blob: ff6bbf43026569573170120e80624c3f12c3f2be [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
29// Declares a Simulator for ARM instructions if we are not generating a native
30// ARM binary. This Simulator allows us to run and debug ARM code generation on
31// regular desktop machines.
32// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
33// which will start execution in the Simulator or forwards to the real entry
34// on a ARM HW platform.
35
36#ifndef V8_ARM_SIMULATOR_ARM_H_
37#define V8_ARM_SIMULATOR_ARM_H_
38
39#include "allocation.h"
40
41#if defined(__arm__)
42
43// When running without a simulator we call the entry directly.
44#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
45 (entry(p0, p1, p2, p3, p4))
46
47// The stack limit beyond which we will throw stack overflow errors in
48// generated code. Because generated code on arm uses the C stack, we
49// just use the C stack limit.
50class SimulatorStack : public v8::internal::AllStatic {
51 public:
52 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
53 return c_limit;
54 }
55};
56
57
58// Call the generated regexp code directly. The entry function pointer should
59// expect seven int/pointer sized arguments and return an int.
60#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
61 entry(p0, p1, p2, p3, p4, p5, p6)
62
63#else // defined(__arm__)
64
65// When running with the simulator transition into simulated execution at this
66// point.
67#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
68 reinterpret_cast<Object*>( \
69 assembler::arm::Simulator::current()->Call(FUNCTION_ADDR(entry), 5, \
70 p0, p1, p2, p3, p4))
71
72#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
73 assembler::arm::Simulator::current()->Call( \
74 FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6)
75
76#include "constants-arm.h"
77
78
79namespace assembler {
80namespace arm {
81
82class Simulator {
83 public:
84 friend class Debugger;
85
86 enum Register {
87 no_reg = -1,
88 r0 = 0, r1, r2, r3, r4, r5, r6, r7,
89 r8, r9, r10, r11, r12, r13, r14, r15,
90 num_registers,
91 sp = 13,
92 lr = 14,
93 pc = 15
94 };
95
96 Simulator();
97 ~Simulator();
98
99 // The currently executing Simulator instance. Potentially there can be one
100 // for each native thread.
101 static Simulator* current();
102
103 // Accessors for register state. Reading the pc value adheres to the ARM
104 // architecture specification and is off by a 8 from the currently executing
105 // instruction.
106 void set_register(int reg, int32_t value);
107 int32_t get_register(int reg) const;
108
109 // Special case of set_register and get_register to access the raw PC value.
110 void set_pc(int32_t value);
111 int32_t get_pc() const;
112
113 // Accessor to the internal simulator stack area.
114 uintptr_t StackLimit() const;
115
116 // Executes ARM instructions until the PC reaches end_sim_pc.
117 void Execute();
118
119 // Call on program start.
120 static void Initialize();
121
122 // V8 generally calls into generated JS code with 5 parameters and into
123 // generated RegExp code with 7 parameters. This is a convenience function,
124 // which sets up the simulator state and grabs the result on return.
125 int32_t Call(byte* entry, int argument_count, ...);
126
127 private:
128 enum special_values {
129 // Known bad pc value to ensure that the simulator does not execute
130 // without being properly setup.
131 bad_lr = -1,
132 // A pc value used to signal the simulator to stop execution. Generally
133 // the lr is set to this value on transition from native C code to
134 // simulated execution, so that the simulator can "return" to the native
135 // C code.
136 end_sim_pc = -2
137 };
138
139 // Unsupported instructions use Format to print an error and stop execution.
140 void Format(Instr* instr, const char* format);
141
142 // Checks if the current instruction should be executed based on its
143 // condition bits.
144 bool ConditionallyExecute(Instr* instr);
145
146 // Helper functions to set the conditional flags in the architecture state.
147 void SetNZFlags(int32_t val);
148 void SetCFlag(bool val);
149 void SetVFlag(bool val);
150 bool CarryFrom(int32_t left, int32_t right);
151 bool BorrowFrom(int32_t left, int32_t right);
152 bool OverflowFrom(int32_t alu_out,
153 int32_t left,
154 int32_t right,
155 bool addition);
156
157 // Helper functions to decode common "addressing" modes
158 int32_t GetShiftRm(Instr* instr, bool* carry_out);
159 int32_t GetImm(Instr* instr, bool* carry_out);
160 void HandleRList(Instr* instr, bool load);
161 void SoftwareInterrupt(Instr* instr);
162
163 // Read and write memory.
164 inline uint8_t ReadBU(int32_t addr);
165 inline int8_t ReadB(int32_t addr);
166 inline void WriteB(int32_t addr, uint8_t value);
167 inline void WriteB(int32_t addr, int8_t value);
168
169 inline uint16_t ReadHU(int32_t addr, Instr* instr);
170 inline int16_t ReadH(int32_t addr, Instr* instr);
171 // Note: Overloaded on the sign of the value.
172 inline void WriteH(int32_t addr, uint16_t value, Instr* instr);
173 inline void WriteH(int32_t addr, int16_t value, Instr* instr);
174
175 inline int ReadW(int32_t addr, Instr* instr);
176 inline void WriteW(int32_t addr, int value, Instr* instr);
177
178 // Executing is handled based on the instruction type.
179 void DecodeType01(Instr* instr); // both type 0 and type 1 rolled into one
180 void DecodeType2(Instr* instr);
181 void DecodeType3(Instr* instr);
182 void DecodeType4(Instr* instr);
183 void DecodeType5(Instr* instr);
184 void DecodeType6(Instr* instr);
185 void DecodeType7(Instr* instr);
186 void DecodeUnconditional(Instr* instr);
187
188 // Executes one instruction.
189 void InstructionDecode(Instr* instr);
190
191 // Runtime call support.
192 static void* RedirectExternalReference(void* external_function,
193 bool fp_return);
194
195 // For use in calls that take two double values, constructed from r0, r1, r2
196 // and r3.
197 void GetFpArgs(double* x, double* y);
198 void SetFpResult(const double& result);
199 void TrashCallerSaveRegisters();
200
201 // architecture state
202 int32_t registers_[16];
203 bool n_flag_;
204 bool z_flag_;
205 bool c_flag_;
206 bool v_flag_;
207
208 // simulator support
209 char* stack_;
210 bool pc_modified_;
211 int icount_;
212 static bool initialized_;
213
214 // registered breakpoints
215 Instr* break_pc_;
216 instr_t break_instr_;
217};
218
219} } // namespace assembler::arm
220
221
222// The simulator has its own stack. Thus it has a different stack limit from
223// the C-based native code. Setting the c_limit to indicate a very small
224// stack cause stack overflow errors, since the simulator ignores the input.
225// This is unlikely to be an issue in practice, though it might cause testing
226// trouble down the line.
227class SimulatorStack : public v8::internal::AllStatic {
228 public:
229 static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
230 return assembler::arm::Simulator::current()->StackLimit();
231 }
232};
233
234
235#endif // defined(__arm__)
236
237#endif // V8_ARM_SIMULATOR_ARM_H_