blob: d605891e6debb5b9e6c8c68b599a5d98987e8296 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
Steve Block6ded16b2010-05-10 14:33:55 +010032#include <string.h>
Steve Blocka7e24c12009-10-30 11:49:00 +000033
34namespace v8 {
35namespace internal {
36
37// ----------------------------------------------------------------------------
38// General helper functions
39
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010040#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
41
Steve Block3ce2e202009-11-05 08:53:23 +000042// Returns true iff x is a power of 2 (or zero). Cannot be used with the
43// maximally negative value of the type T (the -1 overflows).
Steve Blocka7e24c12009-10-30 11:49:00 +000044template <typename T>
45static inline bool IsPowerOf2(T x) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010046 return IS_POWER_OF_TWO(x);
Steve Blocka7e24c12009-10-30 11:49:00 +000047}
48
49
Kristian Monsen9dcf7e22010-06-28 14:14:28 +010050// X must be a power of 2. Returns the number of trailing zeros.
51template <typename T>
52static inline int WhichPowerOf2(T x) {
53 ASSERT(IsPowerOf2(x));
54 ASSERT(x != 0);
55 if (x < 0) return 31;
56 int bits = 0;
57#ifdef DEBUG
58 int original_x = x;
59#endif
60 if (x >= 0x10000) {
61 bits += 16;
62 x >>= 16;
63 }
64 if (x >= 0x100) {
65 bits += 8;
66 x >>= 8;
67 }
68 if (x >= 0x10) {
69 bits += 4;
70 x >>= 4;
71 }
72 switch (x) {
73 default: UNREACHABLE();
74 case 8: bits++; // Fall through.
75 case 4: bits++; // Fall through.
76 case 2: bits++; // Fall through.
77 case 1: break;
78 }
79 ASSERT_EQ(1 << bits, original_x);
80 return bits;
81 return 0;
82}
83
84
Steve Blocka7e24c12009-10-30 11:49:00 +000085// The C++ standard leaves the semantics of '>>' undefined for
86// negative signed operands. Most implementations do the right thing,
87// though.
88static inline int ArithmeticShiftRight(int x, int s) {
89 return x >> s;
90}
91
92
93// Compute the 0-relative offset of some absolute value x of type T.
94// This allows conversion of Addresses and integral types into
95// 0-relative int offsets.
96template <typename T>
97static inline intptr_t OffsetFrom(T x) {
98 return x - static_cast<T>(0);
99}
100
101
102// Compute the absolute value of type T for some 0-relative offset x.
103// This allows conversion of 0-relative int offsets into Addresses and
104// integral types.
105template <typename T>
106static inline T AddressFrom(intptr_t x) {
Steve Blockd0582a62009-12-15 09:54:21 +0000107 return static_cast<T>(static_cast<T>(0) + x);
Steve Blocka7e24c12009-10-30 11:49:00 +0000108}
109
110
111// Return the largest multiple of m which is <= x.
112template <typename T>
113static inline T RoundDown(T x, int m) {
114 ASSERT(IsPowerOf2(m));
115 return AddressFrom<T>(OffsetFrom(x) & -m);
116}
117
118
119// Return the smallest multiple of m which is >= x.
120template <typename T>
121static inline T RoundUp(T x, int m) {
122 return RoundDown(x + m - 1, m);
123}
124
125
126template <typename T>
127static int Compare(const T& a, const T& b) {
128 if (a == b)
129 return 0;
130 else if (a < b)
131 return -1;
132 else
133 return 1;
134}
135
136
137template <typename T>
138static int PointerValueCompare(const T* a, const T* b) {
139 return Compare<T>(*a, *b);
140}
141
142
143// Returns the smallest power of two which is >= x. If you pass in a
144// number that is already a power of two, it is returned as is.
145uint32_t RoundUpToPowerOf2(uint32_t x);
146
147
148template <typename T>
149static inline bool IsAligned(T value, T alignment) {
150 ASSERT(IsPowerOf2(alignment));
151 return (value & (alignment - 1)) == 0;
152}
153
154
155// Returns true if (addr + offset) is aligned.
156static inline bool IsAddressAligned(Address addr,
157 intptr_t alignment,
158 int offset) {
159 intptr_t offs = OffsetFrom(addr + offset);
160 return IsAligned(offs, alignment);
161}
162
163
164// Returns the maximum of the two parameters.
165template <typename T>
166static T Max(T a, T b) {
167 return a < b ? b : a;
168}
169
170
171// Returns the minimum of the two parameters.
172template <typename T>
173static T Min(T a, T b) {
174 return a < b ? a : b;
175}
176
177
Steve Blockd0582a62009-12-15 09:54:21 +0000178inline int StrLength(const char* string) {
179 size_t length = strlen(string);
180 ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
181 return static_cast<int>(length);
182}
183
184
Steve Blocka7e24c12009-10-30 11:49:00 +0000185// ----------------------------------------------------------------------------
186// BitField is a help template for encoding and decode bitfield with
187// unsigned content.
188template<class T, int shift, int size>
189class BitField {
190 public:
191 // Tells whether the provided value fits into the bit field.
192 static bool is_valid(T value) {
193 return (static_cast<uint32_t>(value) & ~((1U << (size)) - 1)) == 0;
194 }
195
196 // Returns a uint32_t mask of bit field.
197 static uint32_t mask() {
Andrei Popescu402d9372010-02-26 13:31:12 +0000198 // To use all bits of a uint32 in a bitfield without compiler warnings we
199 // have to compute 2^32 without using a shift count of 32.
200 return ((1U << shift) << size) - (1U << shift);
Steve Blocka7e24c12009-10-30 11:49:00 +0000201 }
202
203 // Returns a uint32_t with the bit field value encoded.
204 static uint32_t encode(T value) {
205 ASSERT(is_valid(value));
206 return static_cast<uint32_t>(value) << shift;
207 }
208
209 // Extracts the bit field from the value.
210 static T decode(uint32_t value) {
Andrei Popescu402d9372010-02-26 13:31:12 +0000211 return static_cast<T>((value & mask()) >> shift);
Steve Blocka7e24c12009-10-30 11:49:00 +0000212 }
213};
214
215
216// ----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000217// Hash function.
218
219uint32_t ComputeIntegerHash(uint32_t key);
220
221
222// ----------------------------------------------------------------------------
223// I/O support.
224
225// Our version of printf(). Avoids compilation errors that we get
226// with standard printf when attempting to print pointers, etc.
227// (the errors are due to the extra compilation flags, which we
228// want elsewhere).
229void PrintF(const char* format, ...);
230
231// Our version of fflush.
232void Flush();
233
234
235// Read a line of characters after printing the prompt to stdout. The resulting
236// char* needs to be disposed off with DeleteArray by the caller.
237char* ReadLine(const char* prompt);
238
239
240// Read and return the raw bytes in a file. the size of the buffer is returned
241// in size.
242// The returned buffer must be freed by the caller.
243byte* ReadBytes(const char* filename, int* size, bool verbose = true);
244
245
246// Write size chars from str to the file given by filename.
247// The file is overwritten. Returns the number of chars written.
248int WriteChars(const char* filename,
249 const char* str,
250 int size,
251 bool verbose = true);
252
253
254// Write size bytes to the file given by filename.
255// The file is overwritten. Returns the number of bytes written.
256int WriteBytes(const char* filename,
257 const byte* bytes,
258 int size,
259 bool verbose = true);
260
261
262// Write the C code
263// const char* <varname> = "<str>";
264// const int <varname>_len = <len>;
265// to the file given by filename. Only the first len chars are written.
266int WriteAsCFile(const char* filename, const char* varname,
267 const char* str, int size, bool verbose = true);
268
269
270// ----------------------------------------------------------------------------
271// Miscellaneous
272
273// A static resource holds a static instance that can be reserved in
274// a local scope using an instance of Access. Attempts to re-reserve
275// the instance will cause an error.
276template <typename T>
277class StaticResource {
278 public:
279 StaticResource() : is_reserved_(false) {}
280
281 private:
282 template <typename S> friend class Access;
283 T instance_;
284 bool is_reserved_;
285};
286
287
288// Locally scoped access to a static resource.
289template <typename T>
290class Access {
291 public:
292 explicit Access(StaticResource<T>* resource)
293 : resource_(resource)
294 , instance_(&resource->instance_) {
295 ASSERT(!resource->is_reserved_);
296 resource->is_reserved_ = true;
297 }
298
299 ~Access() {
300 resource_->is_reserved_ = false;
301 resource_ = NULL;
302 instance_ = NULL;
303 }
304
305 T* value() { return instance_; }
306 T* operator -> () { return instance_; }
307
308 private:
309 StaticResource<T>* resource_;
310 T* instance_;
311};
312
313
314template <typename T>
315class Vector {
316 public:
317 Vector() : start_(NULL), length_(0) {}
318 Vector(T* data, int length) : start_(data), length_(length) {
319 ASSERT(length == 0 || (length > 0 && data != NULL));
320 }
321
322 static Vector<T> New(int length) {
323 return Vector<T>(NewArray<T>(length), length);
324 }
325
326 // Returns a vector using the same backing storage as this one,
327 // spanning from and including 'from', to but not including 'to'.
328 Vector<T> SubVector(int from, int to) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000329 ASSERT(to <= length_);
330 ASSERT(from < to);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100331 ASSERT(0 <= from);
Steve Blocka7e24c12009-10-30 11:49:00 +0000332 return Vector<T>(start() + from, to - from);
333 }
334
335 // Returns the length of the vector.
336 int length() const { return length_; }
337
338 // Returns whether or not the vector is empty.
339 bool is_empty() const { return length_ == 0; }
340
341 // Returns the pointer to the start of the data in the vector.
342 T* start() const { return start_; }
343
344 // Access individual vector elements - checks bounds in debug mode.
345 T& operator[](int index) const {
346 ASSERT(0 <= index && index < length_);
347 return start_[index];
348 }
349
350 T& first() { return start_[0]; }
351
352 T& last() { return start_[length_ - 1]; }
353
354 // Returns a clone of this vector with a new backing store.
355 Vector<T> Clone() const {
356 T* result = NewArray<T>(length_);
357 for (int i = 0; i < length_; i++) result[i] = start_[i];
358 return Vector<T>(result, length_);
359 }
360
361 void Sort(int (*cmp)(const T*, const T*)) {
362 typedef int (*RawComparer)(const void*, const void*);
363 qsort(start(),
364 length(),
365 sizeof(T),
366 reinterpret_cast<RawComparer>(cmp));
367 }
368
369 void Sort() {
370 Sort(PointerValueCompare<T>);
371 }
372
373 void Truncate(int length) {
374 ASSERT(length <= length_);
375 length_ = length;
376 }
377
378 // Releases the array underlying this vector. Once disposed the
379 // vector is empty.
380 void Dispose() {
Steve Blocka7e24c12009-10-30 11:49:00 +0000381 DeleteArray(start_);
382 start_ = NULL;
383 length_ = 0;
384 }
385
386 inline Vector<T> operator+(int offset) {
387 ASSERT(offset < length_);
388 return Vector<T>(start_ + offset, length_ - offset);
389 }
390
391 // Factory method for creating empty vectors.
392 static Vector<T> empty() { return Vector<T>(NULL, 0); }
393
394 protected:
395 void set_start(T* start) { start_ = start; }
396
397 private:
398 T* start_;
399 int length_;
400};
401
402
403// A temporary assignment sets a (non-local) variable to a value on
404// construction and resets it the value on destruction.
405template <typename T>
406class TempAssign {
407 public:
408 TempAssign(T* var, T value): var_(var), old_value_(*var) {
409 *var = value;
410 }
411
412 ~TempAssign() { *var_ = old_value_; }
413
414 private:
415 T* var_;
416 T old_value_;
417};
418
419
420template <typename T, int kSize>
421class EmbeddedVector : public Vector<T> {
422 public:
423 EmbeddedVector() : Vector<T>(buffer_, kSize) { }
424
425 // When copying, make underlying Vector to reference our buffer.
426 EmbeddedVector(const EmbeddedVector& rhs)
427 : Vector<T>(rhs) {
428 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
429 set_start(buffer_);
430 }
431
432 EmbeddedVector& operator=(const EmbeddedVector& rhs) {
433 if (this == &rhs) return *this;
434 Vector<T>::operator=(rhs);
435 memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
Steve Block6ded16b2010-05-10 14:33:55 +0100436 this->set_start(buffer_);
Steve Blocka7e24c12009-10-30 11:49:00 +0000437 return *this;
438 }
439
440 private:
441 T buffer_[kSize];
442};
443
444
445template <typename T>
446class ScopedVector : public Vector<T> {
447 public:
448 explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
449 ~ScopedVector() {
450 DeleteArray(this->start());
451 }
Kristian Monsen25f61362010-05-21 11:50:48 +0100452
453 private:
454 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
Steve Blocka7e24c12009-10-30 11:49:00 +0000455};
456
457
458inline Vector<const char> CStrVector(const char* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000459 return Vector<const char>(data, StrLength(data));
Steve Blocka7e24c12009-10-30 11:49:00 +0000460}
461
462inline Vector<char> MutableCStrVector(char* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000463 return Vector<char>(data, StrLength(data));
Steve Blocka7e24c12009-10-30 11:49:00 +0000464}
465
466inline Vector<char> MutableCStrVector(char* data, int max) {
Steve Blockd0582a62009-12-15 09:54:21 +0000467 int length = StrLength(data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000468 return Vector<char>(data, (length < max) ? length : max);
469}
470
471template <typename T>
472inline Vector< Handle<Object> > HandleVector(v8::internal::Handle<T>* elms,
473 int length) {
474 return Vector< Handle<Object> >(
475 reinterpret_cast<v8::internal::Handle<Object>*>(elms), length);
476}
477
478
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100479/*
480 * A class that collects values into a backing store.
481 * Specialized versions of the class can allow access to the backing store
482 * in different ways.
483 * There is no guarantee that the backing store is contiguous (and, as a
484 * consequence, no guarantees that consecutively added elements are adjacent
485 * in memory). The collector may move elements unless it has guaranteed not
486 * to.
487 */
488template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
489class Collector {
490 public:
491 explicit Collector(int initial_capacity = kMinCapacity)
492 : index_(0), size_(0) {
493 if (initial_capacity < kMinCapacity) {
494 initial_capacity = kMinCapacity;
495 }
496 current_chunk_ = Vector<T>::New(initial_capacity);
497 }
498
499 virtual ~Collector() {
500 // Free backing store (in reverse allocation order).
501 current_chunk_.Dispose();
502 for (int i = chunks_.length() - 1; i >= 0; i--) {
503 chunks_.at(i).Dispose();
504 }
505 }
506
507 // Add a single element.
508 inline void Add(T value) {
509 if (index_ >= current_chunk_.length()) {
510 Grow(1);
511 }
512 current_chunk_[index_] = value;
513 index_++;
514 size_++;
515 }
516
517 // Add a block of contiguous elements and return a Vector backed by the
518 // memory area.
519 // A basic Collector will keep this vector valid as long as the Collector
520 // is alive.
521 inline Vector<T> AddBlock(int size, T initial_value) {
522 ASSERT(size > 0);
523 if (size > current_chunk_.length() - index_) {
524 Grow(size);
525 }
526 T* position = current_chunk_.start() + index_;
527 index_ += size;
528 size_ += size;
529 for (int i = 0; i < size; i++) {
530 position[i] = initial_value;
531 }
532 return Vector<T>(position, size);
533 }
534
535
536 // Write the contents of the collector into the provided vector.
537 void WriteTo(Vector<T> destination) {
538 ASSERT(size_ <= destination.length());
539 int position = 0;
540 for (int i = 0; i < chunks_.length(); i++) {
541 Vector<T> chunk = chunks_.at(i);
542 for (int j = 0; j < chunk.length(); j++) {
543 destination[position] = chunk[j];
544 position++;
545 }
546 }
547 for (int i = 0; i < index_; i++) {
548 destination[position] = current_chunk_[i];
549 position++;
550 }
551 }
552
553 // Allocate a single contiguous vector, copy all the collected
554 // elements to the vector, and return it.
555 // The caller is responsible for freeing the memory of the returned
556 // vector (e.g., using Vector::Dispose).
557 Vector<T> ToVector() {
558 Vector<T> new_store = Vector<T>::New(size_);
559 WriteTo(new_store);
560 return new_store;
561 }
562
563 // Resets the collector to be empty.
564 virtual void Reset() {
565 for (int i = chunks_.length() - 1; i >= 0; i--) {
566 chunks_.at(i).Dispose();
567 }
568 chunks_.Rewind(0);
569 index_ = 0;
570 size_ = 0;
571 }
572
573 // Total number of elements added to collector so far.
574 inline int size() { return size_; }
575
576 protected:
577 static const int kMinCapacity = 16;
578 List<Vector<T> > chunks_;
579 Vector<T> current_chunk_; // Block of memory currently being written into.
580 int index_; // Current index in current chunk.
581 int size_; // Total number of elements in collector.
582
583 // Creates a new current chunk, and stores the old chunk in the chunks_ list.
584 void Grow(int min_capacity) {
585 ASSERT(growth_factor > 1);
586 int growth = current_chunk_.length() * (growth_factor - 1);
587 if (growth > max_growth) {
588 growth = max_growth;
589 }
590 int new_capacity = current_chunk_.length() + growth;
591 if (new_capacity < min_capacity) {
592 new_capacity = min_capacity + growth;
593 }
594 Vector<T> new_chunk = Vector<T>::New(new_capacity);
595 int new_index = PrepareGrow(new_chunk);
596 if (index_ > 0) {
597 chunks_.Add(current_chunk_.SubVector(0, index_));
598 } else {
599 // Can happen if the call to PrepareGrow moves everything into
600 // the new chunk.
601 current_chunk_.Dispose();
602 }
603 current_chunk_ = new_chunk;
604 index_ = new_index;
605 ASSERT(index_ + min_capacity <= current_chunk_.length());
606 }
607
608 // Before replacing the current chunk, give a subclass the option to move
609 // some of the current data into the new chunk. The function may update
610 // the current index_ value to represent data no longer in the current chunk.
611 // Returns the initial index of the new chunk (after copied data).
612 virtual int PrepareGrow(Vector<T> new_chunk) {
613 return 0;
614 }
615};
616
617
618/*
619 * A collector that allows sequences of values to be guaranteed to
620 * stay consecutive.
621 * If the backing store grows while a sequence is active, the current
622 * sequence might be moved, but after the sequence is ended, it will
623 * not move again.
624 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
625 * as well, if inside an active sequence where another element is added.
626 */
627template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
628class SequenceCollector : public Collector<T, growth_factor, max_growth> {
629 public:
630 explicit SequenceCollector(int initial_capacity)
631 : Collector<T, growth_factor, max_growth>(initial_capacity),
632 sequence_start_(kNoSequence) { }
633
634 virtual ~SequenceCollector() {}
635
636 void StartSequence() {
637 ASSERT(sequence_start_ == kNoSequence);
638 sequence_start_ = this->index_;
639 }
640
641 Vector<T> EndSequence() {
642 ASSERT(sequence_start_ != kNoSequence);
643 int sequence_start = sequence_start_;
644 sequence_start_ = kNoSequence;
645 if (sequence_start == this->index_) return Vector<T>();
646 return this->current_chunk_.SubVector(sequence_start, this->index_);
647 }
648
649 // Drops the currently added sequence, and all collected elements in it.
650 void DropSequence() {
651 ASSERT(sequence_start_ != kNoSequence);
652 int sequence_length = this->index_ - sequence_start_;
653 this->index_ = sequence_start_;
654 this->size_ -= sequence_length;
655 sequence_start_ = kNoSequence;
656 }
657
658 virtual void Reset() {
659 sequence_start_ = kNoSequence;
660 this->Collector<T, growth_factor, max_growth>::Reset();
661 }
662
663 private:
664 static const int kNoSequence = -1;
665 int sequence_start_;
666
667 // Move the currently active sequence to the new chunk.
668 virtual int PrepareGrow(Vector<T> new_chunk) {
669 if (sequence_start_ != kNoSequence) {
670 int sequence_length = this->index_ - sequence_start_;
671 // The new chunk is always larger than the current chunk, so there
672 // is room for the copy.
673 ASSERT(sequence_length < new_chunk.length());
674 for (int i = 0; i < sequence_length; i++) {
675 new_chunk[i] = this->current_chunk_[sequence_start_ + i];
676 }
677 this->index_ = sequence_start_;
678 sequence_start_ = 0;
679 return sequence_length;
680 }
681 return 0;
682 }
683};
684
685
Steve Blocka7e24c12009-10-30 11:49:00 +0000686// Simple support to read a file into a 0-terminated C-string.
687// The returned buffer must be freed by the caller.
688// On return, *exits tells whether the file existed.
689Vector<const char> ReadFile(const char* filename,
690 bool* exists,
691 bool verbose = true);
692
693
694// Simple wrapper that allows an ExternalString to refer to a
695// Vector<const char>. Doesn't assume ownership of the data.
696class AsciiStringAdapter: public v8::String::ExternalAsciiStringResource {
697 public:
698 explicit AsciiStringAdapter(Vector<const char> data) : data_(data) {}
699
700 virtual const char* data() const { return data_.start(); }
701
702 virtual size_t length() const { return data_.length(); }
703
704 private:
705 Vector<const char> data_;
706};
707
708
709// Helper class for building result strings in a character buffer. The
710// purpose of the class is to use safe operations that checks the
711// buffer bounds on all operations in debug mode.
712class StringBuilder {
713 public:
714 // Create a string builder with a buffer of the given size. The
715 // buffer is allocated through NewArray<char> and must be
716 // deallocated by the caller of Finalize().
717 explicit StringBuilder(int size);
718
719 StringBuilder(char* buffer, int size)
720 : buffer_(buffer, size), position_(0) { }
721
722 ~StringBuilder() { if (!is_finalized()) Finalize(); }
723
724 int size() const { return buffer_.length(); }
725
726 // Get the current position in the builder.
727 int position() const {
728 ASSERT(!is_finalized());
729 return position_;
730 }
731
732 // Reset the position.
733 void Reset() { position_ = 0; }
734
735 // Add a single character to the builder. It is not allowed to add
736 // 0-characters; use the Finalize() method to terminate the string
737 // instead.
738 void AddCharacter(char c) {
739 ASSERT(c != '\0');
740 ASSERT(!is_finalized() && position_ < buffer_.length());
741 buffer_[position_++] = c;
742 }
743
744 // Add an entire string to the builder. Uses strlen() internally to
745 // compute the length of the input string.
746 void AddString(const char* s);
747
748 // Add the first 'n' characters of the given string 's' to the
749 // builder. The input string must have enough characters.
750 void AddSubstring(const char* s, int n);
751
752 // Add formatted contents to the builder just like printf().
753 void AddFormatted(const char* format, ...);
754
755 // Add character padding to the builder. If count is non-positive,
756 // nothing is added to the builder.
757 void AddPadding(char c, int count);
758
759 // Finalize the string by 0-terminating it and returning the buffer.
760 char* Finalize();
761
762 private:
763 Vector<char> buffer_;
764 int position_;
765
766 bool is_finalized() const { return position_ < 0; }
767
768 DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
769};
770
771
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100772// Custom memcpy implementation for platforms where the standard version
773// may not be good enough.
774// TODO(lrn): Check whether some IA32 platforms should be excluded.
775#if defined(V8_TARGET_ARCH_IA32)
776
777// TODO(lrn): Extend to other platforms as needed.
778
779typedef void (*MemCopyFunction)(void* dest, const void* src, size_t size);
780
781// Implemented in codegen-<arch>.cc.
782MemCopyFunction CreateMemCopyFunction();
783
784// Copy memory area to disjoint memory area.
785static inline void MemCopy(void* dest, const void* src, size_t size) {
786 static MemCopyFunction memcopy = CreateMemCopyFunction();
787 (*memcopy)(dest, src, size);
788#ifdef DEBUG
789 CHECK_EQ(0, memcmp(dest, src, size));
790#endif
791}
792
793
794// Limit below which the extra overhead of the MemCopy function is likely
795// to outweigh the benefits of faster copying.
796// TODO(lrn): Try to find a more precise value.
Steve Block8defd9f2010-07-08 12:39:36 +0100797static const int kMinComplexMemCopy = 64;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100798
799#else // V8_TARGET_ARCH_IA32
800
801static inline void MemCopy(void* dest, const void* src, size_t size) {
802 memcpy(dest, src, size);
803}
804
805static const int kMinComplexMemCopy = 256;
806
807#endif // V8_TARGET_ARCH_IA32
808
809
Steve Blocka7e24c12009-10-30 11:49:00 +0000810// Copy from ASCII/16bit chars to ASCII/16bit chars.
811template <typename sourcechar, typename sinkchar>
812static inline void CopyChars(sinkchar* dest, const sourcechar* src, int chars) {
813 sinkchar* limit = dest + chars;
814#ifdef V8_HOST_CAN_READ_UNALIGNED
815 if (sizeof(*dest) == sizeof(*src)) {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100816 if (chars >= static_cast<int>(kMinComplexMemCopy / sizeof(*dest))) {
817 MemCopy(dest, src, chars * sizeof(*dest));
818 return;
819 }
Steve Block6ded16b2010-05-10 14:33:55 +0100820 // Number of characters in a uintptr_t.
821 static const int kStepSize = sizeof(uintptr_t) / sizeof(*dest); // NOLINT
Steve Blocka7e24c12009-10-30 11:49:00 +0000822 while (dest <= limit - kStepSize) {
Steve Block6ded16b2010-05-10 14:33:55 +0100823 *reinterpret_cast<uintptr_t*>(dest) =
824 *reinterpret_cast<const uintptr_t*>(src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000825 dest += kStepSize;
826 src += kStepSize;
827 }
828 }
829#endif
830 while (dest < limit) {
831 *dest++ = static_cast<sinkchar>(*src++);
832 }
833}
834
835
Steve Block6ded16b2010-05-10 14:33:55 +0100836// Compare ASCII/16bit chars to ASCII/16bit chars.
837template <typename lchar, typename rchar>
838static inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
839 const lchar* limit = lhs + chars;
840#ifdef V8_HOST_CAN_READ_UNALIGNED
841 if (sizeof(*lhs) == sizeof(*rhs)) {
842 // Number of characters in a uintptr_t.
843 static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
844 while (lhs <= limit - kStepSize) {
845 if (*reinterpret_cast<const uintptr_t*>(lhs) !=
846 *reinterpret_cast<const uintptr_t*>(rhs)) {
847 break;
848 }
849 lhs += kStepSize;
850 rhs += kStepSize;
851 }
852 }
853#endif
854 while (lhs < limit) {
855 int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
856 if (r != 0) return r;
857 ++lhs;
858 ++rhs;
859 }
860 return 0;
861}
862
863
864template <typename T>
865static inline void MemsetPointer(T** dest, T* value, int counter) {
866#if defined(V8_HOST_ARCH_IA32)
867#define STOS "stosl"
868#elif defined(V8_HOST_ARCH_X64)
869#define STOS "stosq"
870#endif
871
872#if defined(__GNUC__) && defined(STOS)
873 asm volatile(
874 "cld;"
875 "rep ; " STOS
876 : "+&c" (counter), "+&D" (dest)
877 : "a" (value)
878 : "memory", "cc");
879#else
880 for (int i = 0; i < counter; i++) {
881 dest[i] = value;
882 }
883#endif
884
885#undef STOS
886}
887
888
889// Copies data from |src| to |dst|. The data spans MUST not overlap.
890inline void CopyWords(Object** dst, Object** src, int num_words) {
891 ASSERT(Min(dst, src) + num_words <= Max(dst, src));
892 ASSERT(num_words > 0);
893
894 // Use block copying memcpy if the segment we're copying is
895 // enough to justify the extra call/setup overhead.
896 static const int kBlockCopyLimit = 16;
897
898 if (num_words >= kBlockCopyLimit) {
899 memcpy(dst, src, num_words * kPointerSize);
900 } else {
901 int remaining = num_words;
902 do {
903 remaining--;
904 *dst++ = *src++;
905 } while (remaining > 0);
906 }
907}
908
909
Steve Blockd0582a62009-12-15 09:54:21 +0000910// Calculate 10^exponent.
911int TenToThe(int exponent);
912
Steve Block6ded16b2010-05-10 14:33:55 +0100913
914// The type-based aliasing rule allows the compiler to assume that pointers of
915// different types (for some definition of different) never alias each other.
916// Thus the following code does not work:
917//
918// float f = foo();
919// int fbits = *(int*)(&f);
920//
921// The compiler 'knows' that the int pointer can't refer to f since the types
922// don't match, so the compiler may cache f in a register, leaving random data
923// in fbits. Using C++ style casts makes no difference, however a pointer to
924// char data is assumed to alias any other pointer. This is the 'memcpy
925// exception'.
926//
927// Bit_cast uses the memcpy exception to move the bits from a variable of one
928// type of a variable of another type. Of course the end result is likely to
929// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
930// will completely optimize BitCast away.
931//
932// There is an additional use for BitCast.
933// Recent gccs will warn when they see casts that may result in breakage due to
934// the type-based aliasing rule. If you have checked that there is no breakage
935// you can use BitCast to cast one pointer type to another. This confuses gcc
936// enough that it can no longer see that you have cast one pointer type to
937// another thus avoiding the warning.
938template <class Dest, class Source>
939inline Dest BitCast(const Source& source) {
940 // Compile time assertion: sizeof(Dest) == sizeof(Source)
941 // A compile error here means your Dest and Source have different sizes.
942 typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
943
944 Dest dest;
945 memcpy(&dest, &source, sizeof(dest));
946 return dest;
947}
948
Iain Merrick75681382010-08-19 15:07:18 +0100949template <class Dest, class Source>
Steve Block791712a2010-08-27 10:21:07 +0100950inline Dest BitCast(Source* source) {
951 return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
Iain Merrick75681382010-08-19 15:07:18 +0100952}
Steve Blocka7e24c12009-10-30 11:49:00 +0000953
Iain Merrick75681382010-08-19 15:07:18 +0100954} } // namespace v8::internal
Steve Block6ded16b2010-05-10 14:33:55 +0100955
Steve Blocka7e24c12009-10-30 11:49:00 +0000956#endif // V8_UTILS_H_