blob: 18213b93e6e5f2f9b4169e491dad383f0bac888e [file] [log] [blame]
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_X64_CODE_STUBS_X64_H_
29#define V8_X64_CODE_STUBS_X64_H_
30
31#include "ic-inl.h"
32#include "type-info.h"
33
34namespace v8 {
35namespace internal {
36
37
38// Compute a transcendental math function natively, or call the
39// TranscendentalCache runtime function.
40class TranscendentalCacheStub: public CodeStub {
41 public:
42 explicit TranscendentalCacheStub(TranscendentalCache::Type type)
43 : type_(type) {}
44 void Generate(MacroAssembler* masm);
45 private:
46 TranscendentalCache::Type type_;
47 Major MajorKey() { return TranscendentalCache; }
48 int MinorKey() { return type_; }
49 Runtime::FunctionId RuntimeFunction();
50 void GenerateOperation(MacroAssembler* masm, Label* on_nan_result);
51};
52
53
54class ToBooleanStub: public CodeStub {
55 public:
56 ToBooleanStub() { }
57
58 void Generate(MacroAssembler* masm);
59
60 private:
61 Major MajorKey() { return ToBoolean; }
62 int MinorKey() { return 0; }
63};
64
65
66// Flag that indicates how to generate code for the stub GenericBinaryOpStub.
67enum GenericBinaryFlags {
68 NO_GENERIC_BINARY_FLAGS = 0,
69 NO_SMI_CODE_IN_STUB = 1 << 0 // Omit smi code in stub.
70};
71
72
73class GenericBinaryOpStub: public CodeStub {
74 public:
75 GenericBinaryOpStub(Token::Value op,
76 OverwriteMode mode,
77 GenericBinaryFlags flags,
78 TypeInfo operands_type = TypeInfo::Unknown())
79 : op_(op),
80 mode_(mode),
81 flags_(flags),
82 args_in_registers_(false),
83 args_reversed_(false),
84 static_operands_type_(operands_type),
85 runtime_operands_type_(BinaryOpIC::DEFAULT),
86 name_(NULL) {
87 ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
88 }
89
90 GenericBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info)
91 : op_(OpBits::decode(key)),
92 mode_(ModeBits::decode(key)),
93 flags_(FlagBits::decode(key)),
94 args_in_registers_(ArgsInRegistersBits::decode(key)),
95 args_reversed_(ArgsReversedBits::decode(key)),
96 static_operands_type_(TypeInfo::ExpandedRepresentation(
97 StaticTypeInfoBits::decode(key))),
98 runtime_operands_type_(type_info),
99 name_(NULL) {
100 }
101
102 // Generate code to call the stub with the supplied arguments. This will add
103 // code at the call site to prepare arguments either in registers or on the
104 // stack together with the actual call.
105 void GenerateCall(MacroAssembler* masm, Register left, Register right);
106 void GenerateCall(MacroAssembler* masm, Register left, Smi* right);
107 void GenerateCall(MacroAssembler* masm, Smi* left, Register right);
108
109 bool ArgsInRegistersSupported() {
110 return (op_ == Token::ADD) || (op_ == Token::SUB)
111 || (op_ == Token::MUL) || (op_ == Token::DIV);
112 }
113
114 private:
115 Token::Value op_;
116 OverwriteMode mode_;
117 GenericBinaryFlags flags_;
118 bool args_in_registers_; // Arguments passed in registers not on the stack.
119 bool args_reversed_; // Left and right argument are swapped.
120
121 // Number type information of operands, determined by code generator.
122 TypeInfo static_operands_type_;
123
124 // Operand type information determined at runtime.
125 BinaryOpIC::TypeInfo runtime_operands_type_;
126
127 char* name_;
128
129 const char* GetName();
130
131#ifdef DEBUG
132 void Print() {
133 PrintF("GenericBinaryOpStub %d (op %s), "
134 "(mode %d, flags %d, registers %d, reversed %d, only_numbers %s)\n",
135 MinorKey(),
136 Token::String(op_),
137 static_cast<int>(mode_),
138 static_cast<int>(flags_),
139 static_cast<int>(args_in_registers_),
140 static_cast<int>(args_reversed_),
141 static_operands_type_.ToString());
142 }
143#endif
144
145 // Minor key encoding in 17 bits TTNNNFRAOOOOOOOMM.
146 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
147 class OpBits: public BitField<Token::Value, 2, 7> {};
148 class ArgsInRegistersBits: public BitField<bool, 9, 1> {};
149 class ArgsReversedBits: public BitField<bool, 10, 1> {};
150 class FlagBits: public BitField<GenericBinaryFlags, 11, 1> {};
151 class StaticTypeInfoBits: public BitField<int, 12, 3> {};
152 class RuntimeTypeInfoBits: public BitField<BinaryOpIC::TypeInfo, 15, 2> {};
153
154 Major MajorKey() { return GenericBinaryOp; }
155 int MinorKey() {
156 // Encode the parameters in a unique 18 bit value.
157 return OpBits::encode(op_)
158 | ModeBits::encode(mode_)
159 | FlagBits::encode(flags_)
160 | ArgsInRegistersBits::encode(args_in_registers_)
161 | ArgsReversedBits::encode(args_reversed_)
162 | StaticTypeInfoBits::encode(
163 static_operands_type_.ThreeBitRepresentation())
164 | RuntimeTypeInfoBits::encode(runtime_operands_type_);
165 }
166
167 void Generate(MacroAssembler* masm);
168 void GenerateSmiCode(MacroAssembler* masm, Label* slow);
169 void GenerateLoadArguments(MacroAssembler* masm);
170 void GenerateReturn(MacroAssembler* masm);
171 void GenerateRegisterArgsPush(MacroAssembler* masm);
172 void GenerateTypeTransition(MacroAssembler* masm);
173
174 bool IsOperationCommutative() {
175 return (op_ == Token::ADD) || (op_ == Token::MUL);
176 }
177
178 void SetArgsInRegisters() { args_in_registers_ = true; }
179 void SetArgsReversed() { args_reversed_ = true; }
180 bool HasSmiCodeInStub() { return (flags_ & NO_SMI_CODE_IN_STUB) == 0; }
181 bool HasArgsInRegisters() { return args_in_registers_; }
182 bool HasArgsReversed() { return args_reversed_; }
183
184 bool ShouldGenerateSmiCode() {
185 return HasSmiCodeInStub() &&
186 runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
187 runtime_operands_type_ != BinaryOpIC::STRINGS;
188 }
189
190 bool ShouldGenerateFPCode() {
191 return runtime_operands_type_ != BinaryOpIC::STRINGS;
192 }
193
194 virtual int GetCodeKind() { return Code::BINARY_OP_IC; }
195
196 virtual InlineCacheState GetICState() {
197 return BinaryOpIC::ToState(runtime_operands_type_);
198 }
199
200 friend class CodeGenerator;
201};
202
203class StringHelper : public AllStatic {
204 public:
205 // Generate code for copying characters using a simple loop. This should only
206 // be used in places where the number of characters is small and the
207 // additional setup and checking in GenerateCopyCharactersREP adds too much
208 // overhead. Copying of overlapping regions is not supported.
209 static void GenerateCopyCharacters(MacroAssembler* masm,
210 Register dest,
211 Register src,
212 Register count,
213 bool ascii);
214
215 // Generate code for copying characters using the rep movs instruction.
216 // Copies rcx characters from rsi to rdi. Copying of overlapping regions is
217 // not supported.
218 static void GenerateCopyCharactersREP(MacroAssembler* masm,
219 Register dest, // Must be rdi.
220 Register src, // Must be rsi.
221 Register count, // Must be rcx.
222 bool ascii);
223
224
225 // Probe the symbol table for a two character string. If the string is
226 // not found by probing a jump to the label not_found is performed. This jump
227 // does not guarantee that the string is not in the symbol table. If the
228 // string is found the code falls through with the string in register rax.
229 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
230 Register c1,
231 Register c2,
232 Register scratch1,
233 Register scratch2,
234 Register scratch3,
235 Register scratch4,
236 Label* not_found);
237
238 // Generate string hash.
239 static void GenerateHashInit(MacroAssembler* masm,
240 Register hash,
241 Register character,
242 Register scratch);
243 static void GenerateHashAddCharacter(MacroAssembler* masm,
244 Register hash,
245 Register character,
246 Register scratch);
247 static void GenerateHashGetHash(MacroAssembler* masm,
248 Register hash,
249 Register scratch);
250
251 private:
252 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
253};
254
255
256// Flag that indicates how to generate code for the stub StringAddStub.
257enum StringAddFlags {
258 NO_STRING_ADD_FLAGS = 0,
259 NO_STRING_CHECK_IN_STUB = 1 << 0 // Omit string check in stub.
260};
261
262
263class StringAddStub: public CodeStub {
264 public:
265 explicit StringAddStub(StringAddFlags flags) {
266 string_check_ = ((flags & NO_STRING_CHECK_IN_STUB) == 0);
267 }
268
269 private:
270 Major MajorKey() { return StringAdd; }
271 int MinorKey() { return string_check_ ? 0 : 1; }
272
273 void Generate(MacroAssembler* masm);
274
275 // Should the stub check whether arguments are strings?
276 bool string_check_;
277};
278
279
280class SubStringStub: public CodeStub {
281 public:
282 SubStringStub() {}
283
284 private:
285 Major MajorKey() { return SubString; }
286 int MinorKey() { return 0; }
287
288 void Generate(MacroAssembler* masm);
289};
290
291
292class StringCompareStub: public CodeStub {
293 public:
294 explicit StringCompareStub() {}
295
296 // Compare two flat ascii strings and returns result in rax after popping two
297 // arguments from the stack.
298 static void GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
299 Register left,
300 Register right,
301 Register scratch1,
302 Register scratch2,
303 Register scratch3,
304 Register scratch4);
305
306 private:
307 Major MajorKey() { return StringCompare; }
308 int MinorKey() { return 0; }
309
310 void Generate(MacroAssembler* masm);
311};
312
313
314class NumberToStringStub: public CodeStub {
315 public:
316 NumberToStringStub() { }
317
318 // Generate code to do a lookup in the number string cache. If the number in
319 // the register object is found in the cache the generated code falls through
320 // with the result in the result register. The object and the result register
321 // can be the same. If the number is not found in the cache the code jumps to
322 // the label not_found with only the content of register object unchanged.
323 static void GenerateLookupNumberStringCache(MacroAssembler* masm,
324 Register object,
325 Register result,
326 Register scratch1,
327 Register scratch2,
328 bool object_is_smi,
329 Label* not_found);
330
331 private:
332 static void GenerateConvertHashCodeToIndex(MacroAssembler* masm,
333 Register hash,
334 Register mask);
335
336 Major MajorKey() { return NumberToString; }
337 int MinorKey() { return 0; }
338
339 void Generate(MacroAssembler* masm);
340
341 const char* GetName() { return "NumberToStringStub"; }
342
343#ifdef DEBUG
344 void Print() {
345 PrintF("NumberToStringStub\n");
346 }
347#endif
348};
349
350
351class RecordWriteStub : public CodeStub {
352 public:
353 RecordWriteStub(Register object, Register addr, Register scratch)
354 : object_(object), addr_(addr), scratch_(scratch) { }
355
356 void Generate(MacroAssembler* masm);
357
358 private:
359 Register object_;
360 Register addr_;
361 Register scratch_;
362
363#ifdef DEBUG
364 void Print() {
365 PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n",
366 object_.code(), addr_.code(), scratch_.code());
367 }
368#endif
369
370 // Minor key encoding in 12 bits. 4 bits for each of the three
371 // registers (object, address and scratch) OOOOAAAASSSS.
372 class ScratchBits : public BitField<uint32_t, 0, 4> {};
373 class AddressBits : public BitField<uint32_t, 4, 4> {};
374 class ObjectBits : public BitField<uint32_t, 8, 4> {};
375
376 Major MajorKey() { return RecordWrite; }
377
378 int MinorKey() {
379 // Encode the registers.
380 return ObjectBits::encode(object_.code()) |
381 AddressBits::encode(addr_.code()) |
382 ScratchBits::encode(scratch_.code());
383 }
384};
385
386
387} } // namespace v8::internal
388
389#endif // V8_X64_CODE_STUBS_X64_H_