blob: 87db3a9bef851a457629ef8181de1751295e4868 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_X64_CODEGEN_X64_H_
29#define V8_X64_CODEGEN_X64_H_
30
31namespace v8 {
32namespace internal {
33
34// Forward declarations
35class DeferredCode;
36class RegisterAllocator;
37class RegisterFile;
38
39enum InitState { CONST_INIT, NOT_CONST_INIT };
40enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
41
42
43// -------------------------------------------------------------------------
44// Reference support
45
46// A reference is a C++ stack-allocated object that keeps an ECMA
47// reference on the execution stack while in scope. For variables
48// the reference is empty, indicating that it isn't necessary to
49// store state on the stack for keeping track of references to those.
50// For properties, we keep either one (named) or two (indexed) values
51// on the execution stack to represent the reference.
52
53class Reference BASE_EMBEDDED {
54 public:
55 // The values of the types is important, see size().
56 enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
57 Reference(CodeGenerator* cgen, Expression* expression);
58 ~Reference();
59
60 Expression* expression() const { return expression_; }
61 Type type() const { return type_; }
62 void set_type(Type value) {
63 ASSERT(type_ == ILLEGAL);
64 type_ = value;
65 }
66
67 // The size the reference takes up on the stack.
68 int size() const { return (type_ == ILLEGAL) ? 0 : type_; }
69
70 bool is_illegal() const { return type_ == ILLEGAL; }
71 bool is_slot() const { return type_ == SLOT; }
72 bool is_property() const { return type_ == NAMED || type_ == KEYED; }
73
74 // Return the name. Only valid for named property references.
75 Handle<String> GetName();
76
77 // Generate code to push the value of the reference on top of the
78 // expression stack. The reference is expected to be already on top of
79 // the expression stack, and it is left in place with its value above it.
80 void GetValue(TypeofState typeof_state);
81
82 // Like GetValue except that the slot is expected to be written to before
83 // being read from again. Thae value of the reference may be invalidated,
84 // causing subsequent attempts to read it to fail.
85 void TakeValue(TypeofState typeof_state);
86
87 // Generate code to store the value on top of the expression stack in the
88 // reference. The reference is expected to be immediately below the value
89 // on the expression stack. The stored value is left in place (with the
90 // reference intact below it) to support chained assignments.
91 void SetValue(InitState init_state);
92
93 private:
94 CodeGenerator* cgen_;
95 Expression* expression_;
96 Type type_;
97};
98
99
100// -------------------------------------------------------------------------
101// Control destinations.
102
103// A control destination encapsulates a pair of jump targets and a
104// flag indicating which one is the preferred fall-through. The
105// preferred fall-through must be unbound, the other may be already
106// bound (ie, a backward target).
107//
108// The true and false targets may be jumped to unconditionally or
109// control may split conditionally. Unconditional jumping and
110// splitting should be emitted in tail position (as the last thing
111// when compiling an expression) because they can cause either label
112// to be bound or the non-fall through to be jumped to leaving an
113// invalid virtual frame.
114//
115// The labels in the control destination can be extracted and
116// manipulated normally without affecting the state of the
117// destination.
118
119class ControlDestination BASE_EMBEDDED {
120 public:
121 ControlDestination(JumpTarget* true_target,
122 JumpTarget* false_target,
123 bool true_is_fall_through)
124 : true_target_(true_target),
125 false_target_(false_target),
126 true_is_fall_through_(true_is_fall_through),
127 is_used_(false) {
128 ASSERT(true_is_fall_through ? !true_target->is_bound()
129 : !false_target->is_bound());
130 }
131
132 // Accessors for the jump targets. Directly jumping or branching to
133 // or binding the targets will not update the destination's state.
134 JumpTarget* true_target() const { return true_target_; }
135 JumpTarget* false_target() const { return false_target_; }
136
137 // True if the the destination has been jumped to unconditionally or
138 // control has been split to both targets. This predicate does not
139 // test whether the targets have been extracted and manipulated as
140 // raw jump targets.
141 bool is_used() const { return is_used_; }
142
143 // True if the destination is used and the true target (respectively
144 // false target) was the fall through. If the target is backward,
145 // "fall through" included jumping unconditionally to it.
146 bool true_was_fall_through() const {
147 return is_used_ && true_is_fall_through_;
148 }
149
150 bool false_was_fall_through() const {
151 return is_used_ && !true_is_fall_through_;
152 }
153
154 // Emit a branch to one of the true or false targets, and bind the
155 // other target. Because this binds the fall-through target, it
156 // should be emitted in tail position (as the last thing when
157 // compiling an expression).
158 void Split(Condition cc) {
159 ASSERT(!is_used_);
160 if (true_is_fall_through_) {
161 false_target_->Branch(NegateCondition(cc));
162 true_target_->Bind();
163 } else {
164 true_target_->Branch(cc);
165 false_target_->Bind();
166 }
167 is_used_ = true;
168 }
169
170 // Emit an unconditional jump in tail position, to the true target
171 // (if the argument is true) or the false target. The "jump" will
172 // actually bind the jump target if it is forward, jump to it if it
173 // is backward.
174 void Goto(bool where) {
175 ASSERT(!is_used_);
176 JumpTarget* target = where ? true_target_ : false_target_;
177 if (target->is_bound()) {
178 target->Jump();
179 } else {
180 target->Bind();
181 }
182 is_used_ = true;
183 true_is_fall_through_ = where;
184 }
185
186 // Mark this jump target as used as if Goto had been called, but
187 // without generating a jump or binding a label (the control effect
188 // should have already happened). This is used when the left
189 // subexpression of the short-circuit boolean operators are
190 // compiled.
191 void Use(bool where) {
192 ASSERT(!is_used_);
193 ASSERT((where ? true_target_ : false_target_)->is_bound());
194 is_used_ = true;
195 true_is_fall_through_ = where;
196 }
197
198 // Swap the true and false targets but keep the same actual label as
199 // the fall through. This is used when compiling negated
200 // expressions, where we want to swap the targets but preserve the
201 // state.
202 void Invert() {
203 JumpTarget* temp_target = true_target_;
204 true_target_ = false_target_;
205 false_target_ = temp_target;
206
207 true_is_fall_through_ = !true_is_fall_through_;
208 }
209
210 private:
211 // True and false jump targets.
212 JumpTarget* true_target_;
213 JumpTarget* false_target_;
214
215 // Before using the destination: true if the true target is the
216 // preferred fall through, false if the false target is. After
217 // using the destination: true if the true target was actually used
218 // as the fall through, false if the false target was.
219 bool true_is_fall_through_;
220
221 // True if the Split or Goto functions have been called.
222 bool is_used_;
223};
224
225
226// -------------------------------------------------------------------------
227// Code generation state
228
229// The state is passed down the AST by the code generator (and back up, in
230// the form of the state of the jump target pair). It is threaded through
231// the call stack. Constructing a state implicitly pushes it on the owning
232// code generator's stack of states, and destroying one implicitly pops it.
233//
234// The code generator state is only used for expressions, so statements have
235// the initial state.
236
237class CodeGenState BASE_EMBEDDED {
238 public:
239 // Create an initial code generator state. Destroying the initial state
240 // leaves the code generator with a NULL state.
241 explicit CodeGenState(CodeGenerator* owner);
242
243 // Create a code generator state based on a code generator's current
244 // state. The new state may or may not be inside a typeof, and has its
245 // own control destination.
246 CodeGenState(CodeGenerator* owner,
247 TypeofState typeof_state,
248 ControlDestination* destination);
249
250 // Destroy a code generator state and restore the owning code generator's
251 // previous state.
252 ~CodeGenState();
253
254 // Accessors for the state.
255 TypeofState typeof_state() const { return typeof_state_; }
256 ControlDestination* destination() const { return destination_; }
257
258 private:
259 // The owning code generator.
260 CodeGenerator* owner_;
261
262 // A flag indicating whether we are compiling the immediate subexpression
263 // of a typeof expression.
264 TypeofState typeof_state_;
265
266 // A control destination in case the expression has a control-flow
267 // effect.
268 ControlDestination* destination_;
269
270 // The previous state of the owning code generator, restored when
271 // this state is destroyed.
272 CodeGenState* previous_;
273};
274
275
276// -------------------------------------------------------------------------
277// Arguments allocation mode
278
279enum ArgumentsAllocationMode {
280 NO_ARGUMENTS_ALLOCATION,
281 EAGER_ARGUMENTS_ALLOCATION,
282 LAZY_ARGUMENTS_ALLOCATION
283};
284
285
286// -------------------------------------------------------------------------
287// CodeGenerator
288
289class CodeGenerator: public AstVisitor {
290 public:
291 // Takes a function literal, generates code for it. This function should only
292 // be called by compiler.cc.
293 static Handle<Code> MakeCode(FunctionLiteral* fun,
294 Handle<Script> script,
295 bool is_eval);
296
297#ifdef ENABLE_LOGGING_AND_PROFILING
298 static bool ShouldGenerateLog(Expression* type);
299#endif
300
301 static void SetFunctionInfo(Handle<JSFunction> fun,
302 FunctionLiteral* lit,
303 bool is_toplevel,
304 Handle<Script> script);
305
306 // Accessors
307 MacroAssembler* masm() { return masm_; }
308
309 VirtualFrame* frame() const { return frame_; }
310
311 bool has_valid_frame() const { return frame_ != NULL; }
312
313 // Set the virtual frame to be new_frame, with non-frame register
314 // reference counts given by non_frame_registers. The non-frame
315 // register reference counts of the old frame are returned in
316 // non_frame_registers.
317 void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
318
319 void DeleteFrame();
320
321 RegisterAllocator* allocator() const { return allocator_; }
322
323 CodeGenState* state() { return state_; }
324 void set_state(CodeGenState* state) { state_ = state; }
325
326 void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
327
328 bool in_spilled_code() const { return in_spilled_code_; }
329 void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
330
331 private:
332 // Construction/Destruction
333 CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
334 virtual ~CodeGenerator() { delete masm_; }
335
336 // Accessors
337 Scope* scope() const { return scope_; }
338
339 // Generating deferred code.
340 void ProcessDeferred();
341
342 bool is_eval() { return is_eval_; }
343
344 // State
345 TypeofState typeof_state() const { return state_->typeof_state(); }
346 ControlDestination* destination() const { return state_->destination(); }
347
348 // Track loop nesting level.
349 int loop_nesting() const { return loop_nesting_; }
350 void IncrementLoopNesting() { loop_nesting_++; }
351 void DecrementLoopNesting() { loop_nesting_--; }
352
353
354 // Node visitors.
355 void VisitStatements(ZoneList<Statement*>* statements);
356
357#define DEF_VISIT(type) \
358 void Visit##type(type* node);
359 AST_NODE_LIST(DEF_VISIT)
360#undef DEF_VISIT
361
362 // Visit a statement and then spill the virtual frame if control flow can
363 // reach the end of the statement (ie, it does not exit via break,
364 // continue, return, or throw). This function is used temporarily while
365 // the code generator is being transformed.
366 void VisitAndSpill(Statement* statement);
367
368 // Visit a list of statements and then spill the virtual frame if control
369 // flow can reach the end of the list.
370 void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
371
372 // Main code generation function
373 void GenCode(FunctionLiteral* fun);
374
375 // Generate the return sequence code. Should be called no more than
376 // once per compiled function, immediately after binding the return
377 // target (which can not be done more than once).
378 void GenerateReturnSequence(Result* return_value);
379
380 // Returns the arguments allocation mode.
381 ArgumentsAllocationMode ArgumentsMode() const;
382
383 // Store the arguments object and allocate it if necessary.
384 Result StoreArgumentsObject(bool initial);
385
386 // The following are used by class Reference.
387 void LoadReference(Reference* ref);
388 void UnloadReference(Reference* ref);
389
390 Operand ContextOperand(Register context, int index) const {
391 return Operand(context, Context::SlotOffset(index));
392 }
393
394 Operand SlotOperand(Slot* slot, Register tmp);
395
396 Operand ContextSlotOperandCheckExtensions(Slot* slot,
397 Result tmp,
398 JumpTarget* slow);
399
400 // Expressions
401 Operand GlobalObject() const {
402 return ContextOperand(rsi, Context::GLOBAL_INDEX);
403 }
404
405 void LoadCondition(Expression* x,
406 TypeofState typeof_state,
407 ControlDestination* destination,
408 bool force_control);
409 void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
410 void LoadGlobal();
411 void LoadGlobalReceiver();
412
413 // Generate code to push the value of an expression on top of the frame
414 // and then spill the frame fully to memory. This function is used
415 // temporarily while the code generator is being transformed.
416 void LoadAndSpill(Expression* expression,
417 TypeofState typeof_state = NOT_INSIDE_TYPEOF);
418
419 // Read a value from a slot and leave it on top of the expression stack.
420 void LoadFromSlot(Slot* slot, TypeofState typeof_state);
421 void LoadFromSlotCheckForArguments(Slot* slot, TypeofState state);
422 Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
423 TypeofState typeof_state,
424 JumpTarget* slow);
425
426 // Store the value on top of the expression stack into a slot, leaving the
427 // value in place.
428 void StoreToSlot(Slot* slot, InitState init_state);
429
430 // Special code for typeof expressions: Unfortunately, we must
431 // be careful when loading the expression in 'typeof'
432 // expressions. We are not allowed to throw reference errors for
433 // non-existing properties of the global object, so we must make it
434 // look like an explicit property access, instead of an access
435 // through the context chain.
436 void LoadTypeofExpression(Expression* x);
437
438 // Translate the value on top of the frame into control flow to the
439 // control destination.
440 void ToBoolean(ControlDestination* destination);
441
442 void GenericBinaryOperation(
443 Token::Value op,
444 SmiAnalysis* type,
445 OverwriteMode overwrite_mode);
446
447 // If possible, combine two constant smi values using op to produce
448 // a smi result, and push it on the virtual frame, all at compile time.
449 // Returns true if it succeeds. Otherwise it has no effect.
450 bool FoldConstantSmis(Token::Value op, int left, int right);
451
452 // Emit code to perform a binary operation on a constant
453 // smi and a likely smi. Consumes the Result *operand.
454 void ConstantSmiBinaryOperation(Token::Value op,
455 Result* operand,
456 Handle<Object> constant_operand,
457 SmiAnalysis* type,
458 bool reversed,
459 OverwriteMode overwrite_mode);
460
461 // Emit code to perform a binary operation on two likely smis.
462 // The code to handle smi arguments is produced inline.
463 // Consumes the Results *left and *right.
464 void LikelySmiBinaryOperation(Token::Value op,
465 Result* left,
466 Result* right,
467 OverwriteMode overwrite_mode);
468
469 void Comparison(Condition cc,
470 bool strict,
471 ControlDestination* destination);
472
473 // To prevent long attacker-controlled byte sequences, integer constants
474 // from the JavaScript source are loaded in two parts if they are larger
475 // than 16 bits.
476 static const int kMaxSmiInlinedBits = 16;
477 bool IsUnsafeSmi(Handle<Object> value);
478 // Load an integer constant x into a register target using
479 // at most 16 bits of user-controlled data per assembly operation.
480 void LoadUnsafeSmi(Register target, Handle<Object> value);
481
482 void CallWithArguments(ZoneList<Expression*>* arguments, int position);
483
484 // Use an optimized version of Function.prototype.apply that avoid
485 // allocating the arguments object and just copies the arguments
486 // from the stack.
487 void CallApplyLazy(Property* apply,
488 Expression* receiver,
489 VariableProxy* arguments,
490 int position);
491
492 void CheckStack();
493
494 struct InlineRuntimeLUT {
495 void (CodeGenerator::*method)(ZoneList<Expression*>*);
496 const char* name;
497 };
498 static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
499 bool CheckForInlineRuntimeCall(CallRuntime* node);
500 static bool PatchInlineRuntimeEntry(Handle<String> name,
501 const InlineRuntimeLUT& new_entry,
502 InlineRuntimeLUT* old_entry);
503 Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
504 void ProcessDeclarations(ZoneList<Declaration*>* declarations);
505
506 Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
507
508 // Declare global variables and functions in the given array of
509 // name/value pairs.
510 void DeclareGlobals(Handle<FixedArray> pairs);
511
512 // Instantiate the function boilerplate.
513 void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
514
515 // Support for type checks.
516 void GenerateIsSmi(ZoneList<Expression*>* args);
517 void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
518 void GenerateIsArray(ZoneList<Expression*>* args);
519
520 // Support for construct call checks.
521 void GenerateIsConstructCall(ZoneList<Expression*>* args);
522
523 // Support for arguments.length and arguments[?].
524 void GenerateArgumentsLength(ZoneList<Expression*>* args);
525 void GenerateArgumentsAccess(ZoneList<Expression*>* args);
526
527 // Support for accessing the class and value fields of an object.
528 void GenerateClassOf(ZoneList<Expression*>* args);
529 void GenerateValueOf(ZoneList<Expression*>* args);
530 void GenerateSetValueOf(ZoneList<Expression*>* args);
531
532 // Fast support for charCodeAt(n).
533 void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
534
535 // Fast support for object equality testing.
536 void GenerateObjectEquals(ZoneList<Expression*>* args);
537
538 void GenerateLog(ZoneList<Expression*>* args);
539
540 void GenerateGetFramePointer(ZoneList<Expression*>* args);
541
542 // Fast support for Math.random().
543 void GenerateRandomPositiveSmi(ZoneList<Expression*>* args);
544
545 // Fast support for Math.sin and Math.cos.
546 enum MathOp { SIN, COS };
547 void GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args);
548 inline void GenerateMathSin(ZoneList<Expression*>* args);
549 inline void GenerateMathCos(ZoneList<Expression*>* args);
550
551 // Methods used to indicate which source code is generated for. Source
552 // positions are collected by the assembler and emitted with the relocation
553 // information.
554 void CodeForFunctionPosition(FunctionLiteral* fun);
555 void CodeForReturnPosition(FunctionLiteral* fun);
556 void CodeForStatementPosition(Statement* node);
557 void CodeForSourcePosition(int pos);
558
559#ifdef DEBUG
560 // True if the registers are valid for entry to a block. There should
561 // be no frame-external references to (non-reserved) registers.
562 bool HasValidEntryRegisters();
563#endif
564
565 bool is_eval_; // Tells whether code is generated for eval.
566 Handle<Script> script_;
567 ZoneList<DeferredCode*> deferred_;
568
569 // Assembler
570 MacroAssembler* masm_; // to generate code
571
572 // Code generation state
573 Scope* scope_;
574 VirtualFrame* frame_;
575 RegisterAllocator* allocator_;
576 CodeGenState* state_;
577 int loop_nesting_;
578
579 // Jump targets.
580 // The target of the return from the function.
581 BreakTarget function_return_;
582
583 // True if the function return is shadowed (ie, jumping to the target
584 // function_return_ does not jump to the true function return, but rather
585 // to some unlinking code).
586 bool function_return_is_shadowed_;
587
588 // True when we are in code that expects the virtual frame to be fully
589 // spilled. Some virtual frame function are disabled in DEBUG builds when
590 // called from spilled code, because they do not leave the virtual frame
591 // in a spilled state.
592 bool in_spilled_code_;
593
594 static InlineRuntimeLUT kInlineRuntimeLUT[];
595
596 friend class VirtualFrame;
597 friend class JumpTarget;
598 friend class Reference;
599 friend class Result;
600
601 friend class CodeGeneratorPatcher; // Used in test-log-stack-tracer.cc
602
603 DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
604};
605
606
607// -------------------------------------------------------------------------
608// Code stubs
609//
610// These independent code objects are created once, and used multiple
611// times by generated code to perform common tasks, often the slow
612// case of a JavaScript operation. They are all subclasses of CodeStub,
613// which is declared in code-stubs.h.
614
615
616// Flag that indicates whether or not the code that handles smi arguments
617// should be placed in the stub, inlined, or omitted entirely.
618enum GenericBinaryFlags {
619 SMI_CODE_IN_STUB,
620 SMI_CODE_INLINED
621};
622
623
624class GenericBinaryOpStub: public CodeStub {
625 public:
626 GenericBinaryOpStub(Token::Value op,
627 OverwriteMode mode,
628 GenericBinaryFlags flags)
629 : op_(op), mode_(mode), flags_(flags) {
630 use_sse3_ = CpuFeatures::IsSupported(CpuFeatures::SSE3);
631 ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
632 }
633
634 void GenerateSmiCode(MacroAssembler* masm, Label* slow);
635
636 private:
637 Token::Value op_;
638 OverwriteMode mode_;
639 GenericBinaryFlags flags_;
640 bool use_sse3_;
641
642 const char* GetName();
643
644#ifdef DEBUG
645 void Print() {
646 PrintF("GenericBinaryOpStub (op %s), (mode %d, flags %d)\n",
647 Token::String(op_),
648 static_cast<int>(mode_),
649 static_cast<int>(flags_));
650 }
651#endif
652
653 // Minor key encoding in 16 bits FSOOOOOOOOOOOOMM.
654 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
655 class OpBits: public BitField<Token::Value, 2, 12> {};
656 class SSE3Bits: public BitField<bool, 14, 1> {};
657 class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
658
659 Major MajorKey() { return GenericBinaryOp; }
660 int MinorKey() {
661 // Encode the parameters in a unique 16 bit value.
662 return OpBits::encode(op_)
663 | ModeBits::encode(mode_)
664 | FlagBits::encode(flags_)
665 | SSE3Bits::encode(use_sse3_);
666 }
667 void Generate(MacroAssembler* masm);
668};
669
670
671} } // namespace v8::internal
672
673#endif // V8_X64_CODEGEN_X64_H_