blob: c50424e57a44a83733c2078b70691a5a50689304 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Win32.
29#ifndef WIN32_LEAN_AND_MEAN
30// WIN32_LEAN_AND_MEAN implies NOCRYPT and NOGDI.
31#define WIN32_LEAN_AND_MEAN
32#endif
33#ifndef NOMINMAX
34#define NOMINMAX
35#endif
36#ifndef NOKERNEL
37#define NOKERNEL
38#endif
39#ifndef NOUSER
40#define NOUSER
41#endif
42#ifndef NOSERVICE
43#define NOSERVICE
44#endif
45#ifndef NOSOUND
46#define NOSOUND
47#endif
48#ifndef NOMCX
49#define NOMCX
50#endif
Steve Blockd0582a62009-12-15 09:54:21 +000051// Require Windows XP or higher (this is required for the RtlCaptureContext
Steve Blocka7e24c12009-10-30 11:49:00 +000052// function to be present).
53#ifndef _WIN32_WINNT
Steve Blockd0582a62009-12-15 09:54:21 +000054#define _WIN32_WINNT 0x501
Steve Blocka7e24c12009-10-30 11:49:00 +000055#endif
56
57#include <windows.h>
58
59#include <time.h> // For LocalOffset() implementation.
60#include <mmsystem.h> // For timeGetTime().
61#ifdef __MINGW32__
62// Require Windows XP or higher when compiling with MinGW. This is for MinGW
63// header files to expose getaddrinfo.
64#undef _WIN32_WINNT
65#define _WIN32_WINNT 0x501
66#endif // __MINGW32__
67#ifndef __MINGW32__
68#include <dbghelp.h> // For SymLoadModule64 and al.
69#endif // __MINGW32__
70#include <limits.h> // For INT_MAX and al.
71#include <tlhelp32.h> // For Module32First and al.
72
73// These additional WIN32 includes have to be right here as the #undef's below
74// makes it impossible to have them elsewhere.
75#include <winsock2.h>
76#include <ws2tcpip.h>
77#include <process.h> // for _beginthreadex()
78#include <stdlib.h>
79
80#undef VOID
81#undef DELETE
82#undef IN
83#undef THIS
84#undef CONST
85#undef NAN
86#undef GetObject
87#undef CreateMutex
88#undef CreateSemaphore
89
90#include "v8.h"
91
92#include "platform.h"
93
94// Extra POSIX/ANSI routines for Win32 when when using Visual Studio C++. Please
95// refer to The Open Group Base Specification for specification of the correct
96// semantics for these functions.
97// (http://www.opengroup.org/onlinepubs/000095399/)
98#ifdef _MSC_VER
99
100namespace v8 {
101namespace internal {
102
103// Test for finite value - usually defined in math.h
104int isfinite(double x) {
105 return _finite(x);
106}
107
108} // namespace v8
109} // namespace internal
110
111// Test for a NaN (not a number) value - usually defined in math.h
112int isnan(double x) {
113 return _isnan(x);
114}
115
116
117// Test for infinity - usually defined in math.h
118int isinf(double x) {
119 return (_fpclass(x) & (_FPCLASS_PINF | _FPCLASS_NINF)) != 0;
120}
121
122
123// Test if x is less than y and both nominal - usually defined in math.h
124int isless(double x, double y) {
125 return isnan(x) || isnan(y) ? 0 : x < y;
126}
127
128
129// Test if x is greater than y and both nominal - usually defined in math.h
130int isgreater(double x, double y) {
131 return isnan(x) || isnan(y) ? 0 : x > y;
132}
133
134
135// Classify floating point number - usually defined in math.h
136int fpclassify(double x) {
137 // Use the MS-specific _fpclass() for classification.
138 int flags = _fpclass(x);
139
140 // Determine class. We cannot use a switch statement because
141 // the _FPCLASS_ constants are defined as flags.
142 if (flags & (_FPCLASS_PN | _FPCLASS_NN)) return FP_NORMAL;
143 if (flags & (_FPCLASS_PZ | _FPCLASS_NZ)) return FP_ZERO;
144 if (flags & (_FPCLASS_PD | _FPCLASS_ND)) return FP_SUBNORMAL;
145 if (flags & (_FPCLASS_PINF | _FPCLASS_NINF)) return FP_INFINITE;
146
147 // All cases should be covered by the code above.
148 ASSERT(flags & (_FPCLASS_SNAN | _FPCLASS_QNAN));
149 return FP_NAN;
150}
151
152
153// Test sign - usually defined in math.h
154int signbit(double x) {
155 // We need to take care of the special case of both positive
156 // and negative versions of zero.
157 if (x == 0)
158 return _fpclass(x) & _FPCLASS_NZ;
159 else
160 return x < 0;
161}
162
163
164// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
165// defined in strings.h.
166int strncasecmp(const char* s1, const char* s2, int n) {
167 return _strnicmp(s1, s2, n);
168}
169
170#endif // _MSC_VER
171
172
173// Extra functions for MinGW. Most of these are the _s functions which are in
174// the Microsoft Visual Studio C++ CRT.
175#ifdef __MINGW32__
176
177int localtime_s(tm* out_tm, const time_t* time) {
178 tm* posix_local_time_struct = localtime(time);
179 if (posix_local_time_struct == NULL) return 1;
180 *out_tm = *posix_local_time_struct;
181 return 0;
182}
183
184
185// Not sure this the correct interpretation of _mkgmtime
186time_t _mkgmtime(tm* timeptr) {
187 return mktime(timeptr);
188}
189
190
191int fopen_s(FILE** pFile, const char* filename, const char* mode) {
192 *pFile = fopen(filename, mode);
193 return *pFile != NULL ? 0 : 1;
194}
195
196
197int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
198 const char* format, va_list argptr) {
199 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
200}
201#define _TRUNCATE 0
202
203
204int strncpy_s(char* strDest, size_t numberOfElements,
205 const char* strSource, size_t count) {
206 strncpy(strDest, strSource, count);
207 return 0;
208}
209
210#endif // __MINGW32__
211
212// Generate a pseudo-random number in the range 0-2^31-1. Usually
213// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
214int random() {
215 return rand();
216}
217
218
219namespace v8 {
220namespace internal {
221
222double ceiling(double x) {
223 return ceil(x);
224}
225
Steve Block3ce2e202009-11-05 08:53:23 +0000226#ifdef _WIN64
227typedef double (*ModuloFunction)(double, double);
228
229// Defined in codegen-x64.cc.
230ModuloFunction CreateModuloFunction();
231
232double modulo(double x, double y) {
233 static ModuloFunction function = CreateModuloFunction();
234 return function(x, y);
235}
236#else // Win32
237
238double modulo(double x, double y) {
239 // Workaround MS fmod bugs. ECMA-262 says:
240 // dividend is finite and divisor is an infinity => result equals dividend
241 // dividend is a zero and divisor is nonzero finite => result equals dividend
242 if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
243 !(x == 0 && (y != 0 && isfinite(y)))) {
244 x = fmod(x, y);
245 }
246 return x;
247}
248
249#endif // _WIN64
250
Steve Blocka7e24c12009-10-30 11:49:00 +0000251// ----------------------------------------------------------------------------
252// The Time class represents time on win32. A timestamp is represented as
253// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
254// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
255// January 1, 1970.
256
257class Time {
258 public:
259 // Constructors.
260 Time();
261 explicit Time(double jstime);
262 Time(int year, int mon, int day, int hour, int min, int sec);
263
264 // Convert timestamp to JavaScript representation.
265 double ToJSTime();
266
267 // Set timestamp to current time.
268 void SetToCurrentTime();
269
270 // Returns the local timezone offset in milliseconds east of UTC. This is
271 // the number of milliseconds you must add to UTC to get local time, i.e.
272 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
273 // routine also takes into account whether daylight saving is effect
274 // at the time.
275 int64_t LocalOffset();
276
277 // Returns the daylight savings time offset for the time in milliseconds.
278 int64_t DaylightSavingsOffset();
279
280 // Returns a string identifying the current timezone for the
281 // timestamp taking into account daylight saving.
282 char* LocalTimezone();
283
284 private:
285 // Constants for time conversion.
286 static const int64_t kTimeEpoc = 116444736000000000LL;
287 static const int64_t kTimeScaler = 10000;
288 static const int64_t kMsPerMinute = 60000;
289
290 // Constants for timezone information.
291 static const int kTzNameSize = 128;
292 static const bool kShortTzNames = false;
293
294 // Timezone information. We need to have static buffers for the
295 // timezone names because we return pointers to these in
296 // LocalTimezone().
297 static bool tz_initialized_;
298 static TIME_ZONE_INFORMATION tzinfo_;
299 static char std_tz_name_[kTzNameSize];
300 static char dst_tz_name_[kTzNameSize];
301
302 // Initialize the timezone information (if not already done).
303 static void TzSet();
304
305 // Guess the name of the timezone from the bias.
306 static const char* GuessTimezoneNameFromBias(int bias);
307
308 // Return whether or not daylight savings time is in effect at this time.
309 bool InDST();
310
311 // Return the difference (in milliseconds) between this timestamp and
312 // another timestamp.
313 int64_t Diff(Time* other);
314
315 // Accessor for FILETIME representation.
316 FILETIME& ft() { return time_.ft_; }
317
318 // Accessor for integer representation.
319 int64_t& t() { return time_.t_; }
320
321 // Although win32 uses 64-bit integers for representing timestamps,
322 // these are packed into a FILETIME structure. The FILETIME structure
323 // is just a struct representing a 64-bit integer. The TimeStamp union
324 // allows access to both a FILETIME and an integer representation of
325 // the timestamp.
326 union TimeStamp {
327 FILETIME ft_;
328 int64_t t_;
329 };
330
331 TimeStamp time_;
332};
333
334// Static variables.
335bool Time::tz_initialized_ = false;
336TIME_ZONE_INFORMATION Time::tzinfo_;
337char Time::std_tz_name_[kTzNameSize];
338char Time::dst_tz_name_[kTzNameSize];
339
340
341// Initialize timestamp to start of epoc.
342Time::Time() {
343 t() = 0;
344}
345
346
347// Initialize timestamp from a JavaScript timestamp.
348Time::Time(double jstime) {
349 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
350}
351
352
353// Initialize timestamp from date/time components.
354Time::Time(int year, int mon, int day, int hour, int min, int sec) {
355 SYSTEMTIME st;
356 st.wYear = year;
357 st.wMonth = mon;
358 st.wDay = day;
359 st.wHour = hour;
360 st.wMinute = min;
361 st.wSecond = sec;
362 st.wMilliseconds = 0;
363 SystemTimeToFileTime(&st, &ft());
364}
365
366
367// Convert timestamp to JavaScript timestamp.
368double Time::ToJSTime() {
369 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
370}
371
372
373// Guess the name of the timezone from the bias.
374// The guess is very biased towards the northern hemisphere.
375const char* Time::GuessTimezoneNameFromBias(int bias) {
376 static const int kHour = 60;
377 switch (-bias) {
378 case -9*kHour: return "Alaska";
379 case -8*kHour: return "Pacific";
380 case -7*kHour: return "Mountain";
381 case -6*kHour: return "Central";
382 case -5*kHour: return "Eastern";
383 case -4*kHour: return "Atlantic";
384 case 0*kHour: return "GMT";
385 case +1*kHour: return "Central Europe";
386 case +2*kHour: return "Eastern Europe";
387 case +3*kHour: return "Russia";
388 case +5*kHour + 30: return "India";
389 case +8*kHour: return "China";
390 case +9*kHour: return "Japan";
391 case +12*kHour: return "New Zealand";
392 default: return "Local";
393 }
394}
395
396
397// Initialize timezone information. The timezone information is obtained from
398// windows. If we cannot get the timezone information we fall back to CET.
399// Please notice that this code is not thread-safe.
400void Time::TzSet() {
401 // Just return if timezone information has already been initialized.
402 if (tz_initialized_) return;
403
404 // Initialize POSIX time zone data.
405 _tzset();
406 // Obtain timezone information from operating system.
407 memset(&tzinfo_, 0, sizeof(tzinfo_));
408 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
409 // If we cannot get timezone information we fall back to CET.
410 tzinfo_.Bias = -60;
411 tzinfo_.StandardDate.wMonth = 10;
412 tzinfo_.StandardDate.wDay = 5;
413 tzinfo_.StandardDate.wHour = 3;
414 tzinfo_.StandardBias = 0;
415 tzinfo_.DaylightDate.wMonth = 3;
416 tzinfo_.DaylightDate.wDay = 5;
417 tzinfo_.DaylightDate.wHour = 2;
418 tzinfo_.DaylightBias = -60;
419 }
420
421 // Make standard and DST timezone names.
422 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize),
423 "%S",
424 tzinfo_.StandardName);
425 std_tz_name_[kTzNameSize - 1] = '\0';
426 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize),
427 "%S",
428 tzinfo_.DaylightName);
429 dst_tz_name_[kTzNameSize - 1] = '\0';
430
431 // If OS returned empty string or resource id (like "@tzres.dll,-211")
432 // simply guess the name from the UTC bias of the timezone.
433 // To properly resolve the resource identifier requires a library load,
434 // which is not possible in a sandbox.
435 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
436 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
437 "%s Standard Time",
438 GuessTimezoneNameFromBias(tzinfo_.Bias));
439 }
440 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
441 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
442 "%s Daylight Time",
443 GuessTimezoneNameFromBias(tzinfo_.Bias));
444 }
445
446 // Timezone information initialized.
447 tz_initialized_ = true;
448}
449
450
451// Return the difference in milliseconds between this and another timestamp.
452int64_t Time::Diff(Time* other) {
453 return (t() - other->t()) / kTimeScaler;
454}
455
456
457// Set timestamp to current time.
458void Time::SetToCurrentTime() {
459 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
460 // Because we're fast, we like fast timers which have at least a
461 // 1ms resolution.
462 //
463 // timeGetTime() provides 1ms granularity when combined with
464 // timeBeginPeriod(). If the host application for v8 wants fast
465 // timers, it can use timeBeginPeriod to increase the resolution.
466 //
467 // Using timeGetTime() has a drawback because it is a 32bit value
468 // and hence rolls-over every ~49days.
469 //
470 // To use the clock, we use GetSystemTimeAsFileTime as our base;
471 // and then use timeGetTime to extrapolate current time from the
472 // start time. To deal with rollovers, we resync the clock
473 // any time when more than kMaxClockElapsedTime has passed or
474 // whenever timeGetTime creates a rollover.
475
476 static bool initialized = false;
477 static TimeStamp init_time;
478 static DWORD init_ticks;
479 static const int64_t kHundredNanosecondsPerSecond = 10000000;
480 static const int64_t kMaxClockElapsedTime =
481 60*kHundredNanosecondsPerSecond; // 1 minute
482
483 // If we are uninitialized, we need to resync the clock.
484 bool needs_resync = !initialized;
485
486 // Get the current time.
487 TimeStamp time_now;
488 GetSystemTimeAsFileTime(&time_now.ft_);
489 DWORD ticks_now = timeGetTime();
490
491 // Check if we need to resync due to clock rollover.
492 needs_resync |= ticks_now < init_ticks;
493
494 // Check if we need to resync due to elapsed time.
495 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
496
497 // Resync the clock if necessary.
498 if (needs_resync) {
499 GetSystemTimeAsFileTime(&init_time.ft_);
500 init_ticks = ticks_now = timeGetTime();
501 initialized = true;
502 }
503
504 // Finally, compute the actual time. Why is this so hard.
505 DWORD elapsed = ticks_now - init_ticks;
506 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
507}
508
509
510// Return the local timezone offset in milliseconds east of UTC. This
511// takes into account whether daylight saving is in effect at the time.
512// Only times in the 32-bit Unix range may be passed to this function.
513// Also, adding the time-zone offset to the input must not overflow.
Andrei Popescu31002712010-02-23 13:46:05 +0000514// The function EquivalentTime() in date.js guarantees this.
Steve Blocka7e24c12009-10-30 11:49:00 +0000515int64_t Time::LocalOffset() {
516 // Initialize timezone information, if needed.
517 TzSet();
518
519 Time rounded_to_second(*this);
520 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
521 1000 * kTimeScaler;
522 // Convert to local time using POSIX localtime function.
523 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
524 // very slow. Other browsers use localtime().
525
526 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
527 // POSIX seconds past 1/1/1970 0:00:00.
528 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
529 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
530 return 0;
531 }
532 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
533 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
534
535 // Convert to local time, as struct with fields for day, hour, year, etc.
536 tm posix_local_time_struct;
537 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
538 // Convert local time in struct to POSIX time as if it were a UTC time.
539 time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
540 Time localtime(1000.0 * local_posix_time);
541
542 return localtime.Diff(&rounded_to_second);
543}
544
545
546// Return whether or not daylight savings time is in effect at this time.
547bool Time::InDST() {
548 // Initialize timezone information, if needed.
549 TzSet();
550
551 // Determine if DST is in effect at the specified time.
552 bool in_dst = false;
553 if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
554 // Get the local timezone offset for the timestamp in milliseconds.
555 int64_t offset = LocalOffset();
556
557 // Compute the offset for DST. The bias parameters in the timezone info
558 // are specified in minutes. These must be converted to milliseconds.
559 int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
560
561 // If the local time offset equals the timezone bias plus the daylight
562 // bias then DST is in effect.
563 in_dst = offset == dstofs;
564 }
565
566 return in_dst;
567}
568
569
570// Return the daylight savings time offset for this time.
571int64_t Time::DaylightSavingsOffset() {
572 return InDST() ? 60 * kMsPerMinute : 0;
573}
574
575
576// Returns a string identifying the current timezone for the
577// timestamp taking into account daylight saving.
578char* Time::LocalTimezone() {
579 // Return the standard or DST time zone name based on whether daylight
580 // saving is in effect at the given time.
581 return InDST() ? dst_tz_name_ : std_tz_name_;
582}
583
584
585void OS::Setup() {
586 // Seed the random number generator.
587 // Convert the current time to a 64-bit integer first, before converting it
588 // to an unsigned. Going directly can cause an overflow and the seed to be
589 // set to all ones. The seed will be identical for different instances that
590 // call this setup code within the same millisecond.
591 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
592 srand(static_cast<unsigned int>(seed));
593}
594
595
596// Returns the accumulated user time for thread.
597int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
598 FILETIME dummy;
599 uint64_t usertime;
600
601 // Get the amount of time that the thread has executed in user mode.
602 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
603 reinterpret_cast<FILETIME*>(&usertime))) return -1;
604
605 // Adjust the resolution to micro-seconds.
606 usertime /= 10;
607
608 // Convert to seconds and microseconds
609 *secs = static_cast<uint32_t>(usertime / 1000000);
610 *usecs = static_cast<uint32_t>(usertime % 1000000);
611 return 0;
612}
613
614
615// Returns current time as the number of milliseconds since
616// 00:00:00 UTC, January 1, 1970.
617double OS::TimeCurrentMillis() {
618 Time t;
619 t.SetToCurrentTime();
620 return t.ToJSTime();
621}
622
623// Returns the tickcounter based on timeGetTime.
624int64_t OS::Ticks() {
625 return timeGetTime() * 1000; // Convert to microseconds.
626}
627
628
629// Returns a string identifying the current timezone taking into
630// account daylight saving.
631const char* OS::LocalTimezone(double time) {
632 return Time(time).LocalTimezone();
633}
634
635
636// Returns the local time offset in milliseconds east of UTC without
637// taking daylight savings time into account.
638double OS::LocalTimeOffset() {
639 // Use current time, rounded to the millisecond.
640 Time t(TimeCurrentMillis());
641 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
642 return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
643}
644
645
646// Returns the daylight savings offset in milliseconds for the given
647// time.
648double OS::DaylightSavingsOffset(double time) {
649 int64_t offset = Time(time).DaylightSavingsOffset();
650 return static_cast<double>(offset);
651}
652
653
Iain Merrick75681382010-08-19 15:07:18 +0100654int OS::GetLastError() {
655 return ::GetLastError();
656}
657
658
Steve Blocka7e24c12009-10-30 11:49:00 +0000659// ----------------------------------------------------------------------------
660// Win32 console output.
661//
662// If a Win32 application is linked as a console application it has a normal
663// standard output and standard error. In this case normal printf works fine
664// for output. However, if the application is linked as a GUI application,
665// the process doesn't have a console, and therefore (debugging) output is lost.
666// This is the case if we are embedded in a windows program (like a browser).
667// In order to be able to get debug output in this case the the debugging
668// facility using OutputDebugString. This output goes to the active debugger
669// for the process (if any). Else the output can be monitored using DBMON.EXE.
670
671enum OutputMode {
672 UNKNOWN, // Output method has not yet been determined.
673 CONSOLE, // Output is written to stdout.
674 ODS // Output is written to debug facility.
675};
676
677static OutputMode output_mode = UNKNOWN; // Current output mode.
678
679
680// Determine if the process has a console for output.
681static bool HasConsole() {
682 // Only check the first time. Eventual race conditions are not a problem,
683 // because all threads will eventually determine the same mode.
684 if (output_mode == UNKNOWN) {
685 // We cannot just check that the standard output is attached to a console
686 // because this would fail if output is redirected to a file. Therefore we
687 // say that a process does not have an output console if either the
688 // standard output handle is invalid or its file type is unknown.
689 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
690 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
691 output_mode = CONSOLE;
692 else
693 output_mode = ODS;
694 }
695 return output_mode == CONSOLE;
696}
697
698
699static void VPrintHelper(FILE* stream, const char* format, va_list args) {
700 if (HasConsole()) {
701 vfprintf(stream, format, args);
702 } else {
703 // It is important to use safe print here in order to avoid
704 // overflowing the buffer. We might truncate the output, but this
705 // does not crash.
706 EmbeddedVector<char, 4096> buffer;
707 OS::VSNPrintF(buffer, format, args);
708 OutputDebugStringA(buffer.start());
709 }
710}
711
712
713FILE* OS::FOpen(const char* path, const char* mode) {
714 FILE* result;
715 if (fopen_s(&result, path, mode) == 0) {
716 return result;
717 } else {
718 return NULL;
719 }
720}
721
722
723// Open log file in binary mode to avoid /n -> /r/n conversion.
724const char* OS::LogFileOpenMode = "wb";
725
726
727// Print (debug) message to console.
728void OS::Print(const char* format, ...) {
729 va_list args;
730 va_start(args, format);
731 VPrint(format, args);
732 va_end(args);
733}
734
735
736void OS::VPrint(const char* format, va_list args) {
737 VPrintHelper(stdout, format, args);
738}
739
740
741// Print error message to console.
742void OS::PrintError(const char* format, ...) {
743 va_list args;
744 va_start(args, format);
745 VPrintError(format, args);
746 va_end(args);
747}
748
749
750void OS::VPrintError(const char* format, va_list args) {
751 VPrintHelper(stderr, format, args);
752}
753
754
755int OS::SNPrintF(Vector<char> str, const char* format, ...) {
756 va_list args;
757 va_start(args, format);
758 int result = VSNPrintF(str, format, args);
759 va_end(args);
760 return result;
761}
762
763
764int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
765 int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
766 // Make sure to zero-terminate the string if the output was
767 // truncated or if there was an error.
768 if (n < 0 || n >= str.length()) {
769 str[str.length() - 1] = '\0';
770 return -1;
771 } else {
772 return n;
773 }
774}
775
776
777char* OS::StrChr(char* str, int c) {
778 return const_cast<char*>(strchr(str, c));
779}
780
781
782void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
783 int result = strncpy_s(dest.start(), dest.length(), src, n);
784 USE(result);
785 ASSERT(result == 0);
786}
787
788
789// We keep the lowest and highest addresses mapped as a quick way of
790// determining that pointers are outside the heap (used mostly in assertions
791// and verification). The estimate is conservative, ie, not all addresses in
792// 'allocated' space are actually allocated to our heap. The range is
793// [lowest, highest), inclusive on the low and and exclusive on the high end.
794static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
795static void* highest_ever_allocated = reinterpret_cast<void*>(0);
796
797
798static void UpdateAllocatedSpaceLimits(void* address, int size) {
799 lowest_ever_allocated = Min(lowest_ever_allocated, address);
800 highest_ever_allocated =
801 Max(highest_ever_allocated,
802 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
803}
804
805
806bool OS::IsOutsideAllocatedSpace(void* pointer) {
807 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
808 return true;
809 // Ask the Windows API
810 if (IsBadWritePtr(pointer, 1))
811 return true;
812 return false;
813}
814
815
816// Get the system's page size used by VirtualAlloc() or the next power
817// of two. The reason for always returning a power of two is that the
818// rounding up in OS::Allocate expects that.
819static size_t GetPageSize() {
820 static size_t page_size = 0;
821 if (page_size == 0) {
822 SYSTEM_INFO info;
823 GetSystemInfo(&info);
824 page_size = RoundUpToPowerOf2(info.dwPageSize);
825 }
826 return page_size;
827}
828
829
830// The allocation alignment is the guaranteed alignment for
831// VirtualAlloc'ed blocks of memory.
832size_t OS::AllocateAlignment() {
833 static size_t allocate_alignment = 0;
834 if (allocate_alignment == 0) {
835 SYSTEM_INFO info;
836 GetSystemInfo(&info);
837 allocate_alignment = info.dwAllocationGranularity;
838 }
839 return allocate_alignment;
840}
841
842
843void* OS::Allocate(const size_t requested,
844 size_t* allocated,
845 bool is_executable) {
Ben Murdochbb769b22010-08-11 14:56:33 +0100846 // The address range used to randomize RWX allocations in OS::Allocate
847 // Try not to map pages into the default range that windows loads DLLs
Ben Murdochf87a2032010-10-22 12:50:53 +0100848 // Use a multiple of 64k to prevent committing unused memory.
Ben Murdochbb769b22010-08-11 14:56:33 +0100849 // Note: This does not guarantee RWX regions will be within the
850 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
851#ifdef V8_HOST_ARCH_64_BIT
852 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
Ben Murdochf87a2032010-10-22 12:50:53 +0100853 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
Ben Murdochbb769b22010-08-11 14:56:33 +0100854#else
855 static const intptr_t kAllocationRandomAddressMin = 0x04000000;
Ben Murdochf87a2032010-10-22 12:50:53 +0100856 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
Ben Murdochbb769b22010-08-11 14:56:33 +0100857#endif
858
Steve Blocka7e24c12009-10-30 11:49:00 +0000859 // VirtualAlloc rounds allocated size to page size automatically.
Steve Blockd0582a62009-12-15 09:54:21 +0000860 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
Ben Murdochbb769b22010-08-11 14:56:33 +0100861 intptr_t address = NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +0000862
863 // Windows XP SP2 allows Data Excution Prevention (DEP).
864 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
Ben Murdochbb769b22010-08-11 14:56:33 +0100865
866 // For exectutable pages try and randomize the allocation address
867 if (prot == PAGE_EXECUTE_READWRITE && msize >= Page::kPageSize) {
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800868 address = (V8::RandomPrivate() << kPageSizeBits)
869 | kAllocationRandomAddressMin;
870 address &= kAllocationRandomAddressMax;
Ben Murdochbb769b22010-08-11 14:56:33 +0100871 }
872
873 LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address),
874 msize,
875 MEM_COMMIT | MEM_RESERVE,
876 prot);
877 if (mbase == NULL && address != NULL)
878 mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
879
Steve Blocka7e24c12009-10-30 11:49:00 +0000880 if (mbase == NULL) {
881 LOG(StringEvent("OS::Allocate", "VirtualAlloc failed"));
882 return NULL;
883 }
884
885 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
886
887 *allocated = msize;
Steve Blockd0582a62009-12-15 09:54:21 +0000888 UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
Steve Blocka7e24c12009-10-30 11:49:00 +0000889 return mbase;
890}
891
892
893void OS::Free(void* address, const size_t size) {
894 // TODO(1240712): VirtualFree has a return value which is ignored here.
895 VirtualFree(address, 0, MEM_RELEASE);
896 USE(size);
897}
898
899
900#ifdef ENABLE_HEAP_PROTECTION
901
902void OS::Protect(void* address, size_t size) {
903 // TODO(1240712): VirtualProtect has a return value which is ignored here.
904 DWORD old_protect;
905 VirtualProtect(address, size, PAGE_READONLY, &old_protect);
906}
907
908
909void OS::Unprotect(void* address, size_t size, bool is_executable) {
910 // TODO(1240712): VirtualProtect has a return value which is ignored here.
911 DWORD new_protect = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
912 DWORD old_protect;
913 VirtualProtect(address, size, new_protect, &old_protect);
914}
915
916#endif
917
918
919void OS::Sleep(int milliseconds) {
920 ::Sleep(milliseconds);
921}
922
923
924void OS::Abort() {
925 if (!IsDebuggerPresent()) {
926#ifdef _MSC_VER
927 // Make the MSVCRT do a silent abort.
928 _set_abort_behavior(0, _WRITE_ABORT_MSG);
929 _set_abort_behavior(0, _CALL_REPORTFAULT);
930#endif // _MSC_VER
931 abort();
932 } else {
933 DebugBreak();
934 }
935}
936
937
938void OS::DebugBreak() {
939#ifdef _MSC_VER
940 __debugbreak();
941#else
942 ::DebugBreak();
943#endif
944}
945
946
947class Win32MemoryMappedFile : public OS::MemoryMappedFile {
948 public:
949 Win32MemoryMappedFile(HANDLE file, HANDLE file_mapping, void* memory)
950 : file_(file), file_mapping_(file_mapping), memory_(memory) { }
951 virtual ~Win32MemoryMappedFile();
952 virtual void* memory() { return memory_; }
953 private:
954 HANDLE file_;
955 HANDLE file_mapping_;
956 void* memory_;
957};
958
959
960OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
961 void* initial) {
962 // Open a physical file
963 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
964 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
965 if (file == NULL) return NULL;
966 // Create a file mapping for the physical file
967 HANDLE file_mapping = CreateFileMapping(file, NULL,
968 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
969 if (file_mapping == NULL) return NULL;
970 // Map a view of the file into memory
971 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
972 if (memory) memmove(memory, initial, size);
973 return new Win32MemoryMappedFile(file, file_mapping, memory);
974}
975
976
977Win32MemoryMappedFile::~Win32MemoryMappedFile() {
978 if (memory_ != NULL)
979 UnmapViewOfFile(memory_);
980 CloseHandle(file_mapping_);
981 CloseHandle(file_);
982}
983
984
985// The following code loads functions defined in DbhHelp.h and TlHelp32.h
986// dynamically. This is to avoid being depending on dbghelp.dll and
987// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
988// kernel32.dll at some point so loading functions defines in TlHelp32.h
989// dynamically might not be necessary any more - for some versions of Windows?).
990
991// Function pointers to functions dynamically loaded from dbghelp.dll.
992#define DBGHELP_FUNCTION_LIST(V) \
993 V(SymInitialize) \
994 V(SymGetOptions) \
995 V(SymSetOptions) \
996 V(SymGetSearchPath) \
997 V(SymLoadModule64) \
998 V(StackWalk64) \
999 V(SymGetSymFromAddr64) \
1000 V(SymGetLineFromAddr64) \
1001 V(SymFunctionTableAccess64) \
1002 V(SymGetModuleBase64)
1003
1004// Function pointers to functions dynamically loaded from dbghelp.dll.
1005#define TLHELP32_FUNCTION_LIST(V) \
1006 V(CreateToolhelp32Snapshot) \
1007 V(Module32FirstW) \
1008 V(Module32NextW)
1009
1010// Define the decoration to use for the type and variable name used for
1011// dynamically loaded DLL function..
1012#define DLL_FUNC_TYPE(name) _##name##_
1013#define DLL_FUNC_VAR(name) _##name
1014
1015// Define the type for each dynamically loaded DLL function. The function
1016// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1017// from the Windows include files are redefined here to have the function
1018// definitions to be as close to the ones in the original .h files as possible.
1019#ifndef IN
1020#define IN
1021#endif
1022#ifndef VOID
1023#define VOID void
1024#endif
1025
1026// DbgHelp isn't supported on MinGW yet
1027#ifndef __MINGW32__
1028// DbgHelp.h functions.
1029typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1030 IN PSTR UserSearchPath,
1031 IN BOOL fInvadeProcess);
1032typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1033typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1034typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1035 IN HANDLE hProcess,
1036 OUT PSTR SearchPath,
1037 IN DWORD SearchPathLength);
1038typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1039 IN HANDLE hProcess,
1040 IN HANDLE hFile,
1041 IN PSTR ImageName,
1042 IN PSTR ModuleName,
1043 IN DWORD64 BaseOfDll,
1044 IN DWORD SizeOfDll);
1045typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1046 DWORD MachineType,
1047 HANDLE hProcess,
1048 HANDLE hThread,
1049 LPSTACKFRAME64 StackFrame,
1050 PVOID ContextRecord,
1051 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1052 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1053 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1054 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1055typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1056 IN HANDLE hProcess,
1057 IN DWORD64 qwAddr,
1058 OUT PDWORD64 pdwDisplacement,
1059 OUT PIMAGEHLP_SYMBOL64 Symbol);
1060typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1061 IN HANDLE hProcess,
1062 IN DWORD64 qwAddr,
1063 OUT PDWORD pdwDisplacement,
1064 OUT PIMAGEHLP_LINE64 Line64);
1065// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1066typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1067 HANDLE hProcess,
1068 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1069typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1070 HANDLE hProcess,
1071 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1072
1073// TlHelp32.h functions.
1074typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1075 DWORD dwFlags,
1076 DWORD th32ProcessID);
1077typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1078 LPMODULEENTRY32W lpme);
1079typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1080 LPMODULEENTRY32W lpme);
1081
1082#undef IN
1083#undef VOID
1084
1085// Declare a variable for each dynamically loaded DLL function.
1086#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1087DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1088TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1089#undef DEF_DLL_FUNCTION
1090
1091// Load the functions. This function has a lot of "ugly" macros in order to
1092// keep down code duplication.
1093
1094static bool LoadDbgHelpAndTlHelp32() {
1095 static bool dbghelp_loaded = false;
1096
1097 if (dbghelp_loaded) return true;
1098
1099 HMODULE module;
1100
1101 // Load functions from the dbghelp.dll module.
1102 module = LoadLibrary(TEXT("dbghelp.dll"));
1103 if (module == NULL) {
1104 return false;
1105 }
1106
1107#define LOAD_DLL_FUNC(name) \
1108 DLL_FUNC_VAR(name) = \
1109 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1110
1111DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1112
1113#undef LOAD_DLL_FUNC
1114
1115 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1116 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1117 module = LoadLibrary(TEXT("kernel32.dll"));
1118 if (module == NULL) {
1119 return false;
1120 }
1121
1122#define LOAD_DLL_FUNC(name) \
1123 DLL_FUNC_VAR(name) = \
1124 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1125
1126TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1127
1128#undef LOAD_DLL_FUNC
1129
1130 // Check that all functions where loaded.
1131 bool result =
1132#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1133
1134DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1135TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1136
1137#undef DLL_FUNC_LOADED
1138 true;
1139
1140 dbghelp_loaded = result;
1141 return result;
1142 // NOTE: The modules are never unloaded and will stay around until the
1143 // application is closed.
1144}
1145
1146
1147// Load the symbols for generating stack traces.
1148static bool LoadSymbols(HANDLE process_handle) {
1149 static bool symbols_loaded = false;
1150
1151 if (symbols_loaded) return true;
1152
1153 BOOL ok;
1154
1155 // Initialize the symbol engine.
1156 ok = _SymInitialize(process_handle, // hProcess
1157 NULL, // UserSearchPath
1158 FALSE); // fInvadeProcess
1159 if (!ok) return false;
1160
1161 DWORD options = _SymGetOptions();
1162 options |= SYMOPT_LOAD_LINES;
1163 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1164 options = _SymSetOptions(options);
1165
1166 char buf[OS::kStackWalkMaxNameLen] = {0};
1167 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1168 if (!ok) {
1169 int err = GetLastError();
1170 PrintF("%d\n", err);
1171 return false;
1172 }
1173
1174 HANDLE snapshot = _CreateToolhelp32Snapshot(
1175 TH32CS_SNAPMODULE, // dwFlags
1176 GetCurrentProcessId()); // th32ProcessId
1177 if (snapshot == INVALID_HANDLE_VALUE) return false;
1178 MODULEENTRY32W module_entry;
1179 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1180 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1181 while (cont) {
1182 DWORD64 base;
1183 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1184 // both unicode and ASCII strings even though the parameter is PSTR.
1185 base = _SymLoadModule64(
1186 process_handle, // hProcess
1187 0, // hFile
1188 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1189 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1190 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1191 module_entry.modBaseSize); // SizeOfDll
1192 if (base == 0) {
1193 int err = GetLastError();
1194 if (err != ERROR_MOD_NOT_FOUND &&
1195 err != ERROR_INVALID_HANDLE) return false;
1196 }
1197 LOG(SharedLibraryEvent(
1198 module_entry.szExePath,
1199 reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1200 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1201 module_entry.modBaseSize)));
1202 cont = _Module32NextW(snapshot, &module_entry);
1203 }
1204 CloseHandle(snapshot);
1205
1206 symbols_loaded = true;
1207 return true;
1208}
1209
1210
1211void OS::LogSharedLibraryAddresses() {
1212 // SharedLibraryEvents are logged when loading symbol information.
1213 // Only the shared libraries loaded at the time of the call to
1214 // LogSharedLibraryAddresses are logged. DLLs loaded after
1215 // initialization are not accounted for.
1216 if (!LoadDbgHelpAndTlHelp32()) return;
1217 HANDLE process_handle = GetCurrentProcess();
1218 LoadSymbols(process_handle);
1219}
1220
1221
Ben Murdochf87a2032010-10-22 12:50:53 +01001222void OS::SignalCodeMovingGC() {
1223}
1224
1225
Steve Blocka7e24c12009-10-30 11:49:00 +00001226// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1227
1228// Switch off warning 4748 (/GS can not protect parameters and local variables
1229// from local buffer overrun because optimizations are disabled in function) as
1230// it is triggered by the use of inline assembler.
1231#pragma warning(push)
1232#pragma warning(disable : 4748)
1233int OS::StackWalk(Vector<OS::StackFrame> frames) {
1234 BOOL ok;
1235
1236 // Load the required functions from DLL's.
1237 if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1238
1239 // Get the process and thread handles.
1240 HANDLE process_handle = GetCurrentProcess();
1241 HANDLE thread_handle = GetCurrentThread();
1242
1243 // Read the symbols.
1244 if (!LoadSymbols(process_handle)) return kStackWalkError;
1245
1246 // Capture current context.
1247 CONTEXT context;
Steve Blockd0582a62009-12-15 09:54:21 +00001248 RtlCaptureContext(&context);
Steve Blocka7e24c12009-10-30 11:49:00 +00001249
1250 // Initialize the stack walking
1251 STACKFRAME64 stack_frame;
1252 memset(&stack_frame, 0, sizeof(stack_frame));
1253#ifdef _WIN64
1254 stack_frame.AddrPC.Offset = context.Rip;
1255 stack_frame.AddrFrame.Offset = context.Rbp;
1256 stack_frame.AddrStack.Offset = context.Rsp;
1257#else
1258 stack_frame.AddrPC.Offset = context.Eip;
1259 stack_frame.AddrFrame.Offset = context.Ebp;
1260 stack_frame.AddrStack.Offset = context.Esp;
1261#endif
1262 stack_frame.AddrPC.Mode = AddrModeFlat;
1263 stack_frame.AddrFrame.Mode = AddrModeFlat;
1264 stack_frame.AddrStack.Mode = AddrModeFlat;
1265 int frames_count = 0;
1266
1267 // Collect stack frames.
1268 int frames_size = frames.length();
1269 while (frames_count < frames_size) {
1270 ok = _StackWalk64(
1271 IMAGE_FILE_MACHINE_I386, // MachineType
1272 process_handle, // hProcess
1273 thread_handle, // hThread
1274 &stack_frame, // StackFrame
1275 &context, // ContextRecord
1276 NULL, // ReadMemoryRoutine
1277 _SymFunctionTableAccess64, // FunctionTableAccessRoutine
1278 _SymGetModuleBase64, // GetModuleBaseRoutine
1279 NULL); // TranslateAddress
1280 if (!ok) break;
1281
1282 // Store the address.
1283 ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
1284 frames[frames_count].address =
1285 reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1286
1287 // Try to locate a symbol for this frame.
1288 DWORD64 symbol_displacement;
Kristian Monsen25f61362010-05-21 11:50:48 +01001289 SmartPointer<IMAGEHLP_SYMBOL64> symbol(
1290 NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1291 if (symbol.is_empty()) return kStackWalkError; // Out of memory.
1292 memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1293 (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1294 (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
Steve Blocka7e24c12009-10-30 11:49:00 +00001295 ok = _SymGetSymFromAddr64(process_handle, // hProcess
1296 stack_frame.AddrPC.Offset, // Address
1297 &symbol_displacement, // Displacement
Kristian Monsen25f61362010-05-21 11:50:48 +01001298 *symbol); // Symbol
Steve Blocka7e24c12009-10-30 11:49:00 +00001299 if (ok) {
1300 // Try to locate more source information for the symbol.
1301 IMAGEHLP_LINE64 Line;
1302 memset(&Line, 0, sizeof(Line));
1303 Line.SizeOfStruct = sizeof(Line);
1304 DWORD line_displacement;
1305 ok = _SymGetLineFromAddr64(
1306 process_handle, // hProcess
1307 stack_frame.AddrPC.Offset, // dwAddr
1308 &line_displacement, // pdwDisplacement
1309 &Line); // Line
1310 // Format a text representation of the frame based on the information
1311 // available.
1312 if (ok) {
1313 SNPrintF(MutableCStrVector(frames[frames_count].text,
1314 kStackWalkMaxTextLen),
1315 "%s %s:%d:%d",
Kristian Monsen25f61362010-05-21 11:50:48 +01001316 (*symbol)->Name, Line.FileName, Line.LineNumber,
Steve Blocka7e24c12009-10-30 11:49:00 +00001317 line_displacement);
1318 } else {
1319 SNPrintF(MutableCStrVector(frames[frames_count].text,
1320 kStackWalkMaxTextLen),
1321 "%s",
Kristian Monsen25f61362010-05-21 11:50:48 +01001322 (*symbol)->Name);
Steve Blocka7e24c12009-10-30 11:49:00 +00001323 }
1324 // Make sure line termination is in place.
1325 frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1326 } else {
1327 // No text representation of this frame
1328 frames[frames_count].text[0] = '\0';
1329
1330 // Continue if we are just missing a module (for non C/C++ frames a
1331 // module will never be found).
1332 int err = GetLastError();
1333 if (err != ERROR_MOD_NOT_FOUND) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001334 break;
1335 }
1336 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001337
1338 frames_count++;
1339 }
1340
1341 // Return the number of frames filled in.
1342 return frames_count;
1343}
1344
1345// Restore warnings to previous settings.
1346#pragma warning(pop)
1347
1348#else // __MINGW32__
1349void OS::LogSharedLibraryAddresses() { }
1350int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1351#endif // __MINGW32__
1352
1353
Steve Blockd0582a62009-12-15 09:54:21 +00001354uint64_t OS::CpuFeaturesImpliedByPlatform() {
1355 return 0; // Windows runs on anything.
1356}
1357
1358
Steve Blocka7e24c12009-10-30 11:49:00 +00001359double OS::nan_value() {
1360#ifdef _MSC_VER
Steve Blockd0582a62009-12-15 09:54:21 +00001361 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1362 // in mask set, so value equals mask.
1363 static const __int64 nanval = kQuietNaNMask;
Steve Blocka7e24c12009-10-30 11:49:00 +00001364 return *reinterpret_cast<const double*>(&nanval);
1365#else // _MSC_VER
1366 return NAN;
1367#endif // _MSC_VER
1368}
1369
1370
1371int OS::ActivationFrameAlignment() {
1372#ifdef _WIN64
1373 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1374#else
1375 return 8; // Floating-point math runs faster with 8-byte alignment.
1376#endif
1377}
1378
1379
Leon Clarkef7060e22010-06-03 12:02:55 +01001380void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1381 MemoryBarrier();
1382 *ptr = value;
1383}
1384
1385
Steve Blocka7e24c12009-10-30 11:49:00 +00001386bool VirtualMemory::IsReserved() {
1387 return address_ != NULL;
1388}
1389
1390
1391VirtualMemory::VirtualMemory(size_t size) {
1392 address_ = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
1393 size_ = size;
1394}
1395
1396
1397VirtualMemory::~VirtualMemory() {
1398 if (IsReserved()) {
1399 if (0 == VirtualFree(address(), 0, MEM_RELEASE)) address_ = NULL;
1400 }
1401}
1402
1403
1404bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1405 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1406 if (NULL == VirtualAlloc(address, size, MEM_COMMIT, prot)) {
1407 return false;
1408 }
1409
Steve Blockd0582a62009-12-15 09:54:21 +00001410 UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
Steve Blocka7e24c12009-10-30 11:49:00 +00001411 return true;
1412}
1413
1414
1415bool VirtualMemory::Uncommit(void* address, size_t size) {
1416 ASSERT(IsReserved());
1417 return VirtualFree(address, size, MEM_DECOMMIT) != FALSE;
1418}
1419
1420
1421// ----------------------------------------------------------------------------
1422// Win32 thread support.
1423
1424// Definition of invalid thread handle and id.
1425static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1426static const DWORD kNoThreadId = 0;
1427
1428
1429class ThreadHandle::PlatformData : public Malloced {
1430 public:
1431 explicit PlatformData(ThreadHandle::Kind kind) {
1432 Initialize(kind);
1433 }
1434
1435 void Initialize(ThreadHandle::Kind kind) {
1436 switch (kind) {
1437 case ThreadHandle::SELF: tid_ = GetCurrentThreadId(); break;
1438 case ThreadHandle::INVALID: tid_ = kNoThreadId; break;
1439 }
1440 }
1441 DWORD tid_; // Win32 thread identifier.
1442};
1443
1444
1445// Entry point for threads. The supplied argument is a pointer to the thread
1446// object. The entry function dispatches to the run method in the thread
1447// object. It is important that this function has __stdcall calling
1448// convention.
1449static unsigned int __stdcall ThreadEntry(void* arg) {
1450 Thread* thread = reinterpret_cast<Thread*>(arg);
1451 // This is also initialized by the last parameter to _beginthreadex() but we
1452 // don't know which thread will run first (the original thread or the new
1453 // one) so we initialize it here too.
1454 thread->thread_handle_data()->tid_ = GetCurrentThreadId();
1455 thread->Run();
1456 return 0;
1457}
1458
1459
1460// Initialize thread handle to invalid handle.
1461ThreadHandle::ThreadHandle(ThreadHandle::Kind kind) {
1462 data_ = new PlatformData(kind);
1463}
1464
1465
1466ThreadHandle::~ThreadHandle() {
1467 delete data_;
1468}
1469
1470
1471// The thread is running if it has the same id as the current thread.
1472bool ThreadHandle::IsSelf() const {
1473 return GetCurrentThreadId() == data_->tid_;
1474}
1475
1476
1477// Test for invalid thread handle.
1478bool ThreadHandle::IsValid() const {
1479 return data_->tid_ != kNoThreadId;
1480}
1481
1482
1483void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
1484 data_->Initialize(kind);
1485}
1486
1487
1488class Thread::PlatformData : public Malloced {
1489 public:
1490 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1491 HANDLE thread_;
1492};
1493
1494
1495// Initialize a Win32 thread object. The thread has an invalid thread
1496// handle until it is started.
1497
1498Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
1499 data_ = new PlatformData(kNoThread);
1500}
1501
1502
1503// Close our own handle for the thread.
1504Thread::~Thread() {
1505 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1506 delete data_;
1507}
1508
1509
1510// Create a new thread. It is important to use _beginthreadex() instead of
1511// the Win32 function CreateThread(), because the CreateThread() does not
1512// initialize thread specific structures in the C runtime library.
1513void Thread::Start() {
1514 data_->thread_ = reinterpret_cast<HANDLE>(
1515 _beginthreadex(NULL,
1516 0,
1517 ThreadEntry,
1518 this,
1519 0,
1520 reinterpret_cast<unsigned int*>(
1521 &thread_handle_data()->tid_)));
1522 ASSERT(IsValid());
1523}
1524
1525
1526// Wait for thread to terminate.
1527void Thread::Join() {
1528 WaitForSingleObject(data_->thread_, INFINITE);
1529}
1530
1531
1532Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1533 DWORD result = TlsAlloc();
1534 ASSERT(result != TLS_OUT_OF_INDEXES);
1535 return static_cast<LocalStorageKey>(result);
1536}
1537
1538
1539void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1540 BOOL result = TlsFree(static_cast<DWORD>(key));
1541 USE(result);
1542 ASSERT(result);
1543}
1544
1545
1546void* Thread::GetThreadLocal(LocalStorageKey key) {
1547 return TlsGetValue(static_cast<DWORD>(key));
1548}
1549
1550
1551void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1552 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1553 USE(result);
1554 ASSERT(result);
1555}
1556
1557
1558
1559void Thread::YieldCPU() {
1560 Sleep(0);
1561}
1562
1563
1564// ----------------------------------------------------------------------------
1565// Win32 mutex support.
1566//
1567// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1568// faster than Win32 Mutex objects because they are implemented using user mode
1569// atomic instructions. Therefore we only do ring transitions if there is lock
1570// contention.
1571
1572class Win32Mutex : public Mutex {
1573 public:
1574
1575 Win32Mutex() { InitializeCriticalSection(&cs_); }
1576
1577 ~Win32Mutex() { DeleteCriticalSection(&cs_); }
1578
1579 int Lock() {
1580 EnterCriticalSection(&cs_);
1581 return 0;
1582 }
1583
1584 int Unlock() {
1585 LeaveCriticalSection(&cs_);
1586 return 0;
1587 }
1588
1589 private:
1590 CRITICAL_SECTION cs_; // Critical section used for mutex
1591};
1592
1593
1594Mutex* OS::CreateMutex() {
1595 return new Win32Mutex();
1596}
1597
1598
1599// ----------------------------------------------------------------------------
1600// Win32 semaphore support.
1601//
1602// On Win32 semaphores are implemented using Win32 Semaphore objects. The
1603// semaphores are anonymous. Also, the semaphores are initialized to have
1604// no upper limit on count.
1605
1606
1607class Win32Semaphore : public Semaphore {
1608 public:
1609 explicit Win32Semaphore(int count) {
1610 sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1611 }
1612
1613 ~Win32Semaphore() {
1614 CloseHandle(sem);
1615 }
1616
1617 void Wait() {
1618 WaitForSingleObject(sem, INFINITE);
1619 }
1620
1621 bool Wait(int timeout) {
1622 // Timeout in Windows API is in milliseconds.
1623 DWORD millis_timeout = timeout / 1000;
1624 return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1625 }
1626
1627 void Signal() {
1628 LONG dummy;
1629 ReleaseSemaphore(sem, 1, &dummy);
1630 }
1631
1632 private:
1633 HANDLE sem;
1634};
1635
1636
1637Semaphore* OS::CreateSemaphore(int count) {
1638 return new Win32Semaphore(count);
1639}
1640
1641
1642// ----------------------------------------------------------------------------
1643// Win32 socket support.
1644//
1645
1646class Win32Socket : public Socket {
1647 public:
1648 explicit Win32Socket() {
1649 // Create the socket.
1650 socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1651 }
1652 explicit Win32Socket(SOCKET socket): socket_(socket) { }
1653 virtual ~Win32Socket() { Shutdown(); }
1654
1655 // Server initialization.
1656 bool Bind(const int port);
1657 bool Listen(int backlog) const;
1658 Socket* Accept() const;
1659
1660 // Client initialization.
1661 bool Connect(const char* host, const char* port);
1662
1663 // Shutdown socket for both read and write.
1664 bool Shutdown();
1665
1666 // Data Transimission
1667 int Send(const char* data, int len) const;
1668 int Receive(char* data, int len) const;
1669
1670 bool SetReuseAddress(bool reuse_address);
1671
1672 bool IsValid() const { return socket_ != INVALID_SOCKET; }
1673
1674 private:
1675 SOCKET socket_;
1676};
1677
1678
1679bool Win32Socket::Bind(const int port) {
1680 if (!IsValid()) {
1681 return false;
1682 }
1683
1684 sockaddr_in addr;
1685 memset(&addr, 0, sizeof(addr));
1686 addr.sin_family = AF_INET;
1687 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1688 addr.sin_port = htons(port);
1689 int status = bind(socket_,
1690 reinterpret_cast<struct sockaddr *>(&addr),
1691 sizeof(addr));
1692 return status == 0;
1693}
1694
1695
1696bool Win32Socket::Listen(int backlog) const {
1697 if (!IsValid()) {
1698 return false;
1699 }
1700
1701 int status = listen(socket_, backlog);
1702 return status == 0;
1703}
1704
1705
1706Socket* Win32Socket::Accept() const {
1707 if (!IsValid()) {
1708 return NULL;
1709 }
1710
1711 SOCKET socket = accept(socket_, NULL, NULL);
1712 if (socket == INVALID_SOCKET) {
1713 return NULL;
1714 } else {
1715 return new Win32Socket(socket);
1716 }
1717}
1718
1719
1720bool Win32Socket::Connect(const char* host, const char* port) {
1721 if (!IsValid()) {
1722 return false;
1723 }
1724
1725 // Lookup host and port.
1726 struct addrinfo *result = NULL;
1727 struct addrinfo hints;
1728 memset(&hints, 0, sizeof(addrinfo));
1729 hints.ai_family = AF_INET;
1730 hints.ai_socktype = SOCK_STREAM;
1731 hints.ai_protocol = IPPROTO_TCP;
1732 int status = getaddrinfo(host, port, &hints, &result);
1733 if (status != 0) {
1734 return false;
1735 }
1736
1737 // Connect.
Steve Blockd0582a62009-12-15 09:54:21 +00001738 status = connect(socket_,
1739 result->ai_addr,
1740 static_cast<int>(result->ai_addrlen));
Steve Blocka7e24c12009-10-30 11:49:00 +00001741 freeaddrinfo(result);
1742 return status == 0;
1743}
1744
1745
1746bool Win32Socket::Shutdown() {
1747 if (IsValid()) {
1748 // Shutdown socket for both read and write.
1749 int status = shutdown(socket_, SD_BOTH);
1750 closesocket(socket_);
1751 socket_ = INVALID_SOCKET;
1752 return status == SOCKET_ERROR;
1753 }
1754 return true;
1755}
1756
1757
1758int Win32Socket::Send(const char* data, int len) const {
1759 int status = send(socket_, data, len, 0);
1760 return status;
1761}
1762
1763
1764int Win32Socket::Receive(char* data, int len) const {
1765 int status = recv(socket_, data, len, 0);
1766 return status;
1767}
1768
1769
1770bool Win32Socket::SetReuseAddress(bool reuse_address) {
1771 BOOL on = reuse_address ? TRUE : FALSE;
1772 int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1773 reinterpret_cast<char*>(&on), sizeof(on));
1774 return status == SOCKET_ERROR;
1775}
1776
1777
1778bool Socket::Setup() {
1779 // Initialize Winsock32
1780 int err;
1781 WSADATA winsock_data;
1782 WORD version_requested = MAKEWORD(1, 0);
1783 err = WSAStartup(version_requested, &winsock_data);
1784 if (err != 0) {
1785 PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1786 }
1787
1788 return err == 0;
1789}
1790
1791
1792int Socket::LastError() {
1793 return WSAGetLastError();
1794}
1795
1796
1797uint16_t Socket::HToN(uint16_t value) {
1798 return htons(value);
1799}
1800
1801
1802uint16_t Socket::NToH(uint16_t value) {
1803 return ntohs(value);
1804}
1805
1806
1807uint32_t Socket::HToN(uint32_t value) {
1808 return htonl(value);
1809}
1810
1811
1812uint32_t Socket::NToH(uint32_t value) {
1813 return ntohl(value);
1814}
1815
1816
1817Socket* OS::CreateSocket() {
1818 return new Win32Socket();
1819}
1820
1821
1822#ifdef ENABLE_LOGGING_AND_PROFILING
1823
1824// ----------------------------------------------------------------------------
1825// Win32 profiler support.
1826//
1827// On win32 we use a sampler thread with high priority to sample the program
1828// counter for the profiled thread.
1829
1830class Sampler::PlatformData : public Malloced {
1831 public:
1832 explicit PlatformData(Sampler* sampler) {
1833 sampler_ = sampler;
1834 sampler_thread_ = INVALID_HANDLE_VALUE;
1835 profiled_thread_ = INVALID_HANDLE_VALUE;
1836 }
1837
1838 Sampler* sampler_;
1839 HANDLE sampler_thread_;
1840 HANDLE profiled_thread_;
1841
1842 // Sampler thread handler.
1843 void Runner() {
1844 // Context used for sampling the register state of the profiled thread.
1845 CONTEXT context;
1846 memset(&context, 0, sizeof(context));
Ben Murdochf87a2032010-10-22 12:50:53 +01001847 // Loop until the sampler is disengaged, keeping the specified
1848 // sampling frequency.
Steve Block6ded16b2010-05-10 14:33:55 +01001849 for ( ; sampler_->IsActive(); Sleep(sampler_->interval_)) {
1850 TickSample sample_obj;
1851 TickSample* sample = CpuProfiler::TickSampleEvent();
1852 if (sample == NULL) sample = &sample_obj;
Steve Blocka7e24c12009-10-30 11:49:00 +00001853
Ben Murdochf87a2032010-10-22 12:50:53 +01001854 // If the sampler runs in sync with the JS thread, we try to
1855 // suspend it. If we fail, we skip the current sample.
1856 if (sampler_->IsSynchronous()) {
1857 static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
1858 if (SuspendThread(profiled_thread_) == kSuspendFailed) continue;
1859 }
1860
Steve Block6ded16b2010-05-10 14:33:55 +01001861 // We always sample the VM state.
1862 sample->state = VMState::current_state();
Ben Murdochf87a2032010-10-22 12:50:53 +01001863
Steve Blocka7e24c12009-10-30 11:49:00 +00001864 // If profiling, we record the pc and sp of the profiled thread.
Ben Murdochf87a2032010-10-22 12:50:53 +01001865 if (sampler_->IsProfiling()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001866 context.ContextFlags = CONTEXT_FULL;
1867 if (GetThreadContext(profiled_thread_, &context) != 0) {
1868#if V8_HOST_ARCH_X64
Steve Block6ded16b2010-05-10 14:33:55 +01001869 sample->pc = reinterpret_cast<Address>(context.Rip);
1870 sample->sp = reinterpret_cast<Address>(context.Rsp);
1871 sample->fp = reinterpret_cast<Address>(context.Rbp);
Steve Blocka7e24c12009-10-30 11:49:00 +00001872#else
Steve Block6ded16b2010-05-10 14:33:55 +01001873 sample->pc = reinterpret_cast<Address>(context.Eip);
1874 sample->sp = reinterpret_cast<Address>(context.Esp);
1875 sample->fp = reinterpret_cast<Address>(context.Ebp);
Steve Blocka7e24c12009-10-30 11:49:00 +00001876#endif
Steve Block6ded16b2010-05-10 14:33:55 +01001877 sampler_->SampleStack(sample);
Steve Blocka7e24c12009-10-30 11:49:00 +00001878 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001879 }
1880
Steve Blocka7e24c12009-10-30 11:49:00 +00001881 // Invoke tick handler with program counter and stack pointer.
Steve Block6ded16b2010-05-10 14:33:55 +01001882 sampler_->Tick(sample);
Ben Murdochf87a2032010-10-22 12:50:53 +01001883
1884 // If the sampler runs in sync with the JS thread, we have to
1885 // remember to resume it.
1886 if (sampler_->IsSynchronous()) ResumeThread(profiled_thread_);
Steve Blocka7e24c12009-10-30 11:49:00 +00001887 }
1888 }
1889};
1890
1891
1892// Entry point for sampler thread.
1893static unsigned int __stdcall SamplerEntry(void* arg) {
1894 Sampler::PlatformData* data =
1895 reinterpret_cast<Sampler::PlatformData*>(arg);
1896 data->Runner();
1897 return 0;
1898}
1899
1900
1901// Initialize a profile sampler.
1902Sampler::Sampler(int interval, bool profiling)
Ben Murdochf87a2032010-10-22 12:50:53 +01001903 : interval_(interval),
1904 profiling_(profiling),
1905 synchronous_(profiling),
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08001906 active_(false),
1907 samples_taken_(0) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001908 data_ = new PlatformData(this);
1909}
1910
1911
1912Sampler::~Sampler() {
1913 delete data_;
1914}
1915
1916
1917// Start profiling.
1918void Sampler::Start() {
Ben Murdochf87a2032010-10-22 12:50:53 +01001919 // If we are starting a synchronous sampler, we need to be able to
1920 // access the calling thread.
1921 if (IsSynchronous()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001922 // Get a handle to the calling thread. This is the thread that we are
1923 // going to profile. We need to make a copy of the handle because we are
1924 // going to use it in the sampler thread. Using GetThreadHandle() will
1925 // not work in this case. We're using OpenThread because DuplicateHandle
1926 // for some reason doesn't work in Chrome's sandbox.
1927 data_->profiled_thread_ = OpenThread(THREAD_GET_CONTEXT |
1928 THREAD_SUSPEND_RESUME |
1929 THREAD_QUERY_INFORMATION,
1930 FALSE,
1931 GetCurrentThreadId());
1932 BOOL ok = data_->profiled_thread_ != NULL;
1933 if (!ok) return;
1934 }
1935
1936 // Start sampler thread.
1937 unsigned int tid;
1938 active_ = true;
1939 data_->sampler_thread_ = reinterpret_cast<HANDLE>(
1940 _beginthreadex(NULL, 0, SamplerEntry, data_, 0, &tid));
1941 // Set thread to high priority to increase sampling accuracy.
1942 SetThreadPriority(data_->sampler_thread_, THREAD_PRIORITY_TIME_CRITICAL);
1943}
1944
1945
1946// Stop profiling.
1947void Sampler::Stop() {
1948 // Seting active to false triggers termination of the sampler
1949 // thread.
1950 active_ = false;
1951
1952 // Wait for sampler thread to terminate.
1953 WaitForSingleObject(data_->sampler_thread_, INFINITE);
1954
1955 // Release the thread handles
1956 CloseHandle(data_->sampler_thread_);
1957 CloseHandle(data_->profiled_thread_);
1958}
1959
1960
1961#endif // ENABLE_LOGGING_AND_PROFILING
1962
1963} } // namespace v8::internal