ASSERT(CpuFeatures::IsEnabled(VFP3));
2201 emit(EncodeVCVT(F32, dst.code(), F64, src.code(), cond));
Steve Blockd0582a62009-12-15 09:54:21 +00002202}
2203
2204
Leon Clarkee46be812010-01-19 14:06:41 +00002205void Assembler::vadd(const DwVfpRegister dst,
2206 const DwVfpRegister src1,
2207 const DwVfpRegister src2,
2208 const Condition cond) {
2209 // Dd = vadd(Dn, Dm) double precision floating point addition.
Steve Blockd0582a62009-12-15 09:54:21 +00002210 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2211 // Instruction details available in ARM DDI 0406A, A8-536.
2212 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2213 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2214 ASSERT(CpuFeatures::IsEnabled(VFP3));
2215 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2216 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2217}
2218
2219
Leon Clarkee46be812010-01-19 14:06:41 +00002220void Assembler::vsub(const DwVfpRegister dst,
2221 const DwVfpRegister src1,
2222 const DwVfpRegister src2,
2223 const Condition cond) {
2224 // Dd = vsub(Dn, Dm) double precision floating point subtraction.
Steve Blockd0582a62009-12-15 09:54:21 +00002225 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2226 // Instruction details available in ARM DDI 0406A, A8-784.
2227 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2228 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
2229 ASSERT(CpuFeatures::IsEnabled(VFP3));
2230 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2231 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
2232}
2233
2234
Leon Clarkee46be812010-01-19 14:06:41 +00002235void Assembler::vmul(const DwVfpRegister dst,
2236 const DwVfpRegister src1,
2237 const DwVfpRegister src2,
2238 const Condition cond) {
2239 // Dd = vmul(Dn, Dm) double precision floating point multiplication.
Steve Blockd0582a62009-12-15 09:54:21 +00002240 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2241 // Instruction details available in ARM DDI 0406A, A8-784.
2242 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
2243 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2244 ASSERT(CpuFeatures::IsEnabled(VFP3));
2245 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
2246 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2247}
2248
2249
Leon Clarkee46be812010-01-19 14:06:41 +00002250void Assembler::vdiv(const DwVfpRegister dst,
2251 const DwVfpRegister src1,
2252 const DwVfpRegister src2,
2253 const Condition cond) {
2254 // Dd = vdiv(Dn, Dm) double precision floating point division.
Steve Blockd0582a62009-12-15 09:54:21 +00002255 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2256 // Instruction details available in ARM DDI 0406A, A8-584.
2257 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
2258 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
2259 ASSERT(CpuFeatures::IsEnabled(VFP3));
2260 emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
2261 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2262}
2263
2264
Leon Clarkee46be812010-01-19 14:06:41 +00002265void Assembler::vcmp(const DwVfpRegister src1,
2266 const DwVfpRegister src2,
Steve Blockd0582a62009-12-15 09:54:21 +00002267 const SBit s,
2268 const Condition cond) {
2269 // vcmp(Dd, Dm) double precision floating point comparison.
2270 // Instruction details available in ARM DDI 0406A, A8-570.
2271 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
2272 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0)
2273 ASSERT(CpuFeatures::IsEnabled(VFP3));
2274 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
2275 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
2276}
2277
2278
2279void Assembler::vmrs(Register dst, Condition cond) {
2280 // Instruction details available in ARM DDI 0406A, A8-652.
2281 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
2282 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
2283 ASSERT(CpuFeatures::IsEnabled(VFP3));
2284 emit(cond | 0xE*B24 | 0xF*B20 | B16 |
2285 dst.code()*B12 | 0xA*B8 | B4);
2286}
2287
2288
Steve Block8defd9f2010-07-08 12:39:36 +01002289
2290void Assembler::vsqrt(const DwVfpRegister dst,
2291 const DwVfpRegister src,
2292 const Condition cond) {
2293 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
2294 // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
2295 ASSERT(CpuFeatures::IsEnabled(VFP3));
2296 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
2297 dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
2298}
2299
2300
Andrei Popescu31002712010-02-23 13:46:05 +00002301// Pseudo instructions.
Steve Block6ded16b2010-05-10 14:33:55 +01002302void Assembler::nop(int type) {
2303 // This is mov rx, rx.
2304 ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
2305 emit(al | 13*B21 | type*B12 | type);
2306}
2307
2308
Steve Blockd0582a62009-12-15 09:54:21 +00002309bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
2310 uint32_t dummy1;
2311 uint32_t dummy2;
2312 return fits_shifter(imm32, &dummy1, &dummy2, NULL);
2313}
2314
2315
2316void Assembler::BlockConstPoolFor(int instructions) {
2317 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
2318}
2319
2320
Andrei Popescu31002712010-02-23 13:46:05 +00002321// Debugging.
Steve Blocka7e24c12009-10-30 11:49:00 +00002322void Assembler::RecordJSReturn() {
2323 WriteRecordedPositions();
2324 CheckBuffer();
2325 RecordRelocInfo(RelocInfo::JS_RETURN);
2326}
2327
2328
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002329void Assembler::RecordDebugBreakSlot() {
2330 WriteRecordedPositions();
2331 CheckBuffer();
2332 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
2333}
2334
2335
Steve Blocka7e24c12009-10-30 11:49:00 +00002336void Assembler::RecordComment(const char* msg) {
2337 if (FLAG_debug_code) {
2338 CheckBuffer();
2339 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2340 }
2341}
2342
2343
2344void Assembler::RecordPosition(int pos) {
2345 if (pos == RelocInfo::kNoPosition) return;
2346 ASSERT(pos >= 0);
2347 current_position_ = pos;
2348}
2349
2350
2351void Assembler::RecordStatementPosition(int pos) {
2352 if (pos == RelocInfo::kNoPosition) return;
2353 ASSERT(pos >= 0);
2354 current_statement_position_ = pos;
2355}
2356
2357
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002358bool Assembler::WriteRecordedPositions() {
2359 bool written = false;
2360
Steve Blocka7e24c12009-10-30 11:49:00 +00002361 // Write the statement position if it is different from what was written last
2362 // time.
2363 if (current_statement_position_ != written_statement_position_) {
2364 CheckBuffer();
2365 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_);
2366 written_statement_position_ = current_statement_position_;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002367 written = true;
Steve Blocka7e24c12009-10-30 11:49:00 +00002368 }
2369
2370 // Write the position if it is different from what was written last time and
2371 // also different from the written statement position.
2372 if (current_position_ != written_position_ &&
2373 current_position_ != written_statement_position_) {
2374 CheckBuffer();
2375 RecordRelocInfo(RelocInfo::POSITION, current_position_);
2376 written_position_ = current_position_;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002377 written = true;
Steve Blocka7e24c12009-10-30 11:49:00 +00002378 }
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002379
2380 // Return whether something was written.
2381 return written;
Steve Blocka7e24c12009-10-30 11:49:00 +00002382}
2383
2384
2385void Assembler::GrowBuffer() {
2386 if (!own_buffer_) FATAL("external code buffer is too small");
2387
Andrei Popescu31002712010-02-23 13:46:05 +00002388 // Compute new buffer size.
Steve Blocka7e24c12009-10-30 11:49:00 +00002389 CodeDesc desc; // the new buffer
2390 if (buffer_size_ < 4*KB) {
2391 desc.buffer_size = 4*KB;
2392 } else if (buffer_size_ < 1*MB) {
2393 desc.buffer_size = 2*buffer_size_;
2394 } else {
2395 desc.buffer_size = buffer_size_ + 1*MB;
2396 }
2397 CHECK_GT(desc.buffer_size, 0); // no overflow
2398
Andrei Popescu31002712010-02-23 13:46:05 +00002399 // Setup new buffer.
Steve Blocka7e24c12009-10-30 11:49:00 +00002400 desc.buffer = NewArray<byte>(desc.buffer_size);
2401
2402 desc.instr_size = pc_offset();
2403 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2404
Andrei Popescu31002712010-02-23 13:46:05 +00002405 // Copy the data.
Steve Blocka7e24c12009-10-30 11:49:00 +00002406 int pc_delta = desc.buffer - buffer_;
2407 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2408 memmove(desc.buffer, buffer_, desc.instr_size);
2409 memmove(reloc_info_writer.pos() + rc_delta,
2410 reloc_info_writer.pos(), desc.reloc_size);
2411
Andrei Popescu31002712010-02-23 13:46:05 +00002412 // Switch buffers.
Steve Blocka7e24c12009-10-30 11:49:00 +00002413 DeleteArray(buffer_);
2414 buffer_ = desc.buffer;
2415 buffer_size_ = desc.buffer_size;
2416 pc_ += pc_delta;
2417 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2418 reloc_info_writer.last_pc() + pc_delta);
2419
Andrei Popescu31002712010-02-23 13:46:05 +00002420 // None of our relocation types are pc relative pointing outside the code
Steve Blocka7e24c12009-10-30 11:49:00 +00002421 // buffer nor pc absolute pointing inside the code buffer, so there is no need
Andrei Popescu31002712010-02-23 13:46:05 +00002422 // to relocate any emitted relocation entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002423
Andrei Popescu31002712010-02-23 13:46:05 +00002424 // Relocate pending relocation entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002425 for (int i = 0; i < num_prinfo_; i++) {
2426 RelocInfo& rinfo = prinfo_[i];
2427 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2428 rinfo.rmode() != RelocInfo::POSITION);
2429 if (rinfo.rmode() != RelocInfo::JS_RETURN) {
2430 rinfo.set_pc(rinfo.pc() + pc_delta);
2431 }
2432 }
2433}
2434
2435
2436void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2437 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002438 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
Andrei Popescu31002712010-02-23 13:46:05 +00002439 // Adjust code for new modes.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002440 ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
2441 || RelocInfo::IsJSReturn(rmode)
Steve Blocka7e24c12009-10-30 11:49:00 +00002442 || RelocInfo::IsComment(rmode)
2443 || RelocInfo::IsPosition(rmode));
Andrei Popescu31002712010-02-23 13:46:05 +00002444 // These modes do not need an entry in the constant pool.
Steve Blocka7e24c12009-10-30 11:49:00 +00002445 } else {
2446 ASSERT(num_prinfo_ < kMaxNumPRInfo);
2447 prinfo_[num_prinfo_++] = rinfo;
2448 // Make sure the constant pool is not emitted in place of the next
Andrei Popescu31002712010-02-23 13:46:05 +00002449 // instruction for which we just recorded relocation info.
Steve Blocka7e24c12009-10-30 11:49:00 +00002450 BlockConstPoolBefore(pc_offset() + kInstrSize);
2451 }
2452 if (rinfo.rmode() != RelocInfo::NONE) {
2453 // Don't record external references unless the heap will be serialized.
Steve Blockd0582a62009-12-15 09:54:21 +00002454 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
2455#ifdef DEBUG
2456 if (!Serializer::enabled()) {
2457 Serializer::TooLateToEnableNow();
2458 }
2459#endif
2460 if (!Serializer::enabled() && !FLAG_debug_code) {
2461 return;
2462 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002463 }
2464 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
2465 reloc_info_writer.Write(&rinfo);
2466 }
2467}
2468
2469
2470void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2471 // Calculate the offset of the next check. It will be overwritten
2472 // when a const pool is generated or when const pools are being
2473 // blocked for a specific range.
2474 next_buffer_check_ = pc_offset() + kCheckConstInterval;
2475
Andrei Popescu31002712010-02-23 13:46:05 +00002476 // There is nothing to do if there are no pending relocation info entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002477 if (num_prinfo_ == 0) return;
2478
2479 // We emit a constant pool at regular intervals of about kDistBetweenPools
2480 // or when requested by parameter force_emit (e.g. after each function).
2481 // We prefer not to emit a jump unless the max distance is reached or if we
2482 // are running low on slots, which can happen if a lot of constants are being
2483 // emitted (e.g. --debug-code and many static references).
2484 int dist = pc_offset() - last_const_pool_end_;
2485 if (!force_emit && dist < kMaxDistBetweenPools &&
2486 (require_jump || dist < kDistBetweenPools) &&
2487 // TODO(1236125): Cleanup the "magic" number below. We know that
2488 // the code generation will test every kCheckConstIntervalInst.
2489 // Thus we are safe as long as we generate less than 7 constant
2490 // entries per instruction.
2491 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
2492 return;
2493 }
2494
2495 // If we did not return by now, we need to emit the constant pool soon.
2496
2497 // However, some small sequences of instructions must not be broken up by the
2498 // insertion of a constant pool; such sequences are protected by setting
Steve Block6ded16b2010-05-10 14:33:55 +01002499 // either const_pool_blocked_nesting_ or no_const_pool_before_, which are
2500 // both checked here. Also, recursive calls to CheckConstPool are blocked by
2501 // no_const_pool_before_.
2502 if (const_pool_blocked_nesting_ > 0 || pc_offset() < no_const_pool_before_) {
Andrei Popescu31002712010-02-23 13:46:05 +00002503 // Emission is currently blocked; make sure we try again as soon as
2504 // possible.
Steve Block6ded16b2010-05-10 14:33:55 +01002505 if (const_pool_blocked_nesting_ > 0) {
2506 next_buffer_check_ = pc_offset() + kInstrSize;
2507 } else {
2508 next_buffer_check_ = no_const_pool_before_;
2509 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002510
Andrei Popescu31002712010-02-23 13:46:05 +00002511 // Something is wrong if emission is forced and blocked at the same time.
Steve Blocka7e24c12009-10-30 11:49:00 +00002512 ASSERT(!force_emit);
2513 return;
2514 }
2515
2516 int jump_instr = require_jump ? kInstrSize : 0;
2517
2518 // Check that the code buffer is large enough before emitting the constant
2519 // pool and relocation information (include the jump over the pool and the
2520 // constant pool marker).
2521 int max_needed_space =
2522 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
2523 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
2524
Andrei Popescu31002712010-02-23 13:46:05 +00002525 // Block recursive calls to CheckConstPool.
Steve Blocka7e24c12009-10-30 11:49:00 +00002526 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
2527 num_prinfo_*kInstrSize);
2528 // Don't bother to check for the emit calls below.
2529 next_buffer_check_ = no_const_pool_before_;
2530
Andrei Popescu31002712010-02-23 13:46:05 +00002531 // Emit jump over constant pool if necessary.
Steve Blocka7e24c12009-10-30 11:49:00 +00002532 Label after_pool;
2533 if (require_jump) b(&after_pool);
2534
2535 RecordComment("[ Constant Pool");
2536
Andrei Popescu31002712010-02-23 13:46:05 +00002537 // Put down constant pool marker "Undefined instruction" as specified by
2538 // A3.1 Instruction set encoding.
Steve Blocka7e24c12009-10-30 11:49:00 +00002539 emit(0x03000000 | num_prinfo_);
2540
Andrei Popescu31002712010-02-23 13:46:05 +00002541 // Emit constant pool entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002542 for (int i = 0; i < num_prinfo_; i++) {
2543 RelocInfo& rinfo = prinfo_[i];
2544 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2545 rinfo.rmode() != RelocInfo::POSITION &&
2546 rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
2547 Instr instr = instr_at(rinfo.pc());
2548
Andrei Popescu31002712010-02-23 13:46:05 +00002549 // Instruction to patch must be a ldr/str [pc, #offset].
2550 // P and U set, B and W clear, Rn == pc, offset12 still 0.
Steve Blocka7e24c12009-10-30 11:49:00 +00002551 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) ==
2552 (2*B25 | P | U | pc.code()*B16));
2553 int delta = pc_ - rinfo.pc() - 8;
2554 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
2555 if (delta < 0) {
2556 instr &= ~U;
2557 delta = -delta;
2558 }
2559 ASSERT(is_uint12(delta));
2560 instr_at_put(rinfo.pc(), instr + delta);
2561 emit(rinfo.data());
2562 }
2563 num_prinfo_ = 0;
2564 last_const_pool_end_ = pc_offset();
2565
2566 RecordComment("]");
2567
2568 if (after_pool.is_linked()) {
2569 bind(&after_pool);
2570 }
2571
2572 // Since a constant pool was just emitted, move the check offset forward by
2573 // the standard interval.
2574 next_buffer_check_ = pc_offset() + kCheckConstInterval;
2575}
2576
2577
2578} } // namespace v8::internal
Leon Clarkef7060e22010-06-03 12:02:55 +01002579
2580#endif // V8_TARGET_ARCH_ARM