blob: a6a516a76d5ceb5896c47eb8bb4e76e282fd5659 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "execution.h"
33#include "global-handles.h"
34#include "ic-inl.h"
35#include "natives.h"
36#include "platform.h"
37#include "runtime.h"
38#include "serialize.h"
39#include "stub-cache.h"
40#include "v8threads.h"
Steve Block3ce2e202009-11-05 08:53:23 +000041#include "top.h"
Steve Blockd0582a62009-12-15 09:54:21 +000042#include "bootstrapper.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000043
44namespace v8 {
45namespace internal {
46
Steve Blocka7e24c12009-10-30 11:49:00 +000047
48// -----------------------------------------------------------------------------
49// Coding of external references.
50
51// The encoding of an external reference. The type is in the high word.
52// The id is in the low word.
53static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
54 return static_cast<uint32_t>(type) << 16 | id;
55}
56
57
58static int* GetInternalPointer(StatsCounter* counter) {
59 // All counters refer to dummy_counter, if deserializing happens without
60 // setting up counters.
61 static int dummy_counter = 0;
62 return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
63}
64
65
66// ExternalReferenceTable is a helper class that defines the relationship
67// between external references and their encodings. It is used to build
68// hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder.
69class ExternalReferenceTable {
70 public:
71 static ExternalReferenceTable* instance() {
72 if (!instance_) instance_ = new ExternalReferenceTable();
73 return instance_;
74 }
75
76 int size() const { return refs_.length(); }
77
78 Address address(int i) { return refs_[i].address; }
79
80 uint32_t code(int i) { return refs_[i].code; }
81
82 const char* name(int i) { return refs_[i].name; }
83
84 int max_id(int code) { return max_id_[code]; }
85
86 private:
87 static ExternalReferenceTable* instance_;
88
89 ExternalReferenceTable() : refs_(64) { PopulateTable(); }
90 ~ExternalReferenceTable() { }
91
92 struct ExternalReferenceEntry {
93 Address address;
94 uint32_t code;
95 const char* name;
96 };
97
98 void PopulateTable();
99
100 // For a few types of references, we can get their address from their id.
101 void AddFromId(TypeCode type, uint16_t id, const char* name);
102
103 // For other types of references, the caller will figure out the address.
104 void Add(Address address, TypeCode type, uint16_t id, const char* name);
105
106 List<ExternalReferenceEntry> refs_;
107 int max_id_[kTypeCodeCount];
108};
109
110
111ExternalReferenceTable* ExternalReferenceTable::instance_ = NULL;
112
113
114void ExternalReferenceTable::AddFromId(TypeCode type,
115 uint16_t id,
116 const char* name) {
117 Address address;
118 switch (type) {
119 case C_BUILTIN: {
120 ExternalReference ref(static_cast<Builtins::CFunctionId>(id));
121 address = ref.address();
122 break;
123 }
124 case BUILTIN: {
125 ExternalReference ref(static_cast<Builtins::Name>(id));
126 address = ref.address();
127 break;
128 }
129 case RUNTIME_FUNCTION: {
130 ExternalReference ref(static_cast<Runtime::FunctionId>(id));
131 address = ref.address();
132 break;
133 }
134 case IC_UTILITY: {
135 ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)));
136 address = ref.address();
137 break;
138 }
139 default:
140 UNREACHABLE();
141 return;
142 }
143 Add(address, type, id, name);
144}
145
146
147void ExternalReferenceTable::Add(Address address,
148 TypeCode type,
149 uint16_t id,
150 const char* name) {
Steve Blockd0582a62009-12-15 09:54:21 +0000151 ASSERT_NE(NULL, address);
Steve Blocka7e24c12009-10-30 11:49:00 +0000152 ExternalReferenceEntry entry;
153 entry.address = address;
154 entry.code = EncodeExternal(type, id);
155 entry.name = name;
Steve Blockd0582a62009-12-15 09:54:21 +0000156 ASSERT_NE(0, entry.code);
Steve Blocka7e24c12009-10-30 11:49:00 +0000157 refs_.Add(entry);
158 if (id > max_id_[type]) max_id_[type] = id;
159}
160
161
162void ExternalReferenceTable::PopulateTable() {
163 for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
164 max_id_[type_code] = 0;
165 }
166
167 // The following populates all of the different type of external references
168 // into the ExternalReferenceTable.
169 //
170 // NOTE: This function was originally 100k of code. It has since been
171 // rewritten to be mostly table driven, as the callback macro style tends to
172 // very easily cause code bloat. Please be careful in the future when adding
173 // new references.
174
175 struct RefTableEntry {
176 TypeCode type;
177 uint16_t id;
178 const char* name;
179 };
180
181 static const RefTableEntry ref_table[] = {
182 // Builtins
Leon Clarkee46be812010-01-19 14:06:41 +0000183#define DEF_ENTRY_C(name, ignored) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000184 { C_BUILTIN, \
185 Builtins::c_##name, \
186 "Builtins::" #name },
187
188 BUILTIN_LIST_C(DEF_ENTRY_C)
189#undef DEF_ENTRY_C
190
Leon Clarkee46be812010-01-19 14:06:41 +0000191#define DEF_ENTRY_C(name, ignored) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000192 { BUILTIN, \
193 Builtins::name, \
194 "Builtins::" #name },
Leon Clarkee46be812010-01-19 14:06:41 +0000195#define DEF_ENTRY_A(name, kind, state) DEF_ENTRY_C(name, ignored)
Steve Blocka7e24c12009-10-30 11:49:00 +0000196
197 BUILTIN_LIST_C(DEF_ENTRY_C)
198 BUILTIN_LIST_A(DEF_ENTRY_A)
199 BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
200#undef DEF_ENTRY_C
201#undef DEF_ENTRY_A
202
203 // Runtime functions
204#define RUNTIME_ENTRY(name, nargs, ressize) \
205 { RUNTIME_FUNCTION, \
206 Runtime::k##name, \
207 "Runtime::" #name },
208
209 RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
210#undef RUNTIME_ENTRY
211
212 // IC utilities
213#define IC_ENTRY(name) \
214 { IC_UTILITY, \
215 IC::k##name, \
216 "IC::" #name },
217
218 IC_UTIL_LIST(IC_ENTRY)
219#undef IC_ENTRY
220 }; // end of ref_table[].
221
222 for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
223 AddFromId(ref_table[i].type, ref_table[i].id, ref_table[i].name);
224 }
225
226#ifdef ENABLE_DEBUGGER_SUPPORT
227 // Debug addresses
228 Add(Debug_Address(Debug::k_after_break_target_address).address(),
229 DEBUG_ADDRESS,
230 Debug::k_after_break_target_address << kDebugIdShift,
231 "Debug::after_break_target_address()");
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100232 Add(Debug_Address(Debug::k_debug_break_slot_address).address(),
233 DEBUG_ADDRESS,
234 Debug::k_debug_break_slot_address << kDebugIdShift,
235 "Debug::debug_break_slot_address()");
Steve Blocka7e24c12009-10-30 11:49:00 +0000236 Add(Debug_Address(Debug::k_debug_break_return_address).address(),
237 DEBUG_ADDRESS,
238 Debug::k_debug_break_return_address << kDebugIdShift,
239 "Debug::debug_break_return_address()");
240 const char* debug_register_format = "Debug::register_address(%i)";
Steve Blockd0582a62009-12-15 09:54:21 +0000241 int dr_format_length = StrLength(debug_register_format);
Steve Blocka7e24c12009-10-30 11:49:00 +0000242 for (int i = 0; i < kNumJSCallerSaved; ++i) {
243 Vector<char> name = Vector<char>::New(dr_format_length + 1);
244 OS::SNPrintF(name, debug_register_format, i);
245 Add(Debug_Address(Debug::k_register_address, i).address(),
246 DEBUG_ADDRESS,
247 Debug::k_register_address << kDebugIdShift | i,
248 name.start());
249 }
250#endif
251
252 // Stat counters
253 struct StatsRefTableEntry {
254 StatsCounter* counter;
255 uint16_t id;
256 const char* name;
257 };
258
259 static const StatsRefTableEntry stats_ref_table[] = {
260#define COUNTER_ENTRY(name, caption) \
261 { &Counters::name, \
262 Counters::k_##name, \
263 "Counters::" #name },
264
265 STATS_COUNTER_LIST_1(COUNTER_ENTRY)
266 STATS_COUNTER_LIST_2(COUNTER_ENTRY)
267#undef COUNTER_ENTRY
268 }; // end of stats_ref_table[].
269
270 for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
271 Add(reinterpret_cast<Address>(
272 GetInternalPointer(stats_ref_table[i].counter)),
273 STATS_COUNTER,
274 stats_ref_table[i].id,
275 stats_ref_table[i].name);
276 }
277
278 // Top addresses
Steve Block3ce2e202009-11-05 08:53:23 +0000279 const char* top_address_format = "Top::%s";
280
281 const char* AddressNames[] = {
282#define C(name) #name,
283 TOP_ADDRESS_LIST(C)
284 TOP_ADDRESS_LIST_PROF(C)
285 NULL
286#undef C
287 };
288
Steve Blockd0582a62009-12-15 09:54:21 +0000289 int top_format_length = StrLength(top_address_format) - 2;
Steve Blocka7e24c12009-10-30 11:49:00 +0000290 for (uint16_t i = 0; i < Top::k_top_address_count; ++i) {
Steve Block3ce2e202009-11-05 08:53:23 +0000291 const char* address_name = AddressNames[i];
292 Vector<char> name =
Steve Blockd0582a62009-12-15 09:54:21 +0000293 Vector<char>::New(top_format_length + StrLength(address_name) + 1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000294 const char* chars = name.start();
Steve Block3ce2e202009-11-05 08:53:23 +0000295 OS::SNPrintF(name, top_address_format, address_name);
Steve Blocka7e24c12009-10-30 11:49:00 +0000296 Add(Top::get_address_from_id((Top::AddressId)i), TOP_ADDRESS, i, chars);
297 }
298
299 // Extensions
300 Add(FUNCTION_ADDR(GCExtension::GC), EXTENSION, 1,
301 "GCExtension::GC");
302
303 // Accessors
304#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
305 Add((Address)&Accessors::name, \
306 ACCESSOR, \
307 Accessors::k##name, \
308 "Accessors::" #name);
309
310 ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
311#undef ACCESSOR_DESCRIPTOR_DECLARATION
312
313 // Stub cache tables
314 Add(SCTableReference::keyReference(StubCache::kPrimary).address(),
315 STUB_CACHE_TABLE,
316 1,
317 "StubCache::primary_->key");
318 Add(SCTableReference::valueReference(StubCache::kPrimary).address(),
319 STUB_CACHE_TABLE,
320 2,
321 "StubCache::primary_->value");
322 Add(SCTableReference::keyReference(StubCache::kSecondary).address(),
323 STUB_CACHE_TABLE,
324 3,
325 "StubCache::secondary_->key");
326 Add(SCTableReference::valueReference(StubCache::kSecondary).address(),
327 STUB_CACHE_TABLE,
328 4,
329 "StubCache::secondary_->value");
330
331 // Runtime entries
332 Add(ExternalReference::perform_gc_function().address(),
333 RUNTIME_ENTRY,
334 1,
335 "Runtime::PerformGC");
Steve Block6ded16b2010-05-10 14:33:55 +0100336 Add(ExternalReference::fill_heap_number_with_random_function().address(),
Steve Blocka7e24c12009-10-30 11:49:00 +0000337 RUNTIME_ENTRY,
338 2,
Steve Block6ded16b2010-05-10 14:33:55 +0100339 "V8::FillHeapNumberWithRandom");
340
341 Add(ExternalReference::random_uint32_function().address(),
342 RUNTIME_ENTRY,
343 3,
344 "V8::Random");
Steve Blocka7e24c12009-10-30 11:49:00 +0000345
346 // Miscellaneous
Steve Blocka7e24c12009-10-30 11:49:00 +0000347 Add(ExternalReference::the_hole_value_location().address(),
348 UNCLASSIFIED,
349 2,
350 "Factory::the_hole_value().location()");
351 Add(ExternalReference::roots_address().address(),
352 UNCLASSIFIED,
353 3,
354 "Heap::roots_address()");
Steve Blockd0582a62009-12-15 09:54:21 +0000355 Add(ExternalReference::address_of_stack_limit().address(),
Steve Blocka7e24c12009-10-30 11:49:00 +0000356 UNCLASSIFIED,
357 4,
358 "StackGuard::address_of_jslimit()");
Steve Blockd0582a62009-12-15 09:54:21 +0000359 Add(ExternalReference::address_of_real_stack_limit().address(),
Steve Blocka7e24c12009-10-30 11:49:00 +0000360 UNCLASSIFIED,
361 5,
Steve Blockd0582a62009-12-15 09:54:21 +0000362 "StackGuard::address_of_real_jslimit()");
363 Add(ExternalReference::address_of_regexp_stack_limit().address(),
364 UNCLASSIFIED,
365 6,
Steve Blocka7e24c12009-10-30 11:49:00 +0000366 "RegExpStack::limit_address()");
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100367 Add(ExternalReference::address_of_regexp_stack_memory_address().address(),
Steve Blocka7e24c12009-10-30 11:49:00 +0000368 UNCLASSIFIED,
Steve Blockd0582a62009-12-15 09:54:21 +0000369 7,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100370 "RegExpStack::memory_address()");
371 Add(ExternalReference::address_of_regexp_stack_memory_size().address(),
372 UNCLASSIFIED,
373 8,
374 "RegExpStack::memory_size()");
375 Add(ExternalReference::address_of_static_offsets_vector().address(),
376 UNCLASSIFIED,
377 9,
378 "OffsetsVector::static_offsets_vector");
379 Add(ExternalReference::new_space_start().address(),
380 UNCLASSIFIED,
381 10,
Steve Blocka7e24c12009-10-30 11:49:00 +0000382 "Heap::NewSpaceStart()");
Andrei Popescu402d9372010-02-26 13:31:12 +0000383 Add(ExternalReference::new_space_mask().address(),
Steve Blocka7e24c12009-10-30 11:49:00 +0000384 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100385 11,
Andrei Popescu402d9372010-02-26 13:31:12 +0000386 "Heap::NewSpaceMask()");
387 Add(ExternalReference::heap_always_allocate_scope_depth().address(),
388 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100389 12,
Steve Blocka7e24c12009-10-30 11:49:00 +0000390 "Heap::always_allocate_scope_depth()");
391 Add(ExternalReference::new_space_allocation_limit_address().address(),
392 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100393 13,
Steve Blocka7e24c12009-10-30 11:49:00 +0000394 "Heap::NewSpaceAllocationLimitAddress()");
395 Add(ExternalReference::new_space_allocation_top_address().address(),
396 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100397 14,
Steve Blocka7e24c12009-10-30 11:49:00 +0000398 "Heap::NewSpaceAllocationTopAddress()");
399#ifdef ENABLE_DEBUGGER_SUPPORT
400 Add(ExternalReference::debug_break().address(),
401 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100402 15,
Steve Blocka7e24c12009-10-30 11:49:00 +0000403 "Debug::Break()");
404 Add(ExternalReference::debug_step_in_fp_address().address(),
405 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100406 16,
Steve Blocka7e24c12009-10-30 11:49:00 +0000407 "Debug::step_in_fp_addr()");
408#endif
409 Add(ExternalReference::double_fp_operation(Token::ADD).address(),
410 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100411 17,
Steve Blocka7e24c12009-10-30 11:49:00 +0000412 "add_two_doubles");
413 Add(ExternalReference::double_fp_operation(Token::SUB).address(),
414 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100415 18,
Steve Blocka7e24c12009-10-30 11:49:00 +0000416 "sub_two_doubles");
417 Add(ExternalReference::double_fp_operation(Token::MUL).address(),
418 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100419 19,
Steve Blocka7e24c12009-10-30 11:49:00 +0000420 "mul_two_doubles");
421 Add(ExternalReference::double_fp_operation(Token::DIV).address(),
422 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100423 20,
Steve Blocka7e24c12009-10-30 11:49:00 +0000424 "div_two_doubles");
425 Add(ExternalReference::double_fp_operation(Token::MOD).address(),
426 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100427 21,
Steve Blocka7e24c12009-10-30 11:49:00 +0000428 "mod_two_doubles");
429 Add(ExternalReference::compare_doubles().address(),
430 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100431 22,
Steve Blocka7e24c12009-10-30 11:49:00 +0000432 "compare_doubles");
Steve Block6ded16b2010-05-10 14:33:55 +0100433#ifndef V8_INTERPRETED_REGEXP
434 Add(ExternalReference::re_case_insensitive_compare_uc16().address(),
435 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100436 23,
Steve Blocka7e24c12009-10-30 11:49:00 +0000437 "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
438 Add(ExternalReference::re_check_stack_guard_state().address(),
439 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100440 24,
Steve Blocka7e24c12009-10-30 11:49:00 +0000441 "RegExpMacroAssembler*::CheckStackGuardState()");
442 Add(ExternalReference::re_grow_stack().address(),
443 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100444 25,
Steve Blocka7e24c12009-10-30 11:49:00 +0000445 "NativeRegExpMacroAssembler::GrowStack()");
Leon Clarkee46be812010-01-19 14:06:41 +0000446 Add(ExternalReference::re_word_character_map().address(),
447 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100448 26,
Leon Clarkee46be812010-01-19 14:06:41 +0000449 "NativeRegExpMacroAssembler::word_character_map");
Steve Block6ded16b2010-05-10 14:33:55 +0100450#endif // V8_INTERPRETED_REGEXP
Leon Clarkee46be812010-01-19 14:06:41 +0000451 // Keyed lookup cache.
452 Add(ExternalReference::keyed_lookup_cache_keys().address(),
453 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100454 27,
Leon Clarkee46be812010-01-19 14:06:41 +0000455 "KeyedLookupCache::keys()");
456 Add(ExternalReference::keyed_lookup_cache_field_offsets().address(),
457 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100458 28,
Leon Clarkee46be812010-01-19 14:06:41 +0000459 "KeyedLookupCache::field_offsets()");
Andrei Popescu402d9372010-02-26 13:31:12 +0000460 Add(ExternalReference::transcendental_cache_array_address().address(),
461 UNCLASSIFIED,
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100462 29,
Andrei Popescu402d9372010-02-26 13:31:12 +0000463 "TranscendentalCache::caches()");
Steve Blocka7e24c12009-10-30 11:49:00 +0000464}
465
466
467ExternalReferenceEncoder::ExternalReferenceEncoder()
468 : encodings_(Match) {
469 ExternalReferenceTable* external_references =
470 ExternalReferenceTable::instance();
471 for (int i = 0; i < external_references->size(); ++i) {
472 Put(external_references->address(i), i);
473 }
474}
475
476
477uint32_t ExternalReferenceEncoder::Encode(Address key) const {
478 int index = IndexOf(key);
479 return index >=0 ? ExternalReferenceTable::instance()->code(index) : 0;
480}
481
482
483const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
484 int index = IndexOf(key);
485 return index >=0 ? ExternalReferenceTable::instance()->name(index) : NULL;
486}
487
488
489int ExternalReferenceEncoder::IndexOf(Address key) const {
490 if (key == NULL) return -1;
491 HashMap::Entry* entry =
492 const_cast<HashMap &>(encodings_).Lookup(key, Hash(key), false);
493 return entry == NULL
494 ? -1
495 : static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
496}
497
498
499void ExternalReferenceEncoder::Put(Address key, int index) {
500 HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
Steve Block6ded16b2010-05-10 14:33:55 +0100501 entry->value = reinterpret_cast<void*>(index);
Steve Blocka7e24c12009-10-30 11:49:00 +0000502}
503
504
505ExternalReferenceDecoder::ExternalReferenceDecoder()
506 : encodings_(NewArray<Address*>(kTypeCodeCount)) {
507 ExternalReferenceTable* external_references =
508 ExternalReferenceTable::instance();
509 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
510 int max = external_references->max_id(type) + 1;
511 encodings_[type] = NewArray<Address>(max + 1);
512 }
513 for (int i = 0; i < external_references->size(); ++i) {
514 Put(external_references->code(i), external_references->address(i));
515 }
516}
517
518
519ExternalReferenceDecoder::~ExternalReferenceDecoder() {
520 for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
521 DeleteArray(encodings_[type]);
522 }
523 DeleteArray(encodings_);
524}
525
526
Steve Blocka7e24c12009-10-30 11:49:00 +0000527bool Serializer::serialization_enabled_ = false;
Steve Blockd0582a62009-12-15 09:54:21 +0000528bool Serializer::too_late_to_enable_now_ = false;
Leon Clarkee46be812010-01-19 14:06:41 +0000529ExternalReferenceDecoder* Deserializer::external_reference_decoder_ = NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +0000530
531
Leon Clarkee46be812010-01-19 14:06:41 +0000532Deserializer::Deserializer(SnapshotByteSource* source) : source_(source) {
Steve Blockd0582a62009-12-15 09:54:21 +0000533}
534
535
536// This routine both allocates a new object, and also keeps
537// track of where objects have been allocated so that we can
538// fix back references when deserializing.
539Address Deserializer::Allocate(int space_index, Space* space, int size) {
540 Address address;
541 if (!SpaceIsLarge(space_index)) {
542 ASSERT(!SpaceIsPaged(space_index) ||
543 size <= Page::kPageSize - Page::kObjectStartOffset);
544 Object* new_allocation;
545 if (space_index == NEW_SPACE) {
546 new_allocation = reinterpret_cast<NewSpace*>(space)->AllocateRaw(size);
547 } else {
548 new_allocation = reinterpret_cast<PagedSpace*>(space)->AllocateRaw(size);
549 }
550 HeapObject* new_object = HeapObject::cast(new_allocation);
551 ASSERT(!new_object->IsFailure());
552 address = new_object->address();
553 high_water_[space_index] = address + size;
554 } else {
555 ASSERT(SpaceIsLarge(space_index));
556 ASSERT(size > Page::kPageSize - Page::kObjectStartOffset);
557 LargeObjectSpace* lo_space = reinterpret_cast<LargeObjectSpace*>(space);
558 Object* new_allocation;
559 if (space_index == kLargeData) {
560 new_allocation = lo_space->AllocateRaw(size);
561 } else if (space_index == kLargeFixedArray) {
562 new_allocation = lo_space->AllocateRawFixedArray(size);
563 } else {
564 ASSERT_EQ(kLargeCode, space_index);
565 new_allocation = lo_space->AllocateRawCode(size);
566 }
567 ASSERT(!new_allocation->IsFailure());
568 HeapObject* new_object = HeapObject::cast(new_allocation);
569 // Record all large objects in the same space.
570 address = new_object->address();
Andrei Popescu31002712010-02-23 13:46:05 +0000571 pages_[LO_SPACE].Add(address);
Steve Blockd0582a62009-12-15 09:54:21 +0000572 }
573 last_object_address_ = address;
574 return address;
575}
576
577
578// This returns the address of an object that has been described in the
579// snapshot as being offset bytes back in a particular space.
580HeapObject* Deserializer::GetAddressFromEnd(int space) {
581 int offset = source_->GetInt();
582 ASSERT(!SpaceIsLarge(space));
583 offset <<= kObjectAlignmentBits;
584 return HeapObject::FromAddress(high_water_[space] - offset);
585}
586
587
588// This returns the address of an object that has been described in the
589// snapshot as being offset bytes into a particular space.
590HeapObject* Deserializer::GetAddressFromStart(int space) {
591 int offset = source_->GetInt();
592 if (SpaceIsLarge(space)) {
593 // Large spaces have one object per 'page'.
594 return HeapObject::FromAddress(pages_[LO_SPACE][offset]);
595 }
596 offset <<= kObjectAlignmentBits;
597 if (space == NEW_SPACE) {
598 // New space has only one space - numbered 0.
599 return HeapObject::FromAddress(pages_[space][0] + offset);
600 }
601 ASSERT(SpaceIsPaged(space));
Leon Clarkee46be812010-01-19 14:06:41 +0000602 int page_of_pointee = offset >> kPageSizeBits;
Steve Blockd0582a62009-12-15 09:54:21 +0000603 Address object_address = pages_[space][page_of_pointee] +
604 (offset & Page::kPageAlignmentMask);
605 return HeapObject::FromAddress(object_address);
606}
607
608
609void Deserializer::Deserialize() {
610 // Don't GC while deserializing - just expand the heap.
611 AlwaysAllocateScope always_allocate;
612 // Don't use the free lists while deserializing.
613 LinearAllocationScope allocate_linearly;
614 // No active threads.
615 ASSERT_EQ(NULL, ThreadState::FirstInUse());
616 // No active handles.
617 ASSERT(HandleScopeImplementer::instance()->blocks()->is_empty());
Leon Clarked91b9f72010-01-27 17:25:45 +0000618 // Make sure the entire partial snapshot cache is traversed, filling it with
619 // valid object pointers.
620 partial_snapshot_cache_length_ = kPartialSnapshotCacheCapacity;
Steve Blockd0582a62009-12-15 09:54:21 +0000621 ASSERT_EQ(NULL, external_reference_decoder_);
622 external_reference_decoder_ = new ExternalReferenceDecoder();
Leon Clarked91b9f72010-01-27 17:25:45 +0000623 Heap::IterateStrongRoots(this, VISIT_ONLY_STRONG);
624 Heap::IterateWeakRoots(this, VISIT_ALL);
Leon Clarkee46be812010-01-19 14:06:41 +0000625}
626
627
628void Deserializer::DeserializePartial(Object** root) {
629 // Don't GC while deserializing - just expand the heap.
630 AlwaysAllocateScope always_allocate;
631 // Don't use the free lists while deserializing.
632 LinearAllocationScope allocate_linearly;
633 if (external_reference_decoder_ == NULL) {
634 external_reference_decoder_ = new ExternalReferenceDecoder();
635 }
636 VisitPointer(root);
637}
638
639
Leon Clarked91b9f72010-01-27 17:25:45 +0000640Deserializer::~Deserializer() {
641 ASSERT(source_->AtEOF());
Leon Clarkee46be812010-01-19 14:06:41 +0000642 if (external_reference_decoder_ != NULL) {
643 delete external_reference_decoder_;
644 external_reference_decoder_ = NULL;
645 }
Steve Blockd0582a62009-12-15 09:54:21 +0000646}
647
648
649// This is called on the roots. It is the driver of the deserialization
650// process. It is also called on the body of each function.
651void Deserializer::VisitPointers(Object** start, Object** end) {
652 // The space must be new space. Any other space would cause ReadChunk to try
653 // to update the remembered using NULL as the address.
654 ReadChunk(start, end, NEW_SPACE, NULL);
655}
656
657
658// This routine writes the new object into the pointer provided and then
659// returns true if the new object was in young space and false otherwise.
660// The reason for this strange interface is that otherwise the object is
661// written very late, which means the ByteArray map is not set up by the
662// time we need to use it to mark the space at the end of a page free (by
663// making it into a byte array).
664void Deserializer::ReadObject(int space_number,
665 Space* space,
666 Object** write_back) {
667 int size = source_->GetInt() << kObjectAlignmentBits;
668 Address address = Allocate(space_number, space, size);
669 *write_back = HeapObject::FromAddress(address);
670 Object** current = reinterpret_cast<Object**>(address);
671 Object** limit = current + (size >> kPointerSizeLog2);
Leon Clarkee46be812010-01-19 14:06:41 +0000672 if (FLAG_log_snapshot_positions) {
673 LOG(SnapshotPositionEvent(address, source_->position()));
674 }
Steve Blockd0582a62009-12-15 09:54:21 +0000675 ReadChunk(current, limit, space_number, address);
676}
677
678
Leon Clarkef7060e22010-06-03 12:02:55 +0100679// This macro is always used with a constant argument so it should all fold
680// away to almost nothing in the generated code. It might be nicer to do this
681// with the ternary operator but there are type issues with that.
682#define ASSIGN_DEST_SPACE(space_number) \
683 Space* dest_space; \
684 if (space_number == NEW_SPACE) { \
685 dest_space = Heap::new_space(); \
686 } else if (space_number == OLD_POINTER_SPACE) { \
687 dest_space = Heap::old_pointer_space(); \
688 } else if (space_number == OLD_DATA_SPACE) { \
689 dest_space = Heap::old_data_space(); \
690 } else if (space_number == CODE_SPACE) { \
691 dest_space = Heap::code_space(); \
692 } else if (space_number == MAP_SPACE) { \
693 dest_space = Heap::map_space(); \
694 } else if (space_number == CELL_SPACE) { \
695 dest_space = Heap::cell_space(); \
696 } else { \
697 ASSERT(space_number >= LO_SPACE); \
698 dest_space = Heap::lo_space(); \
699 }
700
701
702static const int kUnknownOffsetFromStart = -1;
Steve Blockd0582a62009-12-15 09:54:21 +0000703
704
705void Deserializer::ReadChunk(Object** current,
706 Object** limit,
Leon Clarkef7060e22010-06-03 12:02:55 +0100707 int source_space,
Steve Blockd0582a62009-12-15 09:54:21 +0000708 Address address) {
709 while (current < limit) {
710 int data = source_->Get();
711 switch (data) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100712#define CASE_STATEMENT(where, how, within, space_number) \
713 case where + how + within + space_number: \
714 ASSERT((where & ~kPointedToMask) == 0); \
715 ASSERT((how & ~kHowToCodeMask) == 0); \
716 ASSERT((within & ~kWhereToPointMask) == 0); \
717 ASSERT((space_number & ~kSpaceMask) == 0);
718
719#define CASE_BODY(where, how, within, space_number_if_any, offset_from_start) \
720 { \
721 bool emit_write_barrier = false; \
722 bool current_was_incremented = false; \
723 int space_number = space_number_if_any == kAnyOldSpace ? \
724 (data & kSpaceMask) : space_number_if_any; \
725 if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
726 ASSIGN_DEST_SPACE(space_number) \
727 ReadObject(space_number, dest_space, current); \
728 emit_write_barrier = \
729 (space_number == NEW_SPACE && source_space != NEW_SPACE); \
730 } else { \
731 Object* new_object = NULL; /* May not be a real Object pointer. */ \
732 if (where == kNewObject) { \
733 ASSIGN_DEST_SPACE(space_number) \
734 ReadObject(space_number, dest_space, &new_object); \
735 } else if (where == kRootArray) { \
736 int root_id = source_->GetInt(); \
737 new_object = Heap::roots_address()[root_id]; \
738 } else if (where == kPartialSnapshotCache) { \
739 int cache_index = source_->GetInt(); \
740 new_object = partial_snapshot_cache_[cache_index]; \
741 } else if (where == kExternalReference) { \
742 int reference_id = source_->GetInt(); \
743 Address address = \
744 external_reference_decoder_->Decode(reference_id); \
745 new_object = reinterpret_cast<Object*>(address); \
746 } else if (where == kBackref) { \
747 emit_write_barrier = \
748 (space_number == NEW_SPACE && source_space != NEW_SPACE); \
749 new_object = GetAddressFromEnd(data & kSpaceMask); \
750 } else { \
751 ASSERT(where == kFromStart); \
752 if (offset_from_start == kUnknownOffsetFromStart) { \
753 emit_write_barrier = \
754 (space_number == NEW_SPACE && source_space != NEW_SPACE); \
755 new_object = GetAddressFromStart(data & kSpaceMask); \
756 } else { \
757 Address object_address = pages_[space_number][0] + \
758 (offset_from_start << kObjectAlignmentBits); \
759 new_object = HeapObject::FromAddress(object_address); \
760 } \
761 } \
762 if (within == kFirstInstruction) { \
763 Code* new_code_object = reinterpret_cast<Code*>(new_object); \
764 new_object = reinterpret_cast<Object*>( \
765 new_code_object->instruction_start()); \
766 } \
767 if (how == kFromCode) { \
768 Address location_of_branch_data = \
769 reinterpret_cast<Address>(current); \
770 Assembler::set_target_at(location_of_branch_data, \
771 reinterpret_cast<Address>(new_object)); \
772 if (within == kFirstInstruction) { \
773 location_of_branch_data += Assembler::kCallTargetSize; \
774 current = reinterpret_cast<Object**>(location_of_branch_data); \
775 current_was_incremented = true; \
776 } \
777 } else { \
778 *current = new_object; \
779 } \
780 } \
781 if (emit_write_barrier) { \
782 Heap::RecordWrite(address, static_cast<int>( \
783 reinterpret_cast<Address>(current) - address)); \
784 } \
785 if (!current_was_incremented) { \
786 current++; /* Increment current if it wasn't done above. */ \
787 } \
788 break; \
789 } \
790
791// This generates a case and a body for each space. The large object spaces are
792// very rare in snapshots so they are grouped in one body.
793#define ONE_PER_SPACE(where, how, within) \
794 CASE_STATEMENT(where, how, within, NEW_SPACE) \
795 CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \
796 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
797 CASE_BODY(where, how, within, OLD_DATA_SPACE, kUnknownOffsetFromStart) \
798 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
799 CASE_BODY(where, how, within, OLD_POINTER_SPACE, kUnknownOffsetFromStart) \
800 CASE_STATEMENT(where, how, within, CODE_SPACE) \
801 CASE_BODY(where, how, within, CODE_SPACE, kUnknownOffsetFromStart) \
802 CASE_STATEMENT(where, how, within, CELL_SPACE) \
803 CASE_BODY(where, how, within, CELL_SPACE, kUnknownOffsetFromStart) \
804 CASE_STATEMENT(where, how, within, MAP_SPACE) \
805 CASE_BODY(where, how, within, MAP_SPACE, kUnknownOffsetFromStart) \
806 CASE_STATEMENT(where, how, within, kLargeData) \
807 CASE_STATEMENT(where, how, within, kLargeCode) \
808 CASE_STATEMENT(where, how, within, kLargeFixedArray) \
809 CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
810
811// This generates a case and a body for the new space (which has to do extra
812// write barrier handling) and handles the other spaces with 8 fall-through
813// cases and one body.
814#define ALL_SPACES(where, how, within) \
815 CASE_STATEMENT(where, how, within, NEW_SPACE) \
816 CASE_BODY(where, how, within, NEW_SPACE, kUnknownOffsetFromStart) \
817 CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
818 CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
819 CASE_STATEMENT(where, how, within, CODE_SPACE) \
820 CASE_STATEMENT(where, how, within, CELL_SPACE) \
821 CASE_STATEMENT(where, how, within, MAP_SPACE) \
822 CASE_STATEMENT(where, how, within, kLargeData) \
823 CASE_STATEMENT(where, how, within, kLargeCode) \
824 CASE_STATEMENT(where, how, within, kLargeFixedArray) \
825 CASE_BODY(where, how, within, kAnyOldSpace, kUnknownOffsetFromStart)
826
827#define EMIT_COMMON_REFERENCE_PATTERNS(pseudo_space_number, \
828 space_number, \
829 offset_from_start) \
830 CASE_STATEMENT(kFromStart, kPlain, kStartOfObject, pseudo_space_number) \
831 CASE_BODY(kFromStart, kPlain, kStartOfObject, space_number, offset_from_start)
832
833 // We generate 15 cases and bodies that process special tags that combine
834 // the raw data tag and the length into one byte.
Steve Blockd0582a62009-12-15 09:54:21 +0000835#define RAW_CASE(index, size) \
Leon Clarkef7060e22010-06-03 12:02:55 +0100836 case kRawData + index: { \
Steve Blockd0582a62009-12-15 09:54:21 +0000837 byte* raw_data_out = reinterpret_cast<byte*>(current); \
838 source_->CopyRaw(raw_data_out, size); \
839 current = reinterpret_cast<Object**>(raw_data_out + size); \
840 break; \
841 }
842 COMMON_RAW_LENGTHS(RAW_CASE)
843#undef RAW_CASE
Leon Clarkef7060e22010-06-03 12:02:55 +0100844
845 // Deserialize a chunk of raw data that doesn't have one of the popular
846 // lengths.
847 case kRawData: {
Steve Blockd0582a62009-12-15 09:54:21 +0000848 int size = source_->GetInt();
849 byte* raw_data_out = reinterpret_cast<byte*>(current);
850 source_->CopyRaw(raw_data_out, size);
851 current = reinterpret_cast<Object**>(raw_data_out + size);
852 break;
853 }
Leon Clarkef7060e22010-06-03 12:02:55 +0100854
855 // Deserialize a new object and write a pointer to it to the current
856 // object.
857 ONE_PER_SPACE(kNewObject, kPlain, kStartOfObject)
858 // Deserialize a new code object and write a pointer to its first
859 // instruction to the current code object.
860 ONE_PER_SPACE(kNewObject, kFromCode, kFirstInstruction)
861 // Find a recently deserialized object using its offset from the current
862 // allocation point and write a pointer to it to the current object.
863 ALL_SPACES(kBackref, kPlain, kStartOfObject)
864 // Find a recently deserialized code object using its offset from the
865 // current allocation point and write a pointer to its first instruction
866 // to the current code object.
867 ALL_SPACES(kBackref, kFromCode, kFirstInstruction)
868 // Find an already deserialized object using its offset from the start
869 // and write a pointer to it to the current object.
870 ALL_SPACES(kFromStart, kPlain, kStartOfObject)
871 // Find an already deserialized code object using its offset from the
872 // start and write a pointer to its first instruction to the current code
873 // object.
874 ALL_SPACES(kFromStart, kFromCode, kFirstInstruction)
875 // Find an already deserialized object at one of the predetermined popular
876 // offsets from the start and write a pointer to it in the current object.
877 COMMON_REFERENCE_PATTERNS(EMIT_COMMON_REFERENCE_PATTERNS)
878 // Find an object in the roots array and write a pointer to it to the
879 // current object.
880 CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
881 CASE_BODY(kRootArray, kPlain, kStartOfObject, 0, kUnknownOffsetFromStart)
882 // Find an object in the partial snapshots cache and write a pointer to it
883 // to the current object.
884 CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
885 CASE_BODY(kPartialSnapshotCache,
886 kPlain,
887 kStartOfObject,
888 0,
889 kUnknownOffsetFromStart)
890 // Find an external reference and write a pointer to it to the current
891 // object.
892 CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
893 CASE_BODY(kExternalReference,
894 kPlain,
895 kStartOfObject,
896 0,
897 kUnknownOffsetFromStart)
898 // Find an external reference and write a pointer to it in the current
899 // code object.
900 CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
901 CASE_BODY(kExternalReference,
902 kFromCode,
903 kStartOfObject,
904 0,
905 kUnknownOffsetFromStart)
906
907#undef CASE_STATEMENT
908#undef CASE_BODY
909#undef ONE_PER_SPACE
910#undef ALL_SPACES
911#undef EMIT_COMMON_REFERENCE_PATTERNS
912#undef ASSIGN_DEST_SPACE
913
914 case kNewPage: {
Steve Blockd0582a62009-12-15 09:54:21 +0000915 int space = source_->Get();
916 pages_[space].Add(last_object_address_);
Steve Block6ded16b2010-05-10 14:33:55 +0100917 if (space == CODE_SPACE) {
918 CPU::FlushICache(last_object_address_, Page::kPageSize);
919 }
Steve Blockd0582a62009-12-15 09:54:21 +0000920 break;
921 }
Leon Clarkef7060e22010-06-03 12:02:55 +0100922
923 case kNativesStringResource: {
Steve Blockd0582a62009-12-15 09:54:21 +0000924 int index = source_->Get();
925 Vector<const char> source_vector = Natives::GetScriptSource(index);
926 NativesExternalStringResource* resource =
927 new NativesExternalStringResource(source_vector.start());
928 *current++ = reinterpret_cast<Object*>(resource);
929 break;
930 }
Leon Clarkef7060e22010-06-03 12:02:55 +0100931
932 case kSynchronize: {
Leon Clarked91b9f72010-01-27 17:25:45 +0000933 // If we get here then that indicates that you have a mismatch between
934 // the number of GC roots when serializing and deserializing.
935 UNREACHABLE();
936 }
Leon Clarkef7060e22010-06-03 12:02:55 +0100937
Steve Blockd0582a62009-12-15 09:54:21 +0000938 default:
939 UNREACHABLE();
940 }
941 }
942 ASSERT_EQ(current, limit);
943}
944
945
946void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
947 const int max_shift = ((kPointerSize * kBitsPerByte) / 7) * 7;
948 for (int shift = max_shift; shift > 0; shift -= 7) {
949 if (integer >= static_cast<uintptr_t>(1u) << shift) {
Andrei Popescu402d9372010-02-26 13:31:12 +0000950 Put((static_cast<int>((integer >> shift)) & 0x7f) | 0x80, "IntPart");
Steve Blockd0582a62009-12-15 09:54:21 +0000951 }
952 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000953 PutSection(static_cast<int>(integer & 0x7f), "IntLastPart");
Steve Blockd0582a62009-12-15 09:54:21 +0000954}
955
Steve Blocka7e24c12009-10-30 11:49:00 +0000956#ifdef DEBUG
Steve Blockd0582a62009-12-15 09:54:21 +0000957
958void Deserializer::Synchronize(const char* tag) {
959 int data = source_->Get();
960 // If this assert fails then that indicates that you have a mismatch between
961 // the number of GC roots when serializing and deserializing.
Leon Clarkef7060e22010-06-03 12:02:55 +0100962 ASSERT_EQ(kSynchronize, data);
Steve Blockd0582a62009-12-15 09:54:21 +0000963 do {
964 int character = source_->Get();
965 if (character == 0) break;
966 if (FLAG_debug_serialization) {
967 PrintF("%c", character);
968 }
969 } while (true);
970 if (FLAG_debug_serialization) {
971 PrintF("\n");
972 }
973}
974
Steve Blocka7e24c12009-10-30 11:49:00 +0000975
976void Serializer::Synchronize(const char* tag) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100977 sink_->Put(kSynchronize, tag);
Steve Blockd0582a62009-12-15 09:54:21 +0000978 int character;
979 do {
980 character = *tag++;
981 sink_->PutSection(character, "TagCharacter");
982 } while (character != 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000983}
Steve Blockd0582a62009-12-15 09:54:21 +0000984
Steve Blocka7e24c12009-10-30 11:49:00 +0000985#endif
986
Steve Blockd0582a62009-12-15 09:54:21 +0000987Serializer::Serializer(SnapshotByteSink* sink)
988 : sink_(sink),
989 current_root_index_(0),
Andrei Popescu31002712010-02-23 13:46:05 +0000990 external_reference_encoder_(new ExternalReferenceEncoder),
Leon Clarkee46be812010-01-19 14:06:41 +0000991 large_object_total_(0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000992 for (int i = 0; i <= LAST_SPACE; i++) {
Steve Blockd0582a62009-12-15 09:54:21 +0000993 fullness_[i] = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000994 }
995}
996
997
Andrei Popescu31002712010-02-23 13:46:05 +0000998Serializer::~Serializer() {
999 delete external_reference_encoder_;
1000}
1001
1002
Leon Clarked91b9f72010-01-27 17:25:45 +00001003void StartupSerializer::SerializeStrongReferences() {
Steve Blocka7e24c12009-10-30 11:49:00 +00001004 // No active threads.
1005 CHECK_EQ(NULL, ThreadState::FirstInUse());
1006 // No active or weak handles.
1007 CHECK(HandleScopeImplementer::instance()->blocks()->is_empty());
1008 CHECK_EQ(0, GlobalHandles::NumberOfWeakHandles());
Steve Blockd0582a62009-12-15 09:54:21 +00001009 // We don't support serializing installed extensions.
1010 for (RegisteredExtension* ext = RegisteredExtension::first_extension();
1011 ext != NULL;
1012 ext = ext->next()) {
1013 CHECK_NE(v8::INSTALLED, ext->state());
1014 }
Leon Clarked91b9f72010-01-27 17:25:45 +00001015 Heap::IterateStrongRoots(this, VISIT_ONLY_STRONG);
Steve Blocka7e24c12009-10-30 11:49:00 +00001016}
1017
1018
Leon Clarked91b9f72010-01-27 17:25:45 +00001019void PartialSerializer::Serialize(Object** object) {
Leon Clarkee46be812010-01-19 14:06:41 +00001020 this->VisitPointer(object);
Leon Clarked91b9f72010-01-27 17:25:45 +00001021
1022 // After we have done the partial serialization the partial snapshot cache
1023 // will contain some references needed to decode the partial snapshot. We
1024 // fill it up with undefineds so it has a predictable length so the
1025 // deserialization code doesn't need to know the length.
1026 for (int index = partial_snapshot_cache_length_;
1027 index < kPartialSnapshotCacheCapacity;
1028 index++) {
1029 partial_snapshot_cache_[index] = Heap::undefined_value();
1030 startup_serializer_->VisitPointer(&partial_snapshot_cache_[index]);
1031 }
1032 partial_snapshot_cache_length_ = kPartialSnapshotCacheCapacity;
Leon Clarkee46be812010-01-19 14:06:41 +00001033}
1034
1035
Steve Blocka7e24c12009-10-30 11:49:00 +00001036void Serializer::VisitPointers(Object** start, Object** end) {
Steve Blockd0582a62009-12-15 09:54:21 +00001037 for (Object** current = start; current < end; current++) {
1038 if ((*current)->IsSmi()) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001039 sink_->Put(kRawData, "RawData");
Steve Blockd0582a62009-12-15 09:54:21 +00001040 sink_->PutInt(kPointerSize, "length");
1041 for (int i = 0; i < kPointerSize; i++) {
1042 sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
1043 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001044 } else {
Leon Clarkef7060e22010-06-03 12:02:55 +01001045 SerializeObject(*current, kPlain, kStartOfObject);
Steve Blocka7e24c12009-10-30 11:49:00 +00001046 }
1047 }
1048}
1049
1050
Leon Clarked91b9f72010-01-27 17:25:45 +00001051Object* SerializerDeserializer::partial_snapshot_cache_[
1052 kPartialSnapshotCacheCapacity];
1053int SerializerDeserializer::partial_snapshot_cache_length_ = 0;
1054
1055
1056// This ensures that the partial snapshot cache keeps things alive during GC and
1057// tracks their movement. When it is called during serialization of the startup
1058// snapshot the partial snapshot is empty, so nothing happens. When the partial
1059// (context) snapshot is created, this array is populated with the pointers that
1060// the partial snapshot will need. As that happens we emit serialized objects to
1061// the startup snapshot that correspond to the elements of this cache array. On
1062// deserialization we therefore need to visit the cache array. This fills it up
1063// with pointers to deserialized objects.
Steve Block6ded16b2010-05-10 14:33:55 +01001064void SerializerDeserializer::Iterate(ObjectVisitor* visitor) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001065 visitor->VisitPointers(
1066 &partial_snapshot_cache_[0],
1067 &partial_snapshot_cache_[partial_snapshot_cache_length_]);
1068}
1069
1070
1071// When deserializing we need to set the size of the snapshot cache. This means
1072// the root iteration code (above) will iterate over array elements, writing the
1073// references to deserialized objects in them.
1074void SerializerDeserializer::SetSnapshotCacheSize(int size) {
1075 partial_snapshot_cache_length_ = size;
1076}
1077
1078
1079int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
1080 for (int i = 0; i < partial_snapshot_cache_length_; i++) {
1081 Object* entry = partial_snapshot_cache_[i];
1082 if (entry == heap_object) return i;
1083 }
Andrei Popescu31002712010-02-23 13:46:05 +00001084
Leon Clarked91b9f72010-01-27 17:25:45 +00001085 // We didn't find the object in the cache. So we add it to the cache and
1086 // then visit the pointer so that it becomes part of the startup snapshot
1087 // and we can refer to it from the partial snapshot.
1088 int length = partial_snapshot_cache_length_;
1089 CHECK(length < kPartialSnapshotCacheCapacity);
1090 partial_snapshot_cache_[length] = heap_object;
1091 startup_serializer_->VisitPointer(&partial_snapshot_cache_[length]);
1092 // We don't recurse from the startup snapshot generator into the partial
1093 // snapshot generator.
1094 ASSERT(length == partial_snapshot_cache_length_);
1095 return partial_snapshot_cache_length_++;
1096}
1097
1098
1099int PartialSerializer::RootIndex(HeapObject* heap_object) {
Leon Clarkee46be812010-01-19 14:06:41 +00001100 for (int i = 0; i < Heap::kRootListLength; i++) {
1101 Object* root = Heap::roots_address()[i];
1102 if (root == heap_object) return i;
1103 }
1104 return kInvalidRootIndex;
1105}
1106
1107
Leon Clarked91b9f72010-01-27 17:25:45 +00001108// Encode the location of an already deserialized object in order to write its
1109// location into a later object. We can encode the location as an offset from
1110// the start of the deserialized objects or as an offset backwards from the
1111// current allocation pointer.
1112void Serializer::SerializeReferenceToPreviousObject(
1113 int space,
1114 int address,
Leon Clarkef7060e22010-06-03 12:02:55 +01001115 HowToCode how_to_code,
1116 WhereToPoint where_to_point) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001117 int offset = CurrentAllocationAddress(space) - address;
1118 bool from_start = true;
1119 if (SpaceIsPaged(space)) {
1120 // For paged space it is simple to encode back from current allocation if
1121 // the object is on the same page as the current allocation pointer.
1122 if ((CurrentAllocationAddress(space) >> kPageSizeBits) ==
1123 (address >> kPageSizeBits)) {
1124 from_start = false;
1125 address = offset;
1126 }
1127 } else if (space == NEW_SPACE) {
1128 // For new space it is always simple to encode back from current allocation.
1129 if (offset < address) {
1130 from_start = false;
1131 address = offset;
1132 }
1133 }
1134 // If we are actually dealing with real offsets (and not a numbering of
1135 // all objects) then we should shift out the bits that are always 0.
1136 if (!SpaceIsLarge(space)) address >>= kObjectAlignmentBits;
Leon Clarkef7060e22010-06-03 12:02:55 +01001137 if (from_start) {
1138#define COMMON_REFS_CASE(pseudo_space, actual_space, offset) \
1139 if (space == actual_space && address == offset && \
1140 how_to_code == kPlain && where_to_point == kStartOfObject) { \
1141 sink_->Put(kFromStart + how_to_code + where_to_point + \
1142 pseudo_space, "RefSer"); \
1143 } else /* NOLINT */
1144 COMMON_REFERENCE_PATTERNS(COMMON_REFS_CASE)
1145#undef COMMON_REFS_CASE
1146 { /* NOLINT */
1147 sink_->Put(kFromStart + how_to_code + where_to_point + space, "RefSer");
Leon Clarked91b9f72010-01-27 17:25:45 +00001148 sink_->PutInt(address, "address");
1149 }
1150 } else {
Leon Clarkef7060e22010-06-03 12:02:55 +01001151 sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
1152 sink_->PutInt(address, "address");
Leon Clarked91b9f72010-01-27 17:25:45 +00001153 }
1154}
1155
1156
1157void StartupSerializer::SerializeObject(
Leon Clarkeeab96aa2010-01-27 16:31:12 +00001158 Object* o,
Leon Clarkef7060e22010-06-03 12:02:55 +01001159 HowToCode how_to_code,
1160 WhereToPoint where_to_point) {
Leon Clarkeeab96aa2010-01-27 16:31:12 +00001161 CHECK(o->IsHeapObject());
1162 HeapObject* heap_object = HeapObject::cast(o);
Leon Clarked91b9f72010-01-27 17:25:45 +00001163
1164 if (address_mapper_.IsMapped(heap_object)) {
Leon Clarkeeab96aa2010-01-27 16:31:12 +00001165 int space = SpaceOfAlreadySerializedObject(heap_object);
Leon Clarked91b9f72010-01-27 17:25:45 +00001166 int address = address_mapper_.MappedTo(heap_object);
1167 SerializeReferenceToPreviousObject(space,
1168 address,
Leon Clarkef7060e22010-06-03 12:02:55 +01001169 how_to_code,
1170 where_to_point);
Leon Clarked91b9f72010-01-27 17:25:45 +00001171 } else {
1172 // Object has not yet been serialized. Serialize it here.
1173 ObjectSerializer object_serializer(this,
1174 heap_object,
1175 sink_,
Leon Clarkef7060e22010-06-03 12:02:55 +01001176 how_to_code,
1177 where_to_point);
Leon Clarked91b9f72010-01-27 17:25:45 +00001178 object_serializer.Serialize();
1179 }
1180}
1181
1182
1183void StartupSerializer::SerializeWeakReferences() {
1184 for (int i = partial_snapshot_cache_length_;
1185 i < kPartialSnapshotCacheCapacity;
1186 i++) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001187 sink_->Put(kRootArray + kPlain + kStartOfObject, "RootSerialization");
Leon Clarked91b9f72010-01-27 17:25:45 +00001188 sink_->PutInt(Heap::kUndefinedValueRootIndex, "root_index");
1189 }
1190 Heap::IterateWeakRoots(this, VISIT_ALL);
1191}
1192
1193
1194void PartialSerializer::SerializeObject(
1195 Object* o,
Leon Clarkef7060e22010-06-03 12:02:55 +01001196 HowToCode how_to_code,
1197 WhereToPoint where_to_point) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001198 CHECK(o->IsHeapObject());
1199 HeapObject* heap_object = HeapObject::cast(o);
1200
1201 int root_index;
1202 if ((root_index = RootIndex(heap_object)) != kInvalidRootIndex) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001203 sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
Leon Clarked91b9f72010-01-27 17:25:45 +00001204 sink_->PutInt(root_index, "root_index");
1205 return;
1206 }
1207
1208 if (ShouldBeInThePartialSnapshotCache(heap_object)) {
1209 int cache_index = PartialSnapshotCacheIndex(heap_object);
Leon Clarkef7060e22010-06-03 12:02:55 +01001210 sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
1211 "PartialSnapshotCache");
Leon Clarked91b9f72010-01-27 17:25:45 +00001212 sink_->PutInt(cache_index, "partial_snapshot_cache_index");
1213 return;
1214 }
1215
1216 // Pointers from the partial snapshot to the objects in the startup snapshot
1217 // should go through the root array or through the partial snapshot cache.
1218 // If this is not the case you may have to add something to the root array.
1219 ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
1220 // All the symbols that the partial snapshot needs should be either in the
1221 // root table or in the partial snapshot cache.
1222 ASSERT(!heap_object->IsSymbol());
1223
1224 if (address_mapper_.IsMapped(heap_object)) {
1225 int space = SpaceOfAlreadySerializedObject(heap_object);
1226 int address = address_mapper_.MappedTo(heap_object);
1227 SerializeReferenceToPreviousObject(space,
1228 address,
Leon Clarkef7060e22010-06-03 12:02:55 +01001229 how_to_code,
1230 where_to_point);
Steve Blockd0582a62009-12-15 09:54:21 +00001231 } else {
1232 // Object has not yet been serialized. Serialize it here.
1233 ObjectSerializer serializer(this,
1234 heap_object,
1235 sink_,
Leon Clarkef7060e22010-06-03 12:02:55 +01001236 how_to_code,
1237 where_to_point);
Steve Blockd0582a62009-12-15 09:54:21 +00001238 serializer.Serialize();
1239 }
1240}
1241
1242
Steve Blockd0582a62009-12-15 09:54:21 +00001243void Serializer::ObjectSerializer::Serialize() {
1244 int space = Serializer::SpaceOfObject(object_);
1245 int size = object_->Size();
1246
Leon Clarkef7060e22010-06-03 12:02:55 +01001247 sink_->Put(kNewObject + reference_representation_ + space,
1248 "ObjectSerialization");
Steve Blockd0582a62009-12-15 09:54:21 +00001249 sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
1250
Leon Clarkee46be812010-01-19 14:06:41 +00001251 LOG(SnapshotPositionEvent(object_->address(), sink_->Position()));
1252
Steve Blockd0582a62009-12-15 09:54:21 +00001253 // Mark this object as already serialized.
1254 bool start_new_page;
Leon Clarked91b9f72010-01-27 17:25:45 +00001255 int offset = serializer_->Allocate(space, size, &start_new_page);
1256 serializer_->address_mapper()->AddMapping(object_, offset);
Steve Blockd0582a62009-12-15 09:54:21 +00001257 if (start_new_page) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001258 sink_->Put(kNewPage, "NewPage");
Steve Blockd0582a62009-12-15 09:54:21 +00001259 sink_->PutSection(space, "NewPageSpace");
1260 }
1261
1262 // Serialize the map (first word of the object).
Leon Clarkef7060e22010-06-03 12:02:55 +01001263 serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject);
Steve Blockd0582a62009-12-15 09:54:21 +00001264
1265 // Serialize the rest of the object.
1266 CHECK_EQ(0, bytes_processed_so_far_);
1267 bytes_processed_so_far_ = kPointerSize;
1268 object_->IterateBody(object_->map()->instance_type(), size, this);
1269 OutputRawData(object_->address() + size);
1270}
1271
1272
1273void Serializer::ObjectSerializer::VisitPointers(Object** start,
1274 Object** end) {
1275 Object** current = start;
1276 while (current < end) {
1277 while (current < end && (*current)->IsSmi()) current++;
1278 if (current < end) OutputRawData(reinterpret_cast<Address>(current));
1279
1280 while (current < end && !(*current)->IsSmi()) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001281 serializer_->SerializeObject(*current, kPlain, kStartOfObject);
Steve Blockd0582a62009-12-15 09:54:21 +00001282 bytes_processed_so_far_ += kPointerSize;
1283 current++;
1284 }
1285 }
1286}
1287
1288
1289void Serializer::ObjectSerializer::VisitExternalReferences(Address* start,
1290 Address* end) {
1291 Address references_start = reinterpret_cast<Address>(start);
1292 OutputRawData(references_start);
1293
1294 for (Address* current = start; current < end; current++) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001295 sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
Steve Blockd0582a62009-12-15 09:54:21 +00001296 int reference_id = serializer_->EncodeExternalReference(*current);
1297 sink_->PutInt(reference_id, "reference id");
1298 }
1299 bytes_processed_so_far_ += static_cast<int>((end - start) * kPointerSize);
1300}
1301
1302
1303void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
1304 Address target_start = rinfo->target_address_address();
1305 OutputRawData(target_start);
1306 Address target = rinfo->target_address();
1307 uint32_t encoding = serializer_->EncodeExternalReference(target);
1308 CHECK(target == NULL ? encoding == 0 : encoding != 0);
Leon Clarkef7060e22010-06-03 12:02:55 +01001309 int representation;
1310 // Can't use a ternary operator because of gcc.
1311 if (rinfo->IsCodedSpecially()) {
1312 representation = kStartOfObject + kFromCode;
1313 } else {
1314 representation = kStartOfObject + kPlain;
1315 }
1316 sink_->Put(kExternalReference + representation, "ExternalReference");
Steve Blockd0582a62009-12-15 09:54:21 +00001317 sink_->PutInt(encoding, "reference id");
Leon Clarkef7060e22010-06-03 12:02:55 +01001318 bytes_processed_so_far_ += rinfo->target_address_size();
Steve Blockd0582a62009-12-15 09:54:21 +00001319}
1320
1321
1322void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
1323 CHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
1324 Address target_start = rinfo->target_address_address();
1325 OutputRawData(target_start);
1326 Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
Leon Clarkef7060e22010-06-03 12:02:55 +01001327 serializer_->SerializeObject(target, kFromCode, kFirstInstruction);
1328 bytes_processed_so_far_ += rinfo->target_address_size();
Steve Blockd0582a62009-12-15 09:54:21 +00001329}
1330
1331
1332void Serializer::ObjectSerializer::VisitExternalAsciiString(
1333 v8::String::ExternalAsciiStringResource** resource_pointer) {
1334 Address references_start = reinterpret_cast<Address>(resource_pointer);
1335 OutputRawData(references_start);
1336 for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
1337 Object* source = Heap::natives_source_cache()->get(i);
1338 if (!source->IsUndefined()) {
1339 ExternalAsciiString* string = ExternalAsciiString::cast(source);
1340 typedef v8::String::ExternalAsciiStringResource Resource;
1341 Resource* resource = string->resource();
1342 if (resource == *resource_pointer) {
Leon Clarkef7060e22010-06-03 12:02:55 +01001343 sink_->Put(kNativesStringResource, "NativesStringResource");
Steve Blockd0582a62009-12-15 09:54:21 +00001344 sink_->PutSection(i, "NativesStringResourceEnd");
1345 bytes_processed_so_far_ += sizeof(resource);
1346 return;
1347 }
1348 }
1349 }
1350 // One of the strings in the natives cache should match the resource. We
1351 // can't serialize any other kinds of external strings.
1352 UNREACHABLE();
1353}
1354
1355
1356void Serializer::ObjectSerializer::OutputRawData(Address up_to) {
1357 Address object_start = object_->address();
1358 int up_to_offset = static_cast<int>(up_to - object_start);
1359 int skipped = up_to_offset - bytes_processed_so_far_;
1360 // This assert will fail if the reloc info gives us the target_address_address
1361 // locations in a non-ascending order. Luckily that doesn't happen.
1362 ASSERT(skipped >= 0);
1363 if (skipped != 0) {
1364 Address base = object_start + bytes_processed_so_far_;
1365#define RAW_CASE(index, length) \
1366 if (skipped == length) { \
Leon Clarkef7060e22010-06-03 12:02:55 +01001367 sink_->PutSection(kRawData + index, "RawDataFixed"); \
Steve Blockd0582a62009-12-15 09:54:21 +00001368 } else /* NOLINT */
1369 COMMON_RAW_LENGTHS(RAW_CASE)
1370#undef RAW_CASE
1371 { /* NOLINT */
Leon Clarkef7060e22010-06-03 12:02:55 +01001372 sink_->Put(kRawData, "RawData");
Steve Blockd0582a62009-12-15 09:54:21 +00001373 sink_->PutInt(skipped, "length");
1374 }
1375 for (int i = 0; i < skipped; i++) {
1376 unsigned int data = base[i];
1377 sink_->PutSection(data, "Byte");
1378 }
1379 bytes_processed_so_far_ += skipped;
1380 }
1381}
1382
1383
1384int Serializer::SpaceOfObject(HeapObject* object) {
1385 for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1386 AllocationSpace s = static_cast<AllocationSpace>(i);
1387 if (Heap::InSpace(object, s)) {
1388 if (i == LO_SPACE) {
1389 if (object->IsCode()) {
1390 return kLargeCode;
1391 } else if (object->IsFixedArray()) {
1392 return kLargeFixedArray;
1393 } else {
1394 return kLargeData;
1395 }
1396 }
1397 return i;
1398 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001399 }
1400 UNREACHABLE();
Steve Blockd0582a62009-12-15 09:54:21 +00001401 return 0;
1402}
1403
1404
1405int Serializer::SpaceOfAlreadySerializedObject(HeapObject* object) {
1406 for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
1407 AllocationSpace s = static_cast<AllocationSpace>(i);
1408 if (Heap::InSpace(object, s)) {
1409 return i;
1410 }
1411 }
1412 UNREACHABLE();
1413 return 0;
1414}
1415
1416
1417int Serializer::Allocate(int space, int size, bool* new_page) {
1418 CHECK(space >= 0 && space < kNumberOfSpaces);
1419 if (SpaceIsLarge(space)) {
1420 // In large object space we merely number the objects instead of trying to
1421 // determine some sort of address.
1422 *new_page = true;
Leon Clarkee46be812010-01-19 14:06:41 +00001423 large_object_total_ += size;
Steve Blockd0582a62009-12-15 09:54:21 +00001424 return fullness_[LO_SPACE]++;
1425 }
1426 *new_page = false;
1427 if (fullness_[space] == 0) {
1428 *new_page = true;
1429 }
1430 if (SpaceIsPaged(space)) {
1431 // Paged spaces are a little special. We encode their addresses as if the
1432 // pages were all contiguous and each page were filled up in the range
1433 // 0 - Page::kObjectAreaSize. In practice the pages may not be contiguous
1434 // and allocation does not start at offset 0 in the page, but this scheme
1435 // means the deserializer can get the page number quickly by shifting the
1436 // serialized address.
1437 CHECK(IsPowerOf2(Page::kPageSize));
1438 int used_in_this_page = (fullness_[space] & (Page::kPageSize - 1));
1439 CHECK(size <= Page::kObjectAreaSize);
1440 if (used_in_this_page + size > Page::kObjectAreaSize) {
1441 *new_page = true;
1442 fullness_[space] = RoundUp(fullness_[space], Page::kPageSize);
1443 }
1444 }
1445 int allocation_address = fullness_[space];
1446 fullness_[space] = allocation_address + size;
1447 return allocation_address;
Steve Blocka7e24c12009-10-30 11:49:00 +00001448}
1449
1450
1451} } // namespace v8::internal