blob: e805173e07e799249484df8f187c1c3ac61c05e5 [file] [log] [blame]
Steve Block6ded16b2010-05-10 14:33:55 +01001// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_DOUBLE_H_
29#define V8_DOUBLE_H_
30
31#include "diy-fp.h"
32
33namespace v8 {
34namespace internal {
35
36// We assume that doubles and uint64_t have the same endianness.
37static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
38static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
39
40// Helper functions for doubles.
41class Double {
42 public:
43 static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000);
44 static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000);
45 static const uint64_t kSignificandMask =
46 V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF);
47 static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000);
John Reck59135872010-11-02 12:39:01 -070048 static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit.
49 static const int kSignificandSize = 53;
Steve Block6ded16b2010-05-10 14:33:55 +010050
51 Double() : d64_(0) {}
52 explicit Double(double d) : d64_(double_to_uint64(d)) {}
53 explicit Double(uint64_t d64) : d64_(d64) {}
John Reck59135872010-11-02 12:39:01 -070054 explicit Double(DiyFp diy_fp)
55 : d64_(DiyFpToUint64(diy_fp)) {}
Steve Block6ded16b2010-05-10 14:33:55 +010056
57 DiyFp AsDiyFp() const {
58 ASSERT(!IsSpecial());
59 return DiyFp(Significand(), Exponent());
60 }
61
62 // this->Significand() must not be 0.
63 DiyFp AsNormalizedDiyFp() const {
64 uint64_t f = Significand();
65 int e = Exponent();
66
67 ASSERT(f != 0);
68
69 // The current double could be a denormal.
70 while ((f & kHiddenBit) == 0) {
71 f <<= 1;
72 e--;
73 }
John Reck59135872010-11-02 12:39:01 -070074 // Do the final shifts in one go.
75 f <<= DiyFp::kSignificandSize - kSignificandSize;
76 e -= DiyFp::kSignificandSize - kSignificandSize;
Steve Block6ded16b2010-05-10 14:33:55 +010077 return DiyFp(f, e);
78 }
79
80 // Returns the double's bit as uint64.
81 uint64_t AsUint64() const {
82 return d64_;
83 }
84
85 int Exponent() const {
86 if (IsDenormal()) return kDenormalExponent;
87
88 uint64_t d64 = AsUint64();
John Reck59135872010-11-02 12:39:01 -070089 int biased_e =
90 static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
Steve Block6ded16b2010-05-10 14:33:55 +010091 return biased_e - kExponentBias;
92 }
93
94 uint64_t Significand() const {
95 uint64_t d64 = AsUint64();
96 uint64_t significand = d64 & kSignificandMask;
97 if (!IsDenormal()) {
98 return significand + kHiddenBit;
99 } else {
100 return significand;
101 }
102 }
103
104 // Returns true if the double is a denormal.
105 bool IsDenormal() const {
106 uint64_t d64 = AsUint64();
107 return (d64 & kExponentMask) == 0;
108 }
109
110 // We consider denormals not to be special.
111 // Hence only Infinity and NaN are special.
112 bool IsSpecial() const {
113 uint64_t d64 = AsUint64();
114 return (d64 & kExponentMask) == kExponentMask;
115 }
116
117 bool IsNan() const {
118 uint64_t d64 = AsUint64();
119 return ((d64 & kExponentMask) == kExponentMask) &&
120 ((d64 & kSignificandMask) != 0);
121 }
122
123
124 bool IsInfinite() const {
125 uint64_t d64 = AsUint64();
126 return ((d64 & kExponentMask) == kExponentMask) &&
127 ((d64 & kSignificandMask) == 0);
128 }
129
130
131 int Sign() const {
132 uint64_t d64 = AsUint64();
133 return (d64 & kSignMask) == 0? 1: -1;
134 }
135
136
137 // Returns the two boundaries of this.
138 // The bigger boundary (m_plus) is normalized. The lower boundary has the same
139 // exponent as m_plus.
140 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
141 DiyFp v = this->AsDiyFp();
142 bool significand_is_zero = (v.f() == kHiddenBit);
143 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
144 DiyFp m_minus;
145 if (significand_is_zero && v.e() != kDenormalExponent) {
146 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
147 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
148 // at a distance of 1e8.
149 // The only exception is for the smallest normal: the largest denormal is
150 // at the same distance as its successor.
151 // Note: denormals have the same exponent as the smallest normals.
152 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
153 } else {
154 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
155 }
156 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
157 m_minus.set_e(m_plus.e());
158 *out_m_plus = m_plus;
159 *out_m_minus = m_minus;
160 }
161
162 double value() const { return uint64_to_double(d64_); }
163
John Reck59135872010-11-02 12:39:01 -0700164 // Returns the significand size for a given order of magnitude.
165 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
166 // This function returns the number of significant binary digits v will have
167 // once its encoded into a double. In almost all cases this is equal to
168 // kSignificandSize. The only exception are denormals. They start with leading
169 // zeroes and their effective significand-size is hence smaller.
170 static int SignificandSizeForOrderOfMagnitude(int order) {
171 if (order >= (kDenormalExponent + kSignificandSize)) {
172 return kSignificandSize;
173 }
174 if (order <= kDenormalExponent) return 0;
175 return order - kDenormalExponent;
176 }
Steve Block6ded16b2010-05-10 14:33:55 +0100177
John Reck59135872010-11-02 12:39:01 -0700178 private:
179 static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
180 static const int kDenormalExponent = -kExponentBias + 1;
181 static const int kMaxExponent = 0x7FF - kExponentBias;
182 static const uint64_t kInfinity = V8_2PART_UINT64_C(0x7FF00000, 00000000);
183
184 const uint64_t d64_;
185
186 static uint64_t DiyFpToUint64(DiyFp diy_fp) {
187 uint64_t significand = diy_fp.f();
188 int exponent = diy_fp.e();
189 while (significand > kHiddenBit + kSignificandMask) {
190 significand >>= 1;
191 exponent++;
192 }
193 if (exponent >= kMaxExponent) {
194 return kInfinity;
195 }
196 if (exponent < kDenormalExponent) {
197 return 0;
198 }
199 while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
200 significand <<= 1;
201 exponent--;
202 }
203 uint64_t biased_exponent;
204 if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
205 biased_exponent = 0;
206 } else {
207 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
208 }
209 return (significand & kSignificandMask) |
210 (biased_exponent << kPhysicalSignificandSize);
211 }
Steve Block6ded16b2010-05-10 14:33:55 +0100212};
213
214} } // namespace v8::internal
215
216#endif // V8_DOUBLE_H_