blob: ff87286e35242ccd13bd2f68b3103cc7b5a675e7 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
40namespace v8 {
41namespace internal {
42
43// Utility functions
44
45// Test whether a 64-bit value is in a specific range.
46static inline bool is_uint32(int64_t x) {
47 static const int64_t kUInt32Mask = V8_INT64_C(0xffffffff);
48 return x == (x & kUInt32Mask);
49}
50
51static inline bool is_int32(int64_t x) {
52 static const int64_t kMinIntValue = V8_INT64_C(-0x80000000);
53 return is_uint32(x - kMinIntValue);
54}
55
56static inline bool uint_is_int32(uint64_t x) {
57 static const uint64_t kMaxIntValue = V8_UINT64_C(0x80000000);
58 return x < kMaxIntValue;
59}
60
61static inline bool is_uint32(uint64_t x) {
62 static const uint64_t kMaxUIntValue = V8_UINT64_C(0x100000000);
63 return x < kMaxUIntValue;
64}
65
66// CPU Registers.
67//
68// 1) We would prefer to use an enum, but enum values are assignment-
69// compatible with int, which has caused code-generation bugs.
70//
71// 2) We would prefer to use a class instead of a struct but we don't like
72// the register initialization to depend on the particular initialization
73// order (which appears to be different on OS X, Linux, and Windows for the
74// installed versions of C++ we tried). Using a struct permits C-style
75// "initialization". Also, the Register objects cannot be const as this
76// forces initialization stubs in MSVC, making us dependent on initialization
77// order.
78//
79// 3) By not using an enum, we are possibly preventing the compiler from
80// doing certain constant folds, which may significantly reduce the
81// code generated for some assembly instructions (because they boil down
82// to a few constants). If this is a problem, we could change the code
83// such that we use an enum in optimized mode, and the struct in debug
84// mode. This way we get the compile-time error checking in debug mode
85// and best performance in optimized code.
86//
87
88struct Register {
89 static Register toRegister(int code) {
90 Register r = { code };
91 return r;
92 }
93 bool is_valid() const { return 0 <= code_ && code_ < 16; }
94 bool is(Register reg) const { return code_ == reg.code_; }
95 int code() const {
96 ASSERT(is_valid());
97 return code_;
98 }
99 int bit() const {
100 return 1 << code_;
101 }
102
103 // Return the high bit of the register code as a 0 or 1. Used often
104 // when constructing the REX prefix byte.
105 int high_bit() const {
106 return code_ >> 3;
107 }
108 // Return the 3 low bits of the register code. Used when encoding registers
109 // in modR/M, SIB, and opcode bytes.
110 int low_bits() const {
111 return code_ & 0x7;
112 }
113
114 // (unfortunately we can't make this private in a struct when initializing
115 // by assignment.)
116 int code_;
117};
118
119extern Register rax;
120extern Register rcx;
121extern Register rdx;
122extern Register rbx;
123extern Register rsp;
124extern Register rbp;
125extern Register rsi;
126extern Register rdi;
127extern Register r8;
128extern Register r9;
129extern Register r10;
130extern Register r11;
131extern Register r12;
132extern Register r13;
133extern Register r14;
134extern Register r15;
135extern Register no_reg;
136
137
138struct MMXRegister {
139 bool is_valid() const { return 0 <= code_ && code_ < 2; }
140 int code() const {
141 ASSERT(is_valid());
142 return code_;
143 }
144
145 int code_;
146};
147
148extern MMXRegister mm0;
149extern MMXRegister mm1;
150extern MMXRegister mm2;
151extern MMXRegister mm3;
152extern MMXRegister mm4;
153extern MMXRegister mm5;
154extern MMXRegister mm6;
155extern MMXRegister mm7;
156extern MMXRegister mm8;
157extern MMXRegister mm9;
158extern MMXRegister mm10;
159extern MMXRegister mm11;
160extern MMXRegister mm12;
161extern MMXRegister mm13;
162extern MMXRegister mm14;
163extern MMXRegister mm15;
164
165
166struct XMMRegister {
167 bool is_valid() const { return 0 <= code_ && code_ < 16; }
168 int code() const {
169 ASSERT(is_valid());
170 return code_;
171 }
172
173 // Return the high bit of the register code as a 0 or 1. Used often
174 // when constructing the REX prefix byte.
175 int high_bit() const {
176 return code_ >> 3;
177 }
178 // Return the 3 low bits of the register code. Used when encoding registers
179 // in modR/M, SIB, and opcode bytes.
180 int low_bits() const {
181 return code_ & 0x7;
182 }
183
184 int code_;
185};
186
187extern XMMRegister xmm0;
188extern XMMRegister xmm1;
189extern XMMRegister xmm2;
190extern XMMRegister xmm3;
191extern XMMRegister xmm4;
192extern XMMRegister xmm5;
193extern XMMRegister xmm6;
194extern XMMRegister xmm7;
195extern XMMRegister xmm8;
196extern XMMRegister xmm9;
197extern XMMRegister xmm10;
198extern XMMRegister xmm11;
199extern XMMRegister xmm12;
200extern XMMRegister xmm13;
201extern XMMRegister xmm14;
202extern XMMRegister xmm15;
203
204enum Condition {
205 // any value < 0 is considered no_condition
206 no_condition = -1,
207
208 overflow = 0,
209 no_overflow = 1,
210 below = 2,
211 above_equal = 3,
212 equal = 4,
213 not_equal = 5,
214 below_equal = 6,
215 above = 7,
216 negative = 8,
217 positive = 9,
218 parity_even = 10,
219 parity_odd = 11,
220 less = 12,
221 greater_equal = 13,
222 less_equal = 14,
223 greater = 15,
224
225 // aliases
226 carry = below,
227 not_carry = above_equal,
228 zero = equal,
229 not_zero = not_equal,
230 sign = negative,
231 not_sign = positive
232};
233
234
235// Returns the equivalent of !cc.
236// Negation of the default no_condition (-1) results in a non-default
237// no_condition value (-2). As long as tests for no_condition check
238// for condition < 0, this will work as expected.
239inline Condition NegateCondition(Condition cc);
240
241// Corresponds to transposing the operands of a comparison.
242inline Condition ReverseCondition(Condition cc) {
243 switch (cc) {
244 case below:
245 return above;
246 case above:
247 return below;
248 case above_equal:
249 return below_equal;
250 case below_equal:
251 return above_equal;
252 case less:
253 return greater;
254 case greater:
255 return less;
256 case greater_equal:
257 return less_equal;
258 case less_equal:
259 return greater_equal;
260 default:
261 return cc;
262 };
263}
264
265enum Hint {
266 no_hint = 0,
267 not_taken = 0x2e,
268 taken = 0x3e
269};
270
271// The result of negating a hint is as if the corresponding condition
272// were negated by NegateCondition. That is, no_hint is mapped to
273// itself and not_taken and taken are mapped to each other.
274inline Hint NegateHint(Hint hint) {
275 return (hint == no_hint)
276 ? no_hint
277 : ((hint == not_taken) ? taken : not_taken);
278}
279
280
281// -----------------------------------------------------------------------------
282// Machine instruction Immediates
283
284class Immediate BASE_EMBEDDED {
285 public:
286 explicit Immediate(int32_t value) : value_(value) {}
287 inline explicit Immediate(Smi* value);
288
289 private:
290 int32_t value_;
291
292 friend class Assembler;
293};
294
295
296// -----------------------------------------------------------------------------
297// Machine instruction Operands
298
299enum ScaleFactor {
300 times_1 = 0,
301 times_2 = 1,
302 times_4 = 2,
303 times_8 = 3,
304 times_int_size = times_4,
305 times_half_pointer_size = times_4,
306 times_pointer_size = times_8
307};
308
309
310class Operand BASE_EMBEDDED {
311 public:
312 // [base + disp/r]
313 Operand(Register base, int32_t disp);
314
315 // [base + index*scale + disp/r]
316 Operand(Register base,
317 Register index,
318 ScaleFactor scale,
319 int32_t disp);
320
321 // [index*scale + disp/r]
322 Operand(Register index,
323 ScaleFactor scale,
324 int32_t disp);
325
326 private:
327 byte rex_;
328 byte buf_[10];
329 // The number of bytes in buf_.
330 unsigned int len_;
331 RelocInfo::Mode rmode_;
332
333 // Set the ModR/M byte without an encoded 'reg' register. The
334 // register is encoded later as part of the emit_operand operation.
335 // set_modrm can be called before or after set_sib and set_disp*.
336 inline void set_modrm(int mod, Register rm);
337
338 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
339 inline void set_sib(ScaleFactor scale, Register index, Register base);
340
341 // Adds operand displacement fields (offsets added to the memory address).
342 // Needs to be called after set_sib, not before it.
343 inline void set_disp8(int disp);
344 inline void set_disp32(int disp);
345
346 friend class Assembler;
347};
348
349
350// CpuFeatures keeps track of which features are supported by the target CPU.
351// Supported features must be enabled by a Scope before use.
352// Example:
353// if (CpuFeatures::IsSupported(SSE3)) {
354// CpuFeatures::Scope fscope(SSE3);
355// // Generate SSE3 floating point code.
356// } else {
357// // Generate standard x87 or SSE2 floating point code.
358// }
359class CpuFeatures : public AllStatic {
360 public:
361 // Feature flags bit positions. They are mostly based on the CPUID spec.
362 // (We assign CPUID itself to one of the currently reserved bits --
363 // feel free to change this if needed.)
364 enum Feature { SSE3 = 32,
365 SSE2 = 26,
366 CMOV = 15,
367 RDTSC = 4,
368 CPUID = 10,
369 SAHF = 0};
370 // Detect features of the target CPU. Set safe defaults if the serializer
371 // is enabled (snapshots must be portable).
372 static void Probe();
373 // Check whether a feature is supported by the target CPU.
374 static bool IsSupported(Feature f) {
375 return (supported_ & (V8_UINT64_C(1) << f)) != 0;
376 }
377 // Check whether a feature is currently enabled.
378 static bool IsEnabled(Feature f) {
379 return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
380 }
381 // Enable a specified feature within a scope.
382 class Scope BASE_EMBEDDED {
383#ifdef DEBUG
384 public:
385 explicit Scope(Feature f) {
386 ASSERT(CpuFeatures::IsSupported(f));
387 old_enabled_ = CpuFeatures::enabled_;
388 CpuFeatures::enabled_ |= (V8_UINT64_C(1) << f);
389 }
390 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
391 private:
392 uint64_t old_enabled_;
393#else
394 public:
395 explicit Scope(Feature f) {}
396#endif
397 };
398 private:
399 // Safe defaults include SSE2 and CMOV for X64. It is always available, if
400 // anyone checks, but they shouldn't need to check.
401 static const uint64_t kDefaultCpuFeatures =
402 (1 << CpuFeatures::SSE2 | 1 << CpuFeatures::CMOV);
403 static uint64_t supported_;
404 static uint64_t enabled_;
405};
406
407
408class Assembler : public Malloced {
409 private:
410 // We check before assembling an instruction that there is sufficient
411 // space to write an instruction and its relocation information.
412 // The relocation writer's position must be kGap bytes above the end of
413 // the generated instructions. This leaves enough space for the
414 // longest possible x64 instruction, 15 bytes, and the longest possible
415 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
416 // (There is a 15 byte limit on x64 instruction length that rules out some
417 // otherwise valid instructions.)
418 // This allows for a single, fast space check per instruction.
419 static const int kGap = 32;
420
421 public:
422 // Create an assembler. Instructions and relocation information are emitted
423 // into a buffer, with the instructions starting from the beginning and the
424 // relocation information starting from the end of the buffer. See CodeDesc
425 // for a detailed comment on the layout (globals.h).
426 //
427 // If the provided buffer is NULL, the assembler allocates and grows its own
428 // buffer, and buffer_size determines the initial buffer size. The buffer is
429 // owned by the assembler and deallocated upon destruction of the assembler.
430 //
431 // If the provided buffer is not NULL, the assembler uses the provided buffer
432 // for code generation and assumes its size to be buffer_size. If the buffer
433 // is too small, a fatal error occurs. No deallocation of the buffer is done
434 // upon destruction of the assembler.
435 Assembler(void* buffer, int buffer_size);
436 ~Assembler();
437
438 // GetCode emits any pending (non-emitted) code and fills the descriptor
439 // desc. GetCode() is idempotent; it returns the same result if no other
440 // Assembler functions are invoked in between GetCode() calls.
441 void GetCode(CodeDesc* desc);
442
443 // Read/Modify the code target in the branch/call instruction at pc.
444 // On the x64 architecture, the address is absolute, not relative.
445 static inline Address target_address_at(Address pc);
446 static inline void set_target_address_at(Address pc, Address target);
447
448 // Distance between the address of the code target in the call instruction
449 // and the return address. Checked in the debug build.
450 static const int kCallTargetAddressOffset = 3 + kPointerSize;
451 // Distance between start of patched return sequence and the emitted address
452 // to jump to (movq = REX.W 0xB8+r.).
453 static const int kPatchReturnSequenceAddressOffset = 2;
454
455 // ---------------------------------------------------------------------------
456 // Code generation
457 //
458 // Function names correspond one-to-one to x64 instruction mnemonics.
459 // Unless specified otherwise, instructions operate on 64-bit operands.
460 //
461 // If we need versions of an assembly instruction that operate on different
462 // width arguments, we add a single-letter suffix specifying the width.
463 // This is done for the following instructions: mov, cmp, inc, dec,
464 // add, sub, and test.
465 // There are no versions of these instructions without the suffix.
466 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
467 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
468 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
469 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
470 //
471 // Some mnemonics, such as "and", are the same as C++ keywords.
472 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
473
474 // Insert the smallest number of nop instructions
475 // possible to align the pc offset to a multiple
476 // of m. m must be a power of 2.
477 void Align(int m);
478
479 // Stack
480 void pushfq();
481 void popfq();
482
483 void push(Immediate value);
484 void push(Register src);
485 void push(const Operand& src);
486 void push(Label* label, RelocInfo::Mode relocation_mode);
487
488 void pop(Register dst);
489 void pop(const Operand& dst);
490
491 void enter(Immediate size);
492 void leave();
493
494 // Moves
495 void movb(Register dst, const Operand& src);
496 void movb(Register dst, Immediate imm);
497 void movb(const Operand& dst, Register src);
498
499 void movl(Register dst, Register src);
500 void movl(Register dst, const Operand& src);
501 void movl(const Operand& dst, Register src);
502 void movl(const Operand& dst, Immediate imm);
503 // Load a 32-bit immediate value, zero-extended to 64 bits.
504 void movl(Register dst, Immediate imm32);
505
506 // Move 64 bit register value to 64-bit memory location.
507 void movq(const Operand& dst, Register src);
508 // Move 64 bit memory location to 64-bit register value.
509 void movq(Register dst, const Operand& src);
510 void movq(Register dst, Register src);
511 // Sign extends immediate 32-bit value to 64 bits.
512 void movq(Register dst, Immediate x);
513 // Move the offset of the label location relative to the current
514 // position (after the move) to the destination.
515 void movl(const Operand& dst, Label* src);
516
517 // Move sign extended immediate to memory location.
518 void movq(const Operand& dst, Immediate value);
519 // New x64 instructions to load a 64-bit immediate into a register.
520 // All 64-bit immediates must have a relocation mode.
521 void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
522 void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
523 void movq(Register dst, const char* s, RelocInfo::Mode rmode);
524 // Moves the address of the external reference into the register.
525 void movq(Register dst, ExternalReference ext);
526 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
527
528 void movsxlq(Register dst, Register src);
529 void movsxlq(Register dst, const Operand& src);
530 void movzxbq(Register dst, const Operand& src);
531 void movzxbl(Register dst, const Operand& src);
532 void movzxwl(Register dst, const Operand& src);
533
534 // New x64 instruction to load from an immediate 64-bit pointer into RAX.
535 void load_rax(void* ptr, RelocInfo::Mode rmode);
536 void load_rax(ExternalReference ext);
537
538 // Conditional moves.
539 void cmovq(Condition cc, Register dst, Register src);
540 void cmovq(Condition cc, Register dst, const Operand& src);
541 void cmovl(Condition cc, Register dst, Register src);
542 void cmovl(Condition cc, Register dst, const Operand& src);
543
544 // Exchange two registers
545 void xchg(Register dst, Register src);
546
547 // Arithmetics
548 void addl(Register dst, Register src) {
549 if (dst.low_bits() == 4) { // Forces SIB byte.
550 arithmetic_op_32(0x01, src, dst);
551 } else {
552 arithmetic_op_32(0x03, dst, src);
553 }
554 }
555
556 void addl(Register dst, Immediate src) {
557 immediate_arithmetic_op_32(0x0, dst, src);
558 }
559
560 void addl(Register dst, const Operand& src) {
561 arithmetic_op_32(0x03, dst, src);
562 }
563
564 void addl(const Operand& dst, Immediate src) {
565 immediate_arithmetic_op_32(0x0, dst, src);
566 }
567
568 void addq(Register dst, Register src) {
569 arithmetic_op(0x03, dst, src);
570 }
571
572 void addq(Register dst, const Operand& src) {
573 arithmetic_op(0x03, dst, src);
574 }
575
576 void addq(const Operand& dst, Register src) {
577 arithmetic_op(0x01, src, dst);
578 }
579
580 void addq(Register dst, Immediate src) {
581 immediate_arithmetic_op(0x0, dst, src);
582 }
583
584 void addq(const Operand& dst, Immediate src) {
585 immediate_arithmetic_op(0x0, dst, src);
586 }
587
588 void cmpb(Register dst, Immediate src) {
589 immediate_arithmetic_op_8(0x7, dst, src);
590 }
591
592 void cmpb_al(Immediate src);
593
594 void cmpb(Register dst, Register src) {
595 arithmetic_op(0x3A, dst, src);
596 }
597
598 void cmpb(Register dst, const Operand& src) {
599 arithmetic_op(0x3A, dst, src);
600 }
601
602 void cmpb(const Operand& dst, Register src) {
603 arithmetic_op(0x38, src, dst);
604 }
605
606 void cmpb(const Operand& dst, Immediate src) {
607 immediate_arithmetic_op_8(0x7, dst, src);
608 }
609
610 void cmpw(const Operand& dst, Immediate src) {
611 immediate_arithmetic_op_16(0x7, dst, src);
612 }
613
614 void cmpw(Register dst, Immediate src) {
615 immediate_arithmetic_op_16(0x7, dst, src);
616 }
617
618 void cmpw(Register dst, const Operand& src) {
619 arithmetic_op_16(0x3B, dst, src);
620 }
621
622 void cmpw(Register dst, Register src) {
623 arithmetic_op_16(0x3B, dst, src);
624 }
625
626 void cmpw(const Operand& dst, Register src) {
627 arithmetic_op_16(0x39, src, dst);
628 }
629
630 void cmpl(Register dst, Register src) {
631 arithmetic_op_32(0x3B, dst, src);
632 }
633
634 void cmpl(Register dst, const Operand& src) {
635 arithmetic_op_32(0x3B, dst, src);
636 }
637
638 void cmpl(const Operand& dst, Register src) {
639 arithmetic_op_32(0x39, src, dst);
640 }
641
642 void cmpl(Register dst, Immediate src) {
643 immediate_arithmetic_op_32(0x7, dst, src);
644 }
645
646 void cmpl(const Operand& dst, Immediate src) {
647 immediate_arithmetic_op_32(0x7, dst, src);
648 }
649
650 void cmpq(Register dst, Register src) {
651 arithmetic_op(0x3B, dst, src);
652 }
653
654 void cmpq(Register dst, const Operand& src) {
655 arithmetic_op(0x3B, dst, src);
656 }
657
658 void cmpq(const Operand& dst, Register src) {
659 arithmetic_op(0x39, src, dst);
660 }
661
662 void cmpq(Register dst, Immediate src) {
663 immediate_arithmetic_op(0x7, dst, src);
664 }
665
666 void cmpq(const Operand& dst, Immediate src) {
667 immediate_arithmetic_op(0x7, dst, src);
668 }
669
670 void and_(Register dst, Register src) {
671 arithmetic_op(0x23, dst, src);
672 }
673
674 void and_(Register dst, const Operand& src) {
675 arithmetic_op(0x23, dst, src);
676 }
677
678 void and_(const Operand& dst, Register src) {
679 arithmetic_op(0x21, src, dst);
680 }
681
682 void and_(Register dst, Immediate src) {
683 immediate_arithmetic_op(0x4, dst, src);
684 }
685
686 void and_(const Operand& dst, Immediate src) {
687 immediate_arithmetic_op(0x4, dst, src);
688 }
689
690 void andl(Register dst, Immediate src) {
691 immediate_arithmetic_op_32(0x4, dst, src);
692 }
693
694 void decq(Register dst);
695 void decq(const Operand& dst);
696 void decl(Register dst);
697 void decl(const Operand& dst);
698
699 // Sign-extends rax into rdx:rax.
700 void cqo();
701 // Sign-extends eax into edx:eax.
702 void cdq();
703
704 // Divide rdx:rax by src. Quotient in rax, remainder in rdx.
705 void idivq(Register src);
706 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
707 void idivl(Register src);
708
709 // Signed multiply instructions.
710 void imul(Register src); // rdx:rax = rax * src.
711 void imul(Register dst, Register src); // dst = dst * src.
712 void imul(Register dst, const Operand& src); // dst = dst * src.
713 void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
714 // Multiply 32 bit registers
715 void imull(Register dst, Register src); // dst = dst * src.
716
717 void incq(Register dst);
718 void incq(const Operand& dst);
719 void incl(const Operand& dst);
720
721 void lea(Register dst, const Operand& src);
722
723 // Multiply rax by src, put the result in rdx:rax.
724 void mul(Register src);
725
726 void neg(Register dst);
727 void neg(const Operand& dst);
728 void negl(Register dst);
729
730 void not_(Register dst);
731 void not_(const Operand& dst);
732
733 void or_(Register dst, Register src) {
734 arithmetic_op(0x0B, dst, src);
735 }
736
737 void orl(Register dst, Register src) {
738 arithmetic_op_32(0x0B, dst, src);
739 }
740
741 void or_(Register dst, const Operand& src) {
742 arithmetic_op(0x0B, dst, src);
743 }
744
745 void or_(const Operand& dst, Register src) {
746 arithmetic_op(0x09, src, dst);
747 }
748
749 void or_(Register dst, Immediate src) {
750 immediate_arithmetic_op(0x1, dst, src);
751 }
752
753 void or_(const Operand& dst, Immediate src) {
754 immediate_arithmetic_op(0x1, dst, src);
755 }
756
757
758 void rcl(Register dst, uint8_t imm8);
759
760 // Shifts dst:src left by cl bits, affecting only dst.
761 void shld(Register dst, Register src);
762
763 // Shifts src:dst right by cl bits, affecting only dst.
764 void shrd(Register dst, Register src);
765
766 // Shifts dst right, duplicating sign bit, by shift_amount bits.
767 // Shifting by 1 is handled efficiently.
768 void sar(Register dst, Immediate shift_amount) {
769 shift(dst, shift_amount, 0x7);
770 }
771
772 // Shifts dst right, duplicating sign bit, by shift_amount bits.
773 // Shifting by 1 is handled efficiently.
774 void sarl(Register dst, Immediate shift_amount) {
775 shift_32(dst, shift_amount, 0x7);
776 }
777
778 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
779 void sar(Register dst) {
780 shift(dst, 0x7);
781 }
782
783 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
784 void sarl(Register dst) {
785 shift_32(dst, 0x7);
786 }
787
788 void shl(Register dst, Immediate shift_amount) {
789 shift(dst, shift_amount, 0x4);
790 }
791
792 void shl(Register dst) {
793 shift(dst, 0x4);
794 }
795
796 void shll(Register dst) {
797 shift_32(dst, 0x4);
798 }
799
800 void shll(Register dst, Immediate shift_amount) {
801 shift_32(dst, shift_amount, 0x4);
802 }
803
804 void shr(Register dst, Immediate shift_amount) {
805 shift(dst, shift_amount, 0x5);
806 }
807
808 void shr(Register dst) {
809 shift(dst, 0x5);
810 }
811
812 void shrl(Register dst) {
813 shift_32(dst, 0x5);
814 }
815
816 void shrl(Register dst, Immediate shift_amount) {
817 shift_32(dst, shift_amount, 0x5);
818 }
819
820 void store_rax(void* dst, RelocInfo::Mode mode);
821 void store_rax(ExternalReference ref);
822
823 void subq(Register dst, Register src) {
824 arithmetic_op(0x2B, dst, src);
825 }
826
827 void subq(Register dst, const Operand& src) {
828 arithmetic_op(0x2B, dst, src);
829 }
830
831 void subq(const Operand& dst, Register src) {
832 arithmetic_op(0x29, src, dst);
833 }
834
835 void subq(Register dst, Immediate src) {
836 immediate_arithmetic_op(0x5, dst, src);
837 }
838
839 void subq(const Operand& dst, Immediate src) {
840 immediate_arithmetic_op(0x5, dst, src);
841 }
842
843 void subl(Register dst, Register src) {
844 arithmetic_op_32(0x2B, dst, src);
845 }
846
847 void subl(const Operand& dst, Immediate src) {
848 immediate_arithmetic_op_32(0x5, dst, src);
849 }
850
851 void subl(Register dst, Immediate src) {
852 immediate_arithmetic_op_32(0x5, dst, src);
853 }
854
855 void subb(Register dst, Immediate src) {
856 immediate_arithmetic_op_8(0x5, dst, src);
857 }
858
859 void testb(Register reg, Immediate mask);
860 void testb(const Operand& op, Immediate mask);
861 void testl(Register dst, Register src);
862 void testl(Register reg, Immediate mask);
863 void testl(const Operand& op, Immediate mask);
864 void testq(const Operand& op, Register reg);
865 void testq(Register dst, Register src);
866 void testq(Register dst, Immediate mask);
867
868 void xor_(Register dst, Register src) {
869 arithmetic_op(0x33, dst, src);
870 }
871
872 void xorl(Register dst, Register src) {
873 arithmetic_op_32(0x33, dst, src);
874 }
875
876 void xor_(Register dst, const Operand& src) {
877 arithmetic_op(0x33, dst, src);
878 }
879
880 void xor_(const Operand& dst, Register src) {
881 arithmetic_op(0x31, src, dst);
882 }
883
884 void xor_(Register dst, Immediate src) {
885 immediate_arithmetic_op(0x6, dst, src);
886 }
887
888 void xor_(const Operand& dst, Immediate src) {
889 immediate_arithmetic_op(0x6, dst, src);
890 }
891
892 // Bit operations.
893 void bt(const Operand& dst, Register src);
894 void bts(const Operand& dst, Register src);
895
896 // Miscellaneous
897 void cpuid();
898 void hlt();
899 void int3();
900 void nop();
901 void nop(int n);
902 void rdtsc();
903 void ret(int imm16);
904 void setcc(Condition cc, Register reg);
905
906 // Label operations & relative jumps (PPUM Appendix D)
907 //
908 // Takes a branch opcode (cc) and a label (L) and generates
909 // either a backward branch or a forward branch and links it
910 // to the label fixup chain. Usage:
911 //
912 // Label L; // unbound label
913 // j(cc, &L); // forward branch to unbound label
914 // bind(&L); // bind label to the current pc
915 // j(cc, &L); // backward branch to bound label
916 // bind(&L); // illegal: a label may be bound only once
917 //
918 // Note: The same Label can be used for forward and backward branches
919 // but it may be bound only once.
920
921 void bind(Label* L); // binds an unbound label L to the current code position
922
923 // Calls
924 // Call near relative 32-bit displacement, relative to next instruction.
925 void call(Label* L);
926
927 // Call near absolute indirect, address in register
928 void call(Register adr);
929
930 // Call near indirect
931 void call(const Operand& operand);
932
933 // Jumps
934 // Jump short or near relative.
935 void jmp(Label* L); // unconditional jump to L
936
937 // Jump near absolute indirect (r64)
938 void jmp(Register adr);
939
940 // Jump near absolute indirect (m64)
941 void jmp(const Operand& src);
942
943 // Conditional jumps
944 void j(Condition cc, Label* L);
945
946 // Floating-point operations
947 void fld(int i);
948
949 void fld1();
950 void fldz();
951
952 void fld_s(const Operand& adr);
953 void fld_d(const Operand& adr);
954
955 void fstp_s(const Operand& adr);
956 void fstp_d(const Operand& adr);
957
958 void fild_s(const Operand& adr);
959 void fild_d(const Operand& adr);
960
961 void fist_s(const Operand& adr);
962
963 void fistp_s(const Operand& adr);
964 void fistp_d(const Operand& adr);
965
966 void fisttp_s(const Operand& adr);
967
968 void fabs();
969 void fchs();
970
971 void fadd(int i);
972 void fsub(int i);
973 void fmul(int i);
974 void fdiv(int i);
975
976 void fisub_s(const Operand& adr);
977
978 void faddp(int i = 1);
979 void fsubp(int i = 1);
980 void fsubrp(int i = 1);
981 void fmulp(int i = 1);
982 void fdivp(int i = 1);
983 void fprem();
984 void fprem1();
985
986 void fxch(int i = 1);
987 void fincstp();
988 void ffree(int i = 0);
989
990 void ftst();
991 void fucomp(int i);
992 void fucompp();
993 void fcompp();
994 void fnstsw_ax();
995 void fwait();
996 void fnclex();
997
998 void fsin();
999 void fcos();
1000
1001 void frndint();
1002
1003 void sahf();
1004
1005 // SSE2 instructions
1006 void movsd(const Operand& dst, XMMRegister src);
1007 void movsd(Register src, XMMRegister dst);
1008 void movsd(XMMRegister dst, Register src);
1009 void movsd(XMMRegister src, const Operand& dst);
1010
1011 void cvttss2si(Register dst, const Operand& src);
1012 void cvttsd2si(Register dst, const Operand& src);
1013
1014 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1015 void cvtlsi2sd(XMMRegister dst, Register src);
1016 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1017 void cvtqsi2sd(XMMRegister dst, Register src);
1018
1019 void addsd(XMMRegister dst, XMMRegister src);
1020 void subsd(XMMRegister dst, XMMRegister src);
1021 void mulsd(XMMRegister dst, XMMRegister src);
1022 void divsd(XMMRegister dst, XMMRegister src);
1023
1024
1025 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1026 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1027 void emit_sse_operand(XMMRegister dst, Register src);
1028
1029 // Use either movsd or movlpd.
1030 // void movdbl(XMMRegister dst, const Operand& src);
1031 // void movdbl(const Operand& dst, XMMRegister src);
1032
1033 // Debugging
1034 void Print();
1035
1036 // Check the code size generated from label to here.
1037 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1038
1039 // Mark address of the ExitJSFrame code.
1040 void RecordJSReturn();
1041
1042 // Record a comment relocation entry that can be used by a disassembler.
1043 // Use --debug_code to enable.
1044 void RecordComment(const char* msg);
1045
1046 void RecordPosition(int pos);
1047 void RecordStatementPosition(int pos);
1048 void WriteRecordedPositions();
1049
1050 // Writes a doubleword of data in the code stream.
1051 // Used for inline tables, e.g., jump-tables.
1052 // void dd(uint32_t data);
1053
1054 // Writes a quadword of data in the code stream.
1055 // Used for inline tables, e.g., jump-tables.
1056 // void dd(uint64_t data, RelocInfo::Mode reloc_info);
1057
1058 int pc_offset() const { return pc_ - buffer_; }
1059 int current_statement_position() const { return current_statement_position_; }
1060 int current_position() const { return current_position_; }
1061
1062 // Check if there is less than kGap bytes available in the buffer.
1063 // If this is the case, we need to grow the buffer before emitting
1064 // an instruction or relocation information.
1065 inline bool buffer_overflow() const {
1066 return pc_ >= reloc_info_writer.pos() - kGap;
1067 }
1068
1069 // Get the number of bytes available in the buffer.
1070 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1071
1072 // Avoid overflows for displacements etc.
1073 static const int kMaximalBufferSize = 512*MB;
1074 static const int kMinimalBufferSize = 4*KB;
1075
1076 protected:
1077 // void movsd(XMMRegister dst, const Operand& src);
1078 // void movsd(const Operand& dst, XMMRegister src);
1079
1080 // void emit_sse_operand(XMMRegister reg, const Operand& adr);
1081 // void emit_sse_operand(XMMRegister dst, XMMRegister src);
1082
1083
1084 private:
1085 byte* addr_at(int pos) { return buffer_ + pos; }
1086 byte byte_at(int pos) { return buffer_[pos]; }
1087 uint32_t long_at(int pos) {
1088 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1089 }
1090 void long_at_put(int pos, uint32_t x) {
1091 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1092 }
1093
1094 // code emission
1095 void GrowBuffer();
1096
1097 void emit(byte x) { *pc_++ = x; }
1098 inline void emitl(uint32_t x);
1099 inline void emit(Handle<Object> handle);
1100 inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1101 inline void emitw(uint16_t x);
1102 void emit(Immediate x) { emitl(x.value_); }
1103
1104 // Emits a REX prefix that encodes a 64-bit operand size and
1105 // the top bit of both register codes.
1106 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1107 // REX.W is set.
1108 inline void emit_rex_64(Register reg, Register rm_reg);
1109 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1110
1111 // Emits a REX prefix that encodes a 64-bit operand size and
1112 // the top bit of the destination, index, and base register codes.
1113 // The high bit of reg is used for REX.R, the high bit of op's base
1114 // register is used for REX.B, and the high bit of op's index register
1115 // is used for REX.X. REX.W is set.
1116 inline void emit_rex_64(Register reg, const Operand& op);
1117 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1118
1119 // Emits a REX prefix that encodes a 64-bit operand size and
1120 // the top bit of the register code.
1121 // The high bit of register is used for REX.B.
1122 // REX.W is set and REX.R and REX.X are clear.
1123 inline void emit_rex_64(Register rm_reg);
1124
1125 // Emits a REX prefix that encodes a 64-bit operand size and
1126 // the top bit of the index and base register codes.
1127 // The high bit of op's base register is used for REX.B, and the high
1128 // bit of op's index register is used for REX.X.
1129 // REX.W is set and REX.R clear.
1130 inline void emit_rex_64(const Operand& op);
1131
1132 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1133 void emit_rex_64() { emit(0x48); }
1134
1135 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1136 // REX.W is clear.
1137 inline void emit_rex_32(Register reg, Register rm_reg);
1138
1139 // The high bit of reg is used for REX.R, the high bit of op's base
1140 // register is used for REX.B, and the high bit of op's index register
1141 // is used for REX.X. REX.W is cleared.
1142 inline void emit_rex_32(Register reg, const Operand& op);
1143
1144 // High bit of rm_reg goes to REX.B.
1145 // REX.W, REX.R and REX.X are clear.
1146 inline void emit_rex_32(Register rm_reg);
1147
1148 // High bit of base goes to REX.B and high bit of index to REX.X.
1149 // REX.W and REX.R are clear.
1150 inline void emit_rex_32(const Operand& op);
1151
1152 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1153 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1154 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1155
1156 // The high bit of reg is used for REX.R, the high bit of op's base
1157 // register is used for REX.B, and the high bit of op's index register
1158 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1159 // is emitted.
1160 inline void emit_optional_rex_32(Register reg, const Operand& op);
1161
1162 // As for emit_optional_rex_32(Register, Register), except that
1163 // the registers are XMM registers.
1164 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1165
1166 // As for emit_optional_rex_32(Register, Register), except that
1167 // the registers are XMM registers.
1168 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1169
1170 // As for emit_optional_rex_32(Register, const Operand&), except that
1171 // the register is an XMM register.
1172 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1173
1174 // Optionally do as emit_rex_32(Register) if the register number has
1175 // the high bit set.
1176 inline void emit_optional_rex_32(Register rm_reg);
1177
1178 // Optionally do as emit_rex_32(const Operand&) if the operand register
1179 // numbers have a high bit set.
1180 inline void emit_optional_rex_32(const Operand& op);
1181
1182
1183 // Emit the ModR/M byte, and optionally the SIB byte and
1184 // 1- or 4-byte offset for a memory operand. Also encodes
1185 // the second operand of the operation, a register or operation
1186 // subcode, into the reg field of the ModR/M byte.
1187 void emit_operand(Register reg, const Operand& adr) {
1188 emit_operand(reg.low_bits(), adr);
1189 }
1190
1191 // Emit the ModR/M byte, and optionally the SIB byte and
1192 // 1- or 4-byte offset for a memory operand. Also used to encode
1193 // a three-bit opcode extension into the ModR/M byte.
1194 void emit_operand(int rm, const Operand& adr);
1195
1196 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1197 void emit_modrm(Register reg, Register rm_reg) {
1198 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1199 }
1200
1201 // Emit a ModR/M byte with an operation subcode in the reg field and
1202 // a register in the rm_reg field.
1203 void emit_modrm(int code, Register rm_reg) {
1204 ASSERT(is_uint3(code));
1205 emit(0xC0 | code << 3 | rm_reg.low_bits());
1206 }
1207
1208 // Emit the code-object-relative offset of the label's position
1209 inline void emit_code_relative_offset(Label* label);
1210
1211 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1212 // AND, OR, XOR, or CMP. The encodings of these operations are all
1213 // similar, differing just in the opcode or in the reg field of the
1214 // ModR/M byte.
1215 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1216 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1217 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1218 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1219 void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1220 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1221 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1222 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1223 // Operate on a byte in memory or register.
1224 void immediate_arithmetic_op_8(byte subcode,
1225 Register dst,
1226 Immediate src);
1227 void immediate_arithmetic_op_8(byte subcode,
1228 const Operand& dst,
1229 Immediate src);
1230 // Operate on a word in memory or register.
1231 void immediate_arithmetic_op_16(byte subcode,
1232 Register dst,
1233 Immediate src);
1234 void immediate_arithmetic_op_16(byte subcode,
1235 const Operand& dst,
1236 Immediate src);
1237 // Operate on a 32-bit word in memory or register.
1238 void immediate_arithmetic_op_32(byte subcode,
1239 Register dst,
1240 Immediate src);
1241 void immediate_arithmetic_op_32(byte subcode,
1242 const Operand& dst,
1243 Immediate src);
1244
1245 // Emit machine code for a shift operation.
1246 void shift(Register dst, Immediate shift_amount, int subcode);
1247 void shift_32(Register dst, Immediate shift_amount, int subcode);
1248 // Shift dst by cl % 64 bits.
1249 void shift(Register dst, int subcode);
1250 void shift_32(Register dst, int subcode);
1251
1252 void emit_farith(int b1, int b2, int i);
1253
1254 // labels
1255 // void print(Label* L);
1256 void bind_to(Label* L, int pos);
1257 void link_to(Label* L, Label* appendix);
1258
1259 // record reloc info for current pc_
1260 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1261
1262 friend class CodePatcher;
1263 friend class EnsureSpace;
1264 friend class RegExpMacroAssemblerX64;
1265
1266 // Code buffer:
1267 // The buffer into which code and relocation info are generated.
1268 byte* buffer_;
1269 int buffer_size_;
1270 // True if the assembler owns the buffer, false if buffer is external.
1271 bool own_buffer_;
1272 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1273 static byte* spare_buffer_;
1274
1275 // code generation
1276 byte* pc_; // the program counter; moves forward
1277 RelocInfoWriter reloc_info_writer;
1278
1279 // push-pop elimination
1280 byte* last_pc_;
1281
1282 // source position information
1283 int current_statement_position_;
1284 int current_position_;
1285 int written_statement_position_;
1286 int written_position_;
1287};
1288
1289
1290// Helper class that ensures that there is enough space for generating
1291// instructions and relocation information. The constructor makes
1292// sure that there is enough space and (in debug mode) the destructor
1293// checks that we did not generate too much.
1294class EnsureSpace BASE_EMBEDDED {
1295 public:
1296 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1297 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1298#ifdef DEBUG
1299 space_before_ = assembler_->available_space();
1300#endif
1301 }
1302
1303#ifdef DEBUG
1304 ~EnsureSpace() {
1305 int bytes_generated = space_before_ - assembler_->available_space();
1306 ASSERT(bytes_generated < assembler_->kGap);
1307 }
1308#endif
1309
1310 private:
1311 Assembler* assembler_;
1312#ifdef DEBUG
1313 int space_before_;
1314#endif
1315};
1316
1317} } // namespace v8::internal
1318
1319#endif // V8_X64_ASSEMBLER_X64_H_