Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1 | // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions are |
| 4 | // met: |
| 5 | // |
| 6 | // * Redistributions of source code must retain the above copyright |
| 7 | // notice, this list of conditions and the following disclaimer. |
| 8 | // * Redistributions in binary form must reproduce the above |
| 9 | // copyright notice, this list of conditions and the following |
| 10 | // disclaimer in the documentation and/or other materials provided |
| 11 | // with the distribution. |
| 12 | // * Neither the name of Google Inc. nor the names of its |
| 13 | // contributors may be used to endorse or promote products derived |
| 14 | // from this software without specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | |
| 28 | #include "v8.h" |
| 29 | |
| 30 | #include "macro-assembler.h" |
| 31 | #include "mark-compact.h" |
| 32 | #include "platform.h" |
| 33 | |
| 34 | namespace v8 { |
| 35 | namespace internal { |
| 36 | |
| 37 | // For contiguous spaces, top should be in the space (or at the end) and limit |
| 38 | // should be the end of the space. |
| 39 | #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ |
| 40 | ASSERT((space).low() <= (info).top \ |
| 41 | && (info).top <= (space).high() \ |
| 42 | && (info).limit == (space).high()) |
| 43 | |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 44 | intptr_t Page::watermark_invalidated_mark_ = 1 << Page::WATERMARK_INVALIDATED; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 45 | |
| 46 | // ---------------------------------------------------------------------------- |
| 47 | // HeapObjectIterator |
| 48 | |
| 49 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { |
| 50 | Initialize(space->bottom(), space->top(), NULL); |
| 51 | } |
| 52 | |
| 53 | |
| 54 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space, |
| 55 | HeapObjectCallback size_func) { |
| 56 | Initialize(space->bottom(), space->top(), size_func); |
| 57 | } |
| 58 | |
| 59 | |
| 60 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) { |
| 61 | Initialize(start, space->top(), NULL); |
| 62 | } |
| 63 | |
| 64 | |
| 65 | HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start, |
| 66 | HeapObjectCallback size_func) { |
| 67 | Initialize(start, space->top(), size_func); |
| 68 | } |
| 69 | |
| 70 | |
Kristian Monsen | 80d68ea | 2010-09-08 11:05:35 +0100 | [diff] [blame^] | 71 | HeapObjectIterator::HeapObjectIterator(Page* page, |
| 72 | HeapObjectCallback size_func) { |
| 73 | Initialize(page->ObjectAreaStart(), page->AllocationTop(), size_func); |
| 74 | } |
| 75 | |
| 76 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 77 | void HeapObjectIterator::Initialize(Address cur, Address end, |
| 78 | HeapObjectCallback size_f) { |
| 79 | cur_addr_ = cur; |
| 80 | end_addr_ = end; |
| 81 | end_page_ = Page::FromAllocationTop(end); |
| 82 | size_func_ = size_f; |
| 83 | Page* p = Page::FromAllocationTop(cur_addr_); |
| 84 | cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop(); |
| 85 | |
| 86 | #ifdef DEBUG |
| 87 | Verify(); |
| 88 | #endif |
| 89 | } |
| 90 | |
| 91 | |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 92 | HeapObject* HeapObjectIterator::FromNextPage() { |
| 93 | if (cur_addr_ == end_addr_) return NULL; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 94 | |
| 95 | Page* cur_page = Page::FromAllocationTop(cur_addr_); |
| 96 | cur_page = cur_page->next_page(); |
| 97 | ASSERT(cur_page->is_valid()); |
| 98 | |
| 99 | cur_addr_ = cur_page->ObjectAreaStart(); |
| 100 | cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop(); |
| 101 | |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 102 | if (cur_addr_ == end_addr_) return NULL; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 103 | ASSERT(cur_addr_ < cur_limit_); |
| 104 | #ifdef DEBUG |
| 105 | Verify(); |
| 106 | #endif |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 107 | return FromCurrentPage(); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 108 | } |
| 109 | |
| 110 | |
| 111 | #ifdef DEBUG |
| 112 | void HeapObjectIterator::Verify() { |
| 113 | Page* p = Page::FromAllocationTop(cur_addr_); |
| 114 | ASSERT(p == Page::FromAllocationTop(cur_limit_)); |
| 115 | ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_)); |
| 116 | } |
| 117 | #endif |
| 118 | |
| 119 | |
| 120 | // ----------------------------------------------------------------------------- |
| 121 | // PageIterator |
| 122 | |
| 123 | PageIterator::PageIterator(PagedSpace* space, Mode mode) : space_(space) { |
| 124 | prev_page_ = NULL; |
| 125 | switch (mode) { |
| 126 | case PAGES_IN_USE: |
| 127 | stop_page_ = space->AllocationTopPage(); |
| 128 | break; |
| 129 | case PAGES_USED_BY_MC: |
| 130 | stop_page_ = space->MCRelocationTopPage(); |
| 131 | break; |
| 132 | case ALL_PAGES: |
| 133 | #ifdef DEBUG |
| 134 | // Verify that the cached last page in the space is actually the |
| 135 | // last page. |
| 136 | for (Page* p = space->first_page_; p->is_valid(); p = p->next_page()) { |
| 137 | if (!p->next_page()->is_valid()) { |
| 138 | ASSERT(space->last_page_ == p); |
| 139 | } |
| 140 | } |
| 141 | #endif |
| 142 | stop_page_ = space->last_page_; |
| 143 | break; |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | |
| 148 | // ----------------------------------------------------------------------------- |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 149 | // CodeRange |
| 150 | |
| 151 | List<CodeRange::FreeBlock> CodeRange::free_list_(0); |
| 152 | List<CodeRange::FreeBlock> CodeRange::allocation_list_(0); |
| 153 | int CodeRange::current_allocation_block_index_ = 0; |
| 154 | VirtualMemory* CodeRange::code_range_ = NULL; |
| 155 | |
| 156 | |
| 157 | bool CodeRange::Setup(const size_t requested) { |
| 158 | ASSERT(code_range_ == NULL); |
| 159 | |
| 160 | code_range_ = new VirtualMemory(requested); |
| 161 | CHECK(code_range_ != NULL); |
| 162 | if (!code_range_->IsReserved()) { |
| 163 | delete code_range_; |
| 164 | code_range_ = NULL; |
| 165 | return false; |
| 166 | } |
| 167 | |
| 168 | // We are sure that we have mapped a block of requested addresses. |
| 169 | ASSERT(code_range_->size() == requested); |
| 170 | LOG(NewEvent("CodeRange", code_range_->address(), requested)); |
| 171 | allocation_list_.Add(FreeBlock(code_range_->address(), code_range_->size())); |
| 172 | current_allocation_block_index_ = 0; |
| 173 | return true; |
| 174 | } |
| 175 | |
| 176 | |
| 177 | int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, |
| 178 | const FreeBlock* right) { |
| 179 | // The entire point of CodeRange is that the difference between two |
| 180 | // addresses in the range can be represented as a signed 32-bit int, |
| 181 | // so the cast is semantically correct. |
| 182 | return static_cast<int>(left->start - right->start); |
| 183 | } |
| 184 | |
| 185 | |
| 186 | void CodeRange::GetNextAllocationBlock(size_t requested) { |
| 187 | for (current_allocation_block_index_++; |
| 188 | current_allocation_block_index_ < allocation_list_.length(); |
| 189 | current_allocation_block_index_++) { |
| 190 | if (requested <= allocation_list_[current_allocation_block_index_].size) { |
| 191 | return; // Found a large enough allocation block. |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | // Sort and merge the free blocks on the free list and the allocation list. |
| 196 | free_list_.AddAll(allocation_list_); |
| 197 | allocation_list_.Clear(); |
| 198 | free_list_.Sort(&CompareFreeBlockAddress); |
| 199 | for (int i = 0; i < free_list_.length();) { |
| 200 | FreeBlock merged = free_list_[i]; |
| 201 | i++; |
| 202 | // Add adjacent free blocks to the current merged block. |
| 203 | while (i < free_list_.length() && |
| 204 | free_list_[i].start == merged.start + merged.size) { |
| 205 | merged.size += free_list_[i].size; |
| 206 | i++; |
| 207 | } |
| 208 | if (merged.size > 0) { |
| 209 | allocation_list_.Add(merged); |
| 210 | } |
| 211 | } |
| 212 | free_list_.Clear(); |
| 213 | |
| 214 | for (current_allocation_block_index_ = 0; |
| 215 | current_allocation_block_index_ < allocation_list_.length(); |
| 216 | current_allocation_block_index_++) { |
| 217 | if (requested <= allocation_list_[current_allocation_block_index_].size) { |
| 218 | return; // Found a large enough allocation block. |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | // Code range is full or too fragmented. |
| 223 | V8::FatalProcessOutOfMemory("CodeRange::GetNextAllocationBlock"); |
| 224 | } |
| 225 | |
| 226 | |
| 227 | |
| 228 | void* CodeRange::AllocateRawMemory(const size_t requested, size_t* allocated) { |
| 229 | ASSERT(current_allocation_block_index_ < allocation_list_.length()); |
| 230 | if (requested > allocation_list_[current_allocation_block_index_].size) { |
| 231 | // Find an allocation block large enough. This function call may |
| 232 | // call V8::FatalProcessOutOfMemory if it cannot find a large enough block. |
| 233 | GetNextAllocationBlock(requested); |
| 234 | } |
| 235 | // Commit the requested memory at the start of the current allocation block. |
| 236 | *allocated = RoundUp(requested, Page::kPageSize); |
| 237 | FreeBlock current = allocation_list_[current_allocation_block_index_]; |
| 238 | if (*allocated >= current.size - Page::kPageSize) { |
| 239 | // Don't leave a small free block, useless for a large object or chunk. |
| 240 | *allocated = current.size; |
| 241 | } |
| 242 | ASSERT(*allocated <= current.size); |
| 243 | if (!code_range_->Commit(current.start, *allocated, true)) { |
| 244 | *allocated = 0; |
| 245 | return NULL; |
| 246 | } |
| 247 | allocation_list_[current_allocation_block_index_].start += *allocated; |
| 248 | allocation_list_[current_allocation_block_index_].size -= *allocated; |
| 249 | if (*allocated == current.size) { |
| 250 | GetNextAllocationBlock(0); // This block is used up, get the next one. |
| 251 | } |
| 252 | return current.start; |
| 253 | } |
| 254 | |
| 255 | |
| 256 | void CodeRange::FreeRawMemory(void* address, size_t length) { |
| 257 | free_list_.Add(FreeBlock(address, length)); |
| 258 | code_range_->Uncommit(address, length); |
| 259 | } |
| 260 | |
| 261 | |
| 262 | void CodeRange::TearDown() { |
| 263 | delete code_range_; // Frees all memory in the virtual memory range. |
| 264 | code_range_ = NULL; |
| 265 | free_list_.Free(); |
| 266 | allocation_list_.Free(); |
| 267 | } |
| 268 | |
| 269 | |
| 270 | // ----------------------------------------------------------------------------- |
| 271 | // MemoryAllocator |
| 272 | // |
| 273 | int MemoryAllocator::capacity_ = 0; |
| 274 | int MemoryAllocator::size_ = 0; |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 275 | int MemoryAllocator::size_executable_ = 0; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 276 | |
| 277 | VirtualMemory* MemoryAllocator::initial_chunk_ = NULL; |
| 278 | |
| 279 | // 270 is an estimate based on the static default heap size of a pair of 256K |
| 280 | // semispaces and a 64M old generation. |
| 281 | const int kEstimatedNumberOfChunks = 270; |
| 282 | List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_( |
| 283 | kEstimatedNumberOfChunks); |
| 284 | List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks); |
| 285 | int MemoryAllocator::max_nof_chunks_ = 0; |
| 286 | int MemoryAllocator::top_ = 0; |
| 287 | |
| 288 | |
| 289 | void MemoryAllocator::Push(int free_chunk_id) { |
| 290 | ASSERT(max_nof_chunks_ > 0); |
| 291 | ASSERT(top_ < max_nof_chunks_); |
| 292 | free_chunk_ids_[top_++] = free_chunk_id; |
| 293 | } |
| 294 | |
| 295 | |
| 296 | int MemoryAllocator::Pop() { |
| 297 | ASSERT(top_ > 0); |
| 298 | return free_chunk_ids_[--top_]; |
| 299 | } |
| 300 | |
| 301 | |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 302 | void *executable_memory_histogram = NULL; |
| 303 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 304 | bool MemoryAllocator::Setup(int capacity) { |
| 305 | capacity_ = RoundUp(capacity, Page::kPageSize); |
| 306 | |
| 307 | // Over-estimate the size of chunks_ array. It assumes the expansion of old |
| 308 | // space is always in the unit of a chunk (kChunkSize) except the last |
| 309 | // expansion. |
| 310 | // |
| 311 | // Due to alignment, allocated space might be one page less than required |
| 312 | // number (kPagesPerChunk) of pages for old spaces. |
| 313 | // |
| 314 | // Reserve two chunk ids for semispaces, one for map space, one for old |
| 315 | // space, and one for code space. |
| 316 | max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) + 5; |
| 317 | if (max_nof_chunks_ > kMaxNofChunks) return false; |
| 318 | |
| 319 | size_ = 0; |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 320 | size_executable_ = 0; |
| 321 | executable_memory_histogram = |
| 322 | StatsTable::CreateHistogram("V8.ExecutableMemoryMax", 0, MB * 512, 50); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 323 | ChunkInfo info; // uninitialized element. |
| 324 | for (int i = max_nof_chunks_ - 1; i >= 0; i--) { |
| 325 | chunks_.Add(info); |
| 326 | free_chunk_ids_.Add(i); |
| 327 | } |
| 328 | top_ = max_nof_chunks_; |
| 329 | return true; |
| 330 | } |
| 331 | |
| 332 | |
| 333 | void MemoryAllocator::TearDown() { |
| 334 | for (int i = 0; i < max_nof_chunks_; i++) { |
| 335 | if (chunks_[i].address() != NULL) DeleteChunk(i); |
| 336 | } |
| 337 | chunks_.Clear(); |
| 338 | free_chunk_ids_.Clear(); |
| 339 | |
| 340 | if (initial_chunk_ != NULL) { |
| 341 | LOG(DeleteEvent("InitialChunk", initial_chunk_->address())); |
| 342 | delete initial_chunk_; |
| 343 | initial_chunk_ = NULL; |
| 344 | } |
| 345 | |
| 346 | ASSERT(top_ == max_nof_chunks_); // all chunks are free |
| 347 | top_ = 0; |
| 348 | capacity_ = 0; |
| 349 | size_ = 0; |
| 350 | max_nof_chunks_ = 0; |
| 351 | } |
| 352 | |
| 353 | |
| 354 | void* MemoryAllocator::AllocateRawMemory(const size_t requested, |
| 355 | size_t* allocated, |
| 356 | Executability executable) { |
Kristian Monsen | 50ef84f | 2010-07-29 15:18:00 +0100 | [diff] [blame] | 357 | if (size_ + static_cast<size_t>(requested) > static_cast<size_t>(capacity_)) { |
| 358 | return NULL; |
| 359 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 360 | void* mem; |
| 361 | if (executable == EXECUTABLE && CodeRange::exists()) { |
| 362 | mem = CodeRange::AllocateRawMemory(requested, allocated); |
| 363 | } else { |
| 364 | mem = OS::Allocate(requested, allocated, (executable == EXECUTABLE)); |
| 365 | } |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 366 | int alloced = static_cast<int>(*allocated); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 367 | size_ += alloced; |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 368 | |
| 369 | if (executable == EXECUTABLE) { |
| 370 | size_executable_ += alloced; |
| 371 | static int size_executable_max_observed_ = 0; |
| 372 | if (size_executable_max_observed_ < size_executable_) { |
| 373 | size_executable_max_observed_ = size_executable_; |
| 374 | StatsTable::AddHistogramSample(executable_memory_histogram, |
| 375 | size_executable_); |
| 376 | } |
| 377 | } |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 378 | #ifdef DEBUG |
| 379 | ZapBlock(reinterpret_cast<Address>(mem), alloced); |
| 380 | #endif |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 381 | Counters::memory_allocated.Increment(alloced); |
| 382 | return mem; |
| 383 | } |
| 384 | |
| 385 | |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 386 | void MemoryAllocator::FreeRawMemory(void* mem, |
| 387 | size_t length, |
| 388 | Executability executable) { |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 389 | #ifdef DEBUG |
| 390 | ZapBlock(reinterpret_cast<Address>(mem), length); |
| 391 | #endif |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 392 | if (CodeRange::contains(static_cast<Address>(mem))) { |
| 393 | CodeRange::FreeRawMemory(mem, length); |
| 394 | } else { |
| 395 | OS::Free(mem, length); |
| 396 | } |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 397 | Counters::memory_allocated.Decrement(static_cast<int>(length)); |
| 398 | size_ -= static_cast<int>(length); |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 399 | if (executable == EXECUTABLE) size_executable_ -= static_cast<int>(length); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 400 | ASSERT(size_ >= 0); |
| 401 | } |
| 402 | |
| 403 | |
| 404 | void* MemoryAllocator::ReserveInitialChunk(const size_t requested) { |
| 405 | ASSERT(initial_chunk_ == NULL); |
| 406 | |
| 407 | initial_chunk_ = new VirtualMemory(requested); |
| 408 | CHECK(initial_chunk_ != NULL); |
| 409 | if (!initial_chunk_->IsReserved()) { |
| 410 | delete initial_chunk_; |
| 411 | initial_chunk_ = NULL; |
| 412 | return NULL; |
| 413 | } |
| 414 | |
| 415 | // We are sure that we have mapped a block of requested addresses. |
| 416 | ASSERT(initial_chunk_->size() == requested); |
| 417 | LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested)); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 418 | size_ += static_cast<int>(requested); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 419 | return initial_chunk_->address(); |
| 420 | } |
| 421 | |
| 422 | |
| 423 | static int PagesInChunk(Address start, size_t size) { |
| 424 | // The first page starts on the first page-aligned address from start onward |
| 425 | // and the last page ends on the last page-aligned address before |
| 426 | // start+size. Page::kPageSize is a power of two so we can divide by |
| 427 | // shifting. |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 428 | return static_cast<int>((RoundDown(start + size, Page::kPageSize) |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 429 | - RoundUp(start, Page::kPageSize)) >> kPageSizeBits); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 430 | } |
| 431 | |
| 432 | |
| 433 | Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages, |
| 434 | PagedSpace* owner) { |
| 435 | if (requested_pages <= 0) return Page::FromAddress(NULL); |
| 436 | size_t chunk_size = requested_pages * Page::kPageSize; |
| 437 | |
| 438 | // There is not enough space to guarantee the desired number pages can be |
| 439 | // allocated. |
| 440 | if (size_ + static_cast<int>(chunk_size) > capacity_) { |
| 441 | // Request as many pages as we can. |
| 442 | chunk_size = capacity_ - size_; |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 443 | requested_pages = static_cast<int>(chunk_size >> kPageSizeBits); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 444 | |
| 445 | if (requested_pages <= 0) return Page::FromAddress(NULL); |
| 446 | } |
| 447 | void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable()); |
| 448 | if (chunk == NULL) return Page::FromAddress(NULL); |
| 449 | LOG(NewEvent("PagedChunk", chunk, chunk_size)); |
| 450 | |
| 451 | *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size); |
| 452 | if (*allocated_pages == 0) { |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 453 | FreeRawMemory(chunk, chunk_size, owner->executable()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 454 | LOG(DeleteEvent("PagedChunk", chunk)); |
| 455 | return Page::FromAddress(NULL); |
| 456 | } |
| 457 | |
| 458 | int chunk_id = Pop(); |
| 459 | chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner); |
| 460 | |
| 461 | return InitializePagesInChunk(chunk_id, *allocated_pages, owner); |
| 462 | } |
| 463 | |
| 464 | |
| 465 | Page* MemoryAllocator::CommitPages(Address start, size_t size, |
| 466 | PagedSpace* owner, int* num_pages) { |
| 467 | ASSERT(start != NULL); |
| 468 | *num_pages = PagesInChunk(start, size); |
| 469 | ASSERT(*num_pages > 0); |
| 470 | ASSERT(initial_chunk_ != NULL); |
| 471 | ASSERT(InInitialChunk(start)); |
| 472 | ASSERT(InInitialChunk(start + size - 1)); |
| 473 | if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) { |
| 474 | return Page::FromAddress(NULL); |
| 475 | } |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 476 | #ifdef DEBUG |
| 477 | ZapBlock(start, size); |
| 478 | #endif |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 479 | Counters::memory_allocated.Increment(static_cast<int>(size)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 480 | |
| 481 | // So long as we correctly overestimated the number of chunks we should not |
| 482 | // run out of chunk ids. |
| 483 | CHECK(!OutOfChunkIds()); |
| 484 | int chunk_id = Pop(); |
| 485 | chunks_[chunk_id].init(start, size, owner); |
| 486 | return InitializePagesInChunk(chunk_id, *num_pages, owner); |
| 487 | } |
| 488 | |
| 489 | |
| 490 | bool MemoryAllocator::CommitBlock(Address start, |
| 491 | size_t size, |
| 492 | Executability executable) { |
| 493 | ASSERT(start != NULL); |
| 494 | ASSERT(size > 0); |
| 495 | ASSERT(initial_chunk_ != NULL); |
| 496 | ASSERT(InInitialChunk(start)); |
| 497 | ASSERT(InInitialChunk(start + size - 1)); |
| 498 | |
| 499 | if (!initial_chunk_->Commit(start, size, executable)) return false; |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 500 | #ifdef DEBUG |
| 501 | ZapBlock(start, size); |
| 502 | #endif |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 503 | Counters::memory_allocated.Increment(static_cast<int>(size)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 504 | return true; |
| 505 | } |
| 506 | |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 507 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 508 | bool MemoryAllocator::UncommitBlock(Address start, size_t size) { |
| 509 | ASSERT(start != NULL); |
| 510 | ASSERT(size > 0); |
| 511 | ASSERT(initial_chunk_ != NULL); |
| 512 | ASSERT(InInitialChunk(start)); |
| 513 | ASSERT(InInitialChunk(start + size - 1)); |
| 514 | |
| 515 | if (!initial_chunk_->Uncommit(start, size)) return false; |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 516 | Counters::memory_allocated.Decrement(static_cast<int>(size)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 517 | return true; |
| 518 | } |
| 519 | |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 520 | |
| 521 | void MemoryAllocator::ZapBlock(Address start, size_t size) { |
| 522 | for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { |
| 523 | Memory::Address_at(start + s) = kZapValue; |
| 524 | } |
| 525 | } |
| 526 | |
| 527 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 528 | Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk, |
| 529 | PagedSpace* owner) { |
| 530 | ASSERT(IsValidChunk(chunk_id)); |
| 531 | ASSERT(pages_in_chunk > 0); |
| 532 | |
| 533 | Address chunk_start = chunks_[chunk_id].address(); |
| 534 | |
| 535 | Address low = RoundUp(chunk_start, Page::kPageSize); |
| 536 | |
| 537 | #ifdef DEBUG |
| 538 | size_t chunk_size = chunks_[chunk_id].size(); |
| 539 | Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); |
| 540 | ASSERT(pages_in_chunk <= |
| 541 | ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize)); |
| 542 | #endif |
| 543 | |
| 544 | Address page_addr = low; |
| 545 | for (int i = 0; i < pages_in_chunk; i++) { |
| 546 | Page* p = Page::FromAddress(page_addr); |
| 547 | p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 548 | p->InvalidateWatermark(true); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 549 | p->SetIsLargeObjectPage(false); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 550 | p->SetAllocationWatermark(p->ObjectAreaStart()); |
| 551 | p->SetCachedAllocationWatermark(p->ObjectAreaStart()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 552 | page_addr += Page::kPageSize; |
| 553 | } |
| 554 | |
| 555 | // Set the next page of the last page to 0. |
| 556 | Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); |
| 557 | last_page->opaque_header = OffsetFrom(0) | chunk_id; |
| 558 | |
| 559 | return Page::FromAddress(low); |
| 560 | } |
| 561 | |
| 562 | |
| 563 | Page* MemoryAllocator::FreePages(Page* p) { |
| 564 | if (!p->is_valid()) return p; |
| 565 | |
| 566 | // Find the first page in the same chunk as 'p' |
| 567 | Page* first_page = FindFirstPageInSameChunk(p); |
| 568 | Page* page_to_return = Page::FromAddress(NULL); |
| 569 | |
| 570 | if (p != first_page) { |
| 571 | // Find the last page in the same chunk as 'prev'. |
| 572 | Page* last_page = FindLastPageInSameChunk(p); |
| 573 | first_page = GetNextPage(last_page); // first page in next chunk |
| 574 | |
| 575 | // set the next_page of last_page to NULL |
| 576 | SetNextPage(last_page, Page::FromAddress(NULL)); |
| 577 | page_to_return = p; // return 'p' when exiting |
| 578 | } |
| 579 | |
| 580 | while (first_page->is_valid()) { |
| 581 | int chunk_id = GetChunkId(first_page); |
| 582 | ASSERT(IsValidChunk(chunk_id)); |
| 583 | |
| 584 | // Find the first page of the next chunk before deleting this chunk. |
| 585 | first_page = GetNextPage(FindLastPageInSameChunk(first_page)); |
| 586 | |
| 587 | // Free the current chunk. |
| 588 | DeleteChunk(chunk_id); |
| 589 | } |
| 590 | |
| 591 | return page_to_return; |
| 592 | } |
| 593 | |
| 594 | |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 595 | void MemoryAllocator::FreeAllPages(PagedSpace* space) { |
| 596 | for (int i = 0, length = chunks_.length(); i < length; i++) { |
| 597 | if (chunks_[i].owner() == space) { |
| 598 | DeleteChunk(i); |
| 599 | } |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 604 | void MemoryAllocator::DeleteChunk(int chunk_id) { |
| 605 | ASSERT(IsValidChunk(chunk_id)); |
| 606 | |
| 607 | ChunkInfo& c = chunks_[chunk_id]; |
| 608 | |
| 609 | // We cannot free a chunk contained in the initial chunk because it was not |
| 610 | // allocated with AllocateRawMemory. Instead we uncommit the virtual |
| 611 | // memory. |
| 612 | if (InInitialChunk(c.address())) { |
| 613 | // TODO(1240712): VirtualMemory::Uncommit has a return value which |
| 614 | // is ignored here. |
| 615 | initial_chunk_->Uncommit(c.address(), c.size()); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 616 | Counters::memory_allocated.Decrement(static_cast<int>(c.size())); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 617 | } else { |
| 618 | LOG(DeleteEvent("PagedChunk", c.address())); |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 619 | FreeRawMemory(c.address(), c.size(), c.owner()->executable()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 620 | } |
| 621 | c.init(NULL, 0, NULL); |
| 622 | Push(chunk_id); |
| 623 | } |
| 624 | |
| 625 | |
| 626 | Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) { |
| 627 | int chunk_id = GetChunkId(p); |
| 628 | ASSERT(IsValidChunk(chunk_id)); |
| 629 | |
| 630 | Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize); |
| 631 | return Page::FromAddress(low); |
| 632 | } |
| 633 | |
| 634 | |
| 635 | Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) { |
| 636 | int chunk_id = GetChunkId(p); |
| 637 | ASSERT(IsValidChunk(chunk_id)); |
| 638 | |
| 639 | Address chunk_start = chunks_[chunk_id].address(); |
| 640 | size_t chunk_size = chunks_[chunk_id].size(); |
| 641 | |
| 642 | Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); |
| 643 | ASSERT(chunk_start <= p->address() && p->address() < high); |
| 644 | |
| 645 | return Page::FromAddress(high - Page::kPageSize); |
| 646 | } |
| 647 | |
| 648 | |
| 649 | #ifdef DEBUG |
| 650 | void MemoryAllocator::ReportStatistics() { |
| 651 | float pct = static_cast<float>(capacity_ - size_) / capacity_; |
| 652 | PrintF(" capacity: %d, used: %d, available: %%%d\n\n", |
| 653 | capacity_, size_, static_cast<int>(pct*100)); |
| 654 | } |
| 655 | #endif |
| 656 | |
| 657 | |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 658 | void MemoryAllocator::RelinkPageListInChunkOrder(PagedSpace* space, |
| 659 | Page** first_page, |
| 660 | Page** last_page, |
| 661 | Page** last_page_in_use) { |
| 662 | Page* first = NULL; |
| 663 | Page* last = NULL; |
| 664 | |
| 665 | for (int i = 0, length = chunks_.length(); i < length; i++) { |
| 666 | ChunkInfo& chunk = chunks_[i]; |
| 667 | |
| 668 | if (chunk.owner() == space) { |
| 669 | if (first == NULL) { |
| 670 | Address low = RoundUp(chunk.address(), Page::kPageSize); |
| 671 | first = Page::FromAddress(low); |
| 672 | } |
| 673 | last = RelinkPagesInChunk(i, |
| 674 | chunk.address(), |
| 675 | chunk.size(), |
| 676 | last, |
| 677 | last_page_in_use); |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | if (first_page != NULL) { |
| 682 | *first_page = first; |
| 683 | } |
| 684 | |
| 685 | if (last_page != NULL) { |
| 686 | *last_page = last; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | |
| 691 | Page* MemoryAllocator::RelinkPagesInChunk(int chunk_id, |
| 692 | Address chunk_start, |
| 693 | size_t chunk_size, |
| 694 | Page* prev, |
| 695 | Page** last_page_in_use) { |
| 696 | Address page_addr = RoundUp(chunk_start, Page::kPageSize); |
| 697 | int pages_in_chunk = PagesInChunk(chunk_start, chunk_size); |
| 698 | |
| 699 | if (prev->is_valid()) { |
| 700 | SetNextPage(prev, Page::FromAddress(page_addr)); |
| 701 | } |
| 702 | |
| 703 | for (int i = 0; i < pages_in_chunk; i++) { |
| 704 | Page* p = Page::FromAddress(page_addr); |
| 705 | p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; |
| 706 | page_addr += Page::kPageSize; |
| 707 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 708 | p->InvalidateWatermark(true); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 709 | if (p->WasInUseBeforeMC()) { |
| 710 | *last_page_in_use = p; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | // Set the next page of the last page to 0. |
| 715 | Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); |
| 716 | last_page->opaque_header = OffsetFrom(0) | chunk_id; |
| 717 | |
| 718 | if (last_page->WasInUseBeforeMC()) { |
| 719 | *last_page_in_use = last_page; |
| 720 | } |
| 721 | |
| 722 | return last_page; |
| 723 | } |
| 724 | |
| 725 | |
| 726 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 727 | // ----------------------------------------------------------------------------- |
| 728 | // PagedSpace implementation |
| 729 | |
| 730 | PagedSpace::PagedSpace(int max_capacity, |
| 731 | AllocationSpace id, |
| 732 | Executability executable) |
| 733 | : Space(id, executable) { |
| 734 | max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) |
| 735 | * Page::kObjectAreaSize; |
| 736 | accounting_stats_.Clear(); |
| 737 | |
| 738 | allocation_info_.top = NULL; |
| 739 | allocation_info_.limit = NULL; |
| 740 | |
| 741 | mc_forwarding_info_.top = NULL; |
| 742 | mc_forwarding_info_.limit = NULL; |
| 743 | } |
| 744 | |
| 745 | |
| 746 | bool PagedSpace::Setup(Address start, size_t size) { |
| 747 | if (HasBeenSetup()) return false; |
| 748 | |
| 749 | int num_pages = 0; |
| 750 | // Try to use the virtual memory range passed to us. If it is too small to |
| 751 | // contain at least one page, ignore it and allocate instead. |
| 752 | int pages_in_chunk = PagesInChunk(start, size); |
| 753 | if (pages_in_chunk > 0) { |
| 754 | first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize), |
| 755 | Page::kPageSize * pages_in_chunk, |
| 756 | this, &num_pages); |
| 757 | } else { |
| 758 | int requested_pages = Min(MemoryAllocator::kPagesPerChunk, |
| 759 | max_capacity_ / Page::kObjectAreaSize); |
| 760 | first_page_ = |
| 761 | MemoryAllocator::AllocatePages(requested_pages, &num_pages, this); |
| 762 | if (!first_page_->is_valid()) return false; |
| 763 | } |
| 764 | |
| 765 | // We are sure that the first page is valid and that we have at least one |
| 766 | // page. |
| 767 | ASSERT(first_page_->is_valid()); |
| 768 | ASSERT(num_pages > 0); |
| 769 | accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); |
| 770 | ASSERT(Capacity() <= max_capacity_); |
| 771 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 772 | // Sequentially clear region marks in the newly allocated |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 773 | // pages and cache the current last page in the space. |
| 774 | for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 775 | p->SetRegionMarks(Page::kAllRegionsCleanMarks); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 776 | last_page_ = p; |
| 777 | } |
| 778 | |
| 779 | // Use first_page_ for allocation. |
| 780 | SetAllocationInfo(&allocation_info_, first_page_); |
| 781 | |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 782 | page_list_is_chunk_ordered_ = true; |
| 783 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 784 | return true; |
| 785 | } |
| 786 | |
| 787 | |
| 788 | bool PagedSpace::HasBeenSetup() { |
| 789 | return (Capacity() > 0); |
| 790 | } |
| 791 | |
| 792 | |
| 793 | void PagedSpace::TearDown() { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 794 | MemoryAllocator::FreeAllPages(this); |
| 795 | first_page_ = NULL; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 796 | accounting_stats_.Clear(); |
| 797 | } |
| 798 | |
| 799 | |
| 800 | #ifdef ENABLE_HEAP_PROTECTION |
| 801 | |
| 802 | void PagedSpace::Protect() { |
| 803 | Page* page = first_page_; |
| 804 | while (page->is_valid()) { |
| 805 | MemoryAllocator::ProtectChunkFromPage(page); |
| 806 | page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | |
| 811 | void PagedSpace::Unprotect() { |
| 812 | Page* page = first_page_; |
| 813 | while (page->is_valid()) { |
| 814 | MemoryAllocator::UnprotectChunkFromPage(page); |
| 815 | page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | #endif |
| 820 | |
| 821 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 822 | void PagedSpace::MarkAllPagesClean() { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 823 | PageIterator it(this, PageIterator::ALL_PAGES); |
| 824 | while (it.has_next()) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 825 | it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 826 | } |
| 827 | } |
| 828 | |
| 829 | |
| 830 | Object* PagedSpace::FindObject(Address addr) { |
| 831 | // Note: this function can only be called before or after mark-compact GC |
| 832 | // because it accesses map pointers. |
| 833 | ASSERT(!MarkCompactCollector::in_use()); |
| 834 | |
| 835 | if (!Contains(addr)) return Failure::Exception(); |
| 836 | |
| 837 | Page* p = Page::FromAddress(addr); |
| 838 | ASSERT(IsUsed(p)); |
| 839 | Address cur = p->ObjectAreaStart(); |
| 840 | Address end = p->AllocationTop(); |
| 841 | while (cur < end) { |
| 842 | HeapObject* obj = HeapObject::FromAddress(cur); |
| 843 | Address next = cur + obj->Size(); |
| 844 | if ((cur <= addr) && (addr < next)) return obj; |
| 845 | cur = next; |
| 846 | } |
| 847 | |
| 848 | UNREACHABLE(); |
| 849 | return Failure::Exception(); |
| 850 | } |
| 851 | |
| 852 | |
| 853 | bool PagedSpace::IsUsed(Page* page) { |
| 854 | PageIterator it(this, PageIterator::PAGES_IN_USE); |
| 855 | while (it.has_next()) { |
| 856 | if (page == it.next()) return true; |
| 857 | } |
| 858 | return false; |
| 859 | } |
| 860 | |
| 861 | |
| 862 | void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) { |
| 863 | alloc_info->top = p->ObjectAreaStart(); |
| 864 | alloc_info->limit = p->ObjectAreaEnd(); |
| 865 | ASSERT(alloc_info->VerifyPagedAllocation()); |
| 866 | } |
| 867 | |
| 868 | |
| 869 | void PagedSpace::MCResetRelocationInfo() { |
| 870 | // Set page indexes. |
| 871 | int i = 0; |
| 872 | PageIterator it(this, PageIterator::ALL_PAGES); |
| 873 | while (it.has_next()) { |
| 874 | Page* p = it.next(); |
| 875 | p->mc_page_index = i++; |
| 876 | } |
| 877 | |
| 878 | // Set mc_forwarding_info_ to the first page in the space. |
| 879 | SetAllocationInfo(&mc_forwarding_info_, first_page_); |
| 880 | // All the bytes in the space are 'available'. We will rediscover |
| 881 | // allocated and wasted bytes during GC. |
| 882 | accounting_stats_.Reset(); |
| 883 | } |
| 884 | |
| 885 | |
| 886 | int PagedSpace::MCSpaceOffsetForAddress(Address addr) { |
| 887 | #ifdef DEBUG |
| 888 | // The Contains function considers the address at the beginning of a |
| 889 | // page in the page, MCSpaceOffsetForAddress considers it is in the |
| 890 | // previous page. |
| 891 | if (Page::IsAlignedToPageSize(addr)) { |
| 892 | ASSERT(Contains(addr - kPointerSize)); |
| 893 | } else { |
| 894 | ASSERT(Contains(addr)); |
| 895 | } |
| 896 | #endif |
| 897 | |
| 898 | // If addr is at the end of a page, it belongs to previous page |
| 899 | Page* p = Page::IsAlignedToPageSize(addr) |
| 900 | ? Page::FromAllocationTop(addr) |
| 901 | : Page::FromAddress(addr); |
| 902 | int index = p->mc_page_index; |
| 903 | return (index * Page::kPageSize) + p->Offset(addr); |
| 904 | } |
| 905 | |
| 906 | |
| 907 | // Slow case for reallocating and promoting objects during a compacting |
| 908 | // collection. This function is not space-specific. |
| 909 | HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) { |
| 910 | Page* current_page = TopPageOf(mc_forwarding_info_); |
| 911 | if (!current_page->next_page()->is_valid()) { |
| 912 | if (!Expand(current_page)) { |
| 913 | return NULL; |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | // There are surely more pages in the space now. |
| 918 | ASSERT(current_page->next_page()->is_valid()); |
| 919 | // We do not add the top of page block for current page to the space's |
| 920 | // free list---the block may contain live objects so we cannot write |
| 921 | // bookkeeping information to it. Instead, we will recover top of page |
| 922 | // blocks when we move objects to their new locations. |
| 923 | // |
| 924 | // We do however write the allocation pointer to the page. The encoding |
| 925 | // of forwarding addresses is as an offset in terms of live bytes, so we |
| 926 | // need quick access to the allocation top of each page to decode |
| 927 | // forwarding addresses. |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 928 | current_page->SetAllocationWatermark(mc_forwarding_info_.top); |
| 929 | current_page->next_page()->InvalidateWatermark(true); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 930 | SetAllocationInfo(&mc_forwarding_info_, current_page->next_page()); |
| 931 | return AllocateLinearly(&mc_forwarding_info_, size_in_bytes); |
| 932 | } |
| 933 | |
| 934 | |
| 935 | bool PagedSpace::Expand(Page* last_page) { |
| 936 | ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); |
| 937 | ASSERT(Capacity() % Page::kObjectAreaSize == 0); |
| 938 | |
| 939 | if (Capacity() == max_capacity_) return false; |
| 940 | |
| 941 | ASSERT(Capacity() < max_capacity_); |
| 942 | // Last page must be valid and its next page is invalid. |
| 943 | ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid()); |
| 944 | |
| 945 | int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize; |
| 946 | if (available_pages <= 0) return false; |
| 947 | |
| 948 | int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk); |
| 949 | Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this); |
| 950 | if (!p->is_valid()) return false; |
| 951 | |
| 952 | accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize); |
| 953 | ASSERT(Capacity() <= max_capacity_); |
| 954 | |
| 955 | MemoryAllocator::SetNextPage(last_page, p); |
| 956 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 957 | // Sequentially clear region marks of new pages and and cache the |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 958 | // new last page in the space. |
| 959 | while (p->is_valid()) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 960 | p->SetRegionMarks(Page::kAllRegionsCleanMarks); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 961 | last_page_ = p; |
| 962 | p = p->next_page(); |
| 963 | } |
| 964 | |
| 965 | return true; |
| 966 | } |
| 967 | |
| 968 | |
| 969 | #ifdef DEBUG |
| 970 | int PagedSpace::CountTotalPages() { |
| 971 | int count = 0; |
| 972 | for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { |
| 973 | count++; |
| 974 | } |
| 975 | return count; |
| 976 | } |
| 977 | #endif |
| 978 | |
| 979 | |
| 980 | void PagedSpace::Shrink() { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 981 | if (!page_list_is_chunk_ordered_) { |
| 982 | // We can't shrink space if pages is not chunk-ordered |
| 983 | // (see comment for class MemoryAllocator for definition). |
| 984 | return; |
| 985 | } |
| 986 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 987 | // Release half of free pages. |
| 988 | Page* top_page = AllocationTopPage(); |
| 989 | ASSERT(top_page->is_valid()); |
| 990 | |
| 991 | // Count the number of pages we would like to free. |
| 992 | int pages_to_free = 0; |
| 993 | for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) { |
| 994 | pages_to_free++; |
| 995 | } |
| 996 | |
| 997 | // Free pages after top_page. |
| 998 | Page* p = MemoryAllocator::FreePages(top_page->next_page()); |
| 999 | MemoryAllocator::SetNextPage(top_page, p); |
| 1000 | |
| 1001 | // Find out how many pages we failed to free and update last_page_. |
| 1002 | // Please note pages can only be freed in whole chunks. |
| 1003 | last_page_ = top_page; |
| 1004 | for (Page* p = top_page->next_page(); p->is_valid(); p = p->next_page()) { |
| 1005 | pages_to_free--; |
| 1006 | last_page_ = p; |
| 1007 | } |
| 1008 | |
| 1009 | accounting_stats_.ShrinkSpace(pages_to_free * Page::kObjectAreaSize); |
| 1010 | ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize); |
| 1011 | } |
| 1012 | |
| 1013 | |
| 1014 | bool PagedSpace::EnsureCapacity(int capacity) { |
| 1015 | if (Capacity() >= capacity) return true; |
| 1016 | |
| 1017 | // Start from the allocation top and loop to the last page in the space. |
| 1018 | Page* last_page = AllocationTopPage(); |
| 1019 | Page* next_page = last_page->next_page(); |
| 1020 | while (next_page->is_valid()) { |
| 1021 | last_page = MemoryAllocator::FindLastPageInSameChunk(next_page); |
| 1022 | next_page = last_page->next_page(); |
| 1023 | } |
| 1024 | |
| 1025 | // Expand the space until it has the required capacity or expansion fails. |
| 1026 | do { |
| 1027 | if (!Expand(last_page)) return false; |
| 1028 | ASSERT(last_page->next_page()->is_valid()); |
| 1029 | last_page = |
| 1030 | MemoryAllocator::FindLastPageInSameChunk(last_page->next_page()); |
| 1031 | } while (Capacity() < capacity); |
| 1032 | |
| 1033 | return true; |
| 1034 | } |
| 1035 | |
| 1036 | |
| 1037 | #ifdef DEBUG |
| 1038 | void PagedSpace::Print() { } |
| 1039 | #endif |
| 1040 | |
| 1041 | |
| 1042 | #ifdef DEBUG |
| 1043 | // We do not assume that the PageIterator works, because it depends on the |
| 1044 | // invariants we are checking during verification. |
| 1045 | void PagedSpace::Verify(ObjectVisitor* visitor) { |
| 1046 | // The allocation pointer should be valid, and it should be in a page in the |
| 1047 | // space. |
| 1048 | ASSERT(allocation_info_.VerifyPagedAllocation()); |
| 1049 | Page* top_page = Page::FromAllocationTop(allocation_info_.top); |
| 1050 | ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); |
| 1051 | |
| 1052 | // Loop over all the pages. |
| 1053 | bool above_allocation_top = false; |
| 1054 | Page* current_page = first_page_; |
| 1055 | while (current_page->is_valid()) { |
| 1056 | if (above_allocation_top) { |
| 1057 | // We don't care what's above the allocation top. |
| 1058 | } else { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1059 | Address top = current_page->AllocationTop(); |
| 1060 | if (current_page == top_page) { |
| 1061 | ASSERT(top == allocation_info_.top); |
| 1062 | // The next page will be above the allocation top. |
| 1063 | above_allocation_top = true; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1064 | } |
| 1065 | |
| 1066 | // It should be packed with objects from the bottom to the top. |
| 1067 | Address current = current_page->ObjectAreaStart(); |
| 1068 | while (current < top) { |
| 1069 | HeapObject* object = HeapObject::FromAddress(current); |
| 1070 | |
| 1071 | // The first word should be a map, and we expect all map pointers to |
| 1072 | // be in map space. |
| 1073 | Map* map = object->map(); |
| 1074 | ASSERT(map->IsMap()); |
| 1075 | ASSERT(Heap::map_space()->Contains(map)); |
| 1076 | |
| 1077 | // Perform space-specific object verification. |
| 1078 | VerifyObject(object); |
| 1079 | |
| 1080 | // The object itself should look OK. |
| 1081 | object->Verify(); |
| 1082 | |
| 1083 | // All the interior pointers should be contained in the heap and |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1084 | // have page regions covering intergenerational references should be |
| 1085 | // marked dirty. |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1086 | int size = object->Size(); |
| 1087 | object->IterateBody(map->instance_type(), size, visitor); |
| 1088 | |
| 1089 | current += size; |
| 1090 | } |
| 1091 | |
| 1092 | // The allocation pointer should not be in the middle of an object. |
| 1093 | ASSERT(current == top); |
| 1094 | } |
| 1095 | |
| 1096 | current_page = current_page->next_page(); |
| 1097 | } |
| 1098 | } |
| 1099 | #endif |
| 1100 | |
| 1101 | |
| 1102 | // ----------------------------------------------------------------------------- |
| 1103 | // NewSpace implementation |
| 1104 | |
| 1105 | |
| 1106 | bool NewSpace::Setup(Address start, int size) { |
| 1107 | // Setup new space based on the preallocated memory block defined by |
| 1108 | // start and size. The provided space is divided into two semi-spaces. |
| 1109 | // To support fast containment testing in the new space, the size of |
| 1110 | // this chunk must be a power of two and it must be aligned to its size. |
| 1111 | int initial_semispace_capacity = Heap::InitialSemiSpaceSize(); |
Steve Block | 3ce2e20 | 2009-11-05 08:53:23 +0000 | [diff] [blame] | 1112 | int maximum_semispace_capacity = Heap::MaxSemiSpaceSize(); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1113 | |
| 1114 | ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); |
| 1115 | ASSERT(IsPowerOf2(maximum_semispace_capacity)); |
| 1116 | |
| 1117 | // Allocate and setup the histogram arrays if necessary. |
| 1118 | #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1119 | allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); |
| 1120 | promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); |
| 1121 | |
| 1122 | #define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ |
| 1123 | promoted_histogram_[name].set_name(#name); |
| 1124 | INSTANCE_TYPE_LIST(SET_NAME) |
| 1125 | #undef SET_NAME |
| 1126 | #endif |
| 1127 | |
Steve Block | 3ce2e20 | 2009-11-05 08:53:23 +0000 | [diff] [blame] | 1128 | ASSERT(size == 2 * Heap::ReservedSemiSpaceSize()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1129 | ASSERT(IsAddressAligned(start, size, 0)); |
| 1130 | |
| 1131 | if (!to_space_.Setup(start, |
| 1132 | initial_semispace_capacity, |
| 1133 | maximum_semispace_capacity)) { |
| 1134 | return false; |
| 1135 | } |
| 1136 | if (!from_space_.Setup(start + maximum_semispace_capacity, |
| 1137 | initial_semispace_capacity, |
| 1138 | maximum_semispace_capacity)) { |
| 1139 | return false; |
| 1140 | } |
| 1141 | |
| 1142 | start_ = start; |
| 1143 | address_mask_ = ~(size - 1); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1144 | object_mask_ = address_mask_ | kHeapObjectTagMask; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1145 | object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; |
| 1146 | |
| 1147 | allocation_info_.top = to_space_.low(); |
| 1148 | allocation_info_.limit = to_space_.high(); |
| 1149 | mc_forwarding_info_.top = NULL; |
| 1150 | mc_forwarding_info_.limit = NULL; |
| 1151 | |
| 1152 | ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1153 | return true; |
| 1154 | } |
| 1155 | |
| 1156 | |
| 1157 | void NewSpace::TearDown() { |
| 1158 | #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1159 | if (allocated_histogram_) { |
| 1160 | DeleteArray(allocated_histogram_); |
| 1161 | allocated_histogram_ = NULL; |
| 1162 | } |
| 1163 | if (promoted_histogram_) { |
| 1164 | DeleteArray(promoted_histogram_); |
| 1165 | promoted_histogram_ = NULL; |
| 1166 | } |
| 1167 | #endif |
| 1168 | |
| 1169 | start_ = NULL; |
| 1170 | allocation_info_.top = NULL; |
| 1171 | allocation_info_.limit = NULL; |
| 1172 | mc_forwarding_info_.top = NULL; |
| 1173 | mc_forwarding_info_.limit = NULL; |
| 1174 | |
| 1175 | to_space_.TearDown(); |
| 1176 | from_space_.TearDown(); |
| 1177 | } |
| 1178 | |
| 1179 | |
| 1180 | #ifdef ENABLE_HEAP_PROTECTION |
| 1181 | |
| 1182 | void NewSpace::Protect() { |
| 1183 | MemoryAllocator::Protect(ToSpaceLow(), Capacity()); |
| 1184 | MemoryAllocator::Protect(FromSpaceLow(), Capacity()); |
| 1185 | } |
| 1186 | |
| 1187 | |
| 1188 | void NewSpace::Unprotect() { |
| 1189 | MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(), |
| 1190 | to_space_.executable()); |
| 1191 | MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(), |
| 1192 | from_space_.executable()); |
| 1193 | } |
| 1194 | |
| 1195 | #endif |
| 1196 | |
| 1197 | |
| 1198 | void NewSpace::Flip() { |
| 1199 | SemiSpace tmp = from_space_; |
| 1200 | from_space_ = to_space_; |
| 1201 | to_space_ = tmp; |
| 1202 | } |
| 1203 | |
| 1204 | |
| 1205 | void NewSpace::Grow() { |
| 1206 | ASSERT(Capacity() < MaximumCapacity()); |
| 1207 | if (to_space_.Grow()) { |
| 1208 | // Only grow from space if we managed to grow to space. |
| 1209 | if (!from_space_.Grow()) { |
| 1210 | // If we managed to grow to space but couldn't grow from space, |
| 1211 | // attempt to shrink to space. |
| 1212 | if (!to_space_.ShrinkTo(from_space_.Capacity())) { |
| 1213 | // We are in an inconsistent state because we could not |
| 1214 | // commit/uncommit memory from new space. |
| 1215 | V8::FatalProcessOutOfMemory("Failed to grow new space."); |
| 1216 | } |
| 1217 | } |
| 1218 | } |
| 1219 | allocation_info_.limit = to_space_.high(); |
| 1220 | ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1221 | } |
| 1222 | |
| 1223 | |
| 1224 | void NewSpace::Shrink() { |
| 1225 | int new_capacity = Max(InitialCapacity(), 2 * Size()); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 1226 | int rounded_new_capacity = |
| 1227 | RoundUp(new_capacity, static_cast<int>(OS::AllocateAlignment())); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1228 | if (rounded_new_capacity < Capacity() && |
| 1229 | to_space_.ShrinkTo(rounded_new_capacity)) { |
| 1230 | // Only shrink from space if we managed to shrink to space. |
| 1231 | if (!from_space_.ShrinkTo(rounded_new_capacity)) { |
| 1232 | // If we managed to shrink to space but couldn't shrink from |
| 1233 | // space, attempt to grow to space again. |
| 1234 | if (!to_space_.GrowTo(from_space_.Capacity())) { |
| 1235 | // We are in an inconsistent state because we could not |
| 1236 | // commit/uncommit memory from new space. |
| 1237 | V8::FatalProcessOutOfMemory("Failed to shrink new space."); |
| 1238 | } |
| 1239 | } |
| 1240 | } |
| 1241 | allocation_info_.limit = to_space_.high(); |
| 1242 | ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1243 | } |
| 1244 | |
| 1245 | |
| 1246 | void NewSpace::ResetAllocationInfo() { |
| 1247 | allocation_info_.top = to_space_.low(); |
| 1248 | allocation_info_.limit = to_space_.high(); |
| 1249 | ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1250 | } |
| 1251 | |
| 1252 | |
| 1253 | void NewSpace::MCResetRelocationInfo() { |
| 1254 | mc_forwarding_info_.top = from_space_.low(); |
| 1255 | mc_forwarding_info_.limit = from_space_.high(); |
| 1256 | ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_); |
| 1257 | } |
| 1258 | |
| 1259 | |
| 1260 | void NewSpace::MCCommitRelocationInfo() { |
| 1261 | // Assumes that the spaces have been flipped so that mc_forwarding_info_ is |
| 1262 | // valid allocation info for the to space. |
| 1263 | allocation_info_.top = mc_forwarding_info_.top; |
| 1264 | allocation_info_.limit = to_space_.high(); |
| 1265 | ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1266 | } |
| 1267 | |
| 1268 | |
| 1269 | #ifdef DEBUG |
| 1270 | // We do not use the SemispaceIterator because verification doesn't assume |
| 1271 | // that it works (it depends on the invariants we are checking). |
| 1272 | void NewSpace::Verify() { |
| 1273 | // The allocation pointer should be in the space or at the very end. |
| 1274 | ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1275 | |
| 1276 | // There should be objects packed in from the low address up to the |
| 1277 | // allocation pointer. |
| 1278 | Address current = to_space_.low(); |
| 1279 | while (current < top()) { |
| 1280 | HeapObject* object = HeapObject::FromAddress(current); |
| 1281 | |
| 1282 | // The first word should be a map, and we expect all map pointers to |
| 1283 | // be in map space. |
| 1284 | Map* map = object->map(); |
| 1285 | ASSERT(map->IsMap()); |
| 1286 | ASSERT(Heap::map_space()->Contains(map)); |
| 1287 | |
| 1288 | // The object should not be code or a map. |
| 1289 | ASSERT(!object->IsMap()); |
| 1290 | ASSERT(!object->IsCode()); |
| 1291 | |
| 1292 | // The object itself should look OK. |
| 1293 | object->Verify(); |
| 1294 | |
| 1295 | // All the interior pointers should be contained in the heap. |
| 1296 | VerifyPointersVisitor visitor; |
| 1297 | int size = object->Size(); |
| 1298 | object->IterateBody(map->instance_type(), size, &visitor); |
| 1299 | |
| 1300 | current += size; |
| 1301 | } |
| 1302 | |
| 1303 | // The allocation pointer should not be in the middle of an object. |
| 1304 | ASSERT(current == top()); |
| 1305 | } |
| 1306 | #endif |
| 1307 | |
| 1308 | |
| 1309 | bool SemiSpace::Commit() { |
| 1310 | ASSERT(!is_committed()); |
| 1311 | if (!MemoryAllocator::CommitBlock(start_, capacity_, executable())) { |
| 1312 | return false; |
| 1313 | } |
| 1314 | committed_ = true; |
| 1315 | return true; |
| 1316 | } |
| 1317 | |
| 1318 | |
| 1319 | bool SemiSpace::Uncommit() { |
| 1320 | ASSERT(is_committed()); |
| 1321 | if (!MemoryAllocator::UncommitBlock(start_, capacity_)) { |
| 1322 | return false; |
| 1323 | } |
| 1324 | committed_ = false; |
| 1325 | return true; |
| 1326 | } |
| 1327 | |
| 1328 | |
| 1329 | // ----------------------------------------------------------------------------- |
| 1330 | // SemiSpace implementation |
| 1331 | |
| 1332 | bool SemiSpace::Setup(Address start, |
| 1333 | int initial_capacity, |
| 1334 | int maximum_capacity) { |
| 1335 | // Creates a space in the young generation. The constructor does not |
| 1336 | // allocate memory from the OS. A SemiSpace is given a contiguous chunk of |
| 1337 | // memory of size 'capacity' when set up, and does not grow or shrink |
| 1338 | // otherwise. In the mark-compact collector, the memory region of the from |
| 1339 | // space is used as the marking stack. It requires contiguous memory |
| 1340 | // addresses. |
| 1341 | initial_capacity_ = initial_capacity; |
| 1342 | capacity_ = initial_capacity; |
| 1343 | maximum_capacity_ = maximum_capacity; |
| 1344 | committed_ = false; |
| 1345 | |
| 1346 | start_ = start; |
| 1347 | address_mask_ = ~(maximum_capacity - 1); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1348 | object_mask_ = address_mask_ | kHeapObjectTagMask; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1349 | object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; |
| 1350 | age_mark_ = start_; |
| 1351 | |
| 1352 | return Commit(); |
| 1353 | } |
| 1354 | |
| 1355 | |
| 1356 | void SemiSpace::TearDown() { |
| 1357 | start_ = NULL; |
| 1358 | capacity_ = 0; |
| 1359 | } |
| 1360 | |
| 1361 | |
| 1362 | bool SemiSpace::Grow() { |
| 1363 | // Double the semispace size but only up to maximum capacity. |
| 1364 | int maximum_extra = maximum_capacity_ - capacity_; |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 1365 | int extra = Min(RoundUp(capacity_, static_cast<int>(OS::AllocateAlignment())), |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1366 | maximum_extra); |
| 1367 | if (!MemoryAllocator::CommitBlock(high(), extra, executable())) { |
| 1368 | return false; |
| 1369 | } |
| 1370 | capacity_ += extra; |
| 1371 | return true; |
| 1372 | } |
| 1373 | |
| 1374 | |
| 1375 | bool SemiSpace::GrowTo(int new_capacity) { |
| 1376 | ASSERT(new_capacity <= maximum_capacity_); |
| 1377 | ASSERT(new_capacity > capacity_); |
| 1378 | size_t delta = new_capacity - capacity_; |
| 1379 | ASSERT(IsAligned(delta, OS::AllocateAlignment())); |
| 1380 | if (!MemoryAllocator::CommitBlock(high(), delta, executable())) { |
| 1381 | return false; |
| 1382 | } |
| 1383 | capacity_ = new_capacity; |
| 1384 | return true; |
| 1385 | } |
| 1386 | |
| 1387 | |
| 1388 | bool SemiSpace::ShrinkTo(int new_capacity) { |
| 1389 | ASSERT(new_capacity >= initial_capacity_); |
| 1390 | ASSERT(new_capacity < capacity_); |
| 1391 | size_t delta = capacity_ - new_capacity; |
| 1392 | ASSERT(IsAligned(delta, OS::AllocateAlignment())); |
| 1393 | if (!MemoryAllocator::UncommitBlock(high() - delta, delta)) { |
| 1394 | return false; |
| 1395 | } |
| 1396 | capacity_ = new_capacity; |
| 1397 | return true; |
| 1398 | } |
| 1399 | |
| 1400 | |
| 1401 | #ifdef DEBUG |
| 1402 | void SemiSpace::Print() { } |
| 1403 | |
| 1404 | |
| 1405 | void SemiSpace::Verify() { } |
| 1406 | #endif |
| 1407 | |
| 1408 | |
| 1409 | // ----------------------------------------------------------------------------- |
| 1410 | // SemiSpaceIterator implementation. |
| 1411 | SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { |
| 1412 | Initialize(space, space->bottom(), space->top(), NULL); |
| 1413 | } |
| 1414 | |
| 1415 | |
| 1416 | SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, |
| 1417 | HeapObjectCallback size_func) { |
| 1418 | Initialize(space, space->bottom(), space->top(), size_func); |
| 1419 | } |
| 1420 | |
| 1421 | |
| 1422 | SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { |
| 1423 | Initialize(space, start, space->top(), NULL); |
| 1424 | } |
| 1425 | |
| 1426 | |
| 1427 | void SemiSpaceIterator::Initialize(NewSpace* space, Address start, |
| 1428 | Address end, |
| 1429 | HeapObjectCallback size_func) { |
| 1430 | ASSERT(space->ToSpaceContains(start)); |
| 1431 | ASSERT(space->ToSpaceLow() <= end |
| 1432 | && end <= space->ToSpaceHigh()); |
| 1433 | space_ = &space->to_space_; |
| 1434 | current_ = start; |
| 1435 | limit_ = end; |
| 1436 | size_func_ = size_func; |
| 1437 | } |
| 1438 | |
| 1439 | |
| 1440 | #ifdef DEBUG |
| 1441 | // A static array of histogram info for each type. |
| 1442 | static HistogramInfo heap_histograms[LAST_TYPE+1]; |
| 1443 | static JSObject::SpillInformation js_spill_information; |
| 1444 | |
| 1445 | // heap_histograms is shared, always clear it before using it. |
| 1446 | static void ClearHistograms() { |
| 1447 | // We reset the name each time, though it hasn't changed. |
| 1448 | #define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name); |
| 1449 | INSTANCE_TYPE_LIST(DEF_TYPE_NAME) |
| 1450 | #undef DEF_TYPE_NAME |
| 1451 | |
| 1452 | #define CLEAR_HISTOGRAM(name) heap_histograms[name].clear(); |
| 1453 | INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) |
| 1454 | #undef CLEAR_HISTOGRAM |
| 1455 | |
| 1456 | js_spill_information.Clear(); |
| 1457 | } |
| 1458 | |
| 1459 | |
| 1460 | static int code_kind_statistics[Code::NUMBER_OF_KINDS]; |
| 1461 | |
| 1462 | |
| 1463 | static void ClearCodeKindStatistics() { |
| 1464 | for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
| 1465 | code_kind_statistics[i] = 0; |
| 1466 | } |
| 1467 | } |
| 1468 | |
| 1469 | |
| 1470 | static void ReportCodeKindStatistics() { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1471 | const char* table[Code::NUMBER_OF_KINDS] = { NULL }; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1472 | |
| 1473 | #define CASE(name) \ |
| 1474 | case Code::name: table[Code::name] = #name; \ |
| 1475 | break |
| 1476 | |
| 1477 | for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
| 1478 | switch (static_cast<Code::Kind>(i)) { |
| 1479 | CASE(FUNCTION); |
| 1480 | CASE(STUB); |
| 1481 | CASE(BUILTIN); |
| 1482 | CASE(LOAD_IC); |
| 1483 | CASE(KEYED_LOAD_IC); |
| 1484 | CASE(STORE_IC); |
| 1485 | CASE(KEYED_STORE_IC); |
| 1486 | CASE(CALL_IC); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1487 | CASE(KEYED_CALL_IC); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1488 | CASE(BINARY_OP_IC); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | #undef CASE |
| 1493 | |
| 1494 | PrintF("\n Code kind histograms: \n"); |
| 1495 | for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { |
| 1496 | if (code_kind_statistics[i] > 0) { |
| 1497 | PrintF(" %-20s: %10d bytes\n", table[i], code_kind_statistics[i]); |
| 1498 | } |
| 1499 | } |
| 1500 | PrintF("\n"); |
| 1501 | } |
| 1502 | |
| 1503 | |
| 1504 | static int CollectHistogramInfo(HeapObject* obj) { |
| 1505 | InstanceType type = obj->map()->instance_type(); |
| 1506 | ASSERT(0 <= type && type <= LAST_TYPE); |
| 1507 | ASSERT(heap_histograms[type].name() != NULL); |
| 1508 | heap_histograms[type].increment_number(1); |
| 1509 | heap_histograms[type].increment_bytes(obj->Size()); |
| 1510 | |
| 1511 | if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { |
| 1512 | JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information); |
| 1513 | } |
| 1514 | |
| 1515 | return obj->Size(); |
| 1516 | } |
| 1517 | |
| 1518 | |
| 1519 | static void ReportHistogram(bool print_spill) { |
| 1520 | PrintF("\n Object Histogram:\n"); |
| 1521 | for (int i = 0; i <= LAST_TYPE; i++) { |
| 1522 | if (heap_histograms[i].number() > 0) { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1523 | PrintF(" %-34s%10d (%10d bytes)\n", |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1524 | heap_histograms[i].name(), |
| 1525 | heap_histograms[i].number(), |
| 1526 | heap_histograms[i].bytes()); |
| 1527 | } |
| 1528 | } |
| 1529 | PrintF("\n"); |
| 1530 | |
| 1531 | // Summarize string types. |
| 1532 | int string_number = 0; |
| 1533 | int string_bytes = 0; |
| 1534 | #define INCREMENT(type, size, name, camel_name) \ |
| 1535 | string_number += heap_histograms[type].number(); \ |
| 1536 | string_bytes += heap_histograms[type].bytes(); |
| 1537 | STRING_TYPE_LIST(INCREMENT) |
| 1538 | #undef INCREMENT |
| 1539 | if (string_number > 0) { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1540 | PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1541 | string_bytes); |
| 1542 | } |
| 1543 | |
| 1544 | if (FLAG_collect_heap_spill_statistics && print_spill) { |
| 1545 | js_spill_information.Print(); |
| 1546 | } |
| 1547 | } |
| 1548 | #endif // DEBUG |
| 1549 | |
| 1550 | |
| 1551 | // Support for statistics gathering for --heap-stats and --log-gc. |
| 1552 | #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1553 | void NewSpace::ClearHistograms() { |
| 1554 | for (int i = 0; i <= LAST_TYPE; i++) { |
| 1555 | allocated_histogram_[i].clear(); |
| 1556 | promoted_histogram_[i].clear(); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | // Because the copying collector does not touch garbage objects, we iterate |
| 1561 | // the new space before a collection to get a histogram of allocated objects. |
| 1562 | // This only happens (1) when compiled with DEBUG and the --heap-stats flag is |
| 1563 | // set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc |
| 1564 | // flag is set. |
| 1565 | void NewSpace::CollectStatistics() { |
| 1566 | ClearHistograms(); |
| 1567 | SemiSpaceIterator it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 1568 | for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) |
| 1569 | RecordAllocation(obj); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1570 | } |
| 1571 | |
| 1572 | |
| 1573 | #ifdef ENABLE_LOGGING_AND_PROFILING |
| 1574 | static void DoReportStatistics(HistogramInfo* info, const char* description) { |
| 1575 | LOG(HeapSampleBeginEvent("NewSpace", description)); |
| 1576 | // Lump all the string types together. |
| 1577 | int string_number = 0; |
| 1578 | int string_bytes = 0; |
| 1579 | #define INCREMENT(type, size, name, camel_name) \ |
| 1580 | string_number += info[type].number(); \ |
| 1581 | string_bytes += info[type].bytes(); |
| 1582 | STRING_TYPE_LIST(INCREMENT) |
| 1583 | #undef INCREMENT |
| 1584 | if (string_number > 0) { |
| 1585 | LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); |
| 1586 | } |
| 1587 | |
| 1588 | // Then do the other types. |
| 1589 | for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { |
| 1590 | if (info[i].number() > 0) { |
| 1591 | LOG(HeapSampleItemEvent(info[i].name(), info[i].number(), |
| 1592 | info[i].bytes())); |
| 1593 | } |
| 1594 | } |
| 1595 | LOG(HeapSampleEndEvent("NewSpace", description)); |
| 1596 | } |
| 1597 | #endif // ENABLE_LOGGING_AND_PROFILING |
| 1598 | |
| 1599 | |
| 1600 | void NewSpace::ReportStatistics() { |
| 1601 | #ifdef DEBUG |
| 1602 | if (FLAG_heap_stats) { |
| 1603 | float pct = static_cast<float>(Available()) / Capacity(); |
| 1604 | PrintF(" capacity: %d, available: %d, %%%d\n", |
| 1605 | Capacity(), Available(), static_cast<int>(pct*100)); |
| 1606 | PrintF("\n Object Histogram:\n"); |
| 1607 | for (int i = 0; i <= LAST_TYPE; i++) { |
| 1608 | if (allocated_histogram_[i].number() > 0) { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1609 | PrintF(" %-34s%10d (%10d bytes)\n", |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1610 | allocated_histogram_[i].name(), |
| 1611 | allocated_histogram_[i].number(), |
| 1612 | allocated_histogram_[i].bytes()); |
| 1613 | } |
| 1614 | } |
| 1615 | PrintF("\n"); |
| 1616 | } |
| 1617 | #endif // DEBUG |
| 1618 | |
| 1619 | #ifdef ENABLE_LOGGING_AND_PROFILING |
| 1620 | if (FLAG_log_gc) { |
| 1621 | DoReportStatistics(allocated_histogram_, "allocated"); |
| 1622 | DoReportStatistics(promoted_histogram_, "promoted"); |
| 1623 | } |
| 1624 | #endif // ENABLE_LOGGING_AND_PROFILING |
| 1625 | } |
| 1626 | |
| 1627 | |
| 1628 | void NewSpace::RecordAllocation(HeapObject* obj) { |
| 1629 | InstanceType type = obj->map()->instance_type(); |
| 1630 | ASSERT(0 <= type && type <= LAST_TYPE); |
| 1631 | allocated_histogram_[type].increment_number(1); |
| 1632 | allocated_histogram_[type].increment_bytes(obj->Size()); |
| 1633 | } |
| 1634 | |
| 1635 | |
| 1636 | void NewSpace::RecordPromotion(HeapObject* obj) { |
| 1637 | InstanceType type = obj->map()->instance_type(); |
| 1638 | ASSERT(0 <= type && type <= LAST_TYPE); |
| 1639 | promoted_histogram_[type].increment_number(1); |
| 1640 | promoted_histogram_[type].increment_bytes(obj->Size()); |
| 1641 | } |
| 1642 | #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1643 | |
| 1644 | |
| 1645 | // ----------------------------------------------------------------------------- |
| 1646 | // Free lists for old object spaces implementation |
| 1647 | |
| 1648 | void FreeListNode::set_size(int size_in_bytes) { |
| 1649 | ASSERT(size_in_bytes > 0); |
| 1650 | ASSERT(IsAligned(size_in_bytes, kPointerSize)); |
| 1651 | |
| 1652 | // We write a map and possibly size information to the block. If the block |
| 1653 | // is big enough to be a ByteArray with at least one extra word (the next |
| 1654 | // pointer), we set its map to be the byte array map and its size to an |
| 1655 | // appropriate array length for the desired size from HeapObject::Size(). |
| 1656 | // If the block is too small (eg, one or two words), to hold both a size |
| 1657 | // field and a next pointer, we give it a filler map that gives it the |
| 1658 | // correct size. |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1659 | if (size_in_bytes > ByteArray::kHeaderSize) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1660 | set_map(Heap::raw_unchecked_byte_array_map()); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 1661 | // Can't use ByteArray::cast because it fails during deserialization. |
| 1662 | ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this); |
| 1663 | this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1664 | } else if (size_in_bytes == kPointerSize) { |
| 1665 | set_map(Heap::raw_unchecked_one_pointer_filler_map()); |
| 1666 | } else if (size_in_bytes == 2 * kPointerSize) { |
| 1667 | set_map(Heap::raw_unchecked_two_pointer_filler_map()); |
| 1668 | } else { |
| 1669 | UNREACHABLE(); |
| 1670 | } |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 1671 | // We would like to ASSERT(Size() == size_in_bytes) but this would fail during |
| 1672 | // deserialization because the byte array map is not done yet. |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1673 | } |
| 1674 | |
| 1675 | |
| 1676 | Address FreeListNode::next() { |
Steve Block | 3ce2e20 | 2009-11-05 08:53:23 +0000 | [diff] [blame] | 1677 | ASSERT(IsFreeListNode(this)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1678 | if (map() == Heap::raw_unchecked_byte_array_map()) { |
| 1679 | ASSERT(Size() >= kNextOffset + kPointerSize); |
| 1680 | return Memory::Address_at(address() + kNextOffset); |
| 1681 | } else { |
| 1682 | return Memory::Address_at(address() + kPointerSize); |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | |
| 1687 | void FreeListNode::set_next(Address next) { |
Steve Block | 3ce2e20 | 2009-11-05 08:53:23 +0000 | [diff] [blame] | 1688 | ASSERT(IsFreeListNode(this)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1689 | if (map() == Heap::raw_unchecked_byte_array_map()) { |
| 1690 | ASSERT(Size() >= kNextOffset + kPointerSize); |
| 1691 | Memory::Address_at(address() + kNextOffset) = next; |
| 1692 | } else { |
| 1693 | Memory::Address_at(address() + kPointerSize) = next; |
| 1694 | } |
| 1695 | } |
| 1696 | |
| 1697 | |
| 1698 | OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) { |
| 1699 | Reset(); |
| 1700 | } |
| 1701 | |
| 1702 | |
| 1703 | void OldSpaceFreeList::Reset() { |
| 1704 | available_ = 0; |
| 1705 | for (int i = 0; i < kFreeListsLength; i++) { |
| 1706 | free_[i].head_node_ = NULL; |
| 1707 | } |
| 1708 | needs_rebuild_ = false; |
| 1709 | finger_ = kHead; |
| 1710 | free_[kHead].next_size_ = kEnd; |
| 1711 | } |
| 1712 | |
| 1713 | |
| 1714 | void OldSpaceFreeList::RebuildSizeList() { |
| 1715 | ASSERT(needs_rebuild_); |
| 1716 | int cur = kHead; |
| 1717 | for (int i = cur + 1; i < kFreeListsLength; i++) { |
| 1718 | if (free_[i].head_node_ != NULL) { |
| 1719 | free_[cur].next_size_ = i; |
| 1720 | cur = i; |
| 1721 | } |
| 1722 | } |
| 1723 | free_[cur].next_size_ = kEnd; |
| 1724 | needs_rebuild_ = false; |
| 1725 | } |
| 1726 | |
| 1727 | |
| 1728 | int OldSpaceFreeList::Free(Address start, int size_in_bytes) { |
| 1729 | #ifdef DEBUG |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 1730 | MemoryAllocator::ZapBlock(start, size_in_bytes); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1731 | #endif |
| 1732 | FreeListNode* node = FreeListNode::FromAddress(start); |
| 1733 | node->set_size(size_in_bytes); |
| 1734 | |
| 1735 | // We don't use the freelists in compacting mode. This makes it more like a |
| 1736 | // GC that only has mark-sweep-compact and doesn't have a mark-sweep |
| 1737 | // collector. |
| 1738 | if (FLAG_always_compact) { |
| 1739 | return size_in_bytes; |
| 1740 | } |
| 1741 | |
| 1742 | // Early return to drop too-small blocks on the floor (one or two word |
| 1743 | // blocks cannot hold a map pointer, a size field, and a pointer to the |
| 1744 | // next block in the free list). |
| 1745 | if (size_in_bytes < kMinBlockSize) { |
| 1746 | return size_in_bytes; |
| 1747 | } |
| 1748 | |
| 1749 | // Insert other blocks at the head of an exact free list. |
| 1750 | int index = size_in_bytes >> kPointerSizeLog2; |
| 1751 | node->set_next(free_[index].head_node_); |
| 1752 | free_[index].head_node_ = node->address(); |
| 1753 | available_ += size_in_bytes; |
| 1754 | needs_rebuild_ = true; |
| 1755 | return 0; |
| 1756 | } |
| 1757 | |
| 1758 | |
| 1759 | Object* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) { |
| 1760 | ASSERT(0 < size_in_bytes); |
| 1761 | ASSERT(size_in_bytes <= kMaxBlockSize); |
| 1762 | ASSERT(IsAligned(size_in_bytes, kPointerSize)); |
| 1763 | |
| 1764 | if (needs_rebuild_) RebuildSizeList(); |
| 1765 | int index = size_in_bytes >> kPointerSizeLog2; |
| 1766 | // Check for a perfect fit. |
| 1767 | if (free_[index].head_node_ != NULL) { |
| 1768 | FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_); |
| 1769 | // If this was the last block of its size, remove the size. |
| 1770 | if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index); |
| 1771 | available_ -= size_in_bytes; |
| 1772 | *wasted_bytes = 0; |
| 1773 | ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep. |
| 1774 | return node; |
| 1775 | } |
| 1776 | // Search the size list for the best fit. |
| 1777 | int prev = finger_ < index ? finger_ : kHead; |
| 1778 | int cur = FindSize(index, &prev); |
| 1779 | ASSERT(index < cur); |
| 1780 | if (cur == kEnd) { |
| 1781 | // No large enough size in list. |
| 1782 | *wasted_bytes = 0; |
| 1783 | return Failure::RetryAfterGC(size_in_bytes, owner_); |
| 1784 | } |
| 1785 | ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep. |
| 1786 | int rem = cur - index; |
| 1787 | int rem_bytes = rem << kPointerSizeLog2; |
| 1788 | FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_); |
| 1789 | ASSERT(cur_node->Size() == (cur << kPointerSizeLog2)); |
| 1790 | FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ + |
| 1791 | size_in_bytes); |
| 1792 | // Distinguish the cases prev < rem < cur and rem <= prev < cur |
| 1793 | // to avoid many redundant tests and calls to Insert/RemoveSize. |
| 1794 | if (prev < rem) { |
| 1795 | // Simple case: insert rem between prev and cur. |
| 1796 | finger_ = prev; |
| 1797 | free_[prev].next_size_ = rem; |
| 1798 | // If this was the last block of size cur, remove the size. |
| 1799 | if ((free_[cur].head_node_ = cur_node->next()) == NULL) { |
| 1800 | free_[rem].next_size_ = free_[cur].next_size_; |
| 1801 | } else { |
| 1802 | free_[rem].next_size_ = cur; |
| 1803 | } |
| 1804 | // Add the remainder block. |
| 1805 | rem_node->set_size(rem_bytes); |
| 1806 | rem_node->set_next(free_[rem].head_node_); |
| 1807 | free_[rem].head_node_ = rem_node->address(); |
| 1808 | } else { |
| 1809 | // If this was the last block of size cur, remove the size. |
| 1810 | if ((free_[cur].head_node_ = cur_node->next()) == NULL) { |
| 1811 | finger_ = prev; |
| 1812 | free_[prev].next_size_ = free_[cur].next_size_; |
| 1813 | } |
| 1814 | if (rem_bytes < kMinBlockSize) { |
| 1815 | // Too-small remainder is wasted. |
| 1816 | rem_node->set_size(rem_bytes); |
| 1817 | available_ -= size_in_bytes + rem_bytes; |
| 1818 | *wasted_bytes = rem_bytes; |
| 1819 | return cur_node; |
| 1820 | } |
| 1821 | // Add the remainder block and, if needed, insert its size. |
| 1822 | rem_node->set_size(rem_bytes); |
| 1823 | rem_node->set_next(free_[rem].head_node_); |
| 1824 | free_[rem].head_node_ = rem_node->address(); |
| 1825 | if (rem_node->next() == NULL) InsertSize(rem); |
| 1826 | } |
| 1827 | available_ -= size_in_bytes; |
| 1828 | *wasted_bytes = 0; |
| 1829 | return cur_node; |
| 1830 | } |
| 1831 | |
| 1832 | |
| 1833 | #ifdef DEBUG |
| 1834 | bool OldSpaceFreeList::Contains(FreeListNode* node) { |
| 1835 | for (int i = 0; i < kFreeListsLength; i++) { |
| 1836 | Address cur_addr = free_[i].head_node_; |
| 1837 | while (cur_addr != NULL) { |
| 1838 | FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr); |
| 1839 | if (cur_node == node) return true; |
| 1840 | cur_addr = cur_node->next(); |
| 1841 | } |
| 1842 | } |
| 1843 | return false; |
| 1844 | } |
| 1845 | #endif |
| 1846 | |
| 1847 | |
| 1848 | FixedSizeFreeList::FixedSizeFreeList(AllocationSpace owner, int object_size) |
| 1849 | : owner_(owner), object_size_(object_size) { |
| 1850 | Reset(); |
| 1851 | } |
| 1852 | |
| 1853 | |
| 1854 | void FixedSizeFreeList::Reset() { |
| 1855 | available_ = 0; |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1856 | head_ = tail_ = NULL; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1857 | } |
| 1858 | |
| 1859 | |
| 1860 | void FixedSizeFreeList::Free(Address start) { |
| 1861 | #ifdef DEBUG |
Leon Clarke | 4515c47 | 2010-02-03 11:58:03 +0000 | [diff] [blame] | 1862 | MemoryAllocator::ZapBlock(start, object_size_); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1863 | #endif |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 1864 | // We only use the freelists with mark-sweep. |
| 1865 | ASSERT(!MarkCompactCollector::IsCompacting()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1866 | FreeListNode* node = FreeListNode::FromAddress(start); |
| 1867 | node->set_size(object_size_); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1868 | node->set_next(NULL); |
| 1869 | if (head_ == NULL) { |
| 1870 | tail_ = head_ = node->address(); |
| 1871 | } else { |
| 1872 | FreeListNode::FromAddress(tail_)->set_next(node->address()); |
| 1873 | tail_ = node->address(); |
| 1874 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1875 | available_ += object_size_; |
| 1876 | } |
| 1877 | |
| 1878 | |
| 1879 | Object* FixedSizeFreeList::Allocate() { |
| 1880 | if (head_ == NULL) { |
| 1881 | return Failure::RetryAfterGC(object_size_, owner_); |
| 1882 | } |
| 1883 | |
| 1884 | ASSERT(!FLAG_always_compact); // We only use the freelists with mark-sweep. |
| 1885 | FreeListNode* node = FreeListNode::FromAddress(head_); |
| 1886 | head_ = node->next(); |
| 1887 | available_ -= object_size_; |
| 1888 | return node; |
| 1889 | } |
| 1890 | |
| 1891 | |
| 1892 | // ----------------------------------------------------------------------------- |
| 1893 | // OldSpace implementation |
| 1894 | |
| 1895 | void OldSpace::PrepareForMarkCompact(bool will_compact) { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1896 | // Call prepare of the super class. |
| 1897 | PagedSpace::PrepareForMarkCompact(will_compact); |
| 1898 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1899 | if (will_compact) { |
| 1900 | // Reset relocation info. During a compacting collection, everything in |
| 1901 | // the space is considered 'available' and we will rediscover live data |
| 1902 | // and waste during the collection. |
| 1903 | MCResetRelocationInfo(); |
| 1904 | ASSERT(Available() == Capacity()); |
| 1905 | } else { |
| 1906 | // During a non-compacting collection, everything below the linear |
| 1907 | // allocation pointer is considered allocated (everything above is |
| 1908 | // available) and we will rediscover available and wasted bytes during |
| 1909 | // the collection. |
| 1910 | accounting_stats_.AllocateBytes(free_list_.available()); |
| 1911 | accounting_stats_.FillWastedBytes(Waste()); |
| 1912 | } |
| 1913 | |
| 1914 | // Clear the free list before a full GC---it will be rebuilt afterward. |
| 1915 | free_list_.Reset(); |
| 1916 | } |
| 1917 | |
| 1918 | |
| 1919 | void OldSpace::MCCommitRelocationInfo() { |
| 1920 | // Update fast allocation info. |
| 1921 | allocation_info_.top = mc_forwarding_info_.top; |
| 1922 | allocation_info_.limit = mc_forwarding_info_.limit; |
| 1923 | ASSERT(allocation_info_.VerifyPagedAllocation()); |
| 1924 | |
| 1925 | // The space is compacted and we haven't yet built free lists or |
| 1926 | // wasted any space. |
| 1927 | ASSERT(Waste() == 0); |
| 1928 | ASSERT(AvailableFree() == 0); |
| 1929 | |
| 1930 | // Build the free list for the space. |
| 1931 | int computed_size = 0; |
| 1932 | PageIterator it(this, PageIterator::PAGES_USED_BY_MC); |
| 1933 | while (it.has_next()) { |
| 1934 | Page* p = it.next(); |
| 1935 | // Space below the relocation pointer is allocated. |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 1936 | computed_size += |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1937 | static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1938 | if (it.has_next()) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1939 | // Free the space at the top of the page. |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 1940 | int extra_size = |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1941 | static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1942 | if (extra_size > 0) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1943 | int wasted_bytes = free_list_.Free(p->AllocationWatermark(), |
| 1944 | extra_size); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 1945 | // The bytes we have just "freed" to add to the free list were |
| 1946 | // already accounted as available. |
| 1947 | accounting_stats_.WasteBytes(wasted_bytes); |
| 1948 | } |
| 1949 | } |
| 1950 | } |
| 1951 | |
| 1952 | // Make sure the computed size - based on the used portion of the pages in |
| 1953 | // use - matches the size obtained while computing forwarding addresses. |
| 1954 | ASSERT(computed_size == Size()); |
| 1955 | } |
| 1956 | |
| 1957 | |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 1958 | bool NewSpace::ReserveSpace(int bytes) { |
| 1959 | // We can't reliably unpack a partial snapshot that needs more new space |
| 1960 | // space than the minimum NewSpace size. |
| 1961 | ASSERT(bytes <= InitialCapacity()); |
| 1962 | Address limit = allocation_info_.limit; |
| 1963 | Address top = allocation_info_.top; |
| 1964 | return limit - top >= bytes; |
| 1965 | } |
| 1966 | |
| 1967 | |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1968 | void PagedSpace::FreePages(Page* prev, Page* last) { |
| 1969 | if (last == AllocationTopPage()) { |
| 1970 | // Pages are already at the end of used pages. |
| 1971 | return; |
| 1972 | } |
| 1973 | |
| 1974 | Page* first = NULL; |
| 1975 | |
| 1976 | // Remove pages from the list. |
| 1977 | if (prev == NULL) { |
| 1978 | first = first_page_; |
| 1979 | first_page_ = last->next_page(); |
| 1980 | } else { |
| 1981 | first = prev->next_page(); |
| 1982 | MemoryAllocator::SetNextPage(prev, last->next_page()); |
| 1983 | } |
| 1984 | |
| 1985 | // Attach it after the last page. |
| 1986 | MemoryAllocator::SetNextPage(last_page_, first); |
| 1987 | last_page_ = last; |
| 1988 | MemoryAllocator::SetNextPage(last, NULL); |
| 1989 | |
| 1990 | // Clean them up. |
| 1991 | do { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 1992 | first->InvalidateWatermark(true); |
| 1993 | first->SetAllocationWatermark(first->ObjectAreaStart()); |
| 1994 | first->SetCachedAllocationWatermark(first->ObjectAreaStart()); |
| 1995 | first->SetRegionMarks(Page::kAllRegionsCleanMarks); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 1996 | first = first->next_page(); |
| 1997 | } while (first != NULL); |
| 1998 | |
| 1999 | // Order of pages in this space might no longer be consistent with |
| 2000 | // order of pages in chunks. |
| 2001 | page_list_is_chunk_ordered_ = false; |
| 2002 | } |
| 2003 | |
| 2004 | |
Kristian Monsen | 80d68ea | 2010-09-08 11:05:35 +0100 | [diff] [blame^] | 2005 | void PagedSpace::RelinkPageListInChunkOrder(bool deallocate_blocks) { |
| 2006 | const bool add_to_freelist = true; |
| 2007 | |
| 2008 | // Mark used and unused pages to properly fill unused pages |
| 2009 | // after reordering. |
| 2010 | PageIterator all_pages_iterator(this, PageIterator::ALL_PAGES); |
| 2011 | Page* last_in_use = AllocationTopPage(); |
| 2012 | bool in_use = true; |
| 2013 | |
| 2014 | while (all_pages_iterator.has_next()) { |
| 2015 | Page* p = all_pages_iterator.next(); |
| 2016 | p->SetWasInUseBeforeMC(in_use); |
| 2017 | if (p == last_in_use) { |
| 2018 | // We passed a page containing allocation top. All consequent |
| 2019 | // pages are not used. |
| 2020 | in_use = false; |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | if (page_list_is_chunk_ordered_) return; |
| 2025 | |
| 2026 | Page* new_last_in_use = Page::FromAddress(NULL); |
| 2027 | MemoryAllocator::RelinkPageListInChunkOrder(this, |
| 2028 | &first_page_, |
| 2029 | &last_page_, |
| 2030 | &new_last_in_use); |
| 2031 | ASSERT(new_last_in_use->is_valid()); |
| 2032 | |
| 2033 | if (new_last_in_use != last_in_use) { |
| 2034 | // Current allocation top points to a page which is now in the middle |
| 2035 | // of page list. We should move allocation top forward to the new last |
| 2036 | // used page so various object iterators will continue to work properly. |
| 2037 | int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) - |
| 2038 | last_in_use->AllocationTop()); |
| 2039 | |
| 2040 | last_in_use->SetAllocationWatermark(last_in_use->AllocationTop()); |
| 2041 | if (size_in_bytes > 0) { |
| 2042 | Address start = last_in_use->AllocationTop(); |
| 2043 | if (deallocate_blocks) { |
| 2044 | accounting_stats_.AllocateBytes(size_in_bytes); |
| 2045 | DeallocateBlock(start, size_in_bytes, add_to_freelist); |
| 2046 | } else { |
| 2047 | Heap::CreateFillerObjectAt(start, size_in_bytes); |
| 2048 | } |
| 2049 | } |
| 2050 | |
| 2051 | // New last in use page was in the middle of the list before |
| 2052 | // sorting so it full. |
| 2053 | SetTop(new_last_in_use->AllocationTop()); |
| 2054 | |
| 2055 | ASSERT(AllocationTopPage() == new_last_in_use); |
| 2056 | ASSERT(AllocationTopPage()->WasInUseBeforeMC()); |
| 2057 | } |
| 2058 | |
| 2059 | PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE); |
| 2060 | while (pages_in_use_iterator.has_next()) { |
| 2061 | Page* p = pages_in_use_iterator.next(); |
| 2062 | if (!p->WasInUseBeforeMC()) { |
| 2063 | // Empty page is in the middle of a sequence of used pages. |
| 2064 | // Allocate it as a whole and deallocate immediately. |
| 2065 | int size_in_bytes = static_cast<int>(PageAllocationLimit(p) - |
| 2066 | p->ObjectAreaStart()); |
| 2067 | |
| 2068 | p->SetAllocationWatermark(p->ObjectAreaStart()); |
| 2069 | Address start = p->ObjectAreaStart(); |
| 2070 | if (deallocate_blocks) { |
| 2071 | accounting_stats_.AllocateBytes(size_in_bytes); |
| 2072 | DeallocateBlock(start, size_in_bytes, add_to_freelist); |
| 2073 | } else { |
| 2074 | Heap::CreateFillerObjectAt(start, size_in_bytes); |
| 2075 | } |
| 2076 | } |
| 2077 | } |
| 2078 | |
| 2079 | page_list_is_chunk_ordered_ = true; |
| 2080 | } |
| 2081 | |
| 2082 | |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 2083 | void PagedSpace::PrepareForMarkCompact(bool will_compact) { |
| 2084 | if (will_compact) { |
Kristian Monsen | 80d68ea | 2010-09-08 11:05:35 +0100 | [diff] [blame^] | 2085 | RelinkPageListInChunkOrder(false); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 2086 | } |
| 2087 | } |
| 2088 | |
| 2089 | |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 2090 | bool PagedSpace::ReserveSpace(int bytes) { |
| 2091 | Address limit = allocation_info_.limit; |
| 2092 | Address top = allocation_info_.top; |
| 2093 | if (limit - top >= bytes) return true; |
| 2094 | |
| 2095 | // There wasn't enough space in the current page. Lets put the rest |
| 2096 | // of the page on the free list and start a fresh page. |
| 2097 | PutRestOfCurrentPageOnFreeList(TopPageOf(allocation_info_)); |
| 2098 | |
| 2099 | Page* reserved_page = TopPageOf(allocation_info_); |
| 2100 | int bytes_left_to_reserve = bytes; |
| 2101 | while (bytes_left_to_reserve > 0) { |
| 2102 | if (!reserved_page->next_page()->is_valid()) { |
| 2103 | if (Heap::OldGenerationAllocationLimitReached()) return false; |
| 2104 | Expand(reserved_page); |
| 2105 | } |
| 2106 | bytes_left_to_reserve -= Page::kPageSize; |
| 2107 | reserved_page = reserved_page->next_page(); |
| 2108 | if (!reserved_page->is_valid()) return false; |
| 2109 | } |
| 2110 | ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid()); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2111 | TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true); |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 2112 | SetAllocationInfo(&allocation_info_, |
| 2113 | TopPageOf(allocation_info_)->next_page()); |
| 2114 | return true; |
| 2115 | } |
| 2116 | |
| 2117 | |
| 2118 | // You have to call this last, since the implementation from PagedSpace |
| 2119 | // doesn't know that memory was 'promised' to large object space. |
| 2120 | bool LargeObjectSpace::ReserveSpace(int bytes) { |
| 2121 | return Heap::OldGenerationSpaceAvailable() >= bytes; |
| 2122 | } |
| 2123 | |
| 2124 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2125 | // Slow case for normal allocation. Try in order: (1) allocate in the next |
| 2126 | // page in the space, (2) allocate off the space's free list, (3) expand the |
| 2127 | // space, (4) fail. |
| 2128 | HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) { |
| 2129 | // Linear allocation in this space has failed. If there is another page |
| 2130 | // in the space, move to that page and allocate there. This allocation |
| 2131 | // should succeed (size_in_bytes should not be greater than a page's |
| 2132 | // object area size). |
| 2133 | Page* current_page = TopPageOf(allocation_info_); |
| 2134 | if (current_page->next_page()->is_valid()) { |
| 2135 | return AllocateInNextPage(current_page, size_in_bytes); |
| 2136 | } |
| 2137 | |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2138 | // There is no next page in this space. Try free list allocation unless that |
| 2139 | // is currently forbidden. |
| 2140 | if (!Heap::linear_allocation()) { |
| 2141 | int wasted_bytes; |
| 2142 | Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes); |
| 2143 | accounting_stats_.WasteBytes(wasted_bytes); |
| 2144 | if (!result->IsFailure()) { |
| 2145 | accounting_stats_.AllocateBytes(size_in_bytes); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2146 | |
| 2147 | HeapObject* obj = HeapObject::cast(result); |
| 2148 | Page* p = Page::FromAddress(obj->address()); |
| 2149 | |
| 2150 | if (obj->address() >= p->AllocationWatermark()) { |
| 2151 | // There should be no hole between the allocation watermark |
| 2152 | // and allocated object address. |
| 2153 | // Memory above the allocation watermark was not swept and |
| 2154 | // might contain garbage pointers to new space. |
| 2155 | ASSERT(obj->address() == p->AllocationWatermark()); |
| 2156 | p->SetAllocationWatermark(obj->address() + size_in_bytes); |
| 2157 | } |
| 2158 | |
| 2159 | return obj; |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2160 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2161 | } |
| 2162 | |
| 2163 | // Free list allocation failed and there is no next page. Fail if we have |
| 2164 | // hit the old generation size limit that should cause a garbage |
| 2165 | // collection. |
| 2166 | if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { |
| 2167 | return NULL; |
| 2168 | } |
| 2169 | |
| 2170 | // Try to expand the space and allocate in the new next page. |
| 2171 | ASSERT(!current_page->next_page()->is_valid()); |
| 2172 | if (Expand(current_page)) { |
| 2173 | return AllocateInNextPage(current_page, size_in_bytes); |
| 2174 | } |
| 2175 | |
| 2176 | // Finally, fail. |
| 2177 | return NULL; |
| 2178 | } |
| 2179 | |
| 2180 | |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 2181 | void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2182 | current_page->SetAllocationWatermark(allocation_info_.top); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2183 | int free_size = |
| 2184 | static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2185 | if (free_size > 0) { |
| 2186 | int wasted_bytes = free_list_.Free(allocation_info_.top, free_size); |
| 2187 | accounting_stats_.WasteBytes(wasted_bytes); |
| 2188 | } |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 2189 | } |
| 2190 | |
| 2191 | |
| 2192 | void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2193 | current_page->SetAllocationWatermark(allocation_info_.top); |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 2194 | int free_size = |
| 2195 | static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); |
| 2196 | // In the fixed space free list all the free list items have the right size. |
| 2197 | // We use up the rest of the page while preserving this invariant. |
| 2198 | while (free_size >= object_size_in_bytes_) { |
| 2199 | free_list_.Free(allocation_info_.top); |
| 2200 | allocation_info_.top += object_size_in_bytes_; |
| 2201 | free_size -= object_size_in_bytes_; |
| 2202 | accounting_stats_.WasteBytes(object_size_in_bytes_); |
| 2203 | } |
| 2204 | } |
| 2205 | |
| 2206 | |
| 2207 | // Add the block at the top of the page to the space's free list, set the |
| 2208 | // allocation info to the next page (assumed to be one), and allocate |
| 2209 | // linearly there. |
| 2210 | HeapObject* OldSpace::AllocateInNextPage(Page* current_page, |
| 2211 | int size_in_bytes) { |
| 2212 | ASSERT(current_page->next_page()->is_valid()); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2213 | Page* next_page = current_page->next_page(); |
| 2214 | next_page->ClearGCFields(); |
Leon Clarke | e46be81 | 2010-01-19 14:06:41 +0000 | [diff] [blame] | 2215 | PutRestOfCurrentPageOnFreeList(current_page); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2216 | SetAllocationInfo(&allocation_info_, next_page); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2217 | return AllocateLinearly(&allocation_info_, size_in_bytes); |
| 2218 | } |
| 2219 | |
| 2220 | |
Kristian Monsen | 80d68ea | 2010-09-08 11:05:35 +0100 | [diff] [blame^] | 2221 | void OldSpace::DeallocateBlock(Address start, |
| 2222 | int size_in_bytes, |
| 2223 | bool add_to_freelist) { |
| 2224 | Free(start, size_in_bytes, add_to_freelist); |
| 2225 | } |
| 2226 | |
| 2227 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2228 | #ifdef DEBUG |
| 2229 | struct CommentStatistic { |
| 2230 | const char* comment; |
| 2231 | int size; |
| 2232 | int count; |
| 2233 | void Clear() { |
| 2234 | comment = NULL; |
| 2235 | size = 0; |
| 2236 | count = 0; |
| 2237 | } |
| 2238 | }; |
| 2239 | |
| 2240 | |
| 2241 | // must be small, since an iteration is used for lookup |
| 2242 | const int kMaxComments = 64; |
| 2243 | static CommentStatistic comments_statistics[kMaxComments+1]; |
| 2244 | |
| 2245 | |
| 2246 | void PagedSpace::ReportCodeStatistics() { |
| 2247 | ReportCodeKindStatistics(); |
| 2248 | PrintF("Code comment statistics (\" [ comment-txt : size/ " |
| 2249 | "count (average)\"):\n"); |
| 2250 | for (int i = 0; i <= kMaxComments; i++) { |
| 2251 | const CommentStatistic& cs = comments_statistics[i]; |
| 2252 | if (cs.size > 0) { |
| 2253 | PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, |
| 2254 | cs.size/cs.count); |
| 2255 | } |
| 2256 | } |
| 2257 | PrintF("\n"); |
| 2258 | } |
| 2259 | |
| 2260 | |
| 2261 | void PagedSpace::ResetCodeStatistics() { |
| 2262 | ClearCodeKindStatistics(); |
| 2263 | for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear(); |
| 2264 | comments_statistics[kMaxComments].comment = "Unknown"; |
| 2265 | comments_statistics[kMaxComments].size = 0; |
| 2266 | comments_statistics[kMaxComments].count = 0; |
| 2267 | } |
| 2268 | |
| 2269 | |
| 2270 | // Adds comment to 'comment_statistics' table. Performance OK sa long as |
| 2271 | // 'kMaxComments' is small |
| 2272 | static void EnterComment(const char* comment, int delta) { |
| 2273 | // Do not count empty comments |
| 2274 | if (delta <= 0) return; |
| 2275 | CommentStatistic* cs = &comments_statistics[kMaxComments]; |
| 2276 | // Search for a free or matching entry in 'comments_statistics': 'cs' |
| 2277 | // points to result. |
| 2278 | for (int i = 0; i < kMaxComments; i++) { |
| 2279 | if (comments_statistics[i].comment == NULL) { |
| 2280 | cs = &comments_statistics[i]; |
| 2281 | cs->comment = comment; |
| 2282 | break; |
| 2283 | } else if (strcmp(comments_statistics[i].comment, comment) == 0) { |
| 2284 | cs = &comments_statistics[i]; |
| 2285 | break; |
| 2286 | } |
| 2287 | } |
| 2288 | // Update entry for 'comment' |
| 2289 | cs->size += delta; |
| 2290 | cs->count += 1; |
| 2291 | } |
| 2292 | |
| 2293 | |
| 2294 | // Call for each nested comment start (start marked with '[ xxx', end marked |
| 2295 | // with ']'. RelocIterator 'it' must point to a comment reloc info. |
| 2296 | static void CollectCommentStatistics(RelocIterator* it) { |
| 2297 | ASSERT(!it->done()); |
| 2298 | ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); |
| 2299 | const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); |
| 2300 | if (tmp[0] != '[') { |
| 2301 | // Not a nested comment; skip |
| 2302 | return; |
| 2303 | } |
| 2304 | |
| 2305 | // Search for end of nested comment or a new nested comment |
| 2306 | const char* const comment_txt = |
| 2307 | reinterpret_cast<const char*>(it->rinfo()->data()); |
| 2308 | const byte* prev_pc = it->rinfo()->pc(); |
| 2309 | int flat_delta = 0; |
| 2310 | it->next(); |
| 2311 | while (true) { |
| 2312 | // All nested comments must be terminated properly, and therefore exit |
| 2313 | // from loop. |
| 2314 | ASSERT(!it->done()); |
| 2315 | if (it->rinfo()->rmode() == RelocInfo::COMMENT) { |
| 2316 | const char* const txt = |
| 2317 | reinterpret_cast<const char*>(it->rinfo()->data()); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2318 | flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2319 | if (txt[0] == ']') break; // End of nested comment |
| 2320 | // A new comment |
| 2321 | CollectCommentStatistics(it); |
| 2322 | // Skip code that was covered with previous comment |
| 2323 | prev_pc = it->rinfo()->pc(); |
| 2324 | } |
| 2325 | it->next(); |
| 2326 | } |
| 2327 | EnterComment(comment_txt, flat_delta); |
| 2328 | } |
| 2329 | |
| 2330 | |
| 2331 | // Collects code size statistics: |
| 2332 | // - by code kind |
| 2333 | // - by code comment |
| 2334 | void PagedSpace::CollectCodeStatistics() { |
| 2335 | HeapObjectIterator obj_it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2336 | for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2337 | if (obj->IsCode()) { |
| 2338 | Code* code = Code::cast(obj); |
| 2339 | code_kind_statistics[code->kind()] += code->Size(); |
| 2340 | RelocIterator it(code); |
| 2341 | int delta = 0; |
| 2342 | const byte* prev_pc = code->instruction_start(); |
| 2343 | while (!it.done()) { |
| 2344 | if (it.rinfo()->rmode() == RelocInfo::COMMENT) { |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2345 | delta += static_cast<int>(it.rinfo()->pc() - prev_pc); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2346 | CollectCommentStatistics(&it); |
| 2347 | prev_pc = it.rinfo()->pc(); |
| 2348 | } |
| 2349 | it.next(); |
| 2350 | } |
| 2351 | |
| 2352 | ASSERT(code->instruction_start() <= prev_pc && |
Leon Clarke | ac95265 | 2010-07-15 11:15:24 +0100 | [diff] [blame] | 2353 | prev_pc <= code->instruction_end()); |
| 2354 | delta += static_cast<int>(code->instruction_end() - prev_pc); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2355 | EnterComment("NoComment", delta); |
| 2356 | } |
| 2357 | } |
| 2358 | } |
| 2359 | |
| 2360 | |
| 2361 | void OldSpace::ReportStatistics() { |
| 2362 | int pct = Available() * 100 / Capacity(); |
| 2363 | PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", |
| 2364 | Capacity(), Waste(), Available(), pct); |
| 2365 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2366 | ClearHistograms(); |
| 2367 | HeapObjectIterator obj_it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2368 | for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) |
| 2369 | CollectHistogramInfo(obj); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2370 | ReportHistogram(true); |
| 2371 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2372 | #endif |
| 2373 | |
| 2374 | // ----------------------------------------------------------------------------- |
| 2375 | // FixedSpace implementation |
| 2376 | |
| 2377 | void FixedSpace::PrepareForMarkCompact(bool will_compact) { |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 2378 | // Call prepare of the super class. |
| 2379 | PagedSpace::PrepareForMarkCompact(will_compact); |
| 2380 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2381 | if (will_compact) { |
| 2382 | // Reset relocation info. |
| 2383 | MCResetRelocationInfo(); |
| 2384 | |
| 2385 | // During a compacting collection, everything in the space is considered |
| 2386 | // 'available' (set by the call to MCResetRelocationInfo) and we will |
| 2387 | // rediscover live and wasted bytes during the collection. |
| 2388 | ASSERT(Available() == Capacity()); |
| 2389 | } else { |
| 2390 | // During a non-compacting collection, everything below the linear |
| 2391 | // allocation pointer except wasted top-of-page blocks is considered |
| 2392 | // allocated and we will rediscover available bytes during the |
| 2393 | // collection. |
| 2394 | accounting_stats_.AllocateBytes(free_list_.available()); |
| 2395 | } |
| 2396 | |
| 2397 | // Clear the free list before a full GC---it will be rebuilt afterward. |
| 2398 | free_list_.Reset(); |
| 2399 | } |
| 2400 | |
| 2401 | |
| 2402 | void FixedSpace::MCCommitRelocationInfo() { |
| 2403 | // Update fast allocation info. |
| 2404 | allocation_info_.top = mc_forwarding_info_.top; |
| 2405 | allocation_info_.limit = mc_forwarding_info_.limit; |
| 2406 | ASSERT(allocation_info_.VerifyPagedAllocation()); |
| 2407 | |
| 2408 | // The space is compacted and we haven't yet wasted any space. |
| 2409 | ASSERT(Waste() == 0); |
| 2410 | |
| 2411 | // Update allocation_top of each page in use and compute waste. |
| 2412 | int computed_size = 0; |
| 2413 | PageIterator it(this, PageIterator::PAGES_USED_BY_MC); |
| 2414 | while (it.has_next()) { |
| 2415 | Page* page = it.next(); |
| 2416 | Address page_top = page->AllocationTop(); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2417 | computed_size += static_cast<int>(page_top - page->ObjectAreaStart()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2418 | if (it.has_next()) { |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2419 | accounting_stats_.WasteBytes( |
| 2420 | static_cast<int>(page->ObjectAreaEnd() - page_top)); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2421 | page->SetAllocationWatermark(page_top); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2422 | } |
| 2423 | } |
| 2424 | |
| 2425 | // Make sure the computed size - based on the used portion of the |
| 2426 | // pages in use - matches the size we adjust during allocation. |
| 2427 | ASSERT(computed_size == Size()); |
| 2428 | } |
| 2429 | |
| 2430 | |
| 2431 | // Slow case for normal allocation. Try in order: (1) allocate in the next |
| 2432 | // page in the space, (2) allocate off the space's free list, (3) expand the |
| 2433 | // space, (4) fail. |
| 2434 | HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) { |
| 2435 | ASSERT_EQ(object_size_in_bytes_, size_in_bytes); |
| 2436 | // Linear allocation in this space has failed. If there is another page |
| 2437 | // in the space, move to that page and allocate there. This allocation |
| 2438 | // should succeed. |
| 2439 | Page* current_page = TopPageOf(allocation_info_); |
| 2440 | if (current_page->next_page()->is_valid()) { |
| 2441 | return AllocateInNextPage(current_page, size_in_bytes); |
| 2442 | } |
| 2443 | |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2444 | // There is no next page in this space. Try free list allocation unless |
| 2445 | // that is currently forbidden. The fixed space free list implicitly assumes |
| 2446 | // that all free blocks are of the fixed size. |
| 2447 | if (!Heap::linear_allocation()) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2448 | Object* result = free_list_.Allocate(); |
| 2449 | if (!result->IsFailure()) { |
| 2450 | accounting_stats_.AllocateBytes(size_in_bytes); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2451 | HeapObject* obj = HeapObject::cast(result); |
| 2452 | Page* p = Page::FromAddress(obj->address()); |
| 2453 | |
| 2454 | if (obj->address() >= p->AllocationWatermark()) { |
| 2455 | // There should be no hole between the allocation watermark |
| 2456 | // and allocated object address. |
| 2457 | // Memory above the allocation watermark was not swept and |
| 2458 | // might contain garbage pointers to new space. |
| 2459 | ASSERT(obj->address() == p->AllocationWatermark()); |
| 2460 | p->SetAllocationWatermark(obj->address() + size_in_bytes); |
| 2461 | } |
| 2462 | |
| 2463 | return obj; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2464 | } |
| 2465 | } |
| 2466 | |
| 2467 | // Free list allocation failed and there is no next page. Fail if we have |
| 2468 | // hit the old generation size limit that should cause a garbage |
| 2469 | // collection. |
| 2470 | if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { |
| 2471 | return NULL; |
| 2472 | } |
| 2473 | |
| 2474 | // Try to expand the space and allocate in the new next page. |
| 2475 | ASSERT(!current_page->next_page()->is_valid()); |
| 2476 | if (Expand(current_page)) { |
| 2477 | return AllocateInNextPage(current_page, size_in_bytes); |
| 2478 | } |
| 2479 | |
| 2480 | // Finally, fail. |
| 2481 | return NULL; |
| 2482 | } |
| 2483 | |
| 2484 | |
| 2485 | // Move to the next page (there is assumed to be one) and allocate there. |
| 2486 | // The top of page block is always wasted, because it is too small to hold a |
| 2487 | // map. |
| 2488 | HeapObject* FixedSpace::AllocateInNextPage(Page* current_page, |
| 2489 | int size_in_bytes) { |
| 2490 | ASSERT(current_page->next_page()->is_valid()); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 2491 | ASSERT(allocation_info_.top == PageAllocationLimit(current_page)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2492 | ASSERT_EQ(object_size_in_bytes_, size_in_bytes); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2493 | Page* next_page = current_page->next_page(); |
| 2494 | next_page->ClearGCFields(); |
| 2495 | current_page->SetAllocationWatermark(allocation_info_.top); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2496 | accounting_stats_.WasteBytes(page_extra_); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2497 | SetAllocationInfo(&allocation_info_, next_page); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2498 | return AllocateLinearly(&allocation_info_, size_in_bytes); |
| 2499 | } |
| 2500 | |
| 2501 | |
Kristian Monsen | 80d68ea | 2010-09-08 11:05:35 +0100 | [diff] [blame^] | 2502 | void FixedSpace::DeallocateBlock(Address start, |
| 2503 | int size_in_bytes, |
| 2504 | bool add_to_freelist) { |
| 2505 | // Free-list elements in fixed space are assumed to have a fixed size. |
| 2506 | // We break the free block into chunks and add them to the free list |
| 2507 | // individually. |
| 2508 | int size = object_size_in_bytes(); |
| 2509 | ASSERT(size_in_bytes % size == 0); |
| 2510 | Address end = start + size_in_bytes; |
| 2511 | for (Address a = start; a < end; a += size) { |
| 2512 | Free(a, add_to_freelist); |
| 2513 | } |
| 2514 | } |
| 2515 | |
| 2516 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2517 | #ifdef DEBUG |
| 2518 | void FixedSpace::ReportStatistics() { |
| 2519 | int pct = Available() * 100 / Capacity(); |
| 2520 | PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", |
| 2521 | Capacity(), Waste(), Available(), pct); |
| 2522 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2523 | ClearHistograms(); |
| 2524 | HeapObjectIterator obj_it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2525 | for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) |
| 2526 | CollectHistogramInfo(obj); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2527 | ReportHistogram(false); |
| 2528 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2529 | #endif |
| 2530 | |
| 2531 | |
| 2532 | // ----------------------------------------------------------------------------- |
| 2533 | // MapSpace implementation |
| 2534 | |
| 2535 | void MapSpace::PrepareForMarkCompact(bool will_compact) { |
| 2536 | // Call prepare of the super class. |
| 2537 | FixedSpace::PrepareForMarkCompact(will_compact); |
| 2538 | |
| 2539 | if (will_compact) { |
| 2540 | // Initialize map index entry. |
| 2541 | int page_count = 0; |
| 2542 | PageIterator it(this, PageIterator::ALL_PAGES); |
| 2543 | while (it.has_next()) { |
| 2544 | ASSERT_MAP_PAGE_INDEX(page_count); |
| 2545 | |
| 2546 | Page* p = it.next(); |
| 2547 | ASSERT(p->mc_page_index == page_count); |
| 2548 | |
| 2549 | page_addresses_[page_count++] = p->address(); |
| 2550 | } |
| 2551 | } |
| 2552 | } |
| 2553 | |
| 2554 | |
| 2555 | #ifdef DEBUG |
| 2556 | void MapSpace::VerifyObject(HeapObject* object) { |
| 2557 | // The object should be a map or a free-list node. |
| 2558 | ASSERT(object->IsMap() || object->IsByteArray()); |
| 2559 | } |
| 2560 | #endif |
| 2561 | |
| 2562 | |
| 2563 | // ----------------------------------------------------------------------------- |
| 2564 | // GlobalPropertyCellSpace implementation |
| 2565 | |
| 2566 | #ifdef DEBUG |
| 2567 | void CellSpace::VerifyObject(HeapObject* object) { |
| 2568 | // The object should be a global object property cell or a free-list node. |
| 2569 | ASSERT(object->IsJSGlobalPropertyCell() || |
| 2570 | object->map() == Heap::two_pointer_filler_map()); |
| 2571 | } |
| 2572 | #endif |
| 2573 | |
| 2574 | |
| 2575 | // ----------------------------------------------------------------------------- |
| 2576 | // LargeObjectIterator |
| 2577 | |
| 2578 | LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { |
| 2579 | current_ = space->first_chunk_; |
| 2580 | size_func_ = NULL; |
| 2581 | } |
| 2582 | |
| 2583 | |
| 2584 | LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, |
| 2585 | HeapObjectCallback size_func) { |
| 2586 | current_ = space->first_chunk_; |
| 2587 | size_func_ = size_func; |
| 2588 | } |
| 2589 | |
| 2590 | |
| 2591 | HeapObject* LargeObjectIterator::next() { |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2592 | if (current_ == NULL) return NULL; |
| 2593 | |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2594 | HeapObject* object = current_->GetObject(); |
| 2595 | current_ = current_->next(); |
| 2596 | return object; |
| 2597 | } |
| 2598 | |
| 2599 | |
| 2600 | // ----------------------------------------------------------------------------- |
| 2601 | // LargeObjectChunk |
| 2602 | |
| 2603 | LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes, |
| 2604 | size_t* chunk_size, |
| 2605 | Executability executable) { |
| 2606 | size_t requested = ChunkSizeFor(size_in_bytes); |
| 2607 | void* mem = MemoryAllocator::AllocateRawMemory(requested, |
| 2608 | chunk_size, |
| 2609 | executable); |
| 2610 | if (mem == NULL) return NULL; |
| 2611 | LOG(NewEvent("LargeObjectChunk", mem, *chunk_size)); |
| 2612 | if (*chunk_size < requested) { |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 2613 | MemoryAllocator::FreeRawMemory(mem, *chunk_size, executable); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2614 | LOG(DeleteEvent("LargeObjectChunk", mem)); |
| 2615 | return NULL; |
| 2616 | } |
| 2617 | return reinterpret_cast<LargeObjectChunk*>(mem); |
| 2618 | } |
| 2619 | |
| 2620 | |
| 2621 | int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) { |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2622 | int os_alignment = static_cast<int>(OS::AllocateAlignment()); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2623 | if (os_alignment < Page::kPageSize) |
| 2624 | size_in_bytes += (Page::kPageSize - os_alignment); |
| 2625 | return size_in_bytes + Page::kObjectStartOffset; |
| 2626 | } |
| 2627 | |
| 2628 | // ----------------------------------------------------------------------------- |
| 2629 | // LargeObjectSpace |
| 2630 | |
| 2631 | LargeObjectSpace::LargeObjectSpace(AllocationSpace id) |
| 2632 | : Space(id, NOT_EXECUTABLE), // Managed on a per-allocation basis |
| 2633 | first_chunk_(NULL), |
| 2634 | size_(0), |
| 2635 | page_count_(0) {} |
| 2636 | |
| 2637 | |
| 2638 | bool LargeObjectSpace::Setup() { |
| 2639 | first_chunk_ = NULL; |
| 2640 | size_ = 0; |
| 2641 | page_count_ = 0; |
| 2642 | return true; |
| 2643 | } |
| 2644 | |
| 2645 | |
| 2646 | void LargeObjectSpace::TearDown() { |
| 2647 | while (first_chunk_ != NULL) { |
| 2648 | LargeObjectChunk* chunk = first_chunk_; |
| 2649 | first_chunk_ = first_chunk_->next(); |
| 2650 | LOG(DeleteEvent("LargeObjectChunk", chunk->address())); |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 2651 | Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); |
| 2652 | Executability executable = |
| 2653 | page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE; |
| 2654 | MemoryAllocator::FreeRawMemory(chunk->address(), |
| 2655 | chunk->size(), |
| 2656 | executable); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2657 | } |
| 2658 | |
| 2659 | size_ = 0; |
| 2660 | page_count_ = 0; |
| 2661 | } |
| 2662 | |
| 2663 | |
| 2664 | #ifdef ENABLE_HEAP_PROTECTION |
| 2665 | |
| 2666 | void LargeObjectSpace::Protect() { |
| 2667 | LargeObjectChunk* chunk = first_chunk_; |
| 2668 | while (chunk != NULL) { |
| 2669 | MemoryAllocator::Protect(chunk->address(), chunk->size()); |
| 2670 | chunk = chunk->next(); |
| 2671 | } |
| 2672 | } |
| 2673 | |
| 2674 | |
| 2675 | void LargeObjectSpace::Unprotect() { |
| 2676 | LargeObjectChunk* chunk = first_chunk_; |
| 2677 | while (chunk != NULL) { |
| 2678 | bool is_code = chunk->GetObject()->IsCode(); |
| 2679 | MemoryAllocator::Unprotect(chunk->address(), chunk->size(), |
| 2680 | is_code ? EXECUTABLE : NOT_EXECUTABLE); |
| 2681 | chunk = chunk->next(); |
| 2682 | } |
| 2683 | } |
| 2684 | |
| 2685 | #endif |
| 2686 | |
| 2687 | |
| 2688 | Object* LargeObjectSpace::AllocateRawInternal(int requested_size, |
| 2689 | int object_size, |
| 2690 | Executability executable) { |
| 2691 | ASSERT(0 < object_size && object_size <= requested_size); |
| 2692 | |
| 2693 | // Check if we want to force a GC before growing the old space further. |
| 2694 | // If so, fail the allocation. |
| 2695 | if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { |
| 2696 | return Failure::RetryAfterGC(requested_size, identity()); |
| 2697 | } |
| 2698 | |
| 2699 | size_t chunk_size; |
| 2700 | LargeObjectChunk* chunk = |
| 2701 | LargeObjectChunk::New(requested_size, &chunk_size, executable); |
| 2702 | if (chunk == NULL) { |
| 2703 | return Failure::RetryAfterGC(requested_size, identity()); |
| 2704 | } |
| 2705 | |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2706 | size_ += static_cast<int>(chunk_size); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2707 | page_count_++; |
| 2708 | chunk->set_next(first_chunk_); |
| 2709 | chunk->set_size(chunk_size); |
| 2710 | first_chunk_ = chunk; |
| 2711 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2712 | // Initialize page header. |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2713 | Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); |
| 2714 | Address object_address = page->ObjectAreaStart(); |
| 2715 | // Clear the low order bit of the second word in the page to flag it as a |
| 2716 | // large object page. If the chunk_size happened to be written there, its |
| 2717 | // low order bit should already be clear. |
| 2718 | ASSERT((chunk_size & 0x1) == 0); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 2719 | page->SetIsLargeObjectPage(true); |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 2720 | page->SetIsPageExecutable(executable); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2721 | page->SetRegionMarks(Page::kAllRegionsCleanMarks); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2722 | return HeapObject::FromAddress(object_address); |
| 2723 | } |
| 2724 | |
| 2725 | |
| 2726 | Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) { |
| 2727 | ASSERT(0 < size_in_bytes); |
| 2728 | return AllocateRawInternal(size_in_bytes, |
| 2729 | size_in_bytes, |
| 2730 | EXECUTABLE); |
| 2731 | } |
| 2732 | |
| 2733 | |
| 2734 | Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) { |
| 2735 | ASSERT(0 < size_in_bytes); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2736 | return AllocateRawInternal(size_in_bytes, |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2737 | size_in_bytes, |
| 2738 | NOT_EXECUTABLE); |
| 2739 | } |
| 2740 | |
| 2741 | |
| 2742 | Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) { |
| 2743 | ASSERT(0 < size_in_bytes); |
| 2744 | return AllocateRawInternal(size_in_bytes, |
| 2745 | size_in_bytes, |
| 2746 | NOT_EXECUTABLE); |
| 2747 | } |
| 2748 | |
| 2749 | |
| 2750 | // GC support |
| 2751 | Object* LargeObjectSpace::FindObject(Address a) { |
| 2752 | for (LargeObjectChunk* chunk = first_chunk_; |
| 2753 | chunk != NULL; |
| 2754 | chunk = chunk->next()) { |
| 2755 | Address chunk_address = chunk->address(); |
| 2756 | if (chunk_address <= a && a < chunk_address + chunk->size()) { |
| 2757 | return chunk->GetObject(); |
| 2758 | } |
| 2759 | } |
| 2760 | return Failure::Exception(); |
| 2761 | } |
| 2762 | |
Kristian Monsen | 80d68ea | 2010-09-08 11:05:35 +0100 | [diff] [blame^] | 2763 | |
| 2764 | LargeObjectChunk* LargeObjectSpace::FindChunkContainingPc(Address pc) { |
| 2765 | // TODO(853): Change this implementation to only find executable |
| 2766 | // chunks and use some kind of hash-based approach to speed it up. |
| 2767 | for (LargeObjectChunk* chunk = first_chunk_; |
| 2768 | chunk != NULL; |
| 2769 | chunk = chunk->next()) { |
| 2770 | Address chunk_address = chunk->address(); |
| 2771 | if (chunk_address <= pc && pc < chunk_address + chunk->size()) { |
| 2772 | return chunk; |
| 2773 | } |
| 2774 | } |
| 2775 | return NULL; |
| 2776 | } |
| 2777 | |
| 2778 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2779 | void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2780 | LargeObjectIterator it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2781 | for (HeapObject* object = it.next(); object != NULL; object = it.next()) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2782 | // We only have code, sequential strings, or fixed arrays in large |
| 2783 | // object space, and only fixed arrays can possibly contain pointers to |
| 2784 | // the young generation. |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2785 | if (object->IsFixedArray()) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2786 | Page* page = Page::FromAddress(object->address()); |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2787 | uint32_t marks = page->GetRegionMarks(); |
| 2788 | uint32_t newmarks = Page::kAllRegionsCleanMarks; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2789 | |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2790 | if (marks != Page::kAllRegionsCleanMarks) { |
| 2791 | // For a large page a single dirty mark corresponds to several |
| 2792 | // regions (modulo 32). So we treat a large page as a sequence of |
| 2793 | // normal pages of size Page::kPageSize having same dirty marks |
| 2794 | // and subsequently iterate dirty regions on each of these pages. |
| 2795 | Address start = object->address(); |
| 2796 | Address end = page->ObjectAreaEnd(); |
| 2797 | Address object_end = start + object->Size(); |
| 2798 | |
| 2799 | // Iterate regions of the first normal page covering object. |
| 2800 | uint32_t first_region_number = page->GetRegionNumberForAddress(start); |
| 2801 | newmarks |= |
| 2802 | Heap::IterateDirtyRegions(marks >> first_region_number, |
| 2803 | start, |
| 2804 | end, |
| 2805 | &Heap::IteratePointersInDirtyRegion, |
| 2806 | copy_object) << first_region_number; |
| 2807 | |
| 2808 | start = end; |
| 2809 | end = start + Page::kPageSize; |
| 2810 | while (end <= object_end) { |
| 2811 | // Iterate next 32 regions. |
| 2812 | newmarks |= |
| 2813 | Heap::IterateDirtyRegions(marks, |
| 2814 | start, |
| 2815 | end, |
| 2816 | &Heap::IteratePointersInDirtyRegion, |
| 2817 | copy_object); |
| 2818 | start = end; |
| 2819 | end = start + Page::kPageSize; |
| 2820 | } |
| 2821 | |
| 2822 | if (start != object_end) { |
| 2823 | // Iterate the last piece of an object which is less than |
| 2824 | // Page::kPageSize. |
| 2825 | newmarks |= |
| 2826 | Heap::IterateDirtyRegions(marks, |
| 2827 | start, |
| 2828 | object_end, |
| 2829 | &Heap::IteratePointersInDirtyRegion, |
| 2830 | copy_object); |
| 2831 | } |
| 2832 | |
| 2833 | page->SetRegionMarks(newmarks); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2834 | } |
| 2835 | } |
| 2836 | } |
| 2837 | } |
| 2838 | |
| 2839 | |
| 2840 | void LargeObjectSpace::FreeUnmarkedObjects() { |
| 2841 | LargeObjectChunk* previous = NULL; |
| 2842 | LargeObjectChunk* current = first_chunk_; |
| 2843 | while (current != NULL) { |
| 2844 | HeapObject* object = current->GetObject(); |
| 2845 | if (object->IsMarked()) { |
| 2846 | object->ClearMark(); |
| 2847 | MarkCompactCollector::tracer()->decrement_marked_count(); |
| 2848 | previous = current; |
| 2849 | current = current->next(); |
| 2850 | } else { |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 2851 | Page* page = Page::FromAddress(RoundUp(current->address(), |
| 2852 | Page::kPageSize)); |
| 2853 | Executability executable = |
| 2854 | page->IsPageExecutable() ? EXECUTABLE : NOT_EXECUTABLE; |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2855 | Address chunk_address = current->address(); |
| 2856 | size_t chunk_size = current->size(); |
| 2857 | |
| 2858 | // Cut the chunk out from the chunk list. |
| 2859 | current = current->next(); |
| 2860 | if (previous == NULL) { |
| 2861 | first_chunk_ = current; |
| 2862 | } else { |
| 2863 | previous->set_next(current); |
| 2864 | } |
| 2865 | |
| 2866 | // Free the chunk. |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2867 | MarkCompactCollector::ReportDeleteIfNeeded(object); |
Steve Block | d0582a6 | 2009-12-15 09:54:21 +0000 | [diff] [blame] | 2868 | size_ -= static_cast<int>(chunk_size); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2869 | page_count_--; |
Steve Block | 791712a | 2010-08-27 10:21:07 +0100 | [diff] [blame] | 2870 | MemoryAllocator::FreeRawMemory(chunk_address, chunk_size, executable); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2871 | LOG(DeleteEvent("LargeObjectChunk", chunk_address)); |
| 2872 | } |
| 2873 | } |
| 2874 | } |
| 2875 | |
| 2876 | |
| 2877 | bool LargeObjectSpace::Contains(HeapObject* object) { |
| 2878 | Address address = object->address(); |
Steve Block | 6ded16b | 2010-05-10 14:33:55 +0100 | [diff] [blame] | 2879 | if (Heap::new_space()->Contains(address)) { |
| 2880 | return false; |
| 2881 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2882 | Page* page = Page::FromAddress(address); |
| 2883 | |
| 2884 | SLOW_ASSERT(!page->IsLargeObjectPage() |
| 2885 | || !FindObject(address)->IsFailure()); |
| 2886 | |
| 2887 | return page->IsLargeObjectPage(); |
| 2888 | } |
| 2889 | |
| 2890 | |
| 2891 | #ifdef DEBUG |
| 2892 | // We do not assume that the large object iterator works, because it depends |
| 2893 | // on the invariants we are checking during verification. |
| 2894 | void LargeObjectSpace::Verify() { |
| 2895 | for (LargeObjectChunk* chunk = first_chunk_; |
| 2896 | chunk != NULL; |
| 2897 | chunk = chunk->next()) { |
| 2898 | // Each chunk contains an object that starts at the large object page's |
| 2899 | // object area start. |
| 2900 | HeapObject* object = chunk->GetObject(); |
| 2901 | Page* page = Page::FromAddress(object->address()); |
| 2902 | ASSERT(object->address() == page->ObjectAreaStart()); |
| 2903 | |
| 2904 | // The first word should be a map, and we expect all map pointers to be |
| 2905 | // in map space. |
| 2906 | Map* map = object->map(); |
| 2907 | ASSERT(map->IsMap()); |
| 2908 | ASSERT(Heap::map_space()->Contains(map)); |
| 2909 | |
| 2910 | // We have only code, sequential strings, external strings |
| 2911 | // (sequential strings that have been morphed into external |
| 2912 | // strings), fixed arrays, and byte arrays in large object space. |
| 2913 | ASSERT(object->IsCode() || object->IsSeqString() || |
| 2914 | object->IsExternalString() || object->IsFixedArray() || |
| 2915 | object->IsByteArray()); |
| 2916 | |
| 2917 | // The object itself should look OK. |
| 2918 | object->Verify(); |
| 2919 | |
| 2920 | // Byte arrays and strings don't have interior pointers. |
| 2921 | if (object->IsCode()) { |
| 2922 | VerifyPointersVisitor code_visitor; |
| 2923 | object->IterateBody(map->instance_type(), |
| 2924 | object->Size(), |
| 2925 | &code_visitor); |
| 2926 | } else if (object->IsFixedArray()) { |
| 2927 | // We loop over fixed arrays ourselves, rather then using the visitor, |
| 2928 | // because the visitor doesn't support the start/offset iteration |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2929 | // needed for IsRegionDirty. |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2930 | FixedArray* array = FixedArray::cast(object); |
| 2931 | for (int j = 0; j < array->length(); j++) { |
| 2932 | Object* element = array->get(j); |
| 2933 | if (element->IsHeapObject()) { |
| 2934 | HeapObject* element_object = HeapObject::cast(element); |
| 2935 | ASSERT(Heap::Contains(element_object)); |
| 2936 | ASSERT(element_object->map()->IsMap()); |
| 2937 | if (Heap::InNewSpace(element_object)) { |
Ben Murdoch | 7f4d5bd | 2010-06-15 11:15:29 +0100 | [diff] [blame] | 2938 | Address array_addr = object->address(); |
| 2939 | Address element_addr = array_addr + FixedArray::kHeaderSize + |
| 2940 | j * kPointerSize; |
| 2941 | |
| 2942 | ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr)); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2943 | } |
| 2944 | } |
| 2945 | } |
| 2946 | } |
| 2947 | } |
| 2948 | } |
| 2949 | |
| 2950 | |
| 2951 | void LargeObjectSpace::Print() { |
| 2952 | LargeObjectIterator it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2953 | for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { |
| 2954 | obj->Print(); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2955 | } |
| 2956 | } |
| 2957 | |
| 2958 | |
| 2959 | void LargeObjectSpace::ReportStatistics() { |
| 2960 | PrintF(" size: %d\n", size_); |
| 2961 | int num_objects = 0; |
| 2962 | ClearHistograms(); |
| 2963 | LargeObjectIterator it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2964 | for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2965 | num_objects++; |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2966 | CollectHistogramInfo(obj); |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2967 | } |
| 2968 | |
| 2969 | PrintF(" number of objects %d\n", num_objects); |
| 2970 | if (num_objects > 0) ReportHistogram(false); |
| 2971 | } |
| 2972 | |
| 2973 | |
| 2974 | void LargeObjectSpace::CollectCodeStatistics() { |
| 2975 | LargeObjectIterator obj_it(this); |
Leon Clarke | d91b9f7 | 2010-01-27 17:25:45 +0000 | [diff] [blame] | 2976 | for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2977 | if (obj->IsCode()) { |
| 2978 | Code* code = Code::cast(obj); |
| 2979 | code_kind_statistics[code->kind()] += code->Size(); |
| 2980 | } |
| 2981 | } |
| 2982 | } |
Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame] | 2983 | #endif // DEBUG |
| 2984 | |
| 2985 | } } // namespace v8::internal |