blob: b7c3ebcbc01a2e034d4c70315096dc0e981c4ea9 [file] [log] [blame]
Andrei Popescu31002712010-02-23 13:46:05 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2010 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40#include "assembler.h"
41#include "constants-mips.h"
42#include "serialize.h"
43
44using namespace assembler::mips;
45
46namespace v8 {
47namespace internal {
48
49// CPU Registers.
50//
51// 1) We would prefer to use an enum, but enum values are assignment-
52// compatible with int, which has caused code-generation bugs.
53//
54// 2) We would prefer to use a class instead of a struct but we don't like
55// the register initialization to depend on the particular initialization
56// order (which appears to be different on OS X, Linux, and Windows for the
57// installed versions of C++ we tried). Using a struct permits C-style
58// "initialization". Also, the Register objects cannot be const as this
59// forces initialization stubs in MSVC, making us dependent on initialization
60// order.
61//
62// 3) By not using an enum, we are possibly preventing the compiler from
63// doing certain constant folds, which may significantly reduce the
64// code generated for some assembly instructions (because they boil down
65// to a few constants). If this is a problem, we could change the code
66// such that we use an enum in optimized mode, and the struct in debug
67// mode. This way we get the compile-time error checking in debug mode
68// and best performance in optimized code.
69
70
71// -----------------------------------------------------------------------------
72// Implementation of Register and FPURegister
73
74// Core register.
75struct Register {
76 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
77 bool is(Register reg) const { return code_ == reg.code_; }
78 int code() const {
79 ASSERT(is_valid());
80 return code_;
81 }
82 int bit() const {
83 ASSERT(is_valid());
84 return 1 << code_;
85 }
86
87 // Unfortunately we can't make this private in a struct.
88 int code_;
89};
90
91extern const Register no_reg;
92
93extern const Register zero_reg;
94extern const Register at;
95extern const Register v0;
96extern const Register v1;
97extern const Register a0;
98extern const Register a1;
99extern const Register a2;
100extern const Register a3;
101extern const Register t0;
102extern const Register t1;
103extern const Register t2;
104extern const Register t3;
105extern const Register t4;
106extern const Register t5;
107extern const Register t6;
108extern const Register t7;
109extern const Register s0;
110extern const Register s1;
111extern const Register s2;
112extern const Register s3;
113extern const Register s4;
114extern const Register s5;
115extern const Register s6;
116extern const Register s7;
117extern const Register t8;
118extern const Register t9;
119extern const Register k0;
120extern const Register k1;
121extern const Register gp;
122extern const Register sp;
123extern const Register s8_fp;
124extern const Register ra;
125
126int ToNumber(Register reg);
127
128Register ToRegister(int num);
129
130// Coprocessor register.
131struct FPURegister {
132 bool is_valid() const { return 0 <= code_ && code_ < kNumFPURegister ; }
133 bool is(FPURegister creg) const { return code_ == creg.code_; }
134 int code() const {
135 ASSERT(is_valid());
136 return code_;
137 }
138 int bit() const {
139 ASSERT(is_valid());
140 return 1 << code_;
141 }
142
143 // Unfortunately we can't make this private in a struct.
144 int code_;
145};
146
147extern const FPURegister no_creg;
148
149extern const FPURegister f0;
150extern const FPURegister f1;
151extern const FPURegister f2;
152extern const FPURegister f3;
153extern const FPURegister f4;
154extern const FPURegister f5;
155extern const FPURegister f6;
156extern const FPURegister f7;
157extern const FPURegister f8;
158extern const FPURegister f9;
159extern const FPURegister f10;
160extern const FPURegister f11;
161extern const FPURegister f12; // arg
162extern const FPURegister f13;
163extern const FPURegister f14; // arg
164extern const FPURegister f15;
165extern const FPURegister f16;
166extern const FPURegister f17;
167extern const FPURegister f18;
168extern const FPURegister f19;
169extern const FPURegister f20;
170extern const FPURegister f21;
171extern const FPURegister f22;
172extern const FPURegister f23;
173extern const FPURegister f24;
174extern const FPURegister f25;
175extern const FPURegister f26;
176extern const FPURegister f27;
177extern const FPURegister f28;
178extern const FPURegister f29;
179extern const FPURegister f30;
180extern const FPURegister f31;
181
182
183// Returns the equivalent of !cc.
184// Negation of the default no_condition (-1) results in a non-default
185// no_condition value (-2). As long as tests for no_condition check
186// for condition < 0, this will work as expected.
187inline Condition NegateCondition(Condition cc);
188
189inline Condition ReverseCondition(Condition cc) {
190 switch (cc) {
191 case Uless:
192 return Ugreater;
193 case Ugreater:
194 return Uless;
195 case Ugreater_equal:
196 return Uless_equal;
197 case Uless_equal:
198 return Ugreater_equal;
199 case less:
200 return greater;
201 case greater:
202 return less;
203 case greater_equal:
204 return less_equal;
205 case less_equal:
206 return greater_equal;
207 default:
208 return cc;
209 };
210}
211
212
213enum Hint {
214 no_hint = 0
215};
216
217inline Hint NegateHint(Hint hint) {
218 return no_hint;
219}
220
221
222// -----------------------------------------------------------------------------
223// Machine instruction Operands.
224
225// Class Operand represents a shifter operand in data processing instructions.
226class Operand BASE_EMBEDDED {
227 public:
228 // Immediate.
229 INLINE(explicit Operand(int32_t immediate,
230 RelocInfo::Mode rmode = RelocInfo::NONE));
231 INLINE(explicit Operand(const ExternalReference& f));
232 INLINE(explicit Operand(const char* s));
233 INLINE(explicit Operand(Object** opp));
234 INLINE(explicit Operand(Context** cpp));
235 explicit Operand(Handle<Object> handle);
236 INLINE(explicit Operand(Smi* value));
237
238 // Register.
239 INLINE(explicit Operand(Register rm));
240
241 // Return true if this is a register operand.
242 INLINE(bool is_reg() const);
243
244 Register rm() const { return rm_; }
245
246 private:
247 Register rm_;
248 int32_t imm32_; // Valid if rm_ == no_reg
249 RelocInfo::Mode rmode_;
250
251 friend class Assembler;
252 friend class MacroAssembler;
253};
254
255
256// On MIPS we have only one adressing mode with base_reg + offset.
257// Class MemOperand represents a memory operand in load and store instructions.
258class MemOperand : public Operand {
259 public:
260
261 explicit MemOperand(Register rn, int16_t offset = 0);
262
263 private:
264 int16_t offset_;
265
266 friend class Assembler;
267};
268
269
270class Assembler : public Malloced {
271 public:
272 // Create an assembler. Instructions and relocation information are emitted
273 // into a buffer, with the instructions starting from the beginning and the
274 // relocation information starting from the end of the buffer. See CodeDesc
275 // for a detailed comment on the layout (globals.h).
276 //
277 // If the provided buffer is NULL, the assembler allocates and grows its own
278 // buffer, and buffer_size determines the initial buffer size. The buffer is
279 // owned by the assembler and deallocated upon destruction of the assembler.
280 //
281 // If the provided buffer is not NULL, the assembler uses the provided buffer
282 // for code generation and assumes its size to be buffer_size. If the buffer
283 // is too small, a fatal error occurs. No deallocation of the buffer is done
284 // upon destruction of the assembler.
285 Assembler(void* buffer, int buffer_size);
286 ~Assembler();
287
288 // GetCode emits any pending (non-emitted) code and fills the descriptor
289 // desc. GetCode() is idempotent; it returns the same result if no other
290 // Assembler functions are invoked in between GetCode() calls.
291 void GetCode(CodeDesc* desc);
292
293 // Label operations & relative jumps (PPUM Appendix D).
294 //
295 // Takes a branch opcode (cc) and a label (L) and generates
296 // either a backward branch or a forward branch and links it
297 // to the label fixup chain. Usage:
298 //
299 // Label L; // unbound label
300 // j(cc, &L); // forward branch to unbound label
301 // bind(&L); // bind label to the current pc
302 // j(cc, &L); // backward branch to bound label
303 // bind(&L); // illegal: a label may be bound only once
304 //
305 // Note: The same Label can be used for forward and backward branches
306 // but it may be bound only once.
307 void bind(Label* L); // binds an unbound label L to the current code position
308
309 // Returns the branch offset to the given label from the current code position
310 // Links the label to the current position if it is still unbound
311 // Manages the jump elimination optimization if the second parameter is true.
312 int32_t branch_offset(Label* L, bool jump_elimination_allowed);
313 int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
314 int32_t o = branch_offset(L, jump_elimination_allowed);
315 ASSERT((o & 3) == 0); // Assert the offset is aligned.
316 return o >> 2;
317 }
318
319 // Puts a labels target address at the given position.
320 // The high 8 bits are set to zero.
321 void label_at_put(Label* L, int at_offset);
322
323 // Size of an instruction.
324 static const int kInstrSize = sizeof(Instr);
325
326 // Difference between address of current opcode and target address offset.
327 static const int kBranchPCOffset = 4;
328
329 // Read/Modify the code target address in the branch/call instruction at pc.
330 static Address target_address_at(Address pc);
331 static void set_target_address_at(Address pc, Address target);
332
333 // This sets the branch destination (which gets loaded at the call address).
334 // This is for calls and branches within generated code.
335 inline static void set_target_at(Address instruction_payload,
336 Address target) {
337 set_target_address_at(instruction_payload, target);
338 }
339
340 // This sets the branch destination.
341 // This is for calls and branches to runtime code.
342 inline static void set_external_target_at(Address instruction_payload,
343 Address target) {
344 set_target_address_at(instruction_payload, target);
345 }
346
347 static const int kCallTargetSize = 3 * kPointerSize;
348 static const int kExternalTargetSize = 3 * kPointerSize;
349
350 // Distance between the instruction referring to the address of the call
351 // target and the return address.
352 static const int kCallTargetAddressOffset = 4 * kInstrSize;
353
354 // Distance between start of patched return sequence and the emitted address
355 // to jump to.
356 static const int kPatchReturnSequenceAddressOffset = kInstrSize;
357
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100358 // Distance between start of patched debug break slot and the emitted address
359 // to jump to.
360 static const int kPatchDebugBreakSlotAddressOffset = kInstrSize;
Andrei Popescu31002712010-02-23 13:46:05 +0000361
362 // ---------------------------------------------------------------------------
363 // Code generation.
364
365 void nop() { sll(zero_reg, zero_reg, 0); }
366
367
368 //------- Branch and jump instructions --------
369 // We don't use likely variant of instructions.
370 void b(int16_t offset);
371 void b(Label* L) { b(branch_offset(L, false)>>2); }
372 void bal(int16_t offset);
373 void bal(Label* L) { bal(branch_offset(L, false)>>2); }
374
375 void beq(Register rs, Register rt, int16_t offset);
376 void beq(Register rs, Register rt, Label* L) {
377 beq(rs, rt, branch_offset(L, false) >> 2);
378 }
379 void bgez(Register rs, int16_t offset);
380 void bgezal(Register rs, int16_t offset);
381 void bgtz(Register rs, int16_t offset);
382 void blez(Register rs, int16_t offset);
383 void bltz(Register rs, int16_t offset);
384 void bltzal(Register rs, int16_t offset);
385 void bne(Register rs, Register rt, int16_t offset);
386 void bne(Register rs, Register rt, Label* L) {
387 bne(rs, rt, branch_offset(L, false)>>2);
388 }
389
390 // Never use the int16_t b(l)cond version with a branch offset
391 // instead of using the Label* version. See Twiki for infos.
392
393 // Jump targets must be in the current 256 MB-aligned region. ie 28 bits.
394 void j(int32_t target);
395 void jal(int32_t target);
396 void jalr(Register rs, Register rd = ra);
397 void jr(Register target);
398
399
400 //-------Data-processing-instructions---------
401
402 // Arithmetic.
403 void add(Register rd, Register rs, Register rt);
404 void addu(Register rd, Register rs, Register rt);
405 void sub(Register rd, Register rs, Register rt);
406 void subu(Register rd, Register rs, Register rt);
407 void mult(Register rs, Register rt);
408 void multu(Register rs, Register rt);
409 void div(Register rs, Register rt);
410 void divu(Register rs, Register rt);
411 void mul(Register rd, Register rs, Register rt);
412
413 void addi(Register rd, Register rs, int32_t j);
414 void addiu(Register rd, Register rs, int32_t j);
415
416 // Logical.
417 void and_(Register rd, Register rs, Register rt);
418 void or_(Register rd, Register rs, Register rt);
419 void xor_(Register rd, Register rs, Register rt);
420 void nor(Register rd, Register rs, Register rt);
421
422 void andi(Register rd, Register rs, int32_t j);
423 void ori(Register rd, Register rs, int32_t j);
424 void xori(Register rd, Register rs, int32_t j);
425 void lui(Register rd, int32_t j);
426
427 // Shifts.
428 void sll(Register rd, Register rt, uint16_t sa);
429 void sllv(Register rd, Register rt, Register rs);
430 void srl(Register rd, Register rt, uint16_t sa);
431 void srlv(Register rd, Register rt, Register rs);
432 void sra(Register rt, Register rd, uint16_t sa);
433 void srav(Register rt, Register rd, Register rs);
434
435
436 //------------Memory-instructions-------------
437
438 void lb(Register rd, const MemOperand& rs);
439 void lbu(Register rd, const MemOperand& rs);
440 void lw(Register rd, const MemOperand& rs);
441 void sb(Register rd, const MemOperand& rs);
442 void sw(Register rd, const MemOperand& rs);
443
444
445 //-------------Misc-instructions--------------
446
447 // Break / Trap instructions.
448 void break_(uint32_t code);
449 void tge(Register rs, Register rt, uint16_t code);
450 void tgeu(Register rs, Register rt, uint16_t code);
451 void tlt(Register rs, Register rt, uint16_t code);
452 void tltu(Register rs, Register rt, uint16_t code);
453 void teq(Register rs, Register rt, uint16_t code);
454 void tne(Register rs, Register rt, uint16_t code);
455
456 // Move from HI/LO register.
457 void mfhi(Register rd);
458 void mflo(Register rd);
459
460 // Set on less than.
461 void slt(Register rd, Register rs, Register rt);
462 void sltu(Register rd, Register rs, Register rt);
463 void slti(Register rd, Register rs, int32_t j);
464 void sltiu(Register rd, Register rs, int32_t j);
465
466
467 //--------Coprocessor-instructions----------------
468
469 // Load, store, and move.
470 void lwc1(FPURegister fd, const MemOperand& src);
471 void ldc1(FPURegister fd, const MemOperand& src);
472
473 void swc1(FPURegister fs, const MemOperand& dst);
474 void sdc1(FPURegister fs, const MemOperand& dst);
475
476 // When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be
477 // executed first, followed by the MTHC1.
478 void mtc1(FPURegister fs, Register rt);
479 void mthc1(FPURegister fs, Register rt);
480 void mfc1(FPURegister fs, Register rt);
481 void mfhc1(FPURegister fs, Register rt);
482
483 // Conversion.
484 void cvt_w_s(FPURegister fd, FPURegister fs);
485 void cvt_w_d(FPURegister fd, FPURegister fs);
486
487 void cvt_l_s(FPURegister fd, FPURegister fs);
488 void cvt_l_d(FPURegister fd, FPURegister fs);
489
490 void cvt_s_w(FPURegister fd, FPURegister fs);
491 void cvt_s_l(FPURegister fd, FPURegister fs);
492 void cvt_s_d(FPURegister fd, FPURegister fs);
493
494 void cvt_d_w(FPURegister fd, FPURegister fs);
495 void cvt_d_l(FPURegister fd, FPURegister fs);
496 void cvt_d_s(FPURegister fd, FPURegister fs);
497
498 // Conditions and branches.
499 void c(FPUCondition cond, SecondaryField fmt,
500 FPURegister ft, FPURegister fs, uint16_t cc = 0);
501
502 void bc1f(int16_t offset, uint16_t cc = 0);
503 void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
504 void bc1t(int16_t offset, uint16_t cc = 0);
505 void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
506
507
508 // Check the code size generated from label to here.
509 int InstructionsGeneratedSince(Label* l) {
510 return (pc_offset() - l->pos()) / kInstrSize;
511 }
512
513 // Debugging.
514
515 // Mark address of the ExitJSFrame code.
516 void RecordJSReturn();
517
518 // Record a comment relocation entry that can be used by a disassembler.
519 // Use --debug_code to enable.
520 void RecordComment(const char* msg);
521
522 void RecordPosition(int pos);
523 void RecordStatementPosition(int pos);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100524 bool WriteRecordedPositions();
Andrei Popescu31002712010-02-23 13:46:05 +0000525
526 int32_t pc_offset() const { return pc_ - buffer_; }
527 int32_t current_position() const { return current_position_; }
Steve Block6ded16b2010-05-10 14:33:55 +0100528 int32_t current_statement_position() const {
529 return current_statement_position_;
530 }
Andrei Popescu31002712010-02-23 13:46:05 +0000531
532 // Check if there is less than kGap bytes available in the buffer.
533 // If this is the case, we need to grow the buffer before emitting
534 // an instruction or relocation information.
535 inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
536
537 // Get the number of bytes available in the buffer.
538 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
539
540 protected:
541 int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
542
543 // Read/patch instructions.
544 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
545 void instr_at_put(byte* pc, Instr instr) {
546 *reinterpret_cast<Instr*>(pc) = instr;
547 }
548 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
549 void instr_at_put(int pos, Instr instr) {
550 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
551 }
552
553 // Check if an instruction is a branch of some kind.
554 bool is_branch(Instr instr);
555
556 // Decode branch instruction at pos and return branch target pos.
557 int target_at(int32_t pos);
558
559 // Patch branch instruction at pos to branch to given branch target pos.
560 void target_at_put(int32_t pos, int32_t target_pos);
561
562 // Say if we need to relocate with this mode.
563 bool MustUseAt(RelocInfo::Mode rmode);
564
565 // Record reloc info for current pc_.
566 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
567
568 private:
569 // Code buffer:
570 // The buffer into which code and relocation info are generated.
571 byte* buffer_;
572 int buffer_size_;
573 // True if the assembler owns the buffer, false if buffer is external.
574 bool own_buffer_;
575
576 // Buffer size and constant pool distance are checked together at regular
577 // intervals of kBufferCheckInterval emitted bytes.
578 static const int kBufferCheckInterval = 1*KB/2;
579
580 // Code generation.
581 // The relocation writer's position is at least kGap bytes below the end of
582 // the generated instructions. This is so that multi-instruction sequences do
583 // not have to check for overflow. The same is true for writes of large
584 // relocation info entries.
585 static const int kGap = 32;
586 byte* pc_; // The program counter - moves forward.
587
588 // Relocation information generation.
589 // Each relocation is encoded as a variable size value.
590 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
591 RelocInfoWriter reloc_info_writer;
592
593 // The bound position, before this we cannot do instruction elimination.
594 int last_bound_pos_;
595
596 // Source position information.
597 int current_position_;
598 int current_statement_position_;
599 int written_position_;
600 int written_statement_position_;
601
602 // Code emission.
603 inline void CheckBuffer();
604 void GrowBuffer();
605 inline void emit(Instr x);
606
607 // Instruction generation.
608 // We have 3 different kind of encoding layout on MIPS.
609 // However due to many different types of objects encoded in the same fields
610 // we have quite a few aliases for each mode.
611 // Using the same structure to refer to Register and FPURegister would spare a
612 // few aliases, but mixing both does not look clean to me.
613 // Anyway we could surely implement this differently.
614
615 void GenInstrRegister(Opcode opcode,
616 Register rs,
617 Register rt,
618 Register rd,
619 uint16_t sa = 0,
620 SecondaryField func = NULLSF);
621
622 void GenInstrRegister(Opcode opcode,
623 SecondaryField fmt,
624 FPURegister ft,
625 FPURegister fs,
626 FPURegister fd,
627 SecondaryField func = NULLSF);
628
629 void GenInstrRegister(Opcode opcode,
630 SecondaryField fmt,
631 Register rt,
632 FPURegister fs,
633 FPURegister fd,
634 SecondaryField func = NULLSF);
635
636
637 void GenInstrImmediate(Opcode opcode,
638 Register rs,
639 Register rt,
640 int32_t j);
641 void GenInstrImmediate(Opcode opcode,
642 Register rs,
643 SecondaryField SF,
644 int32_t j);
645 void GenInstrImmediate(Opcode opcode,
646 Register r1,
647 FPURegister r2,
648 int32_t j);
649
650
651 void GenInstrJump(Opcode opcode,
652 uint32_t address);
653
654
655 // Labels.
656 void print(Label* L);
657 void bind_to(Label* L, int pos);
658 void link_to(Label* L, Label* appendix);
659 void next(Label* L);
660
661 friend class RegExpMacroAssemblerMIPS;
662 friend class RelocInfo;
663};
664
665} } // namespace v8::internal
666
667#endif // V8_ARM_ASSEMBLER_MIPS_H_
668