blob: 67adafde1cfe5be2055598c5bc92e5eaa8d1ab1b [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "macro-assembler.h"
31#include "mark-compact.h"
32#include "platform.h"
33
34namespace v8 {
35namespace internal {
36
37// For contiguous spaces, top should be in the space (or at the end) and limit
38// should be the end of the space.
39#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
40 ASSERT((space).low() <= (info).top \
41 && (info).top <= (space).high() \
42 && (info).limit == (space).high())
43
Steve Block791712a2010-08-27 10:21:07 +010044intptr_t Page::watermark_invalidated_mark_ = 1 << Page::WATERMARK_INVALIDATED;
Steve Blocka7e24c12009-10-30 11:49:00 +000045
46// ----------------------------------------------------------------------------
47// HeapObjectIterator
48
49HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
50 Initialize(space->bottom(), space->top(), NULL);
51}
52
53
54HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
55 HeapObjectCallback size_func) {
56 Initialize(space->bottom(), space->top(), size_func);
57}
58
59
60HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) {
61 Initialize(start, space->top(), NULL);
62}
63
64
65HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start,
66 HeapObjectCallback size_func) {
67 Initialize(start, space->top(), size_func);
68}
69
70
71void HeapObjectIterator::Initialize(Address cur, Address end,
72 HeapObjectCallback size_f) {
73 cur_addr_ = cur;
74 end_addr_ = end;
75 end_page_ = Page::FromAllocationTop(end);
76 size_func_ = size_f;
77 Page* p = Page::FromAllocationTop(cur_addr_);
78 cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop();
79
80#ifdef DEBUG
81 Verify();
82#endif
83}
84
85
Leon Clarked91b9f72010-01-27 17:25:45 +000086HeapObject* HeapObjectIterator::FromNextPage() {
87 if (cur_addr_ == end_addr_) return NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +000088
89 Page* cur_page = Page::FromAllocationTop(cur_addr_);
90 cur_page = cur_page->next_page();
91 ASSERT(cur_page->is_valid());
92
93 cur_addr_ = cur_page->ObjectAreaStart();
94 cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop();
95
Leon Clarked91b9f72010-01-27 17:25:45 +000096 if (cur_addr_ == end_addr_) return NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +000097 ASSERT(cur_addr_ < cur_limit_);
98#ifdef DEBUG
99 Verify();
100#endif
Leon Clarked91b9f72010-01-27 17:25:45 +0000101 return FromCurrentPage();
Steve Blocka7e24c12009-10-30 11:49:00 +0000102}
103
104
105#ifdef DEBUG
106void HeapObjectIterator::Verify() {
107 Page* p = Page::FromAllocationTop(cur_addr_);
108 ASSERT(p == Page::FromAllocationTop(cur_limit_));
109 ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_));
110}
111#endif
112
113
114// -----------------------------------------------------------------------------
115// PageIterator
116
117PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) {
118 prev_page_ = NULL;
119 switch (mode) {
120 case PAGES_IN_USE:
121 stop_page_ = space->AllocationTopPage();
122 break;
123 case PAGES_USED_BY_MC:
124 stop_page_ = space->MCRelocationTopPage();
125 break;
126 case ALL_PAGES:
127#ifdef DEBUG
128 // Verify that the cached last page in the space is actually the
129 // last page.
130 for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) {
131 if (!p->next_page()->is_valid()) {
132 ASSERT(space->last_page_ == p);
133 }
134 }
135#endif
136 stop_page_ = space->last_page_;
137 break;
138 }
139}
140
141
142// -----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000143// CodeRange
144
145List<CodeRange::FreeBlock> CodeRange::free_list_(0);
146List<CodeRange::FreeBlock> CodeRange::allocation_list_(0);
147int CodeRange::current_allocation_block_index_ = 0;
148VirtualMemory* CodeRange::code_range_ = NULL;
149
150
151bool CodeRange::Setup(const size_t requested) {
152 ASSERT(code_range_ == NULL);
153
154 code_range_ = new VirtualMemory(requested);
155 CHECK(code_range_ != NULL);
156 if (!code_range_->IsReserved()) {
157 delete code_range_;
158 code_range_ = NULL;
159 return false;
160 }
161
162 // We are sure that we have mapped a block of requested addresses.
163 ASSERT(code_range_->size() == requested);
164 LOG(NewEvent("CodeRange", code_range_->address(), requested));
165 allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size()));
166 current_allocation_block_index_ = 0;
167 return true;
168}
169
170
171int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
172 const FreeBlock* right) {
173 // The entire point of CodeRange is that the difference between two
174 // addresses in the range can be represented as a signed 32-bit int,
175 // so the cast is semantically correct.
176 return static_cast<int>(left->start - right->start);
177}
178
179
180void CodeRange::GetNextAllocationBlock(size_t requested) {
181 for (current_allocation_block_index_++;
182 current_allocation_block_index_ < allocation_list_.length();
183 current_allocation_block_index_++) {
184 if (requested <= allocation_list_[current_allocation_block_index_].size) {
185 return; // Found a large enough allocation block.
186 }
187 }
188
189 // Sort and merge the free blocks on the free list and the allocation list.
190 free_list_.AddAll(allocation_list_);
191 allocation_list_.Clear();
192 free_list_.Sort(&CompareFreeBlockAddress);
193 for (int i = 0; i < free_list_.length();) {
194 FreeBlock merged = free_list_[i];
195 i++;
196 // Add adjacent free blocks to the current merged block.
197 while (i < free_list_.length() &&
198 free_list_[i].start == merged.start + merged.size) {
199 merged.size += free_list_[i].size;
200 i++;
201 }
202 if (merged.size > 0) {
203 allocation_list_.Add(merged);
204 }
205 }
206 free_list_.Clear();
207
208 for (current_allocation_block_index_ = 0;
209 current_allocation_block_index_ < allocation_list_.length();
210 current_allocation_block_index_++) {
211 if (requested <= allocation_list_[current_allocation_block_index_].size) {
212 return; // Found a large enough allocation block.
213 }
214 }
215
216 // Code range is full or too fragmented.
217 V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock");
218}
219
220
221
222void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) {
223 ASSERT(current_allocation_block_index_ < allocation_list_.length());
224 if (requested > allocation_list_[current_allocation_block_index_].size) {
225 // Find an allocation block large enough. This function call may
226 // call V8::FatalProcessOutOfMemory if it cannot find a large enough block.
227 GetNextAllocationBlock(requested);
228 }
229 // Commit the requested memory at the start of the current allocation block.
230 *allocated = RoundUp(requested, Page::kPageSize);
231 FreeBlock current = allocation_list_[current_allocation_block_index_];
232 if (*allocated >= current.size - Page::kPageSize) {
233 // Don't leave a small free block, useless for a large object or chunk.
234 *allocated = current.size;
235 }
236 ASSERT(*allocated <= current.size);
237 if (!code_range_->Commit(current.start, *allocated, true)) {
238 *allocated = 0;
239 return NULL;
240 }
241 allocation_list_[current_allocation_block_index_].start += *allocated;
242 allocation_list_[current_allocation_block_index_].size -= *allocated;
243 if (*allocated == current.size) {
244 GetNextAllocationBlock(0); // This block is used up, get the next one.
245 }
246 return current.start;
247}
248
249
250void CodeRange::FreeRawMemory(void* address, size_t length) {
251 free_list_.Add(FreeBlock(address, length));
252 code_range_->Uncommit(address, length);
253}
254
255
256void CodeRange::TearDown() {
257 delete code_range_; // Frees all memory in the virtual memory range.
258 code_range_ = NULL;
259 free_list_.Free();
260 allocation_list_.Free();
261}
262
263
264// -----------------------------------------------------------------------------
265// MemoryAllocator
266//
267int MemoryAllocator::capacity_ = 0;
268int MemoryAllocator::size_ = 0;
Steve Block791712a2010-08-27 10:21:07 +0100269int MemoryAllocator::size_executable_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000270
271VirtualMemory* MemoryAllocator::initial_chunk_ = NULL;
272
273// 270 is an estimate based on the static default heap size of a pair of 256K
274// semispaces and a 64M old generation.
275const int kEstimatedNumberOfChunks = 270;
276List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_(
277 kEstimatedNumberOfChunks);
278List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks);
279int MemoryAllocator::max_nof_chunks_ = 0;
280int MemoryAllocator::top_ = 0;
281
282
283void MemoryAllocator::Push(int free_chunk_id) {
284 ASSERT(max_nof_chunks_ > 0);
285 ASSERT(top_ < max_nof_chunks_);
286 free_chunk_ids_[top_++] = free_chunk_id;
287}
288
289
290int MemoryAllocator::Pop() {
291 ASSERT(top_ > 0);
292 return free_chunk_ids_[--top_];
293}
294
295
Steve Block791712a2010-08-27 10:21:07 +0100296void *executable_memory_histogram = NULL;
297
Steve Blocka7e24c12009-10-30 11:49:00 +0000298bool MemoryAllocator::Setup(int capacity) {
299 capacity_ = RoundUp(capacity, Page::kPageSize);
300
301 // Over-estimate the size of chunks_ array. It assumes the expansion of old
302 // space is always in the unit of a chunk (kChunkSize) except the last
303 // expansion.
304 //
305 // Due to alignment, allocated space might be one page less than required
306 // number (kPagesPerChunk) of pages for old spaces.
307 //
308 // Reserve two chunk ids for semispaces, one for map space, one for old
309 // space, and one for code space.
310 max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) + 5;
311 if (max_nof_chunks_ > kMaxNofChunks) return false;
312
313 size_ = 0;
Steve Block791712a2010-08-27 10:21:07 +0100314 size_executable_ = 0;
315 executable_memory_histogram =
316 StatsTable::CreateHistogram("V8.ExecutableMemoryMax", 0, MB * 512, 50);
Steve Blocka7e24c12009-10-30 11:49:00 +0000317 ChunkInfo info; // uninitialized element.
318 for (int i = max_nof_chunks_ - 1; i >= 0; i--) {
319 chunks_.Add(info);
320 free_chunk_ids_.Add(i);
321 }
322 top_ = max_nof_chunks_;
323 return true;
324}
325
326
327void MemoryAllocator::TearDown() {
328 for (int i = 0; i < max_nof_chunks_; i++) {
329 if (chunks_[i].address() != NULL) DeleteChunk(i);
330 }
331 chunks_.Clear();
332 free_chunk_ids_.Clear();
333
334 if (initial_chunk_ != NULL) {
335 LOG(DeleteEvent("InitialChunk", initial_chunk_->address()));
336 delete initial_chunk_;
337 initial_chunk_ = NULL;
338 }
339
340 ASSERT(top_ == max_nof_chunks_); // all chunks are free
341 top_ = 0;
342 capacity_ = 0;
343 size_ = 0;
344 max_nof_chunks_ = 0;
345}
346
347
348void* MemoryAllocator::AllocateRawMemory(const size_t requested,
349 size_t* allocated,
350 Executability executable) {
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100351 if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) {
352 return NULL;
353 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000354 void* mem;
355 if (executable == EXECUTABLE && CodeRange::exists()) {
356 mem = CodeRange::AllocateRawMemory(requested, allocated);
357 } else {
358 mem = OS::Allocate(requested, allocated, (executable == EXECUTABLE));
359 }
Steve Blockd0582a62009-12-15 09:54:21 +0000360 int alloced = static_cast<int>(*allocated);
Steve Blocka7e24c12009-10-30 11:49:00 +0000361 size_ += alloced;
Steve Block791712a2010-08-27 10:21:07 +0100362
363 if (executable == EXECUTABLE) {
364 size_executable_ += alloced;
365 static int size_executable_max_observed_ = 0;
366 if (size_executable_max_observed_ < size_executable_) {
367 size_executable_max_observed_ = size_executable_;
368 StatsTable::AddHistogramSample(executable_memory_histogram,
369 size_executable_);
370 }
371 }
Leon Clarke4515c472010-02-03 11:58:03 +0000372#ifdef DEBUG
373 ZapBlock(reinterpret_cast<Address>(mem), alloced);
374#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000375 Counters::memory_allocated.Increment(alloced);
376 return mem;
377}
378
379
Steve Block791712a2010-08-27 10:21:07 +0100380void MemoryAllocator::FreeRawMemory(void* mem,
381 size_t length,
382 Executability executable) {
Leon Clarke4515c472010-02-03 11:58:03 +0000383#ifdef DEBUG
384 ZapBlock(reinterpret_cast<Address>(mem), length);
385#endif
Steve Blocka7e24c12009-10-30 11:49:00 +0000386 if (CodeRange::contains(static_cast<Address>(mem))) {
387 CodeRange::FreeRawMemory(mem, length);
388 } else {
389 OS::Free(mem, length);
390 }
Steve Blockd0582a62009-12-15 09:54:21 +0000391 Counters::memory_allocated.Decrement(static_cast<int>(length));
392 size_ -= static_cast<int>(length);
Steve Block791712a2010-08-27 10:21:07 +0100393 if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length);
Steve Blocka7e24c12009-10-30 11:49:00 +0000394 ASSERT(size_ >= 0);
395}
396
397
398void* MemoryAllocator::ReserveInitialChunk(const size_t requested) {
399 ASSERT(initial_chunk_ == NULL);
400
401 initial_chunk_ = new VirtualMemory(requested);
402 CHECK(initial_chunk_ != NULL);
403 if (!initial_chunk_->IsReserved()) {
404 delete initial_chunk_;
405 initial_chunk_ = NULL;
406 return NULL;
407 }
408
409 // We are sure that we have mapped a block of requested addresses.
410 ASSERT(initial_chunk_->size() == requested);
411 LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested));
Steve Blockd0582a62009-12-15 09:54:21 +0000412 size_ += static_cast<int>(requested);
Steve Blocka7e24c12009-10-30 11:49:00 +0000413 return initial_chunk_->address();
414}
415
416
417static int PagesInChunk(Address start, size_t size) {
418 // The first page starts on the first page-aligned address from start onward
419 // and the last page ends on the last page-aligned address before
420 // start+size. Page::kPageSize is a power of two so we can divide by
421 // shifting.
Steve Blockd0582a62009-12-15 09:54:21 +0000422 return static_cast<int>((RoundDown(start + size, Page::kPageSize)
Leon Clarkee46be812010-01-19 14:06:41 +0000423 - RoundUp(start, Page::kPageSize)) >> kPageSizeBits);
Steve Blocka7e24c12009-10-30 11:49:00 +0000424}
425
426
427Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages,
428 PagedSpace* owner) {
429 if (requested_pages <= 0) return Page::FromAddress(NULL);
430 size_t chunk_size = requested_pages * Page::kPageSize;
431
432 // There is not enough space to guarantee the desired number pages can be
433 // allocated.
434 if (size_ + static_cast<int>(chunk_size) > capacity_) {
435 // Request as many pages as we can.
436 chunk_size = capacity_ - size_;
Leon Clarkee46be812010-01-19 14:06:41 +0000437 requested_pages = static_cast<int>(chunk_size >> kPageSizeBits);
Steve Blocka7e24c12009-10-30 11:49:00 +0000438
439 if (requested_pages <= 0) return Page::FromAddress(NULL);
440 }
441 void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable());
442 if (chunk == NULL) return Page::FromAddress(NULL);
443 LOG(NewEvent("PagedChunk", chunk, chunk_size));
444
445 *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size);
446 if (*allocated_pages == 0) {
Steve Block791712a2010-08-27 10:21:07 +0100447 FreeRawMemory(chunk, chunk_size, owner->executable());
Steve Blocka7e24c12009-10-30 11:49:00 +0000448 LOG(DeleteEvent("PagedChunk", chunk));
449 return Page::FromAddress(NULL);
450 }
451
452 int chunk_id = Pop();
453 chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner);
454
455 return InitializePagesInChunk(chunk_id, *allocated_pages, owner);
456}
457
458
459Page* MemoryAllocator::CommitPages(Address start, size_t size,
460 PagedSpace* owner, int* num_pages) {
461 ASSERT(start != NULL);
462 *num_pages = PagesInChunk(start, size);
463 ASSERT(*num_pages > 0);
464 ASSERT(initial_chunk_ != NULL);
465 ASSERT(InInitialChunk(start));
466 ASSERT(InInitialChunk(start + size - 1));
467 if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) {
468 return Page::FromAddress(NULL);
469 }
Leon Clarke4515c472010-02-03 11:58:03 +0000470#ifdef DEBUG
471 ZapBlock(start, size);
472#endif
Steve Blockd0582a62009-12-15 09:54:21 +0000473 Counters::memory_allocated.Increment(static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000474
475 // So long as we correctly overestimated the number of chunks we should not
476 // run out of chunk ids.
477 CHECK(!OutOfChunkIds());
478 int chunk_id = Pop();
479 chunks_[chunk_id].init(start, size, owner);
480 return InitializePagesInChunk(chunk_id, *num_pages, owner);
481}
482
483
484bool MemoryAllocator::CommitBlock(Address start,
485 size_t size,
486 Executability executable) {
487 ASSERT(start != NULL);
488 ASSERT(size > 0);
489 ASSERT(initial_chunk_ != NULL);
490 ASSERT(InInitialChunk(start));
491 ASSERT(InInitialChunk(start + size - 1));
492
493 if (!initial_chunk_->Commit(start, size, executable)) return false;
Leon Clarke4515c472010-02-03 11:58:03 +0000494#ifdef DEBUG
495 ZapBlock(start, size);
496#endif
Steve Blockd0582a62009-12-15 09:54:21 +0000497 Counters::memory_allocated.Increment(static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000498 return true;
499}
500
Leon Clarke4515c472010-02-03 11:58:03 +0000501
Steve Blocka7e24c12009-10-30 11:49:00 +0000502bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
503 ASSERT(start != NULL);
504 ASSERT(size > 0);
505 ASSERT(initial_chunk_ != NULL);
506 ASSERT(InInitialChunk(start));
507 ASSERT(InInitialChunk(start + size - 1));
508
509 if (!initial_chunk_->Uncommit(start, size)) return false;
Steve Blockd0582a62009-12-15 09:54:21 +0000510 Counters::memory_allocated.Decrement(static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +0000511 return true;
512}
513
Leon Clarke4515c472010-02-03 11:58:03 +0000514
515void MemoryAllocator::ZapBlock(Address start, size_t size) {
516 for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
517 Memory::Address_at(start + s) = kZapValue;
518 }
519}
520
521
Steve Blocka7e24c12009-10-30 11:49:00 +0000522Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk,
523 PagedSpace* owner) {
524 ASSERT(IsValidChunk(chunk_id));
525 ASSERT(pages_in_chunk > 0);
526
527 Address chunk_start = chunks_[chunk_id].address();
528
529 Address low = RoundUp(chunk_start, Page::kPageSize);
530
531#ifdef DEBUG
532 size_t chunk_size = chunks_[chunk_id].size();
533 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
534 ASSERT(pages_in_chunk <=
535 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
536#endif
537
538 Address page_addr = low;
539 for (int i = 0; i < pages_in_chunk; i++) {
540 Page* p = Page::FromAddress(page_addr);
541 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100542 p->InvalidateWatermark(true);
Steve Block6ded16b2010-05-10 14:33:55 +0100543 p->SetIsLargeObjectPage(false);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100544 p->SetAllocationWatermark(p->ObjectAreaStart());
545 p->SetCachedAllocationWatermark(p->ObjectAreaStart());
Steve Blocka7e24c12009-10-30 11:49:00 +0000546 page_addr += Page::kPageSize;
547 }
548
549 // Set the next page of the last page to 0.
550 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
551 last_page->opaque_header = OffsetFrom(0) | chunk_id;
552
553 return Page::FromAddress(low);
554}
555
556
557Page* MemoryAllocator::FreePages(Page* p) {
558 if (!p->is_valid()) return p;
559
560 // Find the first page in the same chunk as 'p'
561 Page* first_page = FindFirstPageInSameChunk(p);
562 Page* page_to_return = Page::FromAddress(NULL);
563
564 if (p != first_page) {
565 // Find the last page in the same chunk as 'prev'.
566 Page* last_page = FindLastPageInSameChunk(p);
567 first_page = GetNextPage(last_page); // first page in next chunk
568
569 // set the next_page of last_page to NULL
570 SetNextPage(last_page, Page::FromAddress(NULL));
571 page_to_return = p; // return 'p' when exiting
572 }
573
574 while (first_page->is_valid()) {
575 int chunk_id = GetChunkId(first_page);
576 ASSERT(IsValidChunk(chunk_id));
577
578 // Find the first page of the next chunk before deleting this chunk.
579 first_page = GetNextPage(FindLastPageInSameChunk(first_page));
580
581 // Free the current chunk.
582 DeleteChunk(chunk_id);
583 }
584
585 return page_to_return;
586}
587
588
Steve Block6ded16b2010-05-10 14:33:55 +0100589void MemoryAllocator::FreeAllPages(PagedSpace* space) {
590 for (int i = 0, length = chunks_.length(); i < length; i++) {
591 if (chunks_[i].owner() == space) {
592 DeleteChunk(i);
593 }
594 }
595}
596
597
Steve Blocka7e24c12009-10-30 11:49:00 +0000598void MemoryAllocator::DeleteChunk(int chunk_id) {
599 ASSERT(IsValidChunk(chunk_id));
600
601 ChunkInfo& c = chunks_[chunk_id];
602
603 // We cannot free a chunk contained in the initial chunk because it was not
604 // allocated with AllocateRawMemory. Instead we uncommit the virtual
605 // memory.
606 if (InInitialChunk(c.address())) {
607 // TODO(1240712): VirtualMemory::Uncommit has a return value which
608 // is ignored here.
609 initial_chunk_->Uncommit(c.address(), c.size());
Steve Blockd0582a62009-12-15 09:54:21 +0000610 Counters::memory_allocated.Decrement(static_cast<int>(c.size()));
Steve Blocka7e24c12009-10-30 11:49:00 +0000611 } else {
612 LOG(DeleteEvent("PagedChunk", c.address()));
Steve Block791712a2010-08-27 10:21:07 +0100613 FreeRawMemory(c.address(), c.size(), c.owner()->executable());
Steve Blocka7e24c12009-10-30 11:49:00 +0000614 }
615 c.init(NULL, 0, NULL);
616 Push(chunk_id);
617}
618
619
620Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) {
621 int chunk_id = GetChunkId(p);
622 ASSERT(IsValidChunk(chunk_id));
623
624 Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize);
625 return Page::FromAddress(low);
626}
627
628
629Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) {
630 int chunk_id = GetChunkId(p);
631 ASSERT(IsValidChunk(chunk_id));
632
633 Address chunk_start = chunks_[chunk_id].address();
634 size_t chunk_size = chunks_[chunk_id].size();
635
636 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
637 ASSERT(chunk_start <= p->address() && p->address() < high);
638
639 return Page::FromAddress(high - Page::kPageSize);
640}
641
642
643#ifdef DEBUG
644void MemoryAllocator::ReportStatistics() {
645 float pct = static_cast<float>(capacity_ - size_) / capacity_;
646 PrintF(" capacity: %d, used: %d, available: %%%d\n\n",
647 capacity_, size_, static_cast<int>(pct*100));
648}
649#endif
650
651
Steve Block6ded16b2010-05-10 14:33:55 +0100652void MemoryAllocator::RelinkPageListInChunkOrder(PagedSpace* space,
653 Page** first_page,
654 Page** last_page,
655 Page** last_page_in_use) {
656 Page* first = NULL;
657 Page* last = NULL;
658
659 for (int i = 0, length = chunks_.length(); i < length; i++) {
660 ChunkInfo& chunk = chunks_[i];
661
662 if (chunk.owner() == space) {
663 if (first == NULL) {
664 Address low = RoundUp(chunk.address(), Page::kPageSize);
665 first = Page::FromAddress(low);
666 }
667 last = RelinkPagesInChunk(i,
668 chunk.address(),
669 chunk.size(),
670 last,
671 last_page_in_use);
672 }
673 }
674
675 if (first_page != NULL) {
676 *first_page = first;
677 }
678
679 if (last_page != NULL) {
680 *last_page = last;
681 }
682}
683
684
685Page* MemoryAllocator::RelinkPagesInChunk(int chunk_id,
686 Address chunk_start,
687 size_t chunk_size,
688 Page* prev,
689 Page** last_page_in_use) {
690 Address page_addr = RoundUp(chunk_start, Page::kPageSize);
691 int pages_in_chunk = PagesInChunk(chunk_start, chunk_size);
692
693 if (prev->is_valid()) {
694 SetNextPage(prev, Page::FromAddress(page_addr));
695 }
696
697 for (int i = 0; i < pages_in_chunk; i++) {
698 Page* p = Page::FromAddress(page_addr);
699 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
700 page_addr += Page::kPageSize;
701
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100702 p->InvalidateWatermark(true);
Steve Block6ded16b2010-05-10 14:33:55 +0100703 if (p->WasInUseBeforeMC()) {
704 *last_page_in_use = p;
705 }
706 }
707
708 // Set the next page of the last page to 0.
709 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
710 last_page->opaque_header = OffsetFrom(0) | chunk_id;
711
712 if (last_page->WasInUseBeforeMC()) {
713 *last_page_in_use = last_page;
714 }
715
716 return last_page;
717}
718
719
720
Steve Blocka7e24c12009-10-30 11:49:00 +0000721// -----------------------------------------------------------------------------
722// PagedSpace implementation
723
724PagedSpace::PagedSpace(int max_capacity,
725 AllocationSpace id,
726 Executability executable)
727 : Space(id, executable) {
728 max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize)
729 * Page::kObjectAreaSize;
730 accounting_stats_.Clear();
731
732 allocation_info_.top = NULL;
733 allocation_info_.limit = NULL;
734
735 mc_forwarding_info_.top = NULL;
736 mc_forwarding_info_.limit = NULL;
737}
738
739
740bool PagedSpace::Setup(Address start, size_t size) {
741 if (HasBeenSetup()) return false;
742
743 int num_pages = 0;
744 // Try to use the virtual memory range passed to us. If it is too small to
745 // contain at least one page, ignore it and allocate instead.
746 int pages_in_chunk = PagesInChunk(start, size);
747 if (pages_in_chunk > 0) {
748 first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize),
749 Page::kPageSize * pages_in_chunk,
750 this, &num_pages);
751 } else {
752 int requested_pages = Min(MemoryAllocator::kPagesPerChunk,
753 max_capacity_ / Page::kObjectAreaSize);
754 first_page_ =
755 MemoryAllocator::AllocatePages(requested_pages, &num_pages, this);
756 if (!first_page_->is_valid()) return false;
757 }
758
759 // We are sure that the first page is valid and that we have at least one
760 // page.
761 ASSERT(first_page_->is_valid());
762 ASSERT(num_pages > 0);
763 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
764 ASSERT(Capacity() <= max_capacity_);
765
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100766 // Sequentially clear region marks in the newly allocated
Steve Blocka7e24c12009-10-30 11:49:00 +0000767 // pages and cache the current last page in the space.
768 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100769 p->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +0000770 last_page_ = p;
771 }
772
773 // Use first_page_ for allocation.
774 SetAllocationInfo(&allocation_info_, first_page_);
775
Steve Block6ded16b2010-05-10 14:33:55 +0100776 page_list_is_chunk_ordered_ = true;
777
Steve Blocka7e24c12009-10-30 11:49:00 +0000778 return true;
779}
780
781
782bool PagedSpace::HasBeenSetup() {
783 return (Capacity() > 0);
784}
785
786
787void PagedSpace::TearDown() {
Steve Block6ded16b2010-05-10 14:33:55 +0100788 MemoryAllocator::FreeAllPages(this);
789 first_page_ = NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +0000790 accounting_stats_.Clear();
791}
792
793
794#ifdef ENABLE_HEAP_PROTECTION
795
796void PagedSpace::Protect() {
797 Page* page = first_page_;
798 while (page->is_valid()) {
799 MemoryAllocator::ProtectChunkFromPage(page);
800 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
801 }
802}
803
804
805void PagedSpace::Unprotect() {
806 Page* page = first_page_;
807 while (page->is_valid()) {
808 MemoryAllocator::UnprotectChunkFromPage(page);
809 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
810 }
811}
812
813#endif
814
815
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100816void PagedSpace::MarkAllPagesClean() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000817 PageIterator it(this, PageIterator::ALL_PAGES);
818 while (it.has_next()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100819 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +0000820 }
821}
822
823
824Object* PagedSpace::FindObject(Address addr) {
825 // Note: this function can only be called before or after mark-compact GC
826 // because it accesses map pointers.
827 ASSERT(!MarkCompactCollector::in_use());
828
829 if (!Contains(addr)) return Failure::Exception();
830
831 Page* p = Page::FromAddress(addr);
832 ASSERT(IsUsed(p));
833 Address cur = p->ObjectAreaStart();
834 Address end = p->AllocationTop();
835 while (cur < end) {
836 HeapObject* obj = HeapObject::FromAddress(cur);
837 Address next = cur + obj->Size();
838 if ((cur <= addr) && (addr < next)) return obj;
839 cur = next;
840 }
841
842 UNREACHABLE();
843 return Failure::Exception();
844}
845
846
847bool PagedSpace::IsUsed(Page* page) {
848 PageIterator it(this, PageIterator::PAGES_IN_USE);
849 while (it.has_next()) {
850 if (page == it.next()) return true;
851 }
852 return false;
853}
854
855
856void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) {
857 alloc_info->top = p->ObjectAreaStart();
858 alloc_info->limit = p->ObjectAreaEnd();
859 ASSERT(alloc_info->VerifyPagedAllocation());
860}
861
862
863void PagedSpace::MCResetRelocationInfo() {
864 // Set page indexes.
865 int i = 0;
866 PageIterator it(this, PageIterator::ALL_PAGES);
867 while (it.has_next()) {
868 Page* p = it.next();
869 p->mc_page_index = i++;
870 }
871
872 // Set mc_forwarding_info_ to the first page in the space.
873 SetAllocationInfo(&mc_forwarding_info_, first_page_);
874 // All the bytes in the space are 'available'. We will rediscover
875 // allocated and wasted bytes during GC.
876 accounting_stats_.Reset();
877}
878
879
880int PagedSpace::MCSpaceOffsetForAddress(Address addr) {
881#ifdef DEBUG
882 // The Contains function considers the address at the beginning of a
883 // page in the page, MCSpaceOffsetForAddress considers it is in the
884 // previous page.
885 if (Page::IsAlignedToPageSize(addr)) {
886 ASSERT(Contains(addr - kPointerSize));
887 } else {
888 ASSERT(Contains(addr));
889 }
890#endif
891
892 // If addr is at the end of a page, it belongs to previous page
893 Page* p = Page::IsAlignedToPageSize(addr)
894 ? Page::FromAllocationTop(addr)
895 : Page::FromAddress(addr);
896 int index = p->mc_page_index;
897 return (index * Page::kPageSize) + p->Offset(addr);
898}
899
900
901// Slow case for reallocating and promoting objects during a compacting
902// collection. This function is not space-specific.
903HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) {
904 Page* current_page = TopPageOf(mc_forwarding_info_);
905 if (!current_page->next_page()->is_valid()) {
906 if (!Expand(current_page)) {
907 return NULL;
908 }
909 }
910
911 // There are surely more pages in the space now.
912 ASSERT(current_page->next_page()->is_valid());
913 // We do not add the top of page block for current page to the space's
914 // free list---the block may contain live objects so we cannot write
915 // bookkeeping information to it. Instead, we will recover top of page
916 // blocks when we move objects to their new locations.
917 //
918 // We do however write the allocation pointer to the page. The encoding
919 // of forwarding addresses is as an offset in terms of live bytes, so we
920 // need quick access to the allocation top of each page to decode
921 // forwarding addresses.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100922 current_page->SetAllocationWatermark(mc_forwarding_info_.top);
923 current_page->next_page()->InvalidateWatermark(true);
Steve Blocka7e24c12009-10-30 11:49:00 +0000924 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
925 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
926}
927
928
929bool PagedSpace::Expand(Page* last_page) {
930 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
931 ASSERT(Capacity() % Page::kObjectAreaSize == 0);
932
933 if (Capacity() == max_capacity_) return false;
934
935 ASSERT(Capacity() < max_capacity_);
936 // Last page must be valid and its next page is invalid.
937 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
938
939 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize;
940 if (available_pages <= 0) return false;
941
942 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
943 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this);
944 if (!p->is_valid()) return false;
945
946 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
947 ASSERT(Capacity() <= max_capacity_);
948
949 MemoryAllocator::SetNextPage(last_page, p);
950
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100951 // Sequentially clear region marks of new pages and and cache the
Steve Blocka7e24c12009-10-30 11:49:00 +0000952 // new last page in the space.
953 while (p->is_valid()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100954 p->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +0000955 last_page_ = p;
956 p = p->next_page();
957 }
958
959 return true;
960}
961
962
963#ifdef DEBUG
964int PagedSpace::CountTotalPages() {
965 int count = 0;
966 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
967 count++;
968 }
969 return count;
970}
971#endif
972
973
974void PagedSpace::Shrink() {
Steve Block6ded16b2010-05-10 14:33:55 +0100975 if (!page_list_is_chunk_ordered_) {
976 // We can't shrink space if pages is not chunk-ordered
977 // (see comment for class MemoryAllocator for definition).
978 return;
979 }
980
Steve Blocka7e24c12009-10-30 11:49:00 +0000981 // Release half of free pages.
982 Page* top_page = AllocationTopPage();
983 ASSERT(top_page->is_valid());
984
985 // Count the number of pages we would like to free.
986 int pages_to_free = 0;
987 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
988 pages_to_free++;
989 }
990
991 // Free pages after top_page.
992 Page* p = MemoryAllocator::FreePages(top_page->next_page());
993 MemoryAllocator::SetNextPage(top_page, p);
994
995 // Find out how many pages we failed to free and update last_page_.
996 // Please note pages can only be freed in whole chunks.
997 last_page_ = top_page;
998 for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) {
999 pages_to_free--;
1000 last_page_ = p;
1001 }
1002
1003 accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize);
1004 ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize);
1005}
1006
1007
1008bool PagedSpace::EnsureCapacity(int capacity) {
1009 if (Capacity() >= capacity) return true;
1010
1011 // Start from the allocation top and loop to the last page in the space.
1012 Page* last_page = AllocationTopPage();
1013 Page* next_page = last_page->next_page();
1014 while (next_page->is_valid()) {
1015 last_page = MemoryAllocator::FindLastPageInSameChunk(next_page);
1016 next_page = last_page->next_page();
1017 }
1018
1019 // Expand the space until it has the required capacity or expansion fails.
1020 do {
1021 if (!Expand(last_page)) return false;
1022 ASSERT(last_page->next_page()->is_valid());
1023 last_page =
1024 MemoryAllocator::FindLastPageInSameChunk(last_page->next_page());
1025 } while (Capacity() < capacity);
1026
1027 return true;
1028}
1029
1030
1031#ifdef DEBUG
1032void PagedSpace::Print() { }
1033#endif
1034
1035
1036#ifdef DEBUG
1037// We do not assume that the PageIterator works, because it depends on the
1038// invariants we are checking during verification.
1039void PagedSpace::Verify(ObjectVisitor* visitor) {
1040 // The allocation pointer should be valid, and it should be in a page in the
1041 // space.
1042 ASSERT(allocation_info_.VerifyPagedAllocation());
1043 Page* top_page = Page::FromAllocationTop(allocation_info_.top);
1044 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this));
1045
1046 // Loop over all the pages.
1047 bool above_allocation_top = false;
1048 Page* current_page = first_page_;
1049 while (current_page->is_valid()) {
1050 if (above_allocation_top) {
1051 // We don't care what's above the allocation top.
1052 } else {
Steve Blocka7e24c12009-10-30 11:49:00 +00001053 Address top = current_page->AllocationTop();
1054 if (current_page == top_page) {
1055 ASSERT(top == allocation_info_.top);
1056 // The next page will be above the allocation top.
1057 above_allocation_top = true;
Steve Blocka7e24c12009-10-30 11:49:00 +00001058 }
1059
1060 // It should be packed with objects from the bottom to the top.
1061 Address current = current_page->ObjectAreaStart();
1062 while (current < top) {
1063 HeapObject* object = HeapObject::FromAddress(current);
1064
1065 // The first word should be a map, and we expect all map pointers to
1066 // be in map space.
1067 Map* map = object->map();
1068 ASSERT(map->IsMap());
1069 ASSERT(Heap::map_space()->Contains(map));
1070
1071 // Perform space-specific object verification.
1072 VerifyObject(object);
1073
1074 // The object itself should look OK.
1075 object->Verify();
1076
1077 // All the interior pointers should be contained in the heap and
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001078 // have page regions covering intergenerational references should be
1079 // marked dirty.
Steve Blocka7e24c12009-10-30 11:49:00 +00001080 int size = object->Size();
1081 object->IterateBody(map->instance_type(), size, visitor);
1082
1083 current += size;
1084 }
1085
1086 // The allocation pointer should not be in the middle of an object.
1087 ASSERT(current == top);
1088 }
1089
1090 current_page = current_page->next_page();
1091 }
1092}
1093#endif
1094
1095
1096// -----------------------------------------------------------------------------
1097// NewSpace implementation
1098
1099
1100bool NewSpace::Setup(Address start, int size) {
1101 // Setup new space based on the preallocated memory block defined by
1102 // start and size. The provided space is divided into two semi-spaces.
1103 // To support fast containment testing in the new space, the size of
1104 // this chunk must be a power of two and it must be aligned to its size.
1105 int initial_semispace_capacity = Heap::InitialSemiSpaceSize();
Steve Block3ce2e202009-11-05 08:53:23 +00001106 int maximum_semispace_capacity = Heap::MaxSemiSpaceSize();
Steve Blocka7e24c12009-10-30 11:49:00 +00001107
1108 ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);
1109 ASSERT(IsPowerOf2(maximum_semispace_capacity));
1110
1111 // Allocate and setup the histogram arrays if necessary.
1112#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1113 allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1114 promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
1115
1116#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \
1117 promoted_histogram_[name].set_name(#name);
1118 INSTANCE_TYPE_LIST(SET_NAME)
1119#undef SET_NAME
1120#endif
1121
Steve Block3ce2e202009-11-05 08:53:23 +00001122 ASSERT(size == 2 * Heap::ReservedSemiSpaceSize());
Steve Blocka7e24c12009-10-30 11:49:00 +00001123 ASSERT(IsAddressAligned(start, size, 0));
1124
1125 if (!to_space_.Setup(start,
1126 initial_semispace_capacity,
1127 maximum_semispace_capacity)) {
1128 return false;
1129 }
1130 if (!from_space_.Setup(start + maximum_semispace_capacity,
1131 initial_semispace_capacity,
1132 maximum_semispace_capacity)) {
1133 return false;
1134 }
1135
1136 start_ = start;
1137 address_mask_ = ~(size - 1);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001138 object_mask_ = address_mask_ | kHeapObjectTagMask;
Steve Blocka7e24c12009-10-30 11:49:00 +00001139 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1140
1141 allocation_info_.top = to_space_.low();
1142 allocation_info_.limit = to_space_.high();
1143 mc_forwarding_info_.top = NULL;
1144 mc_forwarding_info_.limit = NULL;
1145
1146 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1147 return true;
1148}
1149
1150
1151void NewSpace::TearDown() {
1152#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1153 if (allocated_histogram_) {
1154 DeleteArray(allocated_histogram_);
1155 allocated_histogram_ = NULL;
1156 }
1157 if (promoted_histogram_) {
1158 DeleteArray(promoted_histogram_);
1159 promoted_histogram_ = NULL;
1160 }
1161#endif
1162
1163 start_ = NULL;
1164 allocation_info_.top = NULL;
1165 allocation_info_.limit = NULL;
1166 mc_forwarding_info_.top = NULL;
1167 mc_forwarding_info_.limit = NULL;
1168
1169 to_space_.TearDown();
1170 from_space_.TearDown();
1171}
1172
1173
1174#ifdef ENABLE_HEAP_PROTECTION
1175
1176void NewSpace::Protect() {
1177 MemoryAllocator::Protect(ToSpaceLow(), Capacity());
1178 MemoryAllocator::Protect(FromSpaceLow(), Capacity());
1179}
1180
1181
1182void NewSpace::Unprotect() {
1183 MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(),
1184 to_space_.executable());
1185 MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(),
1186 from_space_.executable());
1187}
1188
1189#endif
1190
1191
1192void NewSpace::Flip() {
1193 SemiSpace tmp = from_space_;
1194 from_space_ = to_space_;
1195 to_space_ = tmp;
1196}
1197
1198
1199void NewSpace::Grow() {
1200 ASSERT(Capacity() < MaximumCapacity());
1201 if (to_space_.Grow()) {
1202 // Only grow from space if we managed to grow to space.
1203 if (!from_space_.Grow()) {
1204 // If we managed to grow to space but couldn't grow from space,
1205 // attempt to shrink to space.
1206 if (!to_space_.ShrinkTo(from_space_.Capacity())) {
1207 // We are in an inconsistent state because we could not
1208 // commit/uncommit memory from new space.
1209 V8::FatalProcessOutOfMemory("Failed to grow new space.");
1210 }
1211 }
1212 }
1213 allocation_info_.limit = to_space_.high();
1214 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1215}
1216
1217
1218void NewSpace::Shrink() {
1219 int new_capacity = Max(InitialCapacity(), 2 * Size());
Steve Blockd0582a62009-12-15 09:54:21 +00001220 int rounded_new_capacity =
1221 RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment()));
Steve Blocka7e24c12009-10-30 11:49:00 +00001222 if (rounded_new_capacity < Capacity() &&
1223 to_space_.ShrinkTo(rounded_new_capacity)) {
1224 // Only shrink from space if we managed to shrink to space.
1225 if (!from_space_.ShrinkTo(rounded_new_capacity)) {
1226 // If we managed to shrink to space but couldn't shrink from
1227 // space, attempt to grow to space again.
1228 if (!to_space_.GrowTo(from_space_.Capacity())) {
1229 // We are in an inconsistent state because we could not
1230 // commit/uncommit memory from new space.
1231 V8::FatalProcessOutOfMemory("Failed to shrink new space.");
1232 }
1233 }
1234 }
1235 allocation_info_.limit = to_space_.high();
1236 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1237}
1238
1239
1240void NewSpace::ResetAllocationInfo() {
1241 allocation_info_.top = to_space_.low();
1242 allocation_info_.limit = to_space_.high();
1243 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1244}
1245
1246
1247void NewSpace::MCResetRelocationInfo() {
1248 mc_forwarding_info_.top = from_space_.low();
1249 mc_forwarding_info_.limit = from_space_.high();
1250 ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);
1251}
1252
1253
1254void NewSpace::MCCommitRelocationInfo() {
1255 // Assumes that the spaces have been flipped so that mc_forwarding_info_ is
1256 // valid allocation info for the to space.
1257 allocation_info_.top = mc_forwarding_info_.top;
1258 allocation_info_.limit = to_space_.high();
1259 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1260}
1261
1262
1263#ifdef DEBUG
1264// We do not use the SemispaceIterator because verification doesn't assume
1265// that it works (it depends on the invariants we are checking).
1266void NewSpace::Verify() {
1267 // The allocation pointer should be in the space or at the very end.
1268 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1269
1270 // There should be objects packed in from the low address up to the
1271 // allocation pointer.
1272 Address current = to_space_.low();
1273 while (current < top()) {
1274 HeapObject* object = HeapObject::FromAddress(current);
1275
1276 // The first word should be a map, and we expect all map pointers to
1277 // be in map space.
1278 Map* map = object->map();
1279 ASSERT(map->IsMap());
1280 ASSERT(Heap::map_space()->Contains(map));
1281
1282 // The object should not be code or a map.
1283 ASSERT(!object->IsMap());
1284 ASSERT(!object->IsCode());
1285
1286 // The object itself should look OK.
1287 object->Verify();
1288
1289 // All the interior pointers should be contained in the heap.
1290 VerifyPointersVisitor visitor;
1291 int size = object->Size();
1292 object->IterateBody(map->instance_type(), size, &visitor);
1293
1294 current += size;
1295 }
1296
1297 // The allocation pointer should not be in the middle of an object.
1298 ASSERT(current == top());
1299}
1300#endif
1301
1302
1303bool SemiSpace::Commit() {
1304 ASSERT(!is_committed());
1305 if (!MemoryAllocator::CommitBlock(start_, capacity_, executable())) {
1306 return false;
1307 }
1308 committed_ = true;
1309 return true;
1310}
1311
1312
1313bool SemiSpace::Uncommit() {
1314 ASSERT(is_committed());
1315 if (!MemoryAllocator::UncommitBlock(start_, capacity_)) {
1316 return false;
1317 }
1318 committed_ = false;
1319 return true;
1320}
1321
1322
1323// -----------------------------------------------------------------------------
1324// SemiSpace implementation
1325
1326bool SemiSpace::Setup(Address start,
1327 int initial_capacity,
1328 int maximum_capacity) {
1329 // Creates a space in the young generation. The constructor does not
1330 // allocate memory from the OS. A SemiSpace is given a contiguous chunk of
1331 // memory of size 'capacity' when set up, and does not grow or shrink
1332 // otherwise. In the mark-compact collector, the memory region of the from
1333 // space is used as the marking stack. It requires contiguous memory
1334 // addresses.
1335 initial_capacity_ = initial_capacity;
1336 capacity_ = initial_capacity;
1337 maximum_capacity_ = maximum_capacity;
1338 committed_ = false;
1339
1340 start_ = start;
1341 address_mask_ = ~(maximum_capacity - 1);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001342 object_mask_ = address_mask_ | kHeapObjectTagMask;
Steve Blocka7e24c12009-10-30 11:49:00 +00001343 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1344 age_mark_ = start_;
1345
1346 return Commit();
1347}
1348
1349
1350void SemiSpace::TearDown() {
1351 start_ = NULL;
1352 capacity_ = 0;
1353}
1354
1355
1356bool SemiSpace::Grow() {
1357 // Double the semispace size but only up to maximum capacity.
1358 int maximum_extra = maximum_capacity_ - capacity_;
Steve Blockd0582a62009-12-15 09:54:21 +00001359 int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())),
Steve Blocka7e24c12009-10-30 11:49:00 +00001360 maximum_extra);
1361 if (!MemoryAllocator::CommitBlock(high(), extra, executable())) {
1362 return false;
1363 }
1364 capacity_ += extra;
1365 return true;
1366}
1367
1368
1369bool SemiSpace::GrowTo(int new_capacity) {
1370 ASSERT(new_capacity <= maximum_capacity_);
1371 ASSERT(new_capacity > capacity_);
1372 size_t delta = new_capacity - capacity_;
1373 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1374 if (!MemoryAllocator::CommitBlock(high(), delta, executable())) {
1375 return false;
1376 }
1377 capacity_ = new_capacity;
1378 return true;
1379}
1380
1381
1382bool SemiSpace::ShrinkTo(int new_capacity) {
1383 ASSERT(new_capacity >= initial_capacity_);
1384 ASSERT(new_capacity < capacity_);
1385 size_t delta = capacity_ - new_capacity;
1386 ASSERT(IsAligned(delta, OS::AllocateAlignment()));
1387 if (!MemoryAllocator::UncommitBlock(high() - delta, delta)) {
1388 return false;
1389 }
1390 capacity_ = new_capacity;
1391 return true;
1392}
1393
1394
1395#ifdef DEBUG
1396void SemiSpace::Print() { }
1397
1398
1399void SemiSpace::Verify() { }
1400#endif
1401
1402
1403// -----------------------------------------------------------------------------
1404// SemiSpaceIterator implementation.
1405SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
1406 Initialize(space, space->bottom(), space->top(), NULL);
1407}
1408
1409
1410SemiSpaceIterator::SemiSpaceIterator(NewSpace* space,
1411 HeapObjectCallback size_func) {
1412 Initialize(space, space->bottom(), space->top(), size_func);
1413}
1414
1415
1416SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) {
1417 Initialize(space, start, space->top(), NULL);
1418}
1419
1420
1421void SemiSpaceIterator::Initialize(NewSpace* space, Address start,
1422 Address end,
1423 HeapObjectCallback size_func) {
1424 ASSERT(space->ToSpaceContains(start));
1425 ASSERT(space->ToSpaceLow() <= end
1426 && end <= space->ToSpaceHigh());
1427 space_ = &space->to_space_;
1428 current_ = start;
1429 limit_ = end;
1430 size_func_ = size_func;
1431}
1432
1433
1434#ifdef DEBUG
1435// A static array of histogram info for each type.
1436static HistogramInfo heap_histograms[LAST_TYPE+1];
1437static JSObject::SpillInformation js_spill_information;
1438
1439// heap_histograms is shared, always clear it before using it.
1440static void ClearHistograms() {
1441 // We reset the name each time, though it hasn't changed.
1442#define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name);
1443 INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
1444#undef DEF_TYPE_NAME
1445
1446#define CLEAR_HISTOGRAM(name) heap_histograms[name].clear();
1447 INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
1448#undef CLEAR_HISTOGRAM
1449
1450 js_spill_information.Clear();
1451}
1452
1453
1454static int code_kind_statistics[Code::NUMBER_OF_KINDS];
1455
1456
1457static void ClearCodeKindStatistics() {
1458 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1459 code_kind_statistics[i] = 0;
1460 }
1461}
1462
1463
1464static void ReportCodeKindStatistics() {
Steve Block6ded16b2010-05-10 14:33:55 +01001465 const char* table[Code::NUMBER_OF_KINDS] = { NULL };
Steve Blocka7e24c12009-10-30 11:49:00 +00001466
1467#define CASE(name) \
1468 case Code::name: table[Code::name] = #name; \
1469 break
1470
1471 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1472 switch (static_cast<Code::Kind>(i)) {
1473 CASE(FUNCTION);
1474 CASE(STUB);
1475 CASE(BUILTIN);
1476 CASE(LOAD_IC);
1477 CASE(KEYED_LOAD_IC);
1478 CASE(STORE_IC);
1479 CASE(KEYED_STORE_IC);
1480 CASE(CALL_IC);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001481 CASE(KEYED_CALL_IC);
Steve Block6ded16b2010-05-10 14:33:55 +01001482 CASE(BINARY_OP_IC);
Steve Blocka7e24c12009-10-30 11:49:00 +00001483 }
1484 }
1485
1486#undef CASE
1487
1488 PrintF("\n Code kind histograms: \n");
1489 for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) {
1490 if (code_kind_statistics[i] > 0) {
1491 PrintF(" %-20s: %10d bytes\n", table[i], code_kind_statistics[i]);
1492 }
1493 }
1494 PrintF("\n");
1495}
1496
1497
1498static int CollectHistogramInfo(HeapObject* obj) {
1499 InstanceType type = obj->map()->instance_type();
1500 ASSERT(0 <= type && type <= LAST_TYPE);
1501 ASSERT(heap_histograms[type].name() != NULL);
1502 heap_histograms[type].increment_number(1);
1503 heap_histograms[type].increment_bytes(obj->Size());
1504
1505 if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
1506 JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information);
1507 }
1508
1509 return obj->Size();
1510}
1511
1512
1513static void ReportHistogram(bool print_spill) {
1514 PrintF("\n Object Histogram:\n");
1515 for (int i = 0; i <= LAST_TYPE; i++) {
1516 if (heap_histograms[i].number() > 0) {
Steve Block6ded16b2010-05-10 14:33:55 +01001517 PrintF(" %-34s%10d (%10d bytes)\n",
Steve Blocka7e24c12009-10-30 11:49:00 +00001518 heap_histograms[i].name(),
1519 heap_histograms[i].number(),
1520 heap_histograms[i].bytes());
1521 }
1522 }
1523 PrintF("\n");
1524
1525 // Summarize string types.
1526 int string_number = 0;
1527 int string_bytes = 0;
1528#define INCREMENT(type, size, name, camel_name) \
1529 string_number += heap_histograms[type].number(); \
1530 string_bytes += heap_histograms[type].bytes();
1531 STRING_TYPE_LIST(INCREMENT)
1532#undef INCREMENT
1533 if (string_number > 0) {
Steve Block6ded16b2010-05-10 14:33:55 +01001534 PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
Steve Blocka7e24c12009-10-30 11:49:00 +00001535 string_bytes);
1536 }
1537
1538 if (FLAG_collect_heap_spill_statistics && print_spill) {
1539 js_spill_information.Print();
1540 }
1541}
1542#endif // DEBUG
1543
1544
1545// Support for statistics gathering for --heap-stats and --log-gc.
1546#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1547void NewSpace::ClearHistograms() {
1548 for (int i = 0; i <= LAST_TYPE; i++) {
1549 allocated_histogram_[i].clear();
1550 promoted_histogram_[i].clear();
1551 }
1552}
1553
1554// Because the copying collector does not touch garbage objects, we iterate
1555// the new space before a collection to get a histogram of allocated objects.
1556// This only happens (1) when compiled with DEBUG and the --heap-stats flag is
1557// set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc
1558// flag is set.
1559void NewSpace::CollectStatistics() {
1560 ClearHistograms();
1561 SemiSpaceIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00001562 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
1563 RecordAllocation(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00001564}
1565
1566
1567#ifdef ENABLE_LOGGING_AND_PROFILING
1568static void DoReportStatistics(HistogramInfo* info, const char* description) {
1569 LOG(HeapSampleBeginEvent("NewSpace", description));
1570 // Lump all the string types together.
1571 int string_number = 0;
1572 int string_bytes = 0;
1573#define INCREMENT(type, size, name, camel_name) \
1574 string_number += info[type].number(); \
1575 string_bytes += info[type].bytes();
1576 STRING_TYPE_LIST(INCREMENT)
1577#undef INCREMENT
1578 if (string_number > 0) {
1579 LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
1580 }
1581
1582 // Then do the other types.
1583 for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
1584 if (info[i].number() > 0) {
1585 LOG(HeapSampleItemEvent(info[i].name(), info[i].number(),
1586 info[i].bytes()));
1587 }
1588 }
1589 LOG(HeapSampleEndEvent("NewSpace", description));
1590}
1591#endif // ENABLE_LOGGING_AND_PROFILING
1592
1593
1594void NewSpace::ReportStatistics() {
1595#ifdef DEBUG
1596 if (FLAG_heap_stats) {
1597 float pct = static_cast<float>(Available()) / Capacity();
1598 PrintF(" capacity: %d, available: %d, %%%d\n",
1599 Capacity(), Available(), static_cast<int>(pct*100));
1600 PrintF("\n Object Histogram:\n");
1601 for (int i = 0; i <= LAST_TYPE; i++) {
1602 if (allocated_histogram_[i].number() > 0) {
Steve Block6ded16b2010-05-10 14:33:55 +01001603 PrintF(" %-34s%10d (%10d bytes)\n",
Steve Blocka7e24c12009-10-30 11:49:00 +00001604 allocated_histogram_[i].name(),
1605 allocated_histogram_[i].number(),
1606 allocated_histogram_[i].bytes());
1607 }
1608 }
1609 PrintF("\n");
1610 }
1611#endif // DEBUG
1612
1613#ifdef ENABLE_LOGGING_AND_PROFILING
1614 if (FLAG_log_gc) {
1615 DoReportStatistics(allocated_histogram_, "allocated");
1616 DoReportStatistics(promoted_histogram_, "promoted");
1617 }
1618#endif // ENABLE_LOGGING_AND_PROFILING
1619}
1620
1621
1622void NewSpace::RecordAllocation(HeapObject* obj) {
1623 InstanceType type = obj->map()->instance_type();
1624 ASSERT(0 <= type && type <= LAST_TYPE);
1625 allocated_histogram_[type].increment_number(1);
1626 allocated_histogram_[type].increment_bytes(obj->Size());
1627}
1628
1629
1630void NewSpace::RecordPromotion(HeapObject* obj) {
1631 InstanceType type = obj->map()->instance_type();
1632 ASSERT(0 <= type && type <= LAST_TYPE);
1633 promoted_histogram_[type].increment_number(1);
1634 promoted_histogram_[type].increment_bytes(obj->Size());
1635}
1636#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1637
1638
1639// -----------------------------------------------------------------------------
1640// Free lists for old object spaces implementation
1641
1642void FreeListNode::set_size(int size_in_bytes) {
1643 ASSERT(size_in_bytes > 0);
1644 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1645
1646 // We write a map and possibly size information to the block. If the block
1647 // is big enough to be a ByteArray with at least one extra word (the next
1648 // pointer), we set its map to be the byte array map and its size to an
1649 // appropriate array length for the desired size from HeapObject::Size().
1650 // If the block is too small (eg, one or two words), to hold both a size
1651 // field and a next pointer, we give it a filler map that gives it the
1652 // correct size.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001653 if (size_in_bytes > ByteArray::kHeaderSize) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001654 set_map(Heap::raw_unchecked_byte_array_map());
Steve Blockd0582a62009-12-15 09:54:21 +00001655 // Can't use ByteArray::cast because it fails during deserialization.
1656 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
1657 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
Steve Blocka7e24c12009-10-30 11:49:00 +00001658 } else if (size_in_bytes == kPointerSize) {
1659 set_map(Heap::raw_unchecked_one_pointer_filler_map());
1660 } else if (size_in_bytes == 2 * kPointerSize) {
1661 set_map(Heap::raw_unchecked_two_pointer_filler_map());
1662 } else {
1663 UNREACHABLE();
1664 }
Steve Blockd0582a62009-12-15 09:54:21 +00001665 // We would like to ASSERT(Size() == size_in_bytes) but this would fail during
1666 // deserialization because the byte array map is not done yet.
Steve Blocka7e24c12009-10-30 11:49:00 +00001667}
1668
1669
1670Address FreeListNode::next() {
Steve Block3ce2e202009-11-05 08:53:23 +00001671 ASSERT(IsFreeListNode(this));
Steve Blocka7e24c12009-10-30 11:49:00 +00001672 if (map() == Heap::raw_unchecked_byte_array_map()) {
1673 ASSERT(Size() >= kNextOffset + kPointerSize);
1674 return Memory::Address_at(address() + kNextOffset);
1675 } else {
1676 return Memory::Address_at(address() + kPointerSize);
1677 }
1678}
1679
1680
1681void FreeListNode::set_next(Address next) {
Steve Block3ce2e202009-11-05 08:53:23 +00001682 ASSERT(IsFreeListNode(this));
Steve Blocka7e24c12009-10-30 11:49:00 +00001683 if (map() == Heap::raw_unchecked_byte_array_map()) {
1684 ASSERT(Size() >= kNextOffset + kPointerSize);
1685 Memory::Address_at(address() + kNextOffset) = next;
1686 } else {
1687 Memory::Address_at(address() + kPointerSize) = next;
1688 }
1689}
1690
1691
1692OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) {
1693 Reset();
1694}
1695
1696
1697void OldSpaceFreeList::Reset() {
1698 available_ = 0;
1699 for (int i = 0; i < kFreeListsLength; i++) {
1700 free_[i].head_node_ = NULL;
1701 }
1702 needs_rebuild_ = false;
1703 finger_ = kHead;
1704 free_[kHead].next_size_ = kEnd;
1705}
1706
1707
1708void OldSpaceFreeList::RebuildSizeList() {
1709 ASSERT(needs_rebuild_);
1710 int cur = kHead;
1711 for (int i = cur + 1; i < kFreeListsLength; i++) {
1712 if (free_[i].head_node_ != NULL) {
1713 free_[cur].next_size_ = i;
1714 cur = i;
1715 }
1716 }
1717 free_[cur].next_size_ = kEnd;
1718 needs_rebuild_ = false;
1719}
1720
1721
1722int OldSpaceFreeList::Free(Address start, int size_in_bytes) {
1723#ifdef DEBUG
Leon Clarke4515c472010-02-03 11:58:03 +00001724 MemoryAllocator::ZapBlock(start, size_in_bytes);
Steve Blocka7e24c12009-10-30 11:49:00 +00001725#endif
1726 FreeListNode* node = FreeListNode::FromAddress(start);
1727 node->set_size(size_in_bytes);
1728
1729 // We don't use the freelists in compacting mode. This makes it more like a
1730 // GC that only has mark-sweep-compact and doesn't have a mark-sweep
1731 // collector.
1732 if (FLAG_always_compact) {
1733 return size_in_bytes;
1734 }
1735
1736 // Early return to drop too-small blocks on the floor (one or two word
1737 // blocks cannot hold a map pointer, a size field, and a pointer to the
1738 // next block in the free list).
1739 if (size_in_bytes < kMinBlockSize) {
1740 return size_in_bytes;
1741 }
1742
1743 // Insert other blocks at the head of an exact free list.
1744 int index = size_in_bytes >> kPointerSizeLog2;
1745 node->set_next(free_[index].head_node_);
1746 free_[index].head_node_ = node->address();
1747 available_ += size_in_bytes;
1748 needs_rebuild_ = true;
1749 return 0;
1750}
1751
1752
1753Object* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) {
1754 ASSERT(0 < size_in_bytes);
1755 ASSERT(size_in_bytes <= kMaxBlockSize);
1756 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1757
1758 if (needs_rebuild_) RebuildSizeList();
1759 int index = size_in_bytes >> kPointerSizeLog2;
1760 // Check for a perfect fit.
1761 if (free_[index].head_node_ != NULL) {
1762 FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_);
1763 // If this was the last block of its size, remove the size.
1764 if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index);
1765 available_ -= size_in_bytes;
1766 *wasted_bytes = 0;
1767 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1768 return node;
1769 }
1770 // Search the size list for the best fit.
1771 int prev = finger_ < index ? finger_ : kHead;
1772 int cur = FindSize(index, &prev);
1773 ASSERT(index < cur);
1774 if (cur == kEnd) {
1775 // No large enough size in list.
1776 *wasted_bytes = 0;
1777 return Failure::RetryAfterGC(size_in_bytes, owner_);
1778 }
1779 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1780 int rem = cur - index;
1781 int rem_bytes = rem << kPointerSizeLog2;
1782 FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_);
1783 ASSERT(cur_node->Size() == (cur << kPointerSizeLog2));
1784 FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ +
1785 size_in_bytes);
1786 // Distinguish the cases prev < rem < cur and rem <= prev < cur
1787 // to avoid many redundant tests and calls to Insert/RemoveSize.
1788 if (prev < rem) {
1789 // Simple case: insert rem between prev and cur.
1790 finger_ = prev;
1791 free_[prev].next_size_ = rem;
1792 // If this was the last block of size cur, remove the size.
1793 if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
1794 free_[rem].next_size_ = free_[cur].next_size_;
1795 } else {
1796 free_[rem].next_size_ = cur;
1797 }
1798 // Add the remainder block.
1799 rem_node->set_size(rem_bytes);
1800 rem_node->set_next(free_[rem].head_node_);
1801 free_[rem].head_node_ = rem_node->address();
1802 } else {
1803 // If this was the last block of size cur, remove the size.
1804 if ((free_[cur].head_node_ = cur_node->next()) == NULL) {
1805 finger_ = prev;
1806 free_[prev].next_size_ = free_[cur].next_size_;
1807 }
1808 if (rem_bytes < kMinBlockSize) {
1809 // Too-small remainder is wasted.
1810 rem_node->set_size(rem_bytes);
1811 available_ -= size_in_bytes + rem_bytes;
1812 *wasted_bytes = rem_bytes;
1813 return cur_node;
1814 }
1815 // Add the remainder block and, if needed, insert its size.
1816 rem_node->set_size(rem_bytes);
1817 rem_node->set_next(free_[rem].head_node_);
1818 free_[rem].head_node_ = rem_node->address();
1819 if (rem_node->next() == NULL) InsertSize(rem);
1820 }
1821 available_ -= size_in_bytes;
1822 *wasted_bytes = 0;
1823 return cur_node;
1824}
1825
1826
1827#ifdef DEBUG
1828bool OldSpaceFreeList::Contains(FreeListNode* node) {
1829 for (int i = 0; i < kFreeListsLength; i++) {
1830 Address cur_addr = free_[i].head_node_;
1831 while (cur_addr != NULL) {
1832 FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr);
1833 if (cur_node == node) return true;
1834 cur_addr = cur_node->next();
1835 }
1836 }
1837 return false;
1838}
1839#endif
1840
1841
1842FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size)
1843 : owner_(owner), object_size_(object_size) {
1844 Reset();
1845}
1846
1847
1848void FixedSizeFreeList::Reset() {
1849 available_ = 0;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001850 head_ = tail_ = NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +00001851}
1852
1853
1854void FixedSizeFreeList::Free(Address start) {
1855#ifdef DEBUG
Leon Clarke4515c472010-02-03 11:58:03 +00001856 MemoryAllocator::ZapBlock(start, object_size_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001857#endif
Leon Clarkee46be812010-01-19 14:06:41 +00001858 // We only use the freelists with mark-sweep.
1859 ASSERT(!MarkCompactCollector::IsCompacting());
Steve Blocka7e24c12009-10-30 11:49:00 +00001860 FreeListNode* node = FreeListNode::FromAddress(start);
1861 node->set_size(object_size_);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001862 node->set_next(NULL);
1863 if (head_ == NULL) {
1864 tail_ = head_ = node->address();
1865 } else {
1866 FreeListNode::FromAddress(tail_)->set_next(node->address());
1867 tail_ = node->address();
1868 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001869 available_ += object_size_;
1870}
1871
1872
1873Object* FixedSizeFreeList::Allocate() {
1874 if (head_ == NULL) {
1875 return Failure::RetryAfterGC(object_size_, owner_);
1876 }
1877
1878 ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep.
1879 FreeListNode* node = FreeListNode::FromAddress(head_);
1880 head_ = node->next();
1881 available_ -= object_size_;
1882 return node;
1883}
1884
1885
1886// -----------------------------------------------------------------------------
1887// OldSpace implementation
1888
1889void OldSpace::PrepareForMarkCompact(bool will_compact) {
Steve Block6ded16b2010-05-10 14:33:55 +01001890 // Call prepare of the super class.
1891 PagedSpace::PrepareForMarkCompact(will_compact);
1892
Steve Blocka7e24c12009-10-30 11:49:00 +00001893 if (will_compact) {
1894 // Reset relocation info. During a compacting collection, everything in
1895 // the space is considered 'available' and we will rediscover live data
1896 // and waste during the collection.
1897 MCResetRelocationInfo();
1898 ASSERT(Available() == Capacity());
1899 } else {
1900 // During a non-compacting collection, everything below the linear
1901 // allocation pointer is considered allocated (everything above is
1902 // available) and we will rediscover available and wasted bytes during
1903 // the collection.
1904 accounting_stats_.AllocateBytes(free_list_.available());
1905 accounting_stats_.FillWastedBytes(Waste());
1906 }
1907
1908 // Clear the free list before a full GC---it will be rebuilt afterward.
1909 free_list_.Reset();
1910}
1911
1912
1913void OldSpace::MCCommitRelocationInfo() {
1914 // Update fast allocation info.
1915 allocation_info_.top = mc_forwarding_info_.top;
1916 allocation_info_.limit = mc_forwarding_info_.limit;
1917 ASSERT(allocation_info_.VerifyPagedAllocation());
1918
1919 // The space is compacted and we haven't yet built free lists or
1920 // wasted any space.
1921 ASSERT(Waste() == 0);
1922 ASSERT(AvailableFree() == 0);
1923
1924 // Build the free list for the space.
1925 int computed_size = 0;
1926 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
1927 while (it.has_next()) {
1928 Page* p = it.next();
1929 // Space below the relocation pointer is allocated.
Steve Blockd0582a62009-12-15 09:54:21 +00001930 computed_size +=
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001931 static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart());
Steve Blocka7e24c12009-10-30 11:49:00 +00001932 if (it.has_next()) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001933 // Free the space at the top of the page.
Steve Blockd0582a62009-12-15 09:54:21 +00001934 int extra_size =
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001935 static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark());
Steve Blocka7e24c12009-10-30 11:49:00 +00001936 if (extra_size > 0) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001937 int wasted_bytes = free_list_.Free(p->AllocationWatermark(),
1938 extra_size);
Steve Blocka7e24c12009-10-30 11:49:00 +00001939 // The bytes we have just "freed" to add to the free list were
1940 // already accounted as available.
1941 accounting_stats_.WasteBytes(wasted_bytes);
1942 }
1943 }
1944 }
1945
1946 // Make sure the computed size - based on the used portion of the pages in
1947 // use - matches the size obtained while computing forwarding addresses.
1948 ASSERT(computed_size == Size());
1949}
1950
1951
Leon Clarkee46be812010-01-19 14:06:41 +00001952bool NewSpace::ReserveSpace(int bytes) {
1953 // We can't reliably unpack a partial snapshot that needs more new space
1954 // space than the minimum NewSpace size.
1955 ASSERT(bytes <= InitialCapacity());
1956 Address limit = allocation_info_.limit;
1957 Address top = allocation_info_.top;
1958 return limit - top >= bytes;
1959}
1960
1961
Steve Block6ded16b2010-05-10 14:33:55 +01001962void PagedSpace::FreePages(Page* prev, Page* last) {
1963 if (last == AllocationTopPage()) {
1964 // Pages are already at the end of used pages.
1965 return;
1966 }
1967
1968 Page* first = NULL;
1969
1970 // Remove pages from the list.
1971 if (prev == NULL) {
1972 first = first_page_;
1973 first_page_ = last->next_page();
1974 } else {
1975 first = prev->next_page();
1976 MemoryAllocator::SetNextPage(prev, last->next_page());
1977 }
1978
1979 // Attach it after the last page.
1980 MemoryAllocator::SetNextPage(last_page_, first);
1981 last_page_ = last;
1982 MemoryAllocator::SetNextPage(last, NULL);
1983
1984 // Clean them up.
1985 do {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001986 first->InvalidateWatermark(true);
1987 first->SetAllocationWatermark(first->ObjectAreaStart());
1988 first->SetCachedAllocationWatermark(first->ObjectAreaStart());
1989 first->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Block6ded16b2010-05-10 14:33:55 +01001990 first = first->next_page();
1991 } while (first != NULL);
1992
1993 // Order of pages in this space might no longer be consistent with
1994 // order of pages in chunks.
1995 page_list_is_chunk_ordered_ = false;
1996}
1997
1998
1999void PagedSpace::PrepareForMarkCompact(bool will_compact) {
2000 if (will_compact) {
2001 // MarkCompact collector relies on WAS_IN_USE_BEFORE_MC page flag
2002 // to skip unused pages. Update flag value for all pages in space.
2003 PageIterator all_pages_iterator(this, PageIterator::ALL_PAGES);
2004 Page* last_in_use = AllocationTopPage();
2005 bool in_use = true;
2006
2007 while (all_pages_iterator.has_next()) {
2008 Page* p = all_pages_iterator.next();
2009 p->SetWasInUseBeforeMC(in_use);
2010 if (p == last_in_use) {
2011 // We passed a page containing allocation top. All consequent
2012 // pages are not used.
2013 in_use = false;
2014 }
2015 }
2016
2017 if (!page_list_is_chunk_ordered_) {
2018 Page* new_last_in_use = Page::FromAddress(NULL);
2019 MemoryAllocator::RelinkPageListInChunkOrder(this,
2020 &first_page_,
2021 &last_page_,
2022 &new_last_in_use);
2023 ASSERT(new_last_in_use->is_valid());
2024
2025 if (new_last_in_use != last_in_use) {
2026 // Current allocation top points to a page which is now in the middle
2027 // of page list. We should move allocation top forward to the new last
2028 // used page so various object iterators will continue to work properly.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002029 last_in_use->SetAllocationWatermark(last_in_use->AllocationTop());
Steve Block6ded16b2010-05-10 14:33:55 +01002030
2031 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) -
2032 last_in_use->AllocationTop());
2033
2034 if (size_in_bytes > 0) {
2035 // There is still some space left on this page. Create a fake
2036 // object which will occupy all free space on this page.
2037 // Otherwise iterators would not be able to scan this page
2038 // correctly.
2039
2040 Heap::CreateFillerObjectAt(last_in_use->AllocationTop(),
2041 size_in_bytes);
2042 }
2043
2044 // New last in use page was in the middle of the list before
2045 // sorting so it full.
2046 SetTop(new_last_in_use->AllocationTop());
2047
2048 ASSERT(AllocationTopPage() == new_last_in_use);
2049 ASSERT(AllocationTopPage()->WasInUseBeforeMC());
2050 }
2051
2052 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE);
2053 while (pages_in_use_iterator.has_next()) {
2054 Page* p = pages_in_use_iterator.next();
2055 if (!p->WasInUseBeforeMC()) {
2056 // Empty page is in the middle of a sequence of used pages.
2057 // Create a fake object which will occupy all free space on this page.
2058 // Otherwise iterators would not be able to scan this page correctly.
2059 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) -
2060 p->ObjectAreaStart());
2061
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002062 p->SetAllocationWatermark(p->ObjectAreaStart());
Steve Block6ded16b2010-05-10 14:33:55 +01002063 Heap::CreateFillerObjectAt(p->ObjectAreaStart(), size_in_bytes);
2064 }
2065 }
2066
2067 page_list_is_chunk_ordered_ = true;
2068 }
2069 }
2070}
2071
2072
Leon Clarkee46be812010-01-19 14:06:41 +00002073bool PagedSpace::ReserveSpace(int bytes) {
2074 Address limit = allocation_info_.limit;
2075 Address top = allocation_info_.top;
2076 if (limit - top >= bytes) return true;
2077
2078 // There wasn't enough space in the current page. Lets put the rest
2079 // of the page on the free list and start a fresh page.
2080 PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_));
2081
2082 Page* reserved_page = TopPageOf(allocation_info_);
2083 int bytes_left_to_reserve = bytes;
2084 while (bytes_left_to_reserve > 0) {
2085 if (!reserved_page->next_page()->is_valid()) {
2086 if (Heap::OldGenerationAllocationLimitReached()) return false;
2087 Expand(reserved_page);
2088 }
2089 bytes_left_to_reserve -= Page::kPageSize;
2090 reserved_page = reserved_page->next_page();
2091 if (!reserved_page->is_valid()) return false;
2092 }
2093 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002094 TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true);
Leon Clarkee46be812010-01-19 14:06:41 +00002095 SetAllocationInfo(&allocation_info_,
2096 TopPageOf(allocation_info_)->next_page());
2097 return true;
2098}
2099
2100
2101// You have to call this last, since the implementation from PagedSpace
2102// doesn't know that memory was 'promised' to large object space.
2103bool LargeObjectSpace::ReserveSpace(int bytes) {
2104 return Heap::OldGenerationSpaceAvailable() >= bytes;
2105}
2106
2107
Steve Blocka7e24c12009-10-30 11:49:00 +00002108// Slow case for normal allocation. Try in order: (1) allocate in the next
2109// page in the space, (2) allocate off the space's free list, (3) expand the
2110// space, (4) fail.
2111HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) {
2112 // Linear allocation in this space has failed. If there is another page
2113 // in the space, move to that page and allocate there. This allocation
2114 // should succeed (size_in_bytes should not be greater than a page's
2115 // object area size).
2116 Page* current_page = TopPageOf(allocation_info_);
2117 if (current_page->next_page()->is_valid()) {
2118 return AllocateInNextPage(current_page, size_in_bytes);
2119 }
2120
Steve Blockd0582a62009-12-15 09:54:21 +00002121 // There is no next page in this space. Try free list allocation unless that
2122 // is currently forbidden.
2123 if (!Heap::linear_allocation()) {
2124 int wasted_bytes;
2125 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes);
2126 accounting_stats_.WasteBytes(wasted_bytes);
2127 if (!result->IsFailure()) {
2128 accounting_stats_.AllocateBytes(size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002129
2130 HeapObject* obj = HeapObject::cast(result);
2131 Page* p = Page::FromAddress(obj->address());
2132
2133 if (obj->address() >= p->AllocationWatermark()) {
2134 // There should be no hole between the allocation watermark
2135 // and allocated object address.
2136 // Memory above the allocation watermark was not swept and
2137 // might contain garbage pointers to new space.
2138 ASSERT(obj->address() == p->AllocationWatermark());
2139 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2140 }
2141
2142 return obj;
Steve Blockd0582a62009-12-15 09:54:21 +00002143 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002144 }
2145
2146 // Free list allocation failed and there is no next page. Fail if we have
2147 // hit the old generation size limit that should cause a garbage
2148 // collection.
2149 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2150 return NULL;
2151 }
2152
2153 // Try to expand the space and allocate in the new next page.
2154 ASSERT(!current_page->next_page()->is_valid());
2155 if (Expand(current_page)) {
2156 return AllocateInNextPage(current_page, size_in_bytes);
2157 }
2158
2159 // Finally, fail.
2160 return NULL;
2161}
2162
2163
Leon Clarkee46be812010-01-19 14:06:41 +00002164void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002165 current_page->SetAllocationWatermark(allocation_info_.top);
Steve Blockd0582a62009-12-15 09:54:21 +00002166 int free_size =
2167 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
Steve Blocka7e24c12009-10-30 11:49:00 +00002168 if (free_size > 0) {
2169 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
2170 accounting_stats_.WasteBytes(wasted_bytes);
2171 }
Leon Clarkee46be812010-01-19 14:06:41 +00002172}
2173
2174
2175void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002176 current_page->SetAllocationWatermark(allocation_info_.top);
Leon Clarkee46be812010-01-19 14:06:41 +00002177 int free_size =
2178 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
2179 // In the fixed space free list all the free list items have the right size.
2180 // We use up the rest of the page while preserving this invariant.
2181 while (free_size >= object_size_in_bytes_) {
2182 free_list_.Free(allocation_info_.top);
2183 allocation_info_.top += object_size_in_bytes_;
2184 free_size -= object_size_in_bytes_;
2185 accounting_stats_.WasteBytes(object_size_in_bytes_);
2186 }
2187}
2188
2189
2190// Add the block at the top of the page to the space's free list, set the
2191// allocation info to the next page (assumed to be one), and allocate
2192// linearly there.
2193HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
2194 int size_in_bytes) {
2195 ASSERT(current_page->next_page()->is_valid());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002196 Page* next_page = current_page->next_page();
2197 next_page->ClearGCFields();
Leon Clarkee46be812010-01-19 14:06:41 +00002198 PutRestOfCurrentPageOnFreeList(current_page);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002199 SetAllocationInfo(&allocation_info_, next_page);
Steve Blocka7e24c12009-10-30 11:49:00 +00002200 return AllocateLinearly(&allocation_info_, size_in_bytes);
2201}
2202
2203
2204#ifdef DEBUG
2205struct CommentStatistic {
2206 const char* comment;
2207 int size;
2208 int count;
2209 void Clear() {
2210 comment = NULL;
2211 size = 0;
2212 count = 0;
2213 }
2214};
2215
2216
2217// must be small, since an iteration is used for lookup
2218const int kMaxComments = 64;
2219static CommentStatistic comments_statistics[kMaxComments+1];
2220
2221
2222void PagedSpace::ReportCodeStatistics() {
2223 ReportCodeKindStatistics();
2224 PrintF("Code comment statistics (\" [ comment-txt : size/ "
2225 "count (average)\"):\n");
2226 for (int i = 0; i <= kMaxComments; i++) {
2227 const CommentStatistic& cs = comments_statistics[i];
2228 if (cs.size > 0) {
2229 PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count,
2230 cs.size/cs.count);
2231 }
2232 }
2233 PrintF("\n");
2234}
2235
2236
2237void PagedSpace::ResetCodeStatistics() {
2238 ClearCodeKindStatistics();
2239 for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear();
2240 comments_statistics[kMaxComments].comment = "Unknown";
2241 comments_statistics[kMaxComments].size = 0;
2242 comments_statistics[kMaxComments].count = 0;
2243}
2244
2245
2246// Adds comment to 'comment_statistics' table. Performance OK sa long as
2247// 'kMaxComments' is small
2248static void EnterComment(const char* comment, int delta) {
2249 // Do not count empty comments
2250 if (delta <= 0) return;
2251 CommentStatistic* cs = &comments_statistics[kMaxComments];
2252 // Search for a free or matching entry in 'comments_statistics': 'cs'
2253 // points to result.
2254 for (int i = 0; i < kMaxComments; i++) {
2255 if (comments_statistics[i].comment == NULL) {
2256 cs = &comments_statistics[i];
2257 cs->comment = comment;
2258 break;
2259 } else if (strcmp(comments_statistics[i].comment, comment) == 0) {
2260 cs = &comments_statistics[i];
2261 break;
2262 }
2263 }
2264 // Update entry for 'comment'
2265 cs->size += delta;
2266 cs->count += 1;
2267}
2268
2269
2270// Call for each nested comment start (start marked with '[ xxx', end marked
2271// with ']'. RelocIterator 'it' must point to a comment reloc info.
2272static void CollectCommentStatistics(RelocIterator* it) {
2273 ASSERT(!it->done());
2274 ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT);
2275 const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data());
2276 if (tmp[0] != '[') {
2277 // Not a nested comment; skip
2278 return;
2279 }
2280
2281 // Search for end of nested comment or a new nested comment
2282 const char* const comment_txt =
2283 reinterpret_cast<const char*>(it->rinfo()->data());
2284 const byte* prev_pc = it->rinfo()->pc();
2285 int flat_delta = 0;
2286 it->next();
2287 while (true) {
2288 // All nested comments must be terminated properly, and therefore exit
2289 // from loop.
2290 ASSERT(!it->done());
2291 if (it->rinfo()->rmode() == RelocInfo::COMMENT) {
2292 const char* const txt =
2293 reinterpret_cast<const char*>(it->rinfo()->data());
Steve Blockd0582a62009-12-15 09:54:21 +00002294 flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc);
Steve Blocka7e24c12009-10-30 11:49:00 +00002295 if (txt[0] == ']') break; // End of nested comment
2296 // A new comment
2297 CollectCommentStatistics(it);
2298 // Skip code that was covered with previous comment
2299 prev_pc = it->rinfo()->pc();
2300 }
2301 it->next();
2302 }
2303 EnterComment(comment_txt, flat_delta);
2304}
2305
2306
2307// Collects code size statistics:
2308// - by code kind
2309// - by code comment
2310void PagedSpace::CollectCodeStatistics() {
2311 HeapObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002312 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002313 if (obj->IsCode()) {
2314 Code* code = Code::cast(obj);
2315 code_kind_statistics[code->kind()] += code->Size();
2316 RelocIterator it(code);
2317 int delta = 0;
2318 const byte* prev_pc = code->instruction_start();
2319 while (!it.done()) {
2320 if (it.rinfo()->rmode() == RelocInfo::COMMENT) {
Steve Blockd0582a62009-12-15 09:54:21 +00002321 delta += static_cast<int>(it.rinfo()->pc() - prev_pc);
Steve Blocka7e24c12009-10-30 11:49:00 +00002322 CollectCommentStatistics(&it);
2323 prev_pc = it.rinfo()->pc();
2324 }
2325 it.next();
2326 }
2327
2328 ASSERT(code->instruction_start() <= prev_pc &&
Leon Clarkeac952652010-07-15 11:15:24 +01002329 prev_pc <= code->instruction_end());
2330 delta += static_cast<int>(code->instruction_end() - prev_pc);
Steve Blocka7e24c12009-10-30 11:49:00 +00002331 EnterComment("NoComment", delta);
2332 }
2333 }
2334}
2335
2336
2337void OldSpace::ReportStatistics() {
2338 int pct = Available() * 100 / Capacity();
2339 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2340 Capacity(), Waste(), Available(), pct);
2341
Steve Blocka7e24c12009-10-30 11:49:00 +00002342 ClearHistograms();
2343 HeapObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002344 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2345 CollectHistogramInfo(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00002346 ReportHistogram(true);
2347}
Steve Blocka7e24c12009-10-30 11:49:00 +00002348#endif
2349
2350// -----------------------------------------------------------------------------
2351// FixedSpace implementation
2352
2353void FixedSpace::PrepareForMarkCompact(bool will_compact) {
Steve Block6ded16b2010-05-10 14:33:55 +01002354 // Call prepare of the super class.
2355 PagedSpace::PrepareForMarkCompact(will_compact);
2356
Steve Blocka7e24c12009-10-30 11:49:00 +00002357 if (will_compact) {
2358 // Reset relocation info.
2359 MCResetRelocationInfo();
2360
2361 // During a compacting collection, everything in the space is considered
2362 // 'available' (set by the call to MCResetRelocationInfo) and we will
2363 // rediscover live and wasted bytes during the collection.
2364 ASSERT(Available() == Capacity());
2365 } else {
2366 // During a non-compacting collection, everything below the linear
2367 // allocation pointer except wasted top-of-page blocks is considered
2368 // allocated and we will rediscover available bytes during the
2369 // collection.
2370 accounting_stats_.AllocateBytes(free_list_.available());
2371 }
2372
2373 // Clear the free list before a full GC---it will be rebuilt afterward.
2374 free_list_.Reset();
2375}
2376
2377
2378void FixedSpace::MCCommitRelocationInfo() {
2379 // Update fast allocation info.
2380 allocation_info_.top = mc_forwarding_info_.top;
2381 allocation_info_.limit = mc_forwarding_info_.limit;
2382 ASSERT(allocation_info_.VerifyPagedAllocation());
2383
2384 // The space is compacted and we haven't yet wasted any space.
2385 ASSERT(Waste() == 0);
2386
2387 // Update allocation_top of each page in use and compute waste.
2388 int computed_size = 0;
2389 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2390 while (it.has_next()) {
2391 Page* page = it.next();
2392 Address page_top = page->AllocationTop();
Steve Blockd0582a62009-12-15 09:54:21 +00002393 computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
Steve Blocka7e24c12009-10-30 11:49:00 +00002394 if (it.has_next()) {
Steve Blockd0582a62009-12-15 09:54:21 +00002395 accounting_stats_.WasteBytes(
2396 static_cast<int>(page->ObjectAreaEnd() - page_top));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002397 page->SetAllocationWatermark(page_top);
Steve Blocka7e24c12009-10-30 11:49:00 +00002398 }
2399 }
2400
2401 // Make sure the computed size - based on the used portion of the
2402 // pages in use - matches the size we adjust during allocation.
2403 ASSERT(computed_size == Size());
2404}
2405
2406
2407// Slow case for normal allocation. Try in order: (1) allocate in the next
2408// page in the space, (2) allocate off the space's free list, (3) expand the
2409// space, (4) fail.
2410HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
2411 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2412 // Linear allocation in this space has failed. If there is another page
2413 // in the space, move to that page and allocate there. This allocation
2414 // should succeed.
2415 Page* current_page = TopPageOf(allocation_info_);
2416 if (current_page->next_page()->is_valid()) {
2417 return AllocateInNextPage(current_page, size_in_bytes);
2418 }
2419
Steve Blockd0582a62009-12-15 09:54:21 +00002420 // There is no next page in this space. Try free list allocation unless
2421 // that is currently forbidden. The fixed space free list implicitly assumes
2422 // that all free blocks are of the fixed size.
2423 if (!Heap::linear_allocation()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002424 Object* result = free_list_.Allocate();
2425 if (!result->IsFailure()) {
2426 accounting_stats_.AllocateBytes(size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002427 HeapObject* obj = HeapObject::cast(result);
2428 Page* p = Page::FromAddress(obj->address());
2429
2430 if (obj->address() >= p->AllocationWatermark()) {
2431 // There should be no hole between the allocation watermark
2432 // and allocated object address.
2433 // Memory above the allocation watermark was not swept and
2434 // might contain garbage pointers to new space.
2435 ASSERT(obj->address() == p->AllocationWatermark());
2436 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2437 }
2438
2439 return obj;
Steve Blocka7e24c12009-10-30 11:49:00 +00002440 }
2441 }
2442
2443 // Free list allocation failed and there is no next page. Fail if we have
2444 // hit the old generation size limit that should cause a garbage
2445 // collection.
2446 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2447 return NULL;
2448 }
2449
2450 // Try to expand the space and allocate in the new next page.
2451 ASSERT(!current_page->next_page()->is_valid());
2452 if (Expand(current_page)) {
2453 return AllocateInNextPage(current_page, size_in_bytes);
2454 }
2455
2456 // Finally, fail.
2457 return NULL;
2458}
2459
2460
2461// Move to the next page (there is assumed to be one) and allocate there.
2462// The top of page block is always wasted, because it is too small to hold a
2463// map.
2464HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
2465 int size_in_bytes) {
2466 ASSERT(current_page->next_page()->is_valid());
Steve Block6ded16b2010-05-10 14:33:55 +01002467 ASSERT(allocation_info_.top == PageAllocationLimit(current_page));
Steve Blocka7e24c12009-10-30 11:49:00 +00002468 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002469 Page* next_page = current_page->next_page();
2470 next_page->ClearGCFields();
2471 current_page->SetAllocationWatermark(allocation_info_.top);
Steve Blocka7e24c12009-10-30 11:49:00 +00002472 accounting_stats_.WasteBytes(page_extra_);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002473 SetAllocationInfo(&allocation_info_, next_page);
Steve Blocka7e24c12009-10-30 11:49:00 +00002474 return AllocateLinearly(&allocation_info_, size_in_bytes);
2475}
2476
2477
2478#ifdef DEBUG
2479void FixedSpace::ReportStatistics() {
2480 int pct = Available() * 100 / Capacity();
2481 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2482 Capacity(), Waste(), Available(), pct);
2483
Steve Blocka7e24c12009-10-30 11:49:00 +00002484 ClearHistograms();
2485 HeapObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002486 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2487 CollectHistogramInfo(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00002488 ReportHistogram(false);
2489}
Steve Blocka7e24c12009-10-30 11:49:00 +00002490#endif
2491
2492
2493// -----------------------------------------------------------------------------
2494// MapSpace implementation
2495
2496void MapSpace::PrepareForMarkCompact(bool will_compact) {
2497 // Call prepare of the super class.
2498 FixedSpace::PrepareForMarkCompact(will_compact);
2499
2500 if (will_compact) {
2501 // Initialize map index entry.
2502 int page_count = 0;
2503 PageIterator it(this, PageIterator::ALL_PAGES);
2504 while (it.has_next()) {
2505 ASSERT_MAP_PAGE_INDEX(page_count);
2506
2507 Page* p = it.next();
2508 ASSERT(p->mc_page_index == page_count);
2509
2510 page_addresses_[page_count++] = p->address();
2511 }
2512 }
2513}
2514
2515
2516#ifdef DEBUG
2517void MapSpace::VerifyObject(HeapObject* object) {
2518 // The object should be a map or a free-list node.
2519 ASSERT(object->IsMap() || object->IsByteArray());
2520}
2521#endif
2522
2523
2524// -----------------------------------------------------------------------------
2525// GlobalPropertyCellSpace implementation
2526
2527#ifdef DEBUG
2528void CellSpace::VerifyObject(HeapObject* object) {
2529 // The object should be a global object property cell or a free-list node.
2530 ASSERT(object->IsJSGlobalPropertyCell() ||
2531 object->map() == Heap::two_pointer_filler_map());
2532}
2533#endif
2534
2535
2536// -----------------------------------------------------------------------------
2537// LargeObjectIterator
2538
2539LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
2540 current_ = space->first_chunk_;
2541 size_func_ = NULL;
2542}
2543
2544
2545LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space,
2546 HeapObjectCallback size_func) {
2547 current_ = space->first_chunk_;
2548 size_func_ = size_func;
2549}
2550
2551
2552HeapObject* LargeObjectIterator::next() {
Leon Clarked91b9f72010-01-27 17:25:45 +00002553 if (current_ == NULL) return NULL;
2554
Steve Blocka7e24c12009-10-30 11:49:00 +00002555 HeapObject* object = current_->GetObject();
2556 current_ = current_->next();
2557 return object;
2558}
2559
2560
2561// -----------------------------------------------------------------------------
2562// LargeObjectChunk
2563
2564LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes,
2565 size_t* chunk_size,
2566 Executability executable) {
2567 size_t requested = ChunkSizeFor(size_in_bytes);
2568 void* mem = MemoryAllocator::AllocateRawMemory(requested,
2569 chunk_size,
2570 executable);
2571 if (mem == NULL) return NULL;
2572 LOG(NewEvent("LargeObjectChunk", mem, *chunk_size));
2573 if (*chunk_size < requested) {
Steve Block791712a2010-08-27 10:21:07 +01002574 MemoryAllocator::FreeRawMemory(mem, *chunk_size, executable);
Steve Blocka7e24c12009-10-30 11:49:00 +00002575 LOG(DeleteEvent("LargeObjectChunk", mem));
2576 return NULL;
2577 }
2578 return reinterpret_cast<LargeObjectChunk*>(mem);
2579}
2580
2581
2582int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) {
Steve Blockd0582a62009-12-15 09:54:21 +00002583 int os_alignment = static_cast<int>(OS::AllocateAlignment());
Steve Blocka7e24c12009-10-30 11:49:00 +00002584 if (os_alignment < Page::kPageSize)
2585 size_in_bytes += (Page::kPageSize - os_alignment);
2586 return size_in_bytes + Page::kObjectStartOffset;
2587}
2588
2589// -----------------------------------------------------------------------------
2590// LargeObjectSpace
2591
2592LargeObjectSpace::LargeObjectSpace(AllocationSpace id)
2593 : Space(id, NOT_EXECUTABLE), // Managed on a per-allocation basis
2594 first_chunk_(NULL),
2595 size_(0),
2596 page_count_(0) {}
2597
2598
2599bool LargeObjectSpace::Setup() {
2600 first_chunk_ = NULL;
2601 size_ = 0;
2602 page_count_ = 0;
2603 return true;
2604}
2605
2606
2607void LargeObjectSpace::TearDown() {
2608 while (first_chunk_ != NULL) {
2609 LargeObjectChunk* chunk = first_chunk_;
2610 first_chunk_ = first_chunk_->next();
2611 LOG(DeleteEvent("LargeObjectChunk", chunk->address()));
Steve Block791712a2010-08-27 10:21:07 +01002612 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2613 Executability executable =
2614 page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
2615 MemoryAllocator::FreeRawMemory(chunk->address(),
2616 chunk->size(),
2617 executable);
Steve Blocka7e24c12009-10-30 11:49:00 +00002618 }
2619
2620 size_ = 0;
2621 page_count_ = 0;
2622}
2623
2624
2625#ifdef ENABLE_HEAP_PROTECTION
2626
2627void LargeObjectSpace::Protect() {
2628 LargeObjectChunk* chunk = first_chunk_;
2629 while (chunk != NULL) {
2630 MemoryAllocator::Protect(chunk->address(), chunk->size());
2631 chunk = chunk->next();
2632 }
2633}
2634
2635
2636void LargeObjectSpace::Unprotect() {
2637 LargeObjectChunk* chunk = first_chunk_;
2638 while (chunk != NULL) {
2639 bool is_code = chunk->GetObject()->IsCode();
2640 MemoryAllocator::Unprotect(chunk->address(), chunk->size(),
2641 is_code ? EXECUTABLE : NOT_EXECUTABLE);
2642 chunk = chunk->next();
2643 }
2644}
2645
2646#endif
2647
2648
2649Object* LargeObjectSpace::AllocateRawInternal(int requested_size,
2650 int object_size,
2651 Executability executable) {
2652 ASSERT(0 < object_size && object_size <= requested_size);
2653
2654 // Check if we want to force a GC before growing the old space further.
2655 // If so, fail the allocation.
2656 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2657 return Failure::RetryAfterGC(requested_size, identity());
2658 }
2659
2660 size_t chunk_size;
2661 LargeObjectChunk* chunk =
2662 LargeObjectChunk::New(requested_size, &chunk_size, executable);
2663 if (chunk == NULL) {
2664 return Failure::RetryAfterGC(requested_size, identity());
2665 }
2666
Steve Blockd0582a62009-12-15 09:54:21 +00002667 size_ += static_cast<int>(chunk_size);
Steve Blocka7e24c12009-10-30 11:49:00 +00002668 page_count_++;
2669 chunk->set_next(first_chunk_);
2670 chunk->set_size(chunk_size);
2671 first_chunk_ = chunk;
2672
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002673 // Initialize page header.
Steve Blocka7e24c12009-10-30 11:49:00 +00002674 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2675 Address object_address = page->ObjectAreaStart();
2676 // Clear the low order bit of the second word in the page to flag it as a
2677 // large object page. If the chunk_size happened to be written there, its
2678 // low order bit should already be clear.
2679 ASSERT((chunk_size & 0x1) == 0);
Steve Block6ded16b2010-05-10 14:33:55 +01002680 page->SetIsLargeObjectPage(true);
Steve Block791712a2010-08-27 10:21:07 +01002681 page->SetIsPageExecutable(executable);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002682 page->SetRegionMarks(Page::kAllRegionsCleanMarks);
Steve Blocka7e24c12009-10-30 11:49:00 +00002683 return HeapObject::FromAddress(object_address);
2684}
2685
2686
2687Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
2688 ASSERT(0 < size_in_bytes);
2689 return AllocateRawInternal(size_in_bytes,
2690 size_in_bytes,
2691 EXECUTABLE);
2692}
2693
2694
2695Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
2696 ASSERT(0 < size_in_bytes);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002697 return AllocateRawInternal(size_in_bytes,
Steve Blocka7e24c12009-10-30 11:49:00 +00002698 size_in_bytes,
2699 NOT_EXECUTABLE);
2700}
2701
2702
2703Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
2704 ASSERT(0 < size_in_bytes);
2705 return AllocateRawInternal(size_in_bytes,
2706 size_in_bytes,
2707 NOT_EXECUTABLE);
2708}
2709
2710
2711// GC support
2712Object* LargeObjectSpace::FindObject(Address a) {
2713 for (LargeObjectChunk* chunk = first_chunk_;
2714 chunk != NULL;
2715 chunk = chunk->next()) {
2716 Address chunk_address = chunk->address();
2717 if (chunk_address <= a && a < chunk_address + chunk->size()) {
2718 return chunk->GetObject();
2719 }
2720 }
2721 return Failure::Exception();
2722}
2723
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002724void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002725 LargeObjectIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002726 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002727 // We only have code, sequential strings, or fixed arrays in large
2728 // object space, and only fixed arrays can possibly contain pointers to
2729 // the young generation.
Steve Blocka7e24c12009-10-30 11:49:00 +00002730 if (object->IsFixedArray()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002731 Page* page = Page::FromAddress(object->address());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002732 uint32_t marks = page->GetRegionMarks();
2733 uint32_t newmarks = Page::kAllRegionsCleanMarks;
Steve Blocka7e24c12009-10-30 11:49:00 +00002734
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002735 if (marks != Page::kAllRegionsCleanMarks) {
2736 // For a large page a single dirty mark corresponds to several
2737 // regions (modulo 32). So we treat a large page as a sequence of
2738 // normal pages of size Page::kPageSize having same dirty marks
2739 // and subsequently iterate dirty regions on each of these pages.
2740 Address start = object->address();
2741 Address end = page->ObjectAreaEnd();
2742 Address object_end = start + object->Size();
2743
2744 // Iterate regions of the first normal page covering object.
2745 uint32_t first_region_number = page->GetRegionNumberForAddress(start);
2746 newmarks |=
2747 Heap::IterateDirtyRegions(marks >> first_region_number,
2748 start,
2749 end,
2750 &Heap::IteratePointersInDirtyRegion,
2751 copy_object) << first_region_number;
2752
2753 start = end;
2754 end = start + Page::kPageSize;
2755 while (end <= object_end) {
2756 // Iterate next 32 regions.
2757 newmarks |=
2758 Heap::IterateDirtyRegions(marks,
2759 start,
2760 end,
2761 &Heap::IteratePointersInDirtyRegion,
2762 copy_object);
2763 start = end;
2764 end = start + Page::kPageSize;
2765 }
2766
2767 if (start != object_end) {
2768 // Iterate the last piece of an object which is less than
2769 // Page::kPageSize.
2770 newmarks |=
2771 Heap::IterateDirtyRegions(marks,
2772 start,
2773 object_end,
2774 &Heap::IteratePointersInDirtyRegion,
2775 copy_object);
2776 }
2777
2778 page->SetRegionMarks(newmarks);
Steve Blocka7e24c12009-10-30 11:49:00 +00002779 }
2780 }
2781 }
2782}
2783
2784
2785void LargeObjectSpace::FreeUnmarkedObjects() {
2786 LargeObjectChunk* previous = NULL;
2787 LargeObjectChunk* current = first_chunk_;
2788 while (current != NULL) {
2789 HeapObject* object = current->GetObject();
2790 if (object->IsMarked()) {
2791 object->ClearMark();
2792 MarkCompactCollector::tracer()->decrement_marked_count();
2793 previous = current;
2794 current = current->next();
2795 } else {
Steve Block791712a2010-08-27 10:21:07 +01002796 Page* page = Page::FromAddress(RoundUp(current->address(),
2797 Page::kPageSize));
2798 Executability executable =
2799 page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE;
Steve Blocka7e24c12009-10-30 11:49:00 +00002800 Address chunk_address = current->address();
2801 size_t chunk_size = current->size();
2802
2803 // Cut the chunk out from the chunk list.
2804 current = current->next();
2805 if (previous == NULL) {
2806 first_chunk_ = current;
2807 } else {
2808 previous->set_next(current);
2809 }
2810
2811 // Free the chunk.
Leon Clarked91b9f72010-01-27 17:25:45 +00002812 MarkCompactCollector::ReportDeleteIfNeeded(object);
Steve Blockd0582a62009-12-15 09:54:21 +00002813 size_ -= static_cast<int>(chunk_size);
Steve Blocka7e24c12009-10-30 11:49:00 +00002814 page_count_--;
Steve Block791712a2010-08-27 10:21:07 +01002815 MemoryAllocator::FreeRawMemory(chunk_address, chunk_size, executable);
Steve Blocka7e24c12009-10-30 11:49:00 +00002816 LOG(DeleteEvent("LargeObjectChunk", chunk_address));
2817 }
2818 }
2819}
2820
2821
2822bool LargeObjectSpace::Contains(HeapObject* object) {
2823 Address address = object->address();
Steve Block6ded16b2010-05-10 14:33:55 +01002824 if (Heap::new_space()->Contains(address)) {
2825 return false;
2826 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002827 Page* page = Page::FromAddress(address);
2828
2829 SLOW_ASSERT(!page->IsLargeObjectPage()
2830 || !FindObject(address)->IsFailure());
2831
2832 return page->IsLargeObjectPage();
2833}
2834
2835
2836#ifdef DEBUG
2837// We do not assume that the large object iterator works, because it depends
2838// on the invariants we are checking during verification.
2839void LargeObjectSpace::Verify() {
2840 for (LargeObjectChunk* chunk = first_chunk_;
2841 chunk != NULL;
2842 chunk = chunk->next()) {
2843 // Each chunk contains an object that starts at the large object page's
2844 // object area start.
2845 HeapObject* object = chunk->GetObject();
2846 Page* page = Page::FromAddress(object->address());
2847 ASSERT(object->address() == page->ObjectAreaStart());
2848
2849 // The first word should be a map, and we expect all map pointers to be
2850 // in map space.
2851 Map* map = object->map();
2852 ASSERT(map->IsMap());
2853 ASSERT(Heap::map_space()->Contains(map));
2854
2855 // We have only code, sequential strings, external strings
2856 // (sequential strings that have been morphed into external
2857 // strings), fixed arrays, and byte arrays in large object space.
2858 ASSERT(object->IsCode() || object->IsSeqString() ||
2859 object->IsExternalString() || object->IsFixedArray() ||
2860 object->IsByteArray());
2861
2862 // The object itself should look OK.
2863 object->Verify();
2864
2865 // Byte arrays and strings don't have interior pointers.
2866 if (object->IsCode()) {
2867 VerifyPointersVisitor code_visitor;
2868 object->IterateBody(map->instance_type(),
2869 object->Size(),
2870 &code_visitor);
2871 } else if (object->IsFixedArray()) {
2872 // We loop over fixed arrays ourselves, rather then using the visitor,
2873 // because the visitor doesn't support the start/offset iteration
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002874 // needed for IsRegionDirty.
Steve Blocka7e24c12009-10-30 11:49:00 +00002875 FixedArray* array = FixedArray::cast(object);
2876 for (int j = 0; j < array->length(); j++) {
2877 Object* element = array->get(j);
2878 if (element->IsHeapObject()) {
2879 HeapObject* element_object = HeapObject::cast(element);
2880 ASSERT(Heap::Contains(element_object));
2881 ASSERT(element_object->map()->IsMap());
2882 if (Heap::InNewSpace(element_object)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002883 Address array_addr = object->address();
2884 Address element_addr = array_addr + FixedArray::kHeaderSize +
2885 j * kPointerSize;
2886
2887 ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr));
Steve Blocka7e24c12009-10-30 11:49:00 +00002888 }
2889 }
2890 }
2891 }
2892 }
2893}
2894
2895
2896void LargeObjectSpace::Print() {
2897 LargeObjectIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002898 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
2899 obj->Print();
Steve Blocka7e24c12009-10-30 11:49:00 +00002900 }
2901}
2902
2903
2904void LargeObjectSpace::ReportStatistics() {
2905 PrintF(" size: %d\n", size_);
2906 int num_objects = 0;
2907 ClearHistograms();
2908 LargeObjectIterator it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002909 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002910 num_objects++;
Leon Clarked91b9f72010-01-27 17:25:45 +00002911 CollectHistogramInfo(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00002912 }
2913
2914 PrintF(" number of objects %d\n", num_objects);
2915 if (num_objects > 0) ReportHistogram(false);
2916}
2917
2918
2919void LargeObjectSpace::CollectCodeStatistics() {
2920 LargeObjectIterator obj_it(this);
Leon Clarked91b9f72010-01-27 17:25:45 +00002921 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002922 if (obj->IsCode()) {
2923 Code* code = Code::cast(obj);
2924 code_kind_statistics[code->kind()] += code->Size();
2925 }
2926 }
2927}
Steve Blocka7e24c12009-10-30 11:49:00 +00002928#endif // DEBUG
2929
2930} } // namespace v8::internal