blob: 4978e5e201de3d4704b4b49ccf4a8002db287712 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM64
8
9#include "src/bootstrapper.h"
10#include "src/code-stubs.h"
11#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
14#include "src/isolate.h"
15#include "src/jsregexp.h"
16#include "src/regexp-macro-assembler.h"
17#include "src/runtime.h"
18
19namespace v8 {
20namespace internal {
21
22
23static void InitializeArrayConstructorDescriptor(
24 Isolate* isolate, CodeStubDescriptor* descriptor,
25 int constant_stack_parameter_count) {
26 // cp: context
27 // x1: function
28 // x2: allocation site with elements kind
29 // x0: number of arguments to the constructor function
30 Address deopt_handler = Runtime::FunctionForId(
31 Runtime::kArrayConstructor)->entry;
32
33 if (constant_stack_parameter_count == 0) {
34 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
35 JS_FUNCTION_STUB_MODE);
36 } else {
37 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
38 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
39 }
40}
41
42
43void ArrayNoArgumentConstructorStub::InitializeDescriptor(
44 CodeStubDescriptor* descriptor) {
45 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
46}
47
48
49void ArraySingleArgumentConstructorStub::InitializeDescriptor(
50 CodeStubDescriptor* descriptor) {
51 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
52}
53
54
55void ArrayNArgumentsConstructorStub::InitializeDescriptor(
56 CodeStubDescriptor* descriptor) {
57 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
58}
59
60
61static void InitializeInternalArrayConstructorDescriptor(
62 Isolate* isolate, CodeStubDescriptor* descriptor,
63 int constant_stack_parameter_count) {
64 Address deopt_handler = Runtime::FunctionForId(
65 Runtime::kInternalArrayConstructor)->entry;
66
67 if (constant_stack_parameter_count == 0) {
68 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
69 JS_FUNCTION_STUB_MODE);
70 } else {
71 descriptor->Initialize(x0, deopt_handler, constant_stack_parameter_count,
72 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
73 }
74}
75
76
77void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
78 CodeStubDescriptor* descriptor) {
79 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
80}
81
82
83void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
84 CodeStubDescriptor* descriptor) {
85 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
86}
87
88
89void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
90 CodeStubDescriptor* descriptor) {
91 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
92}
93
94
95#define __ ACCESS_MASM(masm)
96
97
98void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
99 ExternalReference miss) {
100 // Update the static counter each time a new code stub is generated.
101 isolate()->counters()->code_stubs()->Increment();
102
103 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
104 int param_count = descriptor.GetEnvironmentParameterCount();
105 {
106 // Call the runtime system in a fresh internal frame.
107 FrameScope scope(masm, StackFrame::INTERNAL);
108 DCHECK((param_count == 0) ||
109 x0.Is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
110
111 // Push arguments
112 MacroAssembler::PushPopQueue queue(masm);
113 for (int i = 0; i < param_count; ++i) {
114 queue.Queue(descriptor.GetEnvironmentParameterRegister(i));
115 }
116 queue.PushQueued();
117
118 __ CallExternalReference(miss, param_count);
119 }
120
121 __ Ret();
122}
123
124
125void DoubleToIStub::Generate(MacroAssembler* masm) {
126 Label done;
127 Register input = source();
128 Register result = destination();
129 DCHECK(is_truncating());
130
131 DCHECK(result.Is64Bits());
132 DCHECK(jssp.Is(masm->StackPointer()));
133
134 int double_offset = offset();
135
136 DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
137 Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
138 Register scratch2 =
139 GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
140
141 __ Push(scratch1, scratch2);
142 // Account for saved regs if input is jssp.
143 if (input.is(jssp)) double_offset += 2 * kPointerSize;
144
145 if (!skip_fastpath()) {
146 __ Push(double_scratch);
147 if (input.is(jssp)) double_offset += 1 * kDoubleSize;
148 __ Ldr(double_scratch, MemOperand(input, double_offset));
149 // Try to convert with a FPU convert instruction. This handles all
150 // non-saturating cases.
151 __ TryConvertDoubleToInt64(result, double_scratch, &done);
152 __ Fmov(result, double_scratch);
153 } else {
154 __ Ldr(result, MemOperand(input, double_offset));
155 }
156
157 // If we reach here we need to manually convert the input to an int32.
158
159 // Extract the exponent.
160 Register exponent = scratch1;
161 __ Ubfx(exponent, result, HeapNumber::kMantissaBits,
162 HeapNumber::kExponentBits);
163
164 // It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
165 // the mantissa gets shifted completely out of the int32_t result.
166 __ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
167 __ CzeroX(result, ge);
168 __ B(ge, &done);
169
170 // The Fcvtzs sequence handles all cases except where the conversion causes
171 // signed overflow in the int64_t target. Since we've already handled
172 // exponents >= 84, we can guarantee that 63 <= exponent < 84.
173
174 if (masm->emit_debug_code()) {
175 __ Cmp(exponent, HeapNumber::kExponentBias + 63);
176 // Exponents less than this should have been handled by the Fcvt case.
177 __ Check(ge, kUnexpectedValue);
178 }
179
180 // Isolate the mantissa bits, and set the implicit '1'.
181 Register mantissa = scratch2;
182 __ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
183 __ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
184
185 // Negate the mantissa if necessary.
186 __ Tst(result, kXSignMask);
187 __ Cneg(mantissa, mantissa, ne);
188
189 // Shift the mantissa bits in the correct place. We know that we have to shift
190 // it left here, because exponent >= 63 >= kMantissaBits.
191 __ Sub(exponent, exponent,
192 HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
193 __ Lsl(result, mantissa, exponent);
194
195 __ Bind(&done);
196 if (!skip_fastpath()) {
197 __ Pop(double_scratch);
198 }
199 __ Pop(scratch2, scratch1);
200 __ Ret();
201}
202
203
204// See call site for description.
205static void EmitIdenticalObjectComparison(MacroAssembler* masm,
206 Register left,
207 Register right,
208 Register scratch,
209 FPRegister double_scratch,
210 Label* slow,
211 Condition cond) {
212 DCHECK(!AreAliased(left, right, scratch));
213 Label not_identical, return_equal, heap_number;
214 Register result = x0;
215
216 __ Cmp(right, left);
217 __ B(ne, &not_identical);
218
219 // Test for NaN. Sadly, we can't just compare to factory::nan_value(),
220 // so we do the second best thing - test it ourselves.
221 // They are both equal and they are not both Smis so both of them are not
222 // Smis. If it's not a heap number, then return equal.
223 if ((cond == lt) || (cond == gt)) {
224 __ JumpIfObjectType(right, scratch, scratch, FIRST_SPEC_OBJECT_TYPE, slow,
225 ge);
226 } else if (cond == eq) {
227 __ JumpIfHeapNumber(right, &heap_number);
228 } else {
229 Register right_type = scratch;
230 __ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
231 &heap_number);
232 // Comparing JS objects with <=, >= is complicated.
233 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
234 __ B(ge, slow);
235 // Normally here we fall through to return_equal, but undefined is
236 // special: (undefined == undefined) == true, but
237 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
238 if ((cond == le) || (cond == ge)) {
239 __ Cmp(right_type, ODDBALL_TYPE);
240 __ B(ne, &return_equal);
241 __ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
242 if (cond == le) {
243 // undefined <= undefined should fail.
244 __ Mov(result, GREATER);
245 } else {
246 // undefined >= undefined should fail.
247 __ Mov(result, LESS);
248 }
249 __ Ret();
250 }
251 }
252
253 __ Bind(&return_equal);
254 if (cond == lt) {
255 __ Mov(result, GREATER); // Things aren't less than themselves.
256 } else if (cond == gt) {
257 __ Mov(result, LESS); // Things aren't greater than themselves.
258 } else {
259 __ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
260 }
261 __ Ret();
262
263 // Cases lt and gt have been handled earlier, and case ne is never seen, as
264 // it is handled in the parser (see Parser::ParseBinaryExpression). We are
265 // only concerned with cases ge, le and eq here.
266 if ((cond != lt) && (cond != gt)) {
267 DCHECK((cond == ge) || (cond == le) || (cond == eq));
268 __ Bind(&heap_number);
269 // Left and right are identical pointers to a heap number object. Return
270 // non-equal if the heap number is a NaN, and equal otherwise. Comparing
271 // the number to itself will set the overflow flag iff the number is NaN.
272 __ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
273 __ Fcmp(double_scratch, double_scratch);
274 __ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
275
276 if (cond == le) {
277 __ Mov(result, GREATER);
278 } else {
279 __ Mov(result, LESS);
280 }
281 __ Ret();
282 }
283
284 // No fall through here.
285 if (FLAG_debug_code) {
286 __ Unreachable();
287 }
288
289 __ Bind(&not_identical);
290}
291
292
293// See call site for description.
294static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
295 Register left,
296 Register right,
297 Register left_type,
298 Register right_type,
299 Register scratch) {
300 DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
301
302 if (masm->emit_debug_code()) {
303 // We assume that the arguments are not identical.
304 __ Cmp(left, right);
305 __ Assert(ne, kExpectedNonIdenticalObjects);
306 }
307
308 // If either operand is a JS object or an oddball value, then they are not
309 // equal since their pointers are different.
310 // There is no test for undetectability in strict equality.
311 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
312 Label right_non_object;
313
314 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
315 __ B(lt, &right_non_object);
316
317 // Return non-zero - x0 already contains a non-zero pointer.
318 DCHECK(left.is(x0) || right.is(x0));
319 Label return_not_equal;
320 __ Bind(&return_not_equal);
321 __ Ret();
322
323 __ Bind(&right_non_object);
324
325 // Check for oddballs: true, false, null, undefined.
326 __ Cmp(right_type, ODDBALL_TYPE);
327
328 // If right is not ODDBALL, test left. Otherwise, set eq condition.
329 __ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
330
331 // If right or left is not ODDBALL, test left >= FIRST_SPEC_OBJECT_TYPE.
332 // Otherwise, right or left is ODDBALL, so set a ge condition.
333 __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NVFlag, ne);
334
335 __ B(ge, &return_not_equal);
336
337 // Internalized strings are unique, so they can only be equal if they are the
338 // same object. We have already tested that case, so if left and right are
339 // both internalized strings, they cannot be equal.
340 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
341 __ Orr(scratch, left_type, right_type);
342 __ TestAndBranchIfAllClear(
343 scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
344}
345
346
347// See call site for description.
348static void EmitSmiNonsmiComparison(MacroAssembler* masm,
349 Register left,
350 Register right,
351 FPRegister left_d,
352 FPRegister right_d,
353 Label* slow,
354 bool strict) {
355 DCHECK(!AreAliased(left_d, right_d));
356 DCHECK((left.is(x0) && right.is(x1)) ||
357 (right.is(x0) && left.is(x1)));
358 Register result = x0;
359
360 Label right_is_smi, done;
361 __ JumpIfSmi(right, &right_is_smi);
362
363 // Left is the smi. Check whether right is a heap number.
364 if (strict) {
365 // If right is not a number and left is a smi, then strict equality cannot
366 // succeed. Return non-equal.
367 Label is_heap_number;
368 __ JumpIfHeapNumber(right, &is_heap_number);
369 // Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
370 if (!right.is(result)) {
371 __ Mov(result, NOT_EQUAL);
372 }
373 __ Ret();
374 __ Bind(&is_heap_number);
375 } else {
376 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
377 // runtime.
378 __ JumpIfNotHeapNumber(right, slow);
379 }
380
381 // Left is the smi. Right is a heap number. Load right value into right_d, and
382 // convert left smi into double in left_d.
383 __ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
384 __ SmiUntagToDouble(left_d, left);
385 __ B(&done);
386
387 __ Bind(&right_is_smi);
388 // Right is a smi. Check whether the non-smi left is a heap number.
389 if (strict) {
390 // If left is not a number and right is a smi then strict equality cannot
391 // succeed. Return non-equal.
392 Label is_heap_number;
393 __ JumpIfHeapNumber(left, &is_heap_number);
394 // Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
395 if (!left.is(result)) {
396 __ Mov(result, NOT_EQUAL);
397 }
398 __ Ret();
399 __ Bind(&is_heap_number);
400 } else {
401 // Smi compared non-strictly with a non-smi, non-heap-number. Call the
402 // runtime.
403 __ JumpIfNotHeapNumber(left, slow);
404 }
405
406 // Right is the smi. Left is a heap number. Load left value into left_d, and
407 // convert right smi into double in right_d.
408 __ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
409 __ SmiUntagToDouble(right_d, right);
410
411 // Fall through to both_loaded_as_doubles.
412 __ Bind(&done);
413}
414
415
416// Fast negative check for internalized-to-internalized equality.
417// See call site for description.
418static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
419 Register left,
420 Register right,
421 Register left_map,
422 Register right_map,
423 Register left_type,
424 Register right_type,
425 Label* possible_strings,
426 Label* not_both_strings) {
427 DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
428 Register result = x0;
429
430 Label object_test;
431 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
432 // TODO(all): reexamine this branch sequence for optimisation wrt branch
433 // prediction.
434 __ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
435 __ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
436 __ Tbnz(left_type, MaskToBit(kIsNotStringMask), not_both_strings);
437 __ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
438
439 // Both are internalized. We already checked that they weren't the same
440 // pointer, so they are not equal.
441 __ Mov(result, NOT_EQUAL);
442 __ Ret();
443
444 __ Bind(&object_test);
445
446 __ Cmp(right_type, FIRST_SPEC_OBJECT_TYPE);
447
448 // If right >= FIRST_SPEC_OBJECT_TYPE, test left.
449 // Otherwise, right < FIRST_SPEC_OBJECT_TYPE, so set lt condition.
450 __ Ccmp(left_type, FIRST_SPEC_OBJECT_TYPE, NFlag, ge);
451
452 __ B(lt, not_both_strings);
453
454 // If both objects are undetectable, they are equal. Otherwise, they are not
455 // equal, since they are different objects and an object is not equal to
456 // undefined.
457
458 // Returning here, so we can corrupt right_type and left_type.
459 Register right_bitfield = right_type;
460 Register left_bitfield = left_type;
461 __ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
462 __ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
463 __ And(result, right_bitfield, left_bitfield);
464 __ And(result, result, 1 << Map::kIsUndetectable);
465 __ Eor(result, result, 1 << Map::kIsUndetectable);
466 __ Ret();
467}
468
469
470static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
471 CompareICState::State expected,
472 Label* fail) {
473 Label ok;
474 if (expected == CompareICState::SMI) {
475 __ JumpIfNotSmi(input, fail);
476 } else if (expected == CompareICState::NUMBER) {
477 __ JumpIfSmi(input, &ok);
478 __ JumpIfNotHeapNumber(input, fail);
479 }
480 // We could be strict about internalized/non-internalized here, but as long as
481 // hydrogen doesn't care, the stub doesn't have to care either.
482 __ Bind(&ok);
483}
484
485
486void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
487 Register lhs = x1;
488 Register rhs = x0;
489 Register result = x0;
490 Condition cond = GetCondition();
491
492 Label miss;
493 CompareICStub_CheckInputType(masm, lhs, left(), &miss);
494 CompareICStub_CheckInputType(masm, rhs, right(), &miss);
495
496 Label slow; // Call builtin.
497 Label not_smis, both_loaded_as_doubles;
498 Label not_two_smis, smi_done;
499 __ JumpIfEitherNotSmi(lhs, rhs, &not_two_smis);
500 __ SmiUntag(lhs);
501 __ Sub(result, lhs, Operand::UntagSmi(rhs));
502 __ Ret();
503
504 __ Bind(&not_two_smis);
505
506 // NOTICE! This code is only reached after a smi-fast-case check, so it is
507 // certain that at least one operand isn't a smi.
508
509 // Handle the case where the objects are identical. Either returns the answer
510 // or goes to slow. Only falls through if the objects were not identical.
511 EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
512
513 // If either is a smi (we know that at least one is not a smi), then they can
514 // only be strictly equal if the other is a HeapNumber.
515 __ JumpIfBothNotSmi(lhs, rhs, &not_smis);
516
517 // Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
518 // can:
519 // 1) Return the answer.
520 // 2) Branch to the slow case.
521 // 3) Fall through to both_loaded_as_doubles.
522 // In case 3, we have found out that we were dealing with a number-number
523 // comparison. The double values of the numbers have been loaded, right into
524 // rhs_d, left into lhs_d.
525 FPRegister rhs_d = d0;
526 FPRegister lhs_d = d1;
527 EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
528
529 __ Bind(&both_loaded_as_doubles);
530 // The arguments have been converted to doubles and stored in rhs_d and
531 // lhs_d.
532 Label nan;
533 __ Fcmp(lhs_d, rhs_d);
534 __ B(vs, &nan); // Overflow flag set if either is NaN.
535 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
536 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
537 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
538 __ Ret();
539
540 __ Bind(&nan);
541 // Left and/or right is a NaN. Load the result register with whatever makes
542 // the comparison fail, since comparisons with NaN always fail (except ne,
543 // which is filtered out at a higher level.)
544 DCHECK(cond != ne);
545 if ((cond == lt) || (cond == le)) {
546 __ Mov(result, GREATER);
547 } else {
548 __ Mov(result, LESS);
549 }
550 __ Ret();
551
552 __ Bind(&not_smis);
553 // At this point we know we are dealing with two different objects, and
554 // neither of them is a smi. The objects are in rhs_ and lhs_.
555
556 // Load the maps and types of the objects.
557 Register rhs_map = x10;
558 Register rhs_type = x11;
559 Register lhs_map = x12;
560 Register lhs_type = x13;
561 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
562 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
563 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
564 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
565
566 if (strict()) {
567 // This emits a non-equal return sequence for some object types, or falls
568 // through if it was not lucky.
569 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
570 }
571
572 Label check_for_internalized_strings;
573 Label flat_string_check;
574 // Check for heap number comparison. Branch to earlier double comparison code
575 // if they are heap numbers, otherwise, branch to internalized string check.
576 __ Cmp(rhs_type, HEAP_NUMBER_TYPE);
577 __ B(ne, &check_for_internalized_strings);
578 __ Cmp(lhs_map, rhs_map);
579
580 // If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
581 // string check.
582 __ B(ne, &flat_string_check);
583
584 // Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
585 // comparison code.
586 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
587 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
588 __ B(&both_loaded_as_doubles);
589
590 __ Bind(&check_for_internalized_strings);
591 // In the strict case, the EmitStrictTwoHeapObjectCompare already took care
592 // of internalized strings.
593 if ((cond == eq) && !strict()) {
594 // Returns an answer for two internalized strings or two detectable objects.
595 // Otherwise branches to the string case or not both strings case.
596 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
597 lhs_type, rhs_type,
598 &flat_string_check, &slow);
599 }
600
601 // Check for both being sequential one-byte strings,
602 // and inline if that is the case.
603 __ Bind(&flat_string_check);
604 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
605 x15, &slow);
606
607 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
608 x11);
609 if (cond == eq) {
610 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
611 x12);
612 } else {
613 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
614 x12, x13);
615 }
616
617 // Never fall through to here.
618 if (FLAG_debug_code) {
619 __ Unreachable();
620 }
621
622 __ Bind(&slow);
623
624 __ Push(lhs, rhs);
625 // Figure out which native to call and setup the arguments.
626 Builtins::JavaScript native;
627 if (cond == eq) {
628 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
629 } else {
630 native = Builtins::COMPARE;
631 int ncr; // NaN compare result
632 if ((cond == lt) || (cond == le)) {
633 ncr = GREATER;
634 } else {
635 DCHECK((cond == gt) || (cond == ge)); // remaining cases
636 ncr = LESS;
637 }
638 __ Mov(x10, Smi::FromInt(ncr));
639 __ Push(x10);
640 }
641
642 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
643 // tagged as a small integer.
644 __ InvokeBuiltin(native, JUMP_FUNCTION);
645
646 __ Bind(&miss);
647 GenerateMiss(masm);
648}
649
650
651void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
652 CPURegList saved_regs = kCallerSaved;
653 CPURegList saved_fp_regs = kCallerSavedFP;
654
655 // We don't allow a GC during a store buffer overflow so there is no need to
656 // store the registers in any particular way, but we do have to store and
657 // restore them.
658
659 // We don't care if MacroAssembler scratch registers are corrupted.
660 saved_regs.Remove(*(masm->TmpList()));
661 saved_fp_regs.Remove(*(masm->FPTmpList()));
662
663 __ PushCPURegList(saved_regs);
664 if (save_doubles()) {
665 __ PushCPURegList(saved_fp_regs);
666 }
667
668 AllowExternalCallThatCantCauseGC scope(masm);
669 __ Mov(x0, ExternalReference::isolate_address(isolate()));
670 __ CallCFunction(
671 ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
672
673 if (save_doubles()) {
674 __ PopCPURegList(saved_fp_regs);
675 }
676 __ PopCPURegList(saved_regs);
677 __ Ret();
678}
679
680
681void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
682 Isolate* isolate) {
683 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
684 stub1.GetCode();
685 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
686 stub2.GetCode();
687}
688
689
690void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
691 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
692 UseScratchRegisterScope temps(masm);
693 Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
694 Register return_address = temps.AcquireX();
695 __ Mov(return_address, lr);
696 // Restore lr with the value it had before the call to this stub (the value
697 // which must be pushed).
698 __ Mov(lr, saved_lr);
699 __ PushSafepointRegisters();
700 __ Ret(return_address);
701}
702
703
704void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
705 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
706 UseScratchRegisterScope temps(masm);
707 Register return_address = temps.AcquireX();
708 // Preserve the return address (lr will be clobbered by the pop).
709 __ Mov(return_address, lr);
710 __ PopSafepointRegisters();
711 __ Ret(return_address);
712}
713
714
715void MathPowStub::Generate(MacroAssembler* masm) {
716 // Stack on entry:
717 // jssp[0]: Exponent (as a tagged value).
718 // jssp[1]: Base (as a tagged value).
719 //
720 // The (tagged) result will be returned in x0, as a heap number.
721
722 Register result_tagged = x0;
723 Register base_tagged = x10;
724 Register exponent_tagged = MathPowTaggedDescriptor::exponent();
725 DCHECK(exponent_tagged.is(x11));
726 Register exponent_integer = MathPowIntegerDescriptor::exponent();
727 DCHECK(exponent_integer.is(x12));
728 Register scratch1 = x14;
729 Register scratch0 = x15;
730 Register saved_lr = x19;
731 FPRegister result_double = d0;
732 FPRegister base_double = d0;
733 FPRegister exponent_double = d1;
734 FPRegister base_double_copy = d2;
735 FPRegister scratch1_double = d6;
736 FPRegister scratch0_double = d7;
737
738 // A fast-path for integer exponents.
739 Label exponent_is_smi, exponent_is_integer;
740 // Bail out to runtime.
741 Label call_runtime;
742 // Allocate a heap number for the result, and return it.
743 Label done;
744
745 // Unpack the inputs.
746 if (exponent_type() == ON_STACK) {
747 Label base_is_smi;
748 Label unpack_exponent;
749
750 __ Pop(exponent_tagged, base_tagged);
751
752 __ JumpIfSmi(base_tagged, &base_is_smi);
753 __ JumpIfNotHeapNumber(base_tagged, &call_runtime);
754 // base_tagged is a heap number, so load its double value.
755 __ Ldr(base_double, FieldMemOperand(base_tagged, HeapNumber::kValueOffset));
756 __ B(&unpack_exponent);
757 __ Bind(&base_is_smi);
758 // base_tagged is a SMI, so untag it and convert it to a double.
759 __ SmiUntagToDouble(base_double, base_tagged);
760
761 __ Bind(&unpack_exponent);
762 // x10 base_tagged The tagged base (input).
763 // x11 exponent_tagged The tagged exponent (input).
764 // d1 base_double The base as a double.
765 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
766 __ JumpIfNotHeapNumber(exponent_tagged, &call_runtime);
767 // exponent_tagged is a heap number, so load its double value.
768 __ Ldr(exponent_double,
769 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
770 } else if (exponent_type() == TAGGED) {
771 __ JumpIfSmi(exponent_tagged, &exponent_is_smi);
772 __ Ldr(exponent_double,
773 FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
774 }
775
776 // Handle double (heap number) exponents.
777 if (exponent_type() != INTEGER) {
778 // Detect integer exponents stored as doubles and handle those in the
779 // integer fast-path.
780 __ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
781 scratch0_double, &exponent_is_integer);
782
783 if (exponent_type() == ON_STACK) {
784 FPRegister half_double = d3;
785 FPRegister minus_half_double = d4;
786 // Detect square root case. Crankshaft detects constant +/-0.5 at compile
787 // time and uses DoMathPowHalf instead. We then skip this check for
788 // non-constant cases of +/-0.5 as these hardly occur.
789
790 __ Fmov(minus_half_double, -0.5);
791 __ Fmov(half_double, 0.5);
792 __ Fcmp(minus_half_double, exponent_double);
793 __ Fccmp(half_double, exponent_double, NZFlag, ne);
794 // Condition flags at this point:
795 // 0.5; nZCv // Identified by eq && pl
796 // -0.5: NZcv // Identified by eq && mi
797 // other: ?z?? // Identified by ne
798 __ B(ne, &call_runtime);
799
800 // The exponent is 0.5 or -0.5.
801
802 // Given that exponent is known to be either 0.5 or -0.5, the following
803 // special cases could apply (according to ECMA-262 15.8.2.13):
804 //
805 // base.isNaN(): The result is NaN.
806 // (base == +INFINITY) || (base == -INFINITY)
807 // exponent == 0.5: The result is +INFINITY.
808 // exponent == -0.5: The result is +0.
809 // (base == +0) || (base == -0)
810 // exponent == 0.5: The result is +0.
811 // exponent == -0.5: The result is +INFINITY.
812 // (base < 0) && base.isFinite(): The result is NaN.
813 //
814 // Fsqrt (and Fdiv for the -0.5 case) can handle all of those except
815 // where base is -INFINITY or -0.
816
817 // Add +0 to base. This has no effect other than turning -0 into +0.
818 __ Fadd(base_double, base_double, fp_zero);
819 // The operation -0+0 results in +0 in all cases except where the
820 // FPCR rounding mode is 'round towards minus infinity' (RM). The
821 // ARM64 simulator does not currently simulate FPCR (where the rounding
822 // mode is set), so test the operation with some debug code.
823 if (masm->emit_debug_code()) {
824 UseScratchRegisterScope temps(masm);
825 Register temp = temps.AcquireX();
826 __ Fneg(scratch0_double, fp_zero);
827 // Verify that we correctly generated +0.0 and -0.0.
828 // bits(+0.0) = 0x0000000000000000
829 // bits(-0.0) = 0x8000000000000000
830 __ Fmov(temp, fp_zero);
831 __ CheckRegisterIsClear(temp, kCouldNotGenerateZero);
832 __ Fmov(temp, scratch0_double);
833 __ Eor(temp, temp, kDSignMask);
834 __ CheckRegisterIsClear(temp, kCouldNotGenerateNegativeZero);
835 // Check that -0.0 + 0.0 == +0.0.
836 __ Fadd(scratch0_double, scratch0_double, fp_zero);
837 __ Fmov(temp, scratch0_double);
838 __ CheckRegisterIsClear(temp, kExpectedPositiveZero);
839 }
840
841 // If base is -INFINITY, make it +INFINITY.
842 // * Calculate base - base: All infinities will become NaNs since both
843 // -INFINITY+INFINITY and +INFINITY-INFINITY are NaN in ARM64.
844 // * If the result is NaN, calculate abs(base).
845 __ Fsub(scratch0_double, base_double, base_double);
846 __ Fcmp(scratch0_double, 0.0);
847 __ Fabs(scratch1_double, base_double);
848 __ Fcsel(base_double, scratch1_double, base_double, vs);
849
850 // Calculate the square root of base.
851 __ Fsqrt(result_double, base_double);
852 __ Fcmp(exponent_double, 0.0);
853 __ B(ge, &done); // Finish now for exponents of 0.5.
854 // Find the inverse for exponents of -0.5.
855 __ Fmov(scratch0_double, 1.0);
856 __ Fdiv(result_double, scratch0_double, result_double);
857 __ B(&done);
858 }
859
860 {
861 AllowExternalCallThatCantCauseGC scope(masm);
862 __ Mov(saved_lr, lr);
863 __ CallCFunction(
864 ExternalReference::power_double_double_function(isolate()),
865 0, 2);
866 __ Mov(lr, saved_lr);
867 __ B(&done);
868 }
869
870 // Handle SMI exponents.
871 __ Bind(&exponent_is_smi);
872 // x10 base_tagged The tagged base (input).
873 // x11 exponent_tagged The tagged exponent (input).
874 // d1 base_double The base as a double.
875 __ SmiUntag(exponent_integer, exponent_tagged);
876 }
877
878 __ Bind(&exponent_is_integer);
879 // x10 base_tagged The tagged base (input).
880 // x11 exponent_tagged The tagged exponent (input).
881 // x12 exponent_integer The exponent as an integer.
882 // d1 base_double The base as a double.
883
884 // Find abs(exponent). For negative exponents, we can find the inverse later.
885 Register exponent_abs = x13;
886 __ Cmp(exponent_integer, 0);
887 __ Cneg(exponent_abs, exponent_integer, mi);
888 // x13 exponent_abs The value of abs(exponent_integer).
889
890 // Repeatedly multiply to calculate the power.
891 // result = 1.0;
892 // For each bit n (exponent_integer{n}) {
893 // if (exponent_integer{n}) {
894 // result *= base;
895 // }
896 // base *= base;
897 // if (remaining bits in exponent_integer are all zero) {
898 // break;
899 // }
900 // }
901 Label power_loop, power_loop_entry, power_loop_exit;
902 __ Fmov(scratch1_double, base_double);
903 __ Fmov(base_double_copy, base_double);
904 __ Fmov(result_double, 1.0);
905 __ B(&power_loop_entry);
906
907 __ Bind(&power_loop);
908 __ Fmul(scratch1_double, scratch1_double, scratch1_double);
909 __ Lsr(exponent_abs, exponent_abs, 1);
910 __ Cbz(exponent_abs, &power_loop_exit);
911
912 __ Bind(&power_loop_entry);
913 __ Tbz(exponent_abs, 0, &power_loop);
914 __ Fmul(result_double, result_double, scratch1_double);
915 __ B(&power_loop);
916
917 __ Bind(&power_loop_exit);
918
919 // If the exponent was positive, result_double holds the result.
920 __ Tbz(exponent_integer, kXSignBit, &done);
921
922 // The exponent was negative, so find the inverse.
923 __ Fmov(scratch0_double, 1.0);
924 __ Fdiv(result_double, scratch0_double, result_double);
925 // ECMA-262 only requires Math.pow to return an 'implementation-dependent
926 // approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
927 // to calculate the subnormal value 2^-1074. This method of calculating
928 // negative powers doesn't work because 2^1074 overflows to infinity. To
929 // catch this corner-case, we bail out if the result was 0. (This can only
930 // occur if the divisor is infinity or the base is zero.)
931 __ Fcmp(result_double, 0.0);
932 __ B(&done, ne);
933
934 if (exponent_type() == ON_STACK) {
935 // Bail out to runtime code.
936 __ Bind(&call_runtime);
937 // Put the arguments back on the stack.
938 __ Push(base_tagged, exponent_tagged);
939 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
940
941 // Return.
942 __ Bind(&done);
943 __ AllocateHeapNumber(result_tagged, &call_runtime, scratch0, scratch1,
944 result_double);
945 DCHECK(result_tagged.is(x0));
946 __ IncrementCounter(
947 isolate()->counters()->math_pow(), 1, scratch0, scratch1);
948 __ Ret();
949 } else {
950 AllowExternalCallThatCantCauseGC scope(masm);
951 __ Mov(saved_lr, lr);
952 __ Fmov(base_double, base_double_copy);
953 __ Scvtf(exponent_double, exponent_integer);
954 __ CallCFunction(
955 ExternalReference::power_double_double_function(isolate()),
956 0, 2);
957 __ Mov(lr, saved_lr);
958 __ Bind(&done);
959 __ IncrementCounter(
960 isolate()->counters()->math_pow(), 1, scratch0, scratch1);
961 __ Ret();
962 }
963}
964
965
966void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
967 // It is important that the following stubs are generated in this order
968 // because pregenerated stubs can only call other pregenerated stubs.
969 // RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
970 // CEntryStub.
971 CEntryStub::GenerateAheadOfTime(isolate);
972 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
973 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
974 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
975 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
976 BinaryOpICStub::GenerateAheadOfTime(isolate);
977 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
978 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
979 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
980}
981
982
983void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
984 StoreRegistersStateStub stub(isolate);
985 stub.GetCode();
986}
987
988
989void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
990 RestoreRegistersStateStub stub(isolate);
991 stub.GetCode();
992}
993
994
995void CodeStub::GenerateFPStubs(Isolate* isolate) {
996 // Floating-point code doesn't get special handling in ARM64, so there's
997 // nothing to do here.
998 USE(isolate);
999}
1000
1001
1002bool CEntryStub::NeedsImmovableCode() {
1003 // CEntryStub stores the return address on the stack before calling into
1004 // C++ code. In some cases, the VM accesses this address, but it is not used
1005 // when the C++ code returns to the stub because LR holds the return address
1006 // in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
1007 // returning to dead code.
1008 // TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
1009 // find any comment to confirm this, and I don't hit any crashes whatever
1010 // this function returns. The anaylsis should be properly confirmed.
1011 return true;
1012}
1013
1014
1015void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1016 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1017 stub.GetCode();
1018 CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
1019 stub_fp.GetCode();
1020}
1021
1022
1023void CEntryStub::Generate(MacroAssembler* masm) {
1024 // The Abort mechanism relies on CallRuntime, which in turn relies on
1025 // CEntryStub, so until this stub has been generated, we have to use a
1026 // fall-back Abort mechanism.
1027 //
1028 // Note that this stub must be generated before any use of Abort.
1029 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
1030
1031 ASM_LOCATION("CEntryStub::Generate entry");
1032 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1033
1034 // Register parameters:
1035 // x0: argc (including receiver, untagged)
1036 // x1: target
1037 //
1038 // The stack on entry holds the arguments and the receiver, with the receiver
1039 // at the highest address:
1040 //
1041 // jssp]argc-1]: receiver
1042 // jssp[argc-2]: arg[argc-2]
1043 // ... ...
1044 // jssp[1]: arg[1]
1045 // jssp[0]: arg[0]
1046 //
1047 // The arguments are in reverse order, so that arg[argc-2] is actually the
1048 // first argument to the target function and arg[0] is the last.
1049 DCHECK(jssp.Is(__ StackPointer()));
1050 const Register& argc_input = x0;
1051 const Register& target_input = x1;
1052
1053 // Calculate argv, argc and the target address, and store them in
1054 // callee-saved registers so we can retry the call without having to reload
1055 // these arguments.
1056 // TODO(jbramley): If the first call attempt succeeds in the common case (as
1057 // it should), then we might be better off putting these parameters directly
1058 // into their argument registers, rather than using callee-saved registers and
1059 // preserving them on the stack.
1060 const Register& argv = x21;
1061 const Register& argc = x22;
1062 const Register& target = x23;
1063
1064 // Derive argv from the stack pointer so that it points to the first argument
1065 // (arg[argc-2]), or just below the receiver in case there are no arguments.
1066 // - Adjust for the arg[] array.
1067 Register temp_argv = x11;
1068 __ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
1069 // - Adjust for the receiver.
1070 __ Sub(temp_argv, temp_argv, 1 * kPointerSize);
1071
1072 // Enter the exit frame. Reserve three slots to preserve x21-x23 callee-saved
1073 // registers.
1074 FrameScope scope(masm, StackFrame::MANUAL);
1075 __ EnterExitFrame(save_doubles(), x10, 3);
1076 DCHECK(csp.Is(__ StackPointer()));
1077
1078 // Poke callee-saved registers into reserved space.
1079 __ Poke(argv, 1 * kPointerSize);
1080 __ Poke(argc, 2 * kPointerSize);
1081 __ Poke(target, 3 * kPointerSize);
1082
1083 // We normally only keep tagged values in callee-saved registers, as they
1084 // could be pushed onto the stack by called stubs and functions, and on the
1085 // stack they can confuse the GC. However, we're only calling C functions
1086 // which can push arbitrary data onto the stack anyway, and so the GC won't
1087 // examine that part of the stack.
1088 __ Mov(argc, argc_input);
1089 __ Mov(target, target_input);
1090 __ Mov(argv, temp_argv);
1091
1092 // x21 : argv
1093 // x22 : argc
1094 // x23 : call target
1095 //
1096 // The stack (on entry) holds the arguments and the receiver, with the
1097 // receiver at the highest address:
1098 //
1099 // argv[8]: receiver
1100 // argv -> argv[0]: arg[argc-2]
1101 // ... ...
1102 // argv[...]: arg[1]
1103 // argv[...]: arg[0]
1104 //
1105 // Immediately below (after) this is the exit frame, as constructed by
1106 // EnterExitFrame:
1107 // fp[8]: CallerPC (lr)
1108 // fp -> fp[0]: CallerFP (old fp)
1109 // fp[-8]: Space reserved for SPOffset.
1110 // fp[-16]: CodeObject()
1111 // csp[...]: Saved doubles, if saved_doubles is true.
1112 // csp[32]: Alignment padding, if necessary.
1113 // csp[24]: Preserved x23 (used for target).
1114 // csp[16]: Preserved x22 (used for argc).
1115 // csp[8]: Preserved x21 (used for argv).
1116 // csp -> csp[0]: Space reserved for the return address.
1117 //
1118 // After a successful call, the exit frame, preserved registers (x21-x23) and
1119 // the arguments (including the receiver) are dropped or popped as
1120 // appropriate. The stub then returns.
1121 //
1122 // After an unsuccessful call, the exit frame and suchlike are left
1123 // untouched, and the stub either throws an exception by jumping to one of
1124 // the exception_returned label.
1125
1126 DCHECK(csp.Is(__ StackPointer()));
1127
1128 // Prepare AAPCS64 arguments to pass to the builtin.
1129 __ Mov(x0, argc);
1130 __ Mov(x1, argv);
1131 __ Mov(x2, ExternalReference::isolate_address(isolate()));
1132
1133 Label return_location;
1134 __ Adr(x12, &return_location);
1135 __ Poke(x12, 0);
1136
1137 if (__ emit_debug_code()) {
1138 // Verify that the slot below fp[kSPOffset]-8 points to the return location
1139 // (currently in x12).
1140 UseScratchRegisterScope temps(masm);
1141 Register temp = temps.AcquireX();
1142 __ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
1143 __ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
1144 __ Cmp(temp, x12);
1145 __ Check(eq, kReturnAddressNotFoundInFrame);
1146 }
1147
1148 // Call the builtin.
1149 __ Blr(target);
1150 __ Bind(&return_location);
1151
1152 // x0 result The return code from the call.
1153 // x21 argv
1154 // x22 argc
1155 // x23 target
1156 const Register& result = x0;
1157
1158 // Check result for exception sentinel.
1159 Label exception_returned;
1160 __ CompareRoot(result, Heap::kExceptionRootIndex);
1161 __ B(eq, &exception_returned);
1162
1163 // The call succeeded, so unwind the stack and return.
1164
1165 // Restore callee-saved registers x21-x23.
1166 __ Mov(x11, argc);
1167
1168 __ Peek(argv, 1 * kPointerSize);
1169 __ Peek(argc, 2 * kPointerSize);
1170 __ Peek(target, 3 * kPointerSize);
1171
1172 __ LeaveExitFrame(save_doubles(), x10, true);
1173 DCHECK(jssp.Is(__ StackPointer()));
1174 // Pop or drop the remaining stack slots and return from the stub.
1175 // jssp[24]: Arguments array (of size argc), including receiver.
1176 // jssp[16]: Preserved x23 (used for target).
1177 // jssp[8]: Preserved x22 (used for argc).
1178 // jssp[0]: Preserved x21 (used for argv).
1179 __ Drop(x11);
1180 __ AssertFPCRState();
1181 __ Ret();
1182
1183 // The stack pointer is still csp if we aren't returning, and the frame
1184 // hasn't changed (except for the return address).
1185 __ SetStackPointer(csp);
1186
1187 // Handling of exception.
1188 __ Bind(&exception_returned);
1189
1190 // Retrieve the pending exception.
1191 ExternalReference pending_exception_address(
1192 Isolate::kPendingExceptionAddress, isolate());
1193 const Register& exception = result;
1194 const Register& exception_address = x11;
1195 __ Mov(exception_address, Operand(pending_exception_address));
1196 __ Ldr(exception, MemOperand(exception_address));
1197
1198 // Clear the pending exception.
1199 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1200 __ Str(x10, MemOperand(exception_address));
1201
1202 // x0 exception The exception descriptor.
1203 // x21 argv
1204 // x22 argc
1205 // x23 target
1206
1207 // Special handling of termination exceptions, which are uncatchable by
1208 // JavaScript code.
1209 Label throw_termination_exception;
1210 __ Cmp(exception, Operand(isolate()->factory()->termination_exception()));
1211 __ B(eq, &throw_termination_exception);
1212
1213 // We didn't execute a return case, so the stack frame hasn't been updated
1214 // (except for the return address slot). However, we don't need to initialize
1215 // jssp because the throw method will immediately overwrite it when it
1216 // unwinds the stack.
1217 __ SetStackPointer(jssp);
1218
1219 ASM_LOCATION("Throw normal");
1220 __ Mov(argv, 0);
1221 __ Mov(argc, 0);
1222 __ Mov(target, 0);
1223 __ Throw(x0, x10, x11, x12, x13);
1224
1225 __ Bind(&throw_termination_exception);
1226 ASM_LOCATION("Throw termination");
1227 __ Mov(argv, 0);
1228 __ Mov(argc, 0);
1229 __ Mov(target, 0);
1230 __ ThrowUncatchable(x0, x10, x11, x12, x13);
1231}
1232
1233
1234// This is the entry point from C++. 5 arguments are provided in x0-x4.
1235// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
1236// Input:
1237// x0: code entry.
1238// x1: function.
1239// x2: receiver.
1240// x3: argc.
1241// x4: argv.
1242// Output:
1243// x0: result.
1244void JSEntryStub::Generate(MacroAssembler* masm) {
1245 DCHECK(jssp.Is(__ StackPointer()));
1246 Register code_entry = x0;
1247
1248 // Enable instruction instrumentation. This only works on the simulator, and
1249 // will have no effect on the model or real hardware.
1250 __ EnableInstrumentation();
1251
1252 Label invoke, handler_entry, exit;
1253
1254 // Push callee-saved registers and synchronize the system stack pointer (csp)
1255 // and the JavaScript stack pointer (jssp).
1256 //
1257 // We must not write to jssp until after the PushCalleeSavedRegisters()
1258 // call, since jssp is itself a callee-saved register.
1259 __ SetStackPointer(csp);
1260 __ PushCalleeSavedRegisters();
1261 __ Mov(jssp, csp);
1262 __ SetStackPointer(jssp);
1263
1264 // Configure the FPCR. We don't restore it, so this is technically not allowed
1265 // according to AAPCS64. However, we only set default-NaN mode and this will
1266 // be harmless for most C code. Also, it works for ARM.
1267 __ ConfigureFPCR();
1268
1269 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1270
1271 // Set up the reserved register for 0.0.
1272 __ Fmov(fp_zero, 0.0);
1273
1274 // Build an entry frame (see layout below).
1275 int marker = type();
1276 int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
1277 __ Mov(x13, bad_frame_pointer);
1278 __ Mov(x12, Smi::FromInt(marker));
1279 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1280 __ Ldr(x10, MemOperand(x11));
1281
1282 __ Push(x13, xzr, x12, x10);
1283 // Set up fp.
1284 __ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
1285
1286 // Push the JS entry frame marker. Also set js_entry_sp if this is the
1287 // outermost JS call.
1288 Label non_outermost_js, done;
1289 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1290 __ Mov(x10, ExternalReference(js_entry_sp));
1291 __ Ldr(x11, MemOperand(x10));
1292 __ Cbnz(x11, &non_outermost_js);
1293 __ Str(fp, MemOperand(x10));
1294 __ Mov(x12, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1295 __ Push(x12);
1296 __ B(&done);
1297 __ Bind(&non_outermost_js);
1298 // We spare one instruction by pushing xzr since the marker is 0.
1299 DCHECK(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME) == NULL);
1300 __ Push(xzr);
1301 __ Bind(&done);
1302
1303 // The frame set up looks like this:
1304 // jssp[0] : JS entry frame marker.
1305 // jssp[1] : C entry FP.
1306 // jssp[2] : stack frame marker.
1307 // jssp[3] : stack frmae marker.
1308 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1309
1310
1311 // Jump to a faked try block that does the invoke, with a faked catch
1312 // block that sets the pending exception.
1313 __ B(&invoke);
1314
1315 // Prevent the constant pool from being emitted between the record of the
1316 // handler_entry position and the first instruction of the sequence here.
1317 // There is no risk because Assembler::Emit() emits the instruction before
1318 // checking for constant pool emission, but we do not want to depend on
1319 // that.
1320 {
1321 Assembler::BlockPoolsScope block_pools(masm);
1322 __ bind(&handler_entry);
1323 handler_offset_ = handler_entry.pos();
1324 // Caught exception: Store result (exception) in the pending exception
1325 // field in the JSEnv and return a failure sentinel. Coming in here the
1326 // fp will be invalid because the PushTryHandler below sets it to 0 to
1327 // signal the existence of the JSEntry frame.
1328 __ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1329 isolate())));
1330 }
1331 __ Str(code_entry, MemOperand(x10));
1332 __ LoadRoot(x0, Heap::kExceptionRootIndex);
1333 __ B(&exit);
1334
1335 // Invoke: Link this frame into the handler chain. There's only one
1336 // handler block in this code object, so its index is 0.
1337 __ Bind(&invoke);
1338 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1339 // If an exception not caught by another handler occurs, this handler
1340 // returns control to the code after the B(&invoke) above, which
1341 // restores all callee-saved registers (including cp and fp) to their
1342 // saved values before returning a failure to C.
1343
1344 // Clear any pending exceptions.
1345 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
1346 __ Mov(x11, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1347 isolate())));
1348 __ Str(x10, MemOperand(x11));
1349
1350 // Invoke the function by calling through the JS entry trampoline builtin.
1351 // Notice that we cannot store a reference to the trampoline code directly in
1352 // this stub, because runtime stubs are not traversed when doing GC.
1353
1354 // Expected registers by Builtins::JSEntryTrampoline
1355 // x0: code entry.
1356 // x1: function.
1357 // x2: receiver.
1358 // x3: argc.
1359 // x4: argv.
1360 ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
1361 ? Builtins::kJSConstructEntryTrampoline
1362 : Builtins::kJSEntryTrampoline,
1363 isolate());
1364 __ Mov(x10, entry);
1365
1366 // Call the JSEntryTrampoline.
1367 __ Ldr(x11, MemOperand(x10)); // Dereference the address.
1368 __ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
1369 __ Blr(x12);
1370
1371 // Unlink this frame from the handler chain.
1372 __ PopTryHandler();
1373
1374
1375 __ Bind(&exit);
1376 // x0 holds the result.
1377 // The stack pointer points to the top of the entry frame pushed on entry from
1378 // C++ (at the beginning of this stub):
1379 // jssp[0] : JS entry frame marker.
1380 // jssp[1] : C entry FP.
1381 // jssp[2] : stack frame marker.
1382 // jssp[3] : stack frmae marker.
1383 // jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
1384
1385 // Check if the current stack frame is marked as the outermost JS frame.
1386 Label non_outermost_js_2;
1387 __ Pop(x10);
1388 __ Cmp(x10, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1389 __ B(ne, &non_outermost_js_2);
1390 __ Mov(x11, ExternalReference(js_entry_sp));
1391 __ Str(xzr, MemOperand(x11));
1392 __ Bind(&non_outermost_js_2);
1393
1394 // Restore the top frame descriptors from the stack.
1395 __ Pop(x10);
1396 __ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
1397 __ Str(x10, MemOperand(x11));
1398
1399 // Reset the stack to the callee saved registers.
1400 __ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
1401 // Restore the callee-saved registers and return.
1402 DCHECK(jssp.Is(__ StackPointer()));
1403 __ Mov(csp, jssp);
1404 __ SetStackPointer(csp);
1405 __ PopCalleeSavedRegisters();
1406 // After this point, we must not modify jssp because it is a callee-saved
1407 // register which we have just restored.
1408 __ Ret();
1409}
1410
1411
1412void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1413 Label miss;
1414 Register receiver = LoadDescriptor::ReceiverRegister();
1415
1416 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, x10,
1417 x11, &miss);
1418
1419 __ Bind(&miss);
1420 PropertyAccessCompiler::TailCallBuiltin(
1421 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1422}
1423
1424
1425void InstanceofStub::Generate(MacroAssembler* masm) {
1426 // Stack on entry:
1427 // jssp[0]: function.
1428 // jssp[8]: object.
1429 //
1430 // Returns result in x0. Zero indicates instanceof, smi 1 indicates not
1431 // instanceof.
1432
1433 Register result = x0;
1434 Register function = right();
1435 Register object = left();
1436 Register scratch1 = x6;
1437 Register scratch2 = x7;
1438 Register res_true = x8;
1439 Register res_false = x9;
1440 // Only used if there was an inline map check site. (See
1441 // LCodeGen::DoInstanceOfKnownGlobal().)
1442 Register map_check_site = x4;
1443 // Delta for the instructions generated between the inline map check and the
1444 // instruction setting the result.
1445 const int32_t kDeltaToLoadBoolResult = 4 * kInstructionSize;
1446
1447 Label not_js_object, slow;
1448
1449 if (!HasArgsInRegisters()) {
1450 __ Pop(function, object);
1451 }
1452
1453 if (ReturnTrueFalseObject()) {
1454 __ LoadTrueFalseRoots(res_true, res_false);
1455 } else {
1456 // This is counter-intuitive, but correct.
1457 __ Mov(res_true, Smi::FromInt(0));
1458 __ Mov(res_false, Smi::FromInt(1));
1459 }
1460
1461 // Check that the left hand side is a JS object and load its map as a side
1462 // effect.
1463 Register map = x12;
1464 __ JumpIfSmi(object, &not_js_object);
1465 __ IsObjectJSObjectType(object, map, scratch2, &not_js_object);
1466
1467 // If there is a call site cache, don't look in the global cache, but do the
1468 // real lookup and update the call site cache.
1469 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1470 Label miss;
1471 __ JumpIfNotRoot(function, Heap::kInstanceofCacheFunctionRootIndex, &miss);
1472 __ JumpIfNotRoot(map, Heap::kInstanceofCacheMapRootIndex, &miss);
1473 __ LoadRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
1474 __ Ret();
1475 __ Bind(&miss);
1476 }
1477
1478 // Get the prototype of the function.
1479 Register prototype = x13;
1480 __ TryGetFunctionPrototype(function, prototype, scratch2, &slow,
1481 MacroAssembler::kMissOnBoundFunction);
1482
1483 // Check that the function prototype is a JS object.
1484 __ JumpIfSmi(prototype, &slow);
1485 __ IsObjectJSObjectType(prototype, scratch1, scratch2, &slow);
1486
1487 // Update the global instanceof or call site inlined cache with the current
1488 // map and function. The cached answer will be set when it is known below.
1489 if (HasCallSiteInlineCheck()) {
1490 // Patch the (relocated) inlined map check.
1491 __ GetRelocatedValueLocation(map_check_site, scratch1);
1492 // We have a cell, so need another level of dereferencing.
1493 __ Ldr(scratch1, MemOperand(scratch1));
1494 __ Str(map, FieldMemOperand(scratch1, Cell::kValueOffset));
1495 } else {
1496 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1497 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1498 }
1499
1500 Label return_true, return_result;
1501 Register smi_value = scratch1;
1502 {
1503 // Loop through the prototype chain looking for the function prototype.
1504 Register chain_map = x1;
1505 Register chain_prototype = x14;
1506 Register null_value = x15;
1507 Label loop;
1508 __ Ldr(chain_prototype, FieldMemOperand(map, Map::kPrototypeOffset));
1509 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1510 // Speculatively set a result.
1511 __ Mov(result, res_false);
1512 if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
1513 // Value to store in the cache cannot be an object.
1514 __ Mov(smi_value, Smi::FromInt(1));
1515 }
1516
1517 __ Bind(&loop);
1518
1519 // If the chain prototype is the object prototype, return true.
1520 __ Cmp(chain_prototype, prototype);
1521 __ B(eq, &return_true);
1522
1523 // If the chain prototype is null, we've reached the end of the chain, so
1524 // return false.
1525 __ Cmp(chain_prototype, null_value);
1526 __ B(eq, &return_result);
1527
1528 // Otherwise, load the next prototype in the chain, and loop.
1529 __ Ldr(chain_map, FieldMemOperand(chain_prototype, HeapObject::kMapOffset));
1530 __ Ldr(chain_prototype, FieldMemOperand(chain_map, Map::kPrototypeOffset));
1531 __ B(&loop);
1532 }
1533
1534 // Return sequence when no arguments are on the stack.
1535 // We cannot fall through to here.
1536 __ Bind(&return_true);
1537 __ Mov(result, res_true);
1538 if (!HasCallSiteInlineCheck() && ReturnTrueFalseObject()) {
1539 // Value to store in the cache cannot be an object.
1540 __ Mov(smi_value, Smi::FromInt(0));
1541 }
1542 __ Bind(&return_result);
1543 if (HasCallSiteInlineCheck()) {
1544 DCHECK(ReturnTrueFalseObject());
1545 __ Add(map_check_site, map_check_site, kDeltaToLoadBoolResult);
1546 __ GetRelocatedValueLocation(map_check_site, scratch2);
1547 __ Str(result, MemOperand(scratch2));
1548 } else {
1549 Register cached_value = ReturnTrueFalseObject() ? smi_value : result;
1550 __ StoreRoot(cached_value, Heap::kInstanceofCacheAnswerRootIndex);
1551 }
1552 __ Ret();
1553
1554 Label object_not_null, object_not_null_or_smi;
1555
1556 __ Bind(&not_js_object);
1557 Register object_type = x14;
1558 // x0 result result return register (uninit)
1559 // x10 function pointer to function
1560 // x11 object pointer to object
1561 // x14 object_type type of object (uninit)
1562
1563 // Before null, smi and string checks, check that the rhs is a function.
1564 // For a non-function rhs, an exception must be thrown.
1565 __ JumpIfSmi(function, &slow);
1566 __ JumpIfNotObjectType(
1567 function, scratch1, object_type, JS_FUNCTION_TYPE, &slow);
1568
1569 __ Mov(result, res_false);
1570
1571 // Null is not instance of anything.
1572 __ Cmp(object_type, Operand(isolate()->factory()->null_value()));
1573 __ B(ne, &object_not_null);
1574 __ Ret();
1575
1576 __ Bind(&object_not_null);
1577 // Smi values are not instances of anything.
1578 __ JumpIfNotSmi(object, &object_not_null_or_smi);
1579 __ Ret();
1580
1581 __ Bind(&object_not_null_or_smi);
1582 // String values are not instances of anything.
1583 __ IsObjectJSStringType(object, scratch2, &slow);
1584 __ Ret();
1585
1586 // Slow-case. Tail call builtin.
1587 __ Bind(&slow);
1588 {
1589 FrameScope scope(masm, StackFrame::INTERNAL);
1590 // Arguments have either been passed into registers or have been previously
1591 // popped. We need to push them before calling builtin.
1592 __ Push(object, function);
1593 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1594 }
1595 if (ReturnTrueFalseObject()) {
1596 // Reload true/false because they were clobbered in the builtin call.
1597 __ LoadTrueFalseRoots(res_true, res_false);
1598 __ Cmp(result, 0);
1599 __ Csel(result, res_true, res_false, eq);
1600 }
1601 __ Ret();
1602}
1603
1604
1605void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1606 Register arg_count = ArgumentsAccessReadDescriptor::parameter_count();
1607 Register key = ArgumentsAccessReadDescriptor::index();
1608 DCHECK(arg_count.is(x0));
1609 DCHECK(key.is(x1));
1610
1611 // The displacement is the offset of the last parameter (if any) relative
1612 // to the frame pointer.
1613 static const int kDisplacement =
1614 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1615
1616 // Check that the key is a smi.
1617 Label slow;
1618 __ JumpIfNotSmi(key, &slow);
1619
1620 // Check if the calling frame is an arguments adaptor frame.
1621 Register local_fp = x11;
1622 Register caller_fp = x11;
1623 Register caller_ctx = x12;
1624 Label skip_adaptor;
1625 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1626 __ Ldr(caller_ctx, MemOperand(caller_fp,
1627 StandardFrameConstants::kContextOffset));
1628 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1629 __ Csel(local_fp, fp, caller_fp, ne);
1630 __ B(ne, &skip_adaptor);
1631
1632 // Load the actual arguments limit found in the arguments adaptor frame.
1633 __ Ldr(arg_count, MemOperand(caller_fp,
1634 ArgumentsAdaptorFrameConstants::kLengthOffset));
1635 __ Bind(&skip_adaptor);
1636
1637 // Check index against formal parameters count limit. Use unsigned comparison
1638 // to get negative check for free: branch if key < 0 or key >= arg_count.
1639 __ Cmp(key, arg_count);
1640 __ B(hs, &slow);
1641
1642 // Read the argument from the stack and return it.
1643 __ Sub(x10, arg_count, key);
1644 __ Add(x10, local_fp, Operand::UntagSmiAndScale(x10, kPointerSizeLog2));
1645 __ Ldr(x0, MemOperand(x10, kDisplacement));
1646 __ Ret();
1647
1648 // Slow case: handle non-smi or out-of-bounds access to arguments by calling
1649 // the runtime system.
1650 __ Bind(&slow);
1651 __ Push(key);
1652 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1653}
1654
1655
1656void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1657 // Stack layout on entry.
1658 // jssp[0]: number of parameters (tagged)
1659 // jssp[8]: address of receiver argument
1660 // jssp[16]: function
1661
1662 // Check if the calling frame is an arguments adaptor frame.
1663 Label runtime;
1664 Register caller_fp = x10;
1665 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1666 // Load and untag the context.
1667 __ Ldr(w11, UntagSmiMemOperand(caller_fp,
1668 StandardFrameConstants::kContextOffset));
1669 __ Cmp(w11, StackFrame::ARGUMENTS_ADAPTOR);
1670 __ B(ne, &runtime);
1671
1672 // Patch the arguments.length and parameters pointer in the current frame.
1673 __ Ldr(x11, MemOperand(caller_fp,
1674 ArgumentsAdaptorFrameConstants::kLengthOffset));
1675 __ Poke(x11, 0 * kXRegSize);
1676 __ Add(x10, caller_fp, Operand::UntagSmiAndScale(x11, kPointerSizeLog2));
1677 __ Add(x10, x10, StandardFrameConstants::kCallerSPOffset);
1678 __ Poke(x10, 1 * kXRegSize);
1679
1680 __ Bind(&runtime);
1681 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1682}
1683
1684
1685void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1686 // Stack layout on entry.
1687 // jssp[0]: number of parameters (tagged)
1688 // jssp[8]: address of receiver argument
1689 // jssp[16]: function
1690 //
1691 // Returns pointer to result object in x0.
1692
1693 // Note: arg_count_smi is an alias of param_count_smi.
1694 Register arg_count_smi = x3;
1695 Register param_count_smi = x3;
1696 Register param_count = x7;
1697 Register recv_arg = x14;
1698 Register function = x4;
1699 __ Pop(param_count_smi, recv_arg, function);
1700 __ SmiUntag(param_count, param_count_smi);
1701
1702 // Check if the calling frame is an arguments adaptor frame.
1703 Register caller_fp = x11;
1704 Register caller_ctx = x12;
1705 Label runtime;
1706 Label adaptor_frame, try_allocate;
1707 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1708 __ Ldr(caller_ctx, MemOperand(caller_fp,
1709 StandardFrameConstants::kContextOffset));
1710 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1711 __ B(eq, &adaptor_frame);
1712
1713 // No adaptor, parameter count = argument count.
1714
1715 // x1 mapped_params number of mapped params, min(params, args) (uninit)
1716 // x2 arg_count number of function arguments (uninit)
1717 // x3 arg_count_smi number of function arguments (smi)
1718 // x4 function function pointer
1719 // x7 param_count number of function parameters
1720 // x11 caller_fp caller's frame pointer
1721 // x14 recv_arg pointer to receiver arguments
1722
1723 Register arg_count = x2;
1724 __ Mov(arg_count, param_count);
1725 __ B(&try_allocate);
1726
1727 // We have an adaptor frame. Patch the parameters pointer.
1728 __ Bind(&adaptor_frame);
1729 __ Ldr(arg_count_smi,
1730 MemOperand(caller_fp,
1731 ArgumentsAdaptorFrameConstants::kLengthOffset));
1732 __ SmiUntag(arg_count, arg_count_smi);
1733 __ Add(x10, caller_fp, Operand(arg_count, LSL, kPointerSizeLog2));
1734 __ Add(recv_arg, x10, StandardFrameConstants::kCallerSPOffset);
1735
1736 // Compute the mapped parameter count = min(param_count, arg_count)
1737 Register mapped_params = x1;
1738 __ Cmp(param_count, arg_count);
1739 __ Csel(mapped_params, param_count, arg_count, lt);
1740
1741 __ Bind(&try_allocate);
1742
1743 // x0 alloc_obj pointer to allocated objects: param map, backing
1744 // store, arguments (uninit)
1745 // x1 mapped_params number of mapped parameters, min(params, args)
1746 // x2 arg_count number of function arguments
1747 // x3 arg_count_smi number of function arguments (smi)
1748 // x4 function function pointer
1749 // x7 param_count number of function parameters
1750 // x10 size size of objects to allocate (uninit)
1751 // x14 recv_arg pointer to receiver arguments
1752
1753 // Compute the size of backing store, parameter map, and arguments object.
1754 // 1. Parameter map, has two extra words containing context and backing
1755 // store.
1756 const int kParameterMapHeaderSize =
1757 FixedArray::kHeaderSize + 2 * kPointerSize;
1758
1759 // Calculate the parameter map size, assuming it exists.
1760 Register size = x10;
1761 __ Mov(size, Operand(mapped_params, LSL, kPointerSizeLog2));
1762 __ Add(size, size, kParameterMapHeaderSize);
1763
1764 // If there are no mapped parameters, set the running size total to zero.
1765 // Otherwise, use the parameter map size calculated earlier.
1766 __ Cmp(mapped_params, 0);
1767 __ CzeroX(size, eq);
1768
1769 // 2. Add the size of the backing store and arguments object.
1770 __ Add(size, size, Operand(arg_count, LSL, kPointerSizeLog2));
1771 __ Add(size, size,
1772 FixedArray::kHeaderSize + Heap::kSloppyArgumentsObjectSize);
1773
1774 // Do the allocation of all three objects in one go. Assign this to x0, as it
1775 // will be returned to the caller.
1776 Register alloc_obj = x0;
1777 __ Allocate(size, alloc_obj, x11, x12, &runtime, TAG_OBJECT);
1778
1779 // Get the arguments boilerplate from the current (global) context.
1780
1781 // x0 alloc_obj pointer to allocated objects (param map, backing
1782 // store, arguments)
1783 // x1 mapped_params number of mapped parameters, min(params, args)
1784 // x2 arg_count number of function arguments
1785 // x3 arg_count_smi number of function arguments (smi)
1786 // x4 function function pointer
1787 // x7 param_count number of function parameters
1788 // x11 sloppy_args_map offset to args (or aliased args) map (uninit)
1789 // x14 recv_arg pointer to receiver arguments
1790
1791 Register global_object = x10;
1792 Register global_ctx = x10;
1793 Register sloppy_args_map = x11;
1794 Register aliased_args_map = x10;
1795 __ Ldr(global_object, GlobalObjectMemOperand());
1796 __ Ldr(global_ctx, FieldMemOperand(global_object,
1797 GlobalObject::kNativeContextOffset));
1798
1799 __ Ldr(sloppy_args_map,
1800 ContextMemOperand(global_ctx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
1801 __ Ldr(aliased_args_map,
1802 ContextMemOperand(global_ctx, Context::ALIASED_ARGUMENTS_MAP_INDEX));
1803 __ Cmp(mapped_params, 0);
1804 __ CmovX(sloppy_args_map, aliased_args_map, ne);
1805
1806 // Copy the JS object part.
1807 __ Str(sloppy_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
1808 __ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
1809 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
1810 __ Str(x10, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1811
1812 // Set up the callee in-object property.
1813 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1814 const int kCalleeOffset = JSObject::kHeaderSize +
1815 Heap::kArgumentsCalleeIndex * kPointerSize;
1816 __ AssertNotSmi(function);
1817 __ Str(function, FieldMemOperand(alloc_obj, kCalleeOffset));
1818
1819 // Use the length and set that as an in-object property.
1820 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1821 const int kLengthOffset = JSObject::kHeaderSize +
1822 Heap::kArgumentsLengthIndex * kPointerSize;
1823 __ Str(arg_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
1824
1825 // Set up the elements pointer in the allocated arguments object.
1826 // If we allocated a parameter map, "elements" will point there, otherwise
1827 // it will point to the backing store.
1828
1829 // x0 alloc_obj pointer to allocated objects (param map, backing
1830 // store, arguments)
1831 // x1 mapped_params number of mapped parameters, min(params, args)
1832 // x2 arg_count number of function arguments
1833 // x3 arg_count_smi number of function arguments (smi)
1834 // x4 function function pointer
1835 // x5 elements pointer to parameter map or backing store (uninit)
1836 // x6 backing_store pointer to backing store (uninit)
1837 // x7 param_count number of function parameters
1838 // x14 recv_arg pointer to receiver arguments
1839
1840 Register elements = x5;
1841 __ Add(elements, alloc_obj, Heap::kSloppyArgumentsObjectSize);
1842 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
1843
1844 // Initialize parameter map. If there are no mapped arguments, we're done.
1845 Label skip_parameter_map;
1846 __ Cmp(mapped_params, 0);
1847 // Set up backing store address, because it is needed later for filling in
1848 // the unmapped arguments.
1849 Register backing_store = x6;
1850 __ CmovX(backing_store, elements, eq);
1851 __ B(eq, &skip_parameter_map);
1852
1853 __ LoadRoot(x10, Heap::kSloppyArgumentsElementsMapRootIndex);
1854 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
1855 __ Add(x10, mapped_params, 2);
1856 __ SmiTag(x10);
1857 __ Str(x10, FieldMemOperand(elements, FixedArray::kLengthOffset));
1858 __ Str(cp, FieldMemOperand(elements,
1859 FixedArray::kHeaderSize + 0 * kPointerSize));
1860 __ Add(x10, elements, Operand(mapped_params, LSL, kPointerSizeLog2));
1861 __ Add(x10, x10, kParameterMapHeaderSize);
1862 __ Str(x10, FieldMemOperand(elements,
1863 FixedArray::kHeaderSize + 1 * kPointerSize));
1864
1865 // Copy the parameter slots and the holes in the arguments.
1866 // We need to fill in mapped_parameter_count slots. Then index the context,
1867 // where parameters are stored in reverse order, at:
1868 //
1869 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS + parameter_count - 1
1870 //
1871 // The mapped parameter thus needs to get indices:
1872 //
1873 // MIN_CONTEXT_SLOTS + parameter_count - 1 ..
1874 // MIN_CONTEXT_SLOTS + parameter_count - mapped_parameter_count
1875 //
1876 // We loop from right to left.
1877
1878 // x0 alloc_obj pointer to allocated objects (param map, backing
1879 // store, arguments)
1880 // x1 mapped_params number of mapped parameters, min(params, args)
1881 // x2 arg_count number of function arguments
1882 // x3 arg_count_smi number of function arguments (smi)
1883 // x4 function function pointer
1884 // x5 elements pointer to parameter map or backing store (uninit)
1885 // x6 backing_store pointer to backing store (uninit)
1886 // x7 param_count number of function parameters
1887 // x11 loop_count parameter loop counter (uninit)
1888 // x12 index parameter index (smi, uninit)
1889 // x13 the_hole hole value (uninit)
1890 // x14 recv_arg pointer to receiver arguments
1891
1892 Register loop_count = x11;
1893 Register index = x12;
1894 Register the_hole = x13;
1895 Label parameters_loop, parameters_test;
1896 __ Mov(loop_count, mapped_params);
1897 __ Add(index, param_count, static_cast<int>(Context::MIN_CONTEXT_SLOTS));
1898 __ Sub(index, index, mapped_params);
1899 __ SmiTag(index);
1900 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
1901 __ Add(backing_store, elements, Operand(loop_count, LSL, kPointerSizeLog2));
1902 __ Add(backing_store, backing_store, kParameterMapHeaderSize);
1903
1904 __ B(&parameters_test);
1905
1906 __ Bind(&parameters_loop);
1907 __ Sub(loop_count, loop_count, 1);
1908 __ Mov(x10, Operand(loop_count, LSL, kPointerSizeLog2));
1909 __ Add(x10, x10, kParameterMapHeaderSize - kHeapObjectTag);
1910 __ Str(index, MemOperand(elements, x10));
1911 __ Sub(x10, x10, kParameterMapHeaderSize - FixedArray::kHeaderSize);
1912 __ Str(the_hole, MemOperand(backing_store, x10));
1913 __ Add(index, index, Smi::FromInt(1));
1914 __ Bind(&parameters_test);
1915 __ Cbnz(loop_count, &parameters_loop);
1916
1917 __ Bind(&skip_parameter_map);
1918 // Copy arguments header and remaining slots (if there are any.)
1919 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
1920 __ Str(x10, FieldMemOperand(backing_store, FixedArray::kMapOffset));
1921 __ Str(arg_count_smi, FieldMemOperand(backing_store,
1922 FixedArray::kLengthOffset));
1923
1924 // x0 alloc_obj pointer to allocated objects (param map, backing
1925 // store, arguments)
1926 // x1 mapped_params number of mapped parameters, min(params, args)
1927 // x2 arg_count number of function arguments
1928 // x4 function function pointer
1929 // x3 arg_count_smi number of function arguments (smi)
1930 // x6 backing_store pointer to backing store (uninit)
1931 // x14 recv_arg pointer to receiver arguments
1932
1933 Label arguments_loop, arguments_test;
1934 __ Mov(x10, mapped_params);
1935 __ Sub(recv_arg, recv_arg, Operand(x10, LSL, kPointerSizeLog2));
1936 __ B(&arguments_test);
1937
1938 __ Bind(&arguments_loop);
1939 __ Sub(recv_arg, recv_arg, kPointerSize);
1940 __ Ldr(x11, MemOperand(recv_arg));
1941 __ Add(x12, backing_store, Operand(x10, LSL, kPointerSizeLog2));
1942 __ Str(x11, FieldMemOperand(x12, FixedArray::kHeaderSize));
1943 __ Add(x10, x10, 1);
1944
1945 __ Bind(&arguments_test);
1946 __ Cmp(x10, arg_count);
1947 __ B(lt, &arguments_loop);
1948
1949 __ Ret();
1950
1951 // Do the runtime call to allocate the arguments object.
1952 __ Bind(&runtime);
1953 __ Push(function, recv_arg, arg_count_smi);
1954 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1955}
1956
1957
1958void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1959 // Return address is in lr.
1960 Label slow;
1961
1962 Register receiver = LoadDescriptor::ReceiverRegister();
1963 Register key = LoadDescriptor::NameRegister();
1964
1965 // Check that the key is an array index, that is Uint32.
1966 __ TestAndBranchIfAnySet(key, kSmiTagMask | kSmiSignMask, &slow);
1967
1968 // Everything is fine, call runtime.
1969 __ Push(receiver, key);
1970 __ TailCallExternalReference(
1971 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1972 masm->isolate()),
1973 2, 1);
1974
1975 __ Bind(&slow);
1976 PropertyAccessCompiler::TailCallBuiltin(
1977 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1978}
1979
1980
1981void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1982 // Stack layout on entry.
1983 // jssp[0]: number of parameters (tagged)
1984 // jssp[8]: address of receiver argument
1985 // jssp[16]: function
1986 //
1987 // Returns pointer to result object in x0.
1988
1989 // Get the stub arguments from the frame, and make an untagged copy of the
1990 // parameter count.
1991 Register param_count_smi = x1;
1992 Register params = x2;
1993 Register function = x3;
1994 Register param_count = x13;
1995 __ Pop(param_count_smi, params, function);
1996 __ SmiUntag(param_count, param_count_smi);
1997
1998 // Test if arguments adaptor needed.
1999 Register caller_fp = x11;
2000 Register caller_ctx = x12;
2001 Label try_allocate, runtime;
2002 __ Ldr(caller_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2003 __ Ldr(caller_ctx, MemOperand(caller_fp,
2004 StandardFrameConstants::kContextOffset));
2005 __ Cmp(caller_ctx, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2006 __ B(ne, &try_allocate);
2007
2008 // x1 param_count_smi number of parameters passed to function (smi)
2009 // x2 params pointer to parameters
2010 // x3 function function pointer
2011 // x11 caller_fp caller's frame pointer
2012 // x13 param_count number of parameters passed to function
2013
2014 // Patch the argument length and parameters pointer.
2015 __ Ldr(param_count_smi,
2016 MemOperand(caller_fp,
2017 ArgumentsAdaptorFrameConstants::kLengthOffset));
2018 __ SmiUntag(param_count, param_count_smi);
2019 __ Add(x10, caller_fp, Operand(param_count, LSL, kPointerSizeLog2));
2020 __ Add(params, x10, StandardFrameConstants::kCallerSPOffset);
2021
2022 // Try the new space allocation. Start out with computing the size of the
2023 // arguments object and the elements array in words.
2024 Register size = x10;
2025 __ Bind(&try_allocate);
2026 __ Add(size, param_count, FixedArray::kHeaderSize / kPointerSize);
2027 __ Cmp(param_count, 0);
2028 __ CzeroX(size, eq);
2029 __ Add(size, size, Heap::kStrictArgumentsObjectSize / kPointerSize);
2030
2031 // Do the allocation of both objects in one go. Assign this to x0, as it will
2032 // be returned to the caller.
2033 Register alloc_obj = x0;
2034 __ Allocate(size, alloc_obj, x11, x12, &runtime,
2035 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
2036
2037 // Get the arguments boilerplate from the current (native) context.
2038 Register global_object = x10;
2039 Register global_ctx = x10;
2040 Register strict_args_map = x4;
2041 __ Ldr(global_object, GlobalObjectMemOperand());
2042 __ Ldr(global_ctx, FieldMemOperand(global_object,
2043 GlobalObject::kNativeContextOffset));
2044 __ Ldr(strict_args_map,
2045 ContextMemOperand(global_ctx, Context::STRICT_ARGUMENTS_MAP_INDEX));
2046
2047 // x0 alloc_obj pointer to allocated objects: parameter array and
2048 // arguments object
2049 // x1 param_count_smi number of parameters passed to function (smi)
2050 // x2 params pointer to parameters
2051 // x3 function function pointer
2052 // x4 strict_args_map offset to arguments map
2053 // x13 param_count number of parameters passed to function
2054 __ Str(strict_args_map, FieldMemOperand(alloc_obj, JSObject::kMapOffset));
2055 __ LoadRoot(x5, Heap::kEmptyFixedArrayRootIndex);
2056 __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kPropertiesOffset));
2057 __ Str(x5, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2058
2059 // Set the smi-tagged length as an in-object property.
2060 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2061 const int kLengthOffset = JSObject::kHeaderSize +
2062 Heap::kArgumentsLengthIndex * kPointerSize;
2063 __ Str(param_count_smi, FieldMemOperand(alloc_obj, kLengthOffset));
2064
2065 // If there are no actual arguments, we're done.
2066 Label done;
2067 __ Cbz(param_count, &done);
2068
2069 // Set up the elements pointer in the allocated arguments object and
2070 // initialize the header in the elements fixed array.
2071 Register elements = x5;
2072 __ Add(elements, alloc_obj, Heap::kStrictArgumentsObjectSize);
2073 __ Str(elements, FieldMemOperand(alloc_obj, JSObject::kElementsOffset));
2074 __ LoadRoot(x10, Heap::kFixedArrayMapRootIndex);
2075 __ Str(x10, FieldMemOperand(elements, FixedArray::kMapOffset));
2076 __ Str(param_count_smi, FieldMemOperand(elements, FixedArray::kLengthOffset));
2077
2078 // x0 alloc_obj pointer to allocated objects: parameter array and
2079 // arguments object
2080 // x1 param_count_smi number of parameters passed to function (smi)
2081 // x2 params pointer to parameters
2082 // x3 function function pointer
2083 // x4 array pointer to array slot (uninit)
2084 // x5 elements pointer to elements array of alloc_obj
2085 // x13 param_count number of parameters passed to function
2086
2087 // Copy the fixed array slots.
2088 Label loop;
2089 Register array = x4;
2090 // Set up pointer to first array slot.
2091 __ Add(array, elements, FixedArray::kHeaderSize - kHeapObjectTag);
2092
2093 __ Bind(&loop);
2094 // Pre-decrement the parameters pointer by kPointerSize on each iteration.
2095 // Pre-decrement in order to skip receiver.
2096 __ Ldr(x10, MemOperand(params, -kPointerSize, PreIndex));
2097 // Post-increment elements by kPointerSize on each iteration.
2098 __ Str(x10, MemOperand(array, kPointerSize, PostIndex));
2099 __ Sub(param_count, param_count, 1);
2100 __ Cbnz(param_count, &loop);
2101
2102 // Return from stub.
2103 __ Bind(&done);
2104 __ Ret();
2105
2106 // Do the runtime call to allocate the arguments object.
2107 __ Bind(&runtime);
2108 __ Push(function, params, param_count_smi);
2109 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
2110}
2111
2112
2113void RegExpExecStub::Generate(MacroAssembler* masm) {
2114#ifdef V8_INTERPRETED_REGEXP
2115 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2116#else // V8_INTERPRETED_REGEXP
2117
2118 // Stack frame on entry.
2119 // jssp[0]: last_match_info (expected JSArray)
2120 // jssp[8]: previous index
2121 // jssp[16]: subject string
2122 // jssp[24]: JSRegExp object
2123 Label runtime;
2124
2125 // Use of registers for this function.
2126
2127 // Variable registers:
2128 // x10-x13 used as scratch registers
2129 // w0 string_type type of subject string
2130 // x2 jsstring_length subject string length
2131 // x3 jsregexp_object JSRegExp object
2132 // w4 string_encoding Latin1 or UC16
2133 // w5 sliced_string_offset if the string is a SlicedString
2134 // offset to the underlying string
2135 // w6 string_representation groups attributes of the string:
2136 // - is a string
2137 // - type of the string
2138 // - is a short external string
2139 Register string_type = w0;
2140 Register jsstring_length = x2;
2141 Register jsregexp_object = x3;
2142 Register string_encoding = w4;
2143 Register sliced_string_offset = w5;
2144 Register string_representation = w6;
2145
2146 // These are in callee save registers and will be preserved by the call
2147 // to the native RegExp code, as this code is called using the normal
2148 // C calling convention. When calling directly from generated code the
2149 // native RegExp code will not do a GC and therefore the content of
2150 // these registers are safe to use after the call.
2151
2152 // x19 subject subject string
2153 // x20 regexp_data RegExp data (FixedArray)
2154 // x21 last_match_info_elements info relative to the last match
2155 // (FixedArray)
2156 // x22 code_object generated regexp code
2157 Register subject = x19;
2158 Register regexp_data = x20;
2159 Register last_match_info_elements = x21;
2160 Register code_object = x22;
2161
2162 // TODO(jbramley): Is it necessary to preserve these? I don't think ARM does.
2163 CPURegList used_callee_saved_registers(subject,
2164 regexp_data,
2165 last_match_info_elements,
2166 code_object);
2167 __ PushCPURegList(used_callee_saved_registers);
2168
2169 // Stack frame.
2170 // jssp[0] : x19
2171 // jssp[8] : x20
2172 // jssp[16]: x21
2173 // jssp[24]: x22
2174 // jssp[32]: last_match_info (JSArray)
2175 // jssp[40]: previous index
2176 // jssp[48]: subject string
2177 // jssp[56]: JSRegExp object
2178
2179 const int kLastMatchInfoOffset = 4 * kPointerSize;
2180 const int kPreviousIndexOffset = 5 * kPointerSize;
2181 const int kSubjectOffset = 6 * kPointerSize;
2182 const int kJSRegExpOffset = 7 * kPointerSize;
2183
2184 // Ensure that a RegExp stack is allocated.
2185 ExternalReference address_of_regexp_stack_memory_address =
2186 ExternalReference::address_of_regexp_stack_memory_address(isolate());
2187 ExternalReference address_of_regexp_stack_memory_size =
2188 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2189 __ Mov(x10, address_of_regexp_stack_memory_size);
2190 __ Ldr(x10, MemOperand(x10));
2191 __ Cbz(x10, &runtime);
2192
2193 // Check that the first argument is a JSRegExp object.
2194 DCHECK(jssp.Is(__ StackPointer()));
2195 __ Peek(jsregexp_object, kJSRegExpOffset);
2196 __ JumpIfSmi(jsregexp_object, &runtime);
2197 __ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
2198
2199 // Check that the RegExp has been compiled (data contains a fixed array).
2200 __ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
2201 if (FLAG_debug_code) {
2202 STATIC_ASSERT(kSmiTag == 0);
2203 __ Tst(regexp_data, kSmiTagMask);
2204 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2205 __ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
2206 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
2207 }
2208
2209 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2210 __ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2211 __ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
2212 __ B(ne, &runtime);
2213
2214 // Check that the number of captures fit in the static offsets vector buffer.
2215 // We have always at least one capture for the whole match, plus additional
2216 // ones due to capturing parentheses. A capture takes 2 registers.
2217 // The number of capture registers then is (number_of_captures + 1) * 2.
2218 __ Ldrsw(x10,
2219 UntagSmiFieldMemOperand(regexp_data,
2220 JSRegExp::kIrregexpCaptureCountOffset));
2221 // Check (number_of_captures + 1) * 2 <= offsets vector size
2222 // number_of_captures * 2 <= offsets vector size - 2
2223 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2224 __ Add(x10, x10, x10);
2225 __ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
2226 __ B(hi, &runtime);
2227
2228 // Initialize offset for possibly sliced string.
2229 __ Mov(sliced_string_offset, 0);
2230
2231 DCHECK(jssp.Is(__ StackPointer()));
2232 __ Peek(subject, kSubjectOffset);
2233 __ JumpIfSmi(subject, &runtime);
2234
2235 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2236 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2237
2238 __ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
2239
2240 // Handle subject string according to its encoding and representation:
2241 // (1) Sequential string? If yes, go to (5).
2242 // (2) Anything but sequential or cons? If yes, go to (6).
2243 // (3) Cons string. If the string is flat, replace subject with first string.
2244 // Otherwise bailout.
2245 // (4) Is subject external? If yes, go to (7).
2246 // (5) Sequential string. Load regexp code according to encoding.
2247 // (E) Carry on.
2248 /// [...]
2249
2250 // Deferred code at the end of the stub:
2251 // (6) Not a long external string? If yes, go to (8).
2252 // (7) External string. Make it, offset-wise, look like a sequential string.
2253 // Go to (5).
2254 // (8) Short external string or not a string? If yes, bail out to runtime.
2255 // (9) Sliced string. Replace subject with parent. Go to (4).
2256
2257 Label check_underlying; // (4)
2258 Label seq_string; // (5)
2259 Label not_seq_nor_cons; // (6)
2260 Label external_string; // (7)
2261 Label not_long_external; // (8)
2262
2263 // (1) Sequential string? If yes, go to (5).
2264 __ And(string_representation,
2265 string_type,
2266 kIsNotStringMask |
2267 kStringRepresentationMask |
2268 kShortExternalStringMask);
2269 // We depend on the fact that Strings of type
2270 // SeqString and not ShortExternalString are defined
2271 // by the following pattern:
2272 // string_type: 0XX0 XX00
2273 // ^ ^ ^^
2274 // | | ||
2275 // | | is a SeqString
2276 // | is not a short external String
2277 // is a String
2278 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2279 STATIC_ASSERT(kShortExternalStringTag != 0);
2280 __ Cbz(string_representation, &seq_string); // Go to (5).
2281
2282 // (2) Anything but sequential or cons? If yes, go to (6).
2283 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2284 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2285 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2286 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2287 __ Cmp(string_representation, kExternalStringTag);
2288 __ B(ge, &not_seq_nor_cons); // Go to (6).
2289
2290 // (3) Cons string. Check that it's flat.
2291 __ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
2292 __ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
2293 // Replace subject with first string.
2294 __ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2295
2296 // (4) Is subject external? If yes, go to (7).
2297 __ Bind(&check_underlying);
2298 // Reload the string type.
2299 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2300 __ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2301 STATIC_ASSERT(kSeqStringTag == 0);
2302 // The underlying external string is never a short external string.
2303 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2304 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2305 __ TestAndBranchIfAnySet(string_type.X(),
2306 kStringRepresentationMask,
2307 &external_string); // Go to (7).
2308
2309 // (5) Sequential string. Load regexp code according to encoding.
2310 __ Bind(&seq_string);
2311
2312 // Check that the third argument is a positive smi less than the subject
2313 // string length. A negative value will be greater (unsigned comparison).
2314 DCHECK(jssp.Is(__ StackPointer()));
2315 __ Peek(x10, kPreviousIndexOffset);
2316 __ JumpIfNotSmi(x10, &runtime);
2317 __ Cmp(jsstring_length, x10);
2318 __ B(ls, &runtime);
2319
2320 // Argument 2 (x1): We need to load argument 2 (the previous index) into x1
2321 // before entering the exit frame.
2322 __ SmiUntag(x1, x10);
2323
2324 // The third bit determines the string encoding in string_type.
2325 STATIC_ASSERT(kOneByteStringTag == 0x04);
2326 STATIC_ASSERT(kTwoByteStringTag == 0x00);
2327 STATIC_ASSERT(kStringEncodingMask == 0x04);
2328
2329 // Find the code object based on the assumptions above.
2330 // kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
2331 // of kPointerSize to reach the latter.
2332 DCHECK_EQ(JSRegExp::kDataOneByteCodeOffset + kPointerSize,
2333 JSRegExp::kDataUC16CodeOffset);
2334 __ Mov(x10, kPointerSize);
2335 // We will need the encoding later: Latin1 = 0x04
2336 // UC16 = 0x00
2337 __ Ands(string_encoding, string_type, kStringEncodingMask);
2338 __ CzeroX(x10, ne);
2339 __ Add(x10, regexp_data, x10);
2340 __ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
2341
2342 // (E) Carry on. String handling is done.
2343
2344 // Check that the irregexp code has been generated for the actual string
2345 // encoding. If it has, the field contains a code object otherwise it contains
2346 // a smi (code flushing support).
2347 __ JumpIfSmi(code_object, &runtime);
2348
2349 // All checks done. Now push arguments for native regexp code.
2350 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
2351 x10,
2352 x11);
2353
2354 // Isolates: note we add an additional parameter here (isolate pointer).
2355 __ EnterExitFrame(false, x10, 1);
2356 DCHECK(csp.Is(__ StackPointer()));
2357
2358 // We have 9 arguments to pass to the regexp code, therefore we have to pass
2359 // one on the stack and the rest as registers.
2360
2361 // Note that the placement of the argument on the stack isn't standard
2362 // AAPCS64:
2363 // csp[0]: Space for the return address placed by DirectCEntryStub.
2364 // csp[8]: Argument 9, the current isolate address.
2365
2366 __ Mov(x10, ExternalReference::isolate_address(isolate()));
2367 __ Poke(x10, kPointerSize);
2368
2369 Register length = w11;
2370 Register previous_index_in_bytes = w12;
2371 Register start = x13;
2372
2373 // Load start of the subject string.
2374 __ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
2375 // Load the length from the original subject string from the previous stack
2376 // frame. Therefore we have to use fp, which points exactly to two pointer
2377 // sizes below the previous sp. (Because creating a new stack frame pushes
2378 // the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
2379 __ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2380 __ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
2381
2382 // Handle UC16 encoding, two bytes make one character.
2383 // string_encoding: if Latin1: 0x04
2384 // if UC16: 0x00
2385 STATIC_ASSERT(kStringEncodingMask == 0x04);
2386 __ Ubfx(string_encoding, string_encoding, 2, 1);
2387 __ Eor(string_encoding, string_encoding, 1);
2388 // string_encoding: if Latin1: 0
2389 // if UC16: 1
2390
2391 // Convert string positions from characters to bytes.
2392 // Previous index is in x1.
2393 __ Lsl(previous_index_in_bytes, w1, string_encoding);
2394 __ Lsl(length, length, string_encoding);
2395 __ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
2396
2397 // Argument 1 (x0): Subject string.
2398 __ Mov(x0, subject);
2399
2400 // Argument 2 (x1): Previous index, already there.
2401
2402 // Argument 3 (x2): Get the start of input.
2403 // Start of input = start of string + previous index + substring offset
2404 // (0 if the string
2405 // is not sliced).
2406 __ Add(w10, previous_index_in_bytes, sliced_string_offset);
2407 __ Add(x2, start, Operand(w10, UXTW));
2408
2409 // Argument 4 (x3):
2410 // End of input = start of input + (length of input - previous index)
2411 __ Sub(w10, length, previous_index_in_bytes);
2412 __ Add(x3, x2, Operand(w10, UXTW));
2413
2414 // Argument 5 (x4): static offsets vector buffer.
2415 __ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
2416
2417 // Argument 6 (x5): Set the number of capture registers to zero to force
2418 // global regexps to behave as non-global. This stub is not used for global
2419 // regexps.
2420 __ Mov(x5, 0);
2421
2422 // Argument 7 (x6): Start (high end) of backtracking stack memory area.
2423 __ Mov(x10, address_of_regexp_stack_memory_address);
2424 __ Ldr(x10, MemOperand(x10));
2425 __ Mov(x11, address_of_regexp_stack_memory_size);
2426 __ Ldr(x11, MemOperand(x11));
2427 __ Add(x6, x10, x11);
2428
2429 // Argument 8 (x7): Indicate that this is a direct call from JavaScript.
2430 __ Mov(x7, 1);
2431
2432 // Locate the code entry and call it.
2433 __ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
2434 DirectCEntryStub stub(isolate());
2435 stub.GenerateCall(masm, code_object);
2436
2437 __ LeaveExitFrame(false, x10, true);
2438
2439 // The generated regexp code returns an int32 in w0.
2440 Label failure, exception;
2441 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
2442 __ CompareAndBranch(w0,
2443 NativeRegExpMacroAssembler::EXCEPTION,
2444 eq,
2445 &exception);
2446 __ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
2447
2448 // Success: process the result from the native regexp code.
2449 Register number_of_capture_registers = x12;
2450
2451 // Calculate number of capture registers (number_of_captures + 1) * 2
2452 // and store it in the last match info.
2453 __ Ldrsw(x10,
2454 UntagSmiFieldMemOperand(regexp_data,
2455 JSRegExp::kIrregexpCaptureCountOffset));
2456 __ Add(x10, x10, x10);
2457 __ Add(number_of_capture_registers, x10, 2);
2458
2459 // Check that the fourth object is a JSArray object.
2460 DCHECK(jssp.Is(__ StackPointer()));
2461 __ Peek(x10, kLastMatchInfoOffset);
2462 __ JumpIfSmi(x10, &runtime);
2463 __ JumpIfNotObjectType(x10, x11, x11, JS_ARRAY_TYPE, &runtime);
2464
2465 // Check that the JSArray is the fast case.
2466 __ Ldr(last_match_info_elements,
2467 FieldMemOperand(x10, JSArray::kElementsOffset));
2468 __ Ldr(x10,
2469 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2470 __ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
2471
2472 // Check that the last match info has space for the capture registers and the
2473 // additional information (overhead).
2474 // (number_of_captures + 1) * 2 + overhead <= last match info size
2475 // (number_of_captures * 2) + 2 + overhead <= last match info size
2476 // number_of_capture_registers + overhead <= last match info size
2477 __ Ldrsw(x10,
2478 UntagSmiFieldMemOperand(last_match_info_elements,
2479 FixedArray::kLengthOffset));
2480 __ Add(x11, number_of_capture_registers, RegExpImpl::kLastMatchOverhead);
2481 __ Cmp(x11, x10);
2482 __ B(gt, &runtime);
2483
2484 // Store the capture count.
2485 __ SmiTag(x10, number_of_capture_registers);
2486 __ Str(x10,
2487 FieldMemOperand(last_match_info_elements,
2488 RegExpImpl::kLastCaptureCountOffset));
2489 // Store last subject and last input.
2490 __ Str(subject,
2491 FieldMemOperand(last_match_info_elements,
2492 RegExpImpl::kLastSubjectOffset));
2493 // Use x10 as the subject string in order to only need
2494 // one RecordWriteStub.
2495 __ Mov(x10, subject);
2496 __ RecordWriteField(last_match_info_elements,
2497 RegExpImpl::kLastSubjectOffset,
2498 x10,
2499 x11,
2500 kLRHasNotBeenSaved,
2501 kDontSaveFPRegs);
2502 __ Str(subject,
2503 FieldMemOperand(last_match_info_elements,
2504 RegExpImpl::kLastInputOffset));
2505 __ Mov(x10, subject);
2506 __ RecordWriteField(last_match_info_elements,
2507 RegExpImpl::kLastInputOffset,
2508 x10,
2509 x11,
2510 kLRHasNotBeenSaved,
2511 kDontSaveFPRegs);
2512
2513 Register last_match_offsets = x13;
2514 Register offsets_vector_index = x14;
2515 Register current_offset = x15;
2516
2517 // Get the static offsets vector filled by the native regexp code
2518 // and fill the last match info.
2519 ExternalReference address_of_static_offsets_vector =
2520 ExternalReference::address_of_static_offsets_vector(isolate());
2521 __ Mov(offsets_vector_index, address_of_static_offsets_vector);
2522
2523 Label next_capture, done;
2524 // Capture register counter starts from number of capture registers and
2525 // iterates down to zero (inclusive).
2526 __ Add(last_match_offsets,
2527 last_match_info_elements,
2528 RegExpImpl::kFirstCaptureOffset - kHeapObjectTag);
2529 __ Bind(&next_capture);
2530 __ Subs(number_of_capture_registers, number_of_capture_registers, 2);
2531 __ B(mi, &done);
2532 // Read two 32 bit values from the static offsets vector buffer into
2533 // an X register
2534 __ Ldr(current_offset,
2535 MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
2536 // Store the smi values in the last match info.
2537 __ SmiTag(x10, current_offset);
2538 // Clearing the 32 bottom bits gives us a Smi.
2539 STATIC_ASSERT(kSmiTag == 0);
2540 __ Bic(x11, current_offset, kSmiShiftMask);
2541 __ Stp(x10,
2542 x11,
2543 MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
2544 __ B(&next_capture);
2545 __ Bind(&done);
2546
2547 // Return last match info.
2548 __ Peek(x0, kLastMatchInfoOffset);
2549 __ PopCPURegList(used_callee_saved_registers);
2550 // Drop the 4 arguments of the stub from the stack.
2551 __ Drop(4);
2552 __ Ret();
2553
2554 __ Bind(&exception);
2555 Register exception_value = x0;
2556 // A stack overflow (on the backtrack stack) may have occured
2557 // in the RegExp code but no exception has been created yet.
2558 // If there is no pending exception, handle that in the runtime system.
2559 __ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
2560 __ Mov(x11,
2561 Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2562 isolate())));
2563 __ Ldr(exception_value, MemOperand(x11));
2564 __ Cmp(x10, exception_value);
2565 __ B(eq, &runtime);
2566
2567 __ Str(x10, MemOperand(x11)); // Clear pending exception.
2568
2569 // Check if the exception is a termination. If so, throw as uncatchable.
2570 Label termination_exception;
2571 __ JumpIfRoot(exception_value,
2572 Heap::kTerminationExceptionRootIndex,
2573 &termination_exception);
2574
2575 __ Throw(exception_value, x10, x11, x12, x13);
2576
2577 __ Bind(&termination_exception);
2578 __ ThrowUncatchable(exception_value, x10, x11, x12, x13);
2579
2580 __ Bind(&failure);
2581 __ Mov(x0, Operand(isolate()->factory()->null_value()));
2582 __ PopCPURegList(used_callee_saved_registers);
2583 // Drop the 4 arguments of the stub from the stack.
2584 __ Drop(4);
2585 __ Ret();
2586
2587 __ Bind(&runtime);
2588 __ PopCPURegList(used_callee_saved_registers);
2589 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2590
2591 // Deferred code for string handling.
2592 // (6) Not a long external string? If yes, go to (8).
2593 __ Bind(&not_seq_nor_cons);
2594 // Compare flags are still set.
2595 __ B(ne, &not_long_external); // Go to (8).
2596
2597 // (7) External string. Make it, offset-wise, look like a sequential string.
2598 __ Bind(&external_string);
2599 if (masm->emit_debug_code()) {
2600 // Assert that we do not have a cons or slice (indirect strings) here.
2601 // Sequential strings have already been ruled out.
2602 __ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
2603 __ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2604 __ Tst(x10, kIsIndirectStringMask);
2605 __ Check(eq, kExternalStringExpectedButNotFound);
2606 __ And(x10, x10, kStringRepresentationMask);
2607 __ Cmp(x10, 0);
2608 __ Check(ne, kExternalStringExpectedButNotFound);
2609 }
2610 __ Ldr(subject,
2611 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2612 // Move the pointer so that offset-wise, it looks like a sequential string.
2613 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2614 __ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2615 __ B(&seq_string); // Go to (5).
2616
2617 // (8) If this is a short external string or not a string, bail out to
2618 // runtime.
2619 __ Bind(&not_long_external);
2620 STATIC_ASSERT(kShortExternalStringTag != 0);
2621 __ TestAndBranchIfAnySet(string_representation,
2622 kShortExternalStringMask | kIsNotStringMask,
2623 &runtime);
2624
2625 // (9) Sliced string. Replace subject with parent.
2626 __ Ldr(sliced_string_offset,
2627 UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
2628 __ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2629 __ B(&check_underlying); // Go to (4).
2630#endif
2631}
2632
2633
2634static void GenerateRecordCallTarget(MacroAssembler* masm,
2635 Register argc,
2636 Register function,
2637 Register feedback_vector,
2638 Register index,
2639 Register scratch1,
2640 Register scratch2) {
2641 ASM_LOCATION("GenerateRecordCallTarget");
2642 DCHECK(!AreAliased(scratch1, scratch2,
2643 argc, function, feedback_vector, index));
2644 // Cache the called function in a feedback vector slot. Cache states are
2645 // uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
2646 // argc : number of arguments to the construct function
2647 // function : the function to call
2648 // feedback_vector : the feedback vector
2649 // index : slot in feedback vector (smi)
2650 Label initialize, done, miss, megamorphic, not_array_function;
2651
2652 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2653 masm->isolate()->heap()->megamorphic_symbol());
2654 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2655 masm->isolate()->heap()->uninitialized_symbol());
2656
2657 // Load the cache state.
2658 __ Add(scratch1, feedback_vector,
2659 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2660 __ Ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2661
2662 // A monomorphic cache hit or an already megamorphic state: invoke the
2663 // function without changing the state.
2664 __ Cmp(scratch1, function);
2665 __ B(eq, &done);
2666
2667 if (!FLAG_pretenuring_call_new) {
2668 // If we came here, we need to see if we are the array function.
2669 // If we didn't have a matching function, and we didn't find the megamorph
2670 // sentinel, then we have in the slot either some other function or an
2671 // AllocationSite. Do a map check on the object in scratch1 register.
2672 __ Ldr(scratch2, FieldMemOperand(scratch1, AllocationSite::kMapOffset));
2673 __ JumpIfNotRoot(scratch2, Heap::kAllocationSiteMapRootIndex, &miss);
2674
2675 // Make sure the function is the Array() function
2676 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
2677 __ Cmp(function, scratch1);
2678 __ B(ne, &megamorphic);
2679 __ B(&done);
2680 }
2681
2682 __ Bind(&miss);
2683
2684 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2685 // megamorphic.
2686 __ JumpIfRoot(scratch1, Heap::kUninitializedSymbolRootIndex, &initialize);
2687 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2688 // write-barrier is needed.
2689 __ Bind(&megamorphic);
2690 __ Add(scratch1, feedback_vector,
2691 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2692 __ LoadRoot(scratch2, Heap::kMegamorphicSymbolRootIndex);
2693 __ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2694 __ B(&done);
2695
2696 // An uninitialized cache is patched with the function or sentinel to
2697 // indicate the ElementsKind if function is the Array constructor.
2698 __ Bind(&initialize);
2699
2700 if (!FLAG_pretenuring_call_new) {
2701 // Make sure the function is the Array() function
2702 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch1);
2703 __ Cmp(function, scratch1);
2704 __ B(ne, &not_array_function);
2705
2706 // The target function is the Array constructor,
2707 // Create an AllocationSite if we don't already have it, store it in the
2708 // slot.
2709 {
2710 FrameScope scope(masm, StackFrame::INTERNAL);
2711 CreateAllocationSiteStub create_stub(masm->isolate());
2712
2713 // Arguments register must be smi-tagged to call out.
2714 __ SmiTag(argc);
2715 __ Push(argc, function, feedback_vector, index);
2716
2717 // CreateAllocationSiteStub expect the feedback vector in x2 and the slot
2718 // index in x3.
2719 DCHECK(feedback_vector.Is(x2) && index.Is(x3));
2720 __ CallStub(&create_stub);
2721
2722 __ Pop(index, feedback_vector, function, argc);
2723 __ SmiUntag(argc);
2724 }
2725 __ B(&done);
2726
2727 __ Bind(&not_array_function);
2728 }
2729
2730 // An uninitialized cache is patched with the function.
2731
2732 __ Add(scratch1, feedback_vector,
2733 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2734 __ Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
2735 __ Str(function, MemOperand(scratch1, 0));
2736
2737 __ Push(function);
2738 __ RecordWrite(feedback_vector, scratch1, function, kLRHasNotBeenSaved,
2739 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2740 __ Pop(function);
2741
2742 __ Bind(&done);
2743}
2744
2745
2746static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2747 // Do not transform the receiver for strict mode functions.
2748 __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
2749 __ Ldr(w4, FieldMemOperand(x3, SharedFunctionInfo::kCompilerHintsOffset));
2750 __ Tbnz(w4, SharedFunctionInfo::kStrictModeFunction, cont);
2751
2752 // Do not transform the receiver for native (Compilerhints already in x3).
2753 __ Tbnz(w4, SharedFunctionInfo::kNative, cont);
2754}
2755
2756
2757static void EmitSlowCase(MacroAssembler* masm,
2758 int argc,
2759 Register function,
2760 Register type,
2761 Label* non_function) {
2762 // Check for function proxy.
2763 // x10 : function type.
2764 __ CompareAndBranch(type, JS_FUNCTION_PROXY_TYPE, ne, non_function);
2765 __ Push(function); // put proxy as additional argument
2766 __ Mov(x0, argc + 1);
2767 __ Mov(x2, 0);
2768 __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
2769 {
2770 Handle<Code> adaptor =
2771 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2772 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2773 }
2774
2775 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2776 // of the original receiver from the call site).
2777 __ Bind(non_function);
2778 __ Poke(function, argc * kXRegSize);
2779 __ Mov(x0, argc); // Set up the number of arguments.
2780 __ Mov(x2, 0);
2781 __ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
2782 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2783 RelocInfo::CODE_TARGET);
2784}
2785
2786
2787static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2788 // Wrap the receiver and patch it back onto the stack.
2789 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2790 __ Push(x1, x3);
2791 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2792 __ Pop(x1);
2793 }
2794 __ Poke(x0, argc * kPointerSize);
2795 __ B(cont);
2796}
2797
2798
2799static void CallFunctionNoFeedback(MacroAssembler* masm,
2800 int argc, bool needs_checks,
2801 bool call_as_method) {
2802 // x1 function the function to call
2803 Register function = x1;
2804 Register type = x4;
2805 Label slow, non_function, wrap, cont;
2806
2807 // TODO(jbramley): This function has a lot of unnamed registers. Name them,
2808 // and tidy things up a bit.
2809
2810 if (needs_checks) {
2811 // Check that the function is really a JavaScript function.
2812 __ JumpIfSmi(function, &non_function);
2813
2814 // Goto slow case if we do not have a function.
2815 __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
2816 }
2817
2818 // Fast-case: Invoke the function now.
2819 // x1 function pushed function
2820 ParameterCount actual(argc);
2821
2822 if (call_as_method) {
2823 if (needs_checks) {
2824 EmitContinueIfStrictOrNative(masm, &cont);
2825 }
2826
2827 // Compute the receiver in sloppy mode.
2828 __ Peek(x3, argc * kPointerSize);
2829
2830 if (needs_checks) {
2831 __ JumpIfSmi(x3, &wrap);
2832 __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
2833 } else {
2834 __ B(&wrap);
2835 }
2836
2837 __ Bind(&cont);
2838 }
2839
2840 __ InvokeFunction(function,
2841 actual,
2842 JUMP_FUNCTION,
2843 NullCallWrapper());
2844 if (needs_checks) {
2845 // Slow-case: Non-function called.
2846 __ Bind(&slow);
2847 EmitSlowCase(masm, argc, function, type, &non_function);
2848 }
2849
2850 if (call_as_method) {
2851 __ Bind(&wrap);
2852 EmitWrapCase(masm, argc, &cont);
2853 }
2854}
2855
2856
2857void CallFunctionStub::Generate(MacroAssembler* masm) {
2858 ASM_LOCATION("CallFunctionStub::Generate");
2859 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2860}
2861
2862
2863void CallConstructStub::Generate(MacroAssembler* masm) {
2864 ASM_LOCATION("CallConstructStub::Generate");
2865 // x0 : number of arguments
2866 // x1 : the function to call
2867 // x2 : feedback vector
2868 // x3 : slot in feedback vector (smi) (if r2 is not the megamorphic symbol)
2869 Register function = x1;
2870 Label slow, non_function_call;
2871
2872 // Check that the function is not a smi.
2873 __ JumpIfSmi(function, &non_function_call);
2874 // Check that the function is a JSFunction.
2875 Register object_type = x10;
2876 __ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
2877 &slow);
2878
2879 if (RecordCallTarget()) {
2880 GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5);
2881
2882 __ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
2883 if (FLAG_pretenuring_call_new) {
2884 // Put the AllocationSite from the feedback vector into x2.
2885 // By adding kPointerSize we encode that we know the AllocationSite
2886 // entry is at the feedback vector slot given by x3 + 1.
2887 __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize + kPointerSize));
2888 } else {
2889 Label feedback_register_initialized;
2890 // Put the AllocationSite from the feedback vector into x2, or undefined.
2891 __ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
2892 __ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
2893 __ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
2894 &feedback_register_initialized);
2895 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
2896 __ bind(&feedback_register_initialized);
2897 }
2898
2899 __ AssertUndefinedOrAllocationSite(x2, x5);
2900 }
2901
2902 // Jump to the function-specific construct stub.
2903 Register jump_reg = x4;
2904 Register shared_func_info = jump_reg;
2905 Register cons_stub = jump_reg;
2906 Register cons_stub_code = jump_reg;
2907 __ Ldr(shared_func_info,
2908 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2909 __ Ldr(cons_stub,
2910 FieldMemOperand(shared_func_info,
2911 SharedFunctionInfo::kConstructStubOffset));
2912 __ Add(cons_stub_code, cons_stub, Code::kHeaderSize - kHeapObjectTag);
2913 __ Br(cons_stub_code);
2914
2915 Label do_call;
2916 __ Bind(&slow);
2917 __ Cmp(object_type, JS_FUNCTION_PROXY_TYPE);
2918 __ B(ne, &non_function_call);
2919 __ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2920 __ B(&do_call);
2921
2922 __ Bind(&non_function_call);
2923 __ GetBuiltinFunction(x1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2924
2925 __ Bind(&do_call);
2926 // Set expected number of arguments to zero (not changing x0).
2927 __ Mov(x2, 0);
2928 __ Jump(isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2929 RelocInfo::CODE_TARGET);
2930}
2931
2932
2933static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2934 __ Ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2935 __ Ldr(vector, FieldMemOperand(vector,
2936 JSFunction::kSharedFunctionInfoOffset));
2937 __ Ldr(vector, FieldMemOperand(vector,
2938 SharedFunctionInfo::kFeedbackVectorOffset));
2939}
2940
2941
2942void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2943 // x1 - function
2944 // x3 - slot id
2945 Label miss;
2946 Register function = x1;
2947 Register feedback_vector = x2;
2948 Register index = x3;
2949 Register scratch = x4;
2950
2951 EmitLoadTypeFeedbackVector(masm, feedback_vector);
2952
2953 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, scratch);
2954 __ Cmp(function, scratch);
2955 __ B(ne, &miss);
2956
2957 __ Mov(x0, Operand(arg_count()));
2958
2959 __ Add(scratch, feedback_vector,
2960 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
2961 __ Ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2962
2963 // Verify that scratch contains an AllocationSite
2964 Register map = x5;
2965 __ Ldr(map, FieldMemOperand(scratch, HeapObject::kMapOffset));
2966 __ JumpIfNotRoot(map, Heap::kAllocationSiteMapRootIndex, &miss);
2967
2968 Register allocation_site = feedback_vector;
2969 __ Mov(allocation_site, scratch);
2970 ArrayConstructorStub stub(masm->isolate(), arg_count());
2971 __ TailCallStub(&stub);
2972
2973 __ bind(&miss);
2974 GenerateMiss(masm);
2975
2976 // The slow case, we need this no matter what to complete a call after a miss.
2977 CallFunctionNoFeedback(masm,
2978 arg_count(),
2979 true,
2980 CallAsMethod());
2981
2982 __ Unreachable();
2983}
2984
2985
2986void CallICStub::Generate(MacroAssembler* masm) {
2987 ASM_LOCATION("CallICStub");
2988
2989 // x1 - function
2990 // x3 - slot id (Smi)
2991 Label extra_checks_or_miss, slow_start;
2992 Label slow, non_function, wrap, cont;
2993 Label have_js_function;
2994 int argc = arg_count();
2995 ParameterCount actual(argc);
2996
2997 Register function = x1;
2998 Register feedback_vector = x2;
2999 Register index = x3;
3000 Register type = x4;
3001
3002 EmitLoadTypeFeedbackVector(masm, feedback_vector);
3003
3004 // The checks. First, does x1 match the recorded monomorphic target?
3005 __ Add(x4, feedback_vector,
3006 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3007 __ Ldr(x4, FieldMemOperand(x4, FixedArray::kHeaderSize));
3008
3009 __ Cmp(x4, function);
3010 __ B(ne, &extra_checks_or_miss);
3011
3012 __ bind(&have_js_function);
3013 if (CallAsMethod()) {
3014 EmitContinueIfStrictOrNative(masm, &cont);
3015
3016 // Compute the receiver in sloppy mode.
3017 __ Peek(x3, argc * kPointerSize);
3018
3019 __ JumpIfSmi(x3, &wrap);
3020 __ JumpIfObjectType(x3, x10, type, FIRST_SPEC_OBJECT_TYPE, &wrap, lt);
3021
3022 __ Bind(&cont);
3023 }
3024
3025 __ InvokeFunction(function,
3026 actual,
3027 JUMP_FUNCTION,
3028 NullCallWrapper());
3029
3030 __ bind(&slow);
3031 EmitSlowCase(masm, argc, function, type, &non_function);
3032
3033 if (CallAsMethod()) {
3034 __ bind(&wrap);
3035 EmitWrapCase(masm, argc, &cont);
3036 }
3037
3038 __ bind(&extra_checks_or_miss);
3039 Label miss;
3040
3041 __ JumpIfRoot(x4, Heap::kMegamorphicSymbolRootIndex, &slow_start);
3042 __ JumpIfRoot(x4, Heap::kUninitializedSymbolRootIndex, &miss);
3043
3044 if (!FLAG_trace_ic) {
3045 // We are going megamorphic. If the feedback is a JSFunction, it is fine
3046 // to handle it here. More complex cases are dealt with in the runtime.
3047 __ AssertNotSmi(x4);
3048 __ JumpIfNotObjectType(x4, x5, x5, JS_FUNCTION_TYPE, &miss);
3049 __ Add(x4, feedback_vector,
3050 Operand::UntagSmiAndScale(index, kPointerSizeLog2));
3051 __ LoadRoot(x5, Heap::kMegamorphicSymbolRootIndex);
3052 __ Str(x5, FieldMemOperand(x4, FixedArray::kHeaderSize));
3053 __ B(&slow_start);
3054 }
3055
3056 // We are here because tracing is on or we are going monomorphic.
3057 __ bind(&miss);
3058 GenerateMiss(masm);
3059
3060 // the slow case
3061 __ bind(&slow_start);
3062
3063 // Check that the function is really a JavaScript function.
3064 __ JumpIfSmi(function, &non_function);
3065
3066 // Goto slow case if we do not have a function.
3067 __ JumpIfNotObjectType(function, x10, type, JS_FUNCTION_TYPE, &slow);
3068 __ B(&have_js_function);
3069}
3070
3071
3072void CallICStub::GenerateMiss(MacroAssembler* masm) {
3073 ASM_LOCATION("CallICStub[Miss]");
3074
3075 // Get the receiver of the function from the stack; 1 ~ return address.
3076 __ Peek(x4, (arg_count() + 1) * kPointerSize);
3077
3078 {
3079 FrameScope scope(masm, StackFrame::INTERNAL);
3080
3081 // Push the receiver and the function and feedback info.
3082 __ Push(x4, x1, x2, x3);
3083
3084 // Call the entry.
3085 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
3086 : IC::kCallIC_Customization_Miss;
3087
3088 ExternalReference miss = ExternalReference(IC_Utility(id),
3089 masm->isolate());
3090 __ CallExternalReference(miss, 4);
3091
3092 // Move result to edi and exit the internal frame.
3093 __ Mov(x1, x0);
3094 }
3095}
3096
3097
3098void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
3099 // If the receiver is a smi trigger the non-string case.
3100 __ JumpIfSmi(object_, receiver_not_string_);
3101
3102 // Fetch the instance type of the receiver into result register.
3103 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3104 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3105
3106 // If the receiver is not a string trigger the non-string case.
3107 __ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
3108
3109 // If the index is non-smi trigger the non-smi case.
3110 __ JumpIfNotSmi(index_, &index_not_smi_);
3111
3112 __ Bind(&got_smi_index_);
3113 // Check for index out of range.
3114 __ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
3115 __ Cmp(result_, Operand::UntagSmi(index_));
3116 __ B(ls, index_out_of_range_);
3117
3118 __ SmiUntag(index_);
3119
3120 StringCharLoadGenerator::Generate(masm,
3121 object_,
3122 index_.W(),
3123 result_,
3124 &call_runtime_);
3125 __ SmiTag(result_);
3126 __ Bind(&exit_);
3127}
3128
3129
3130void StringCharCodeAtGenerator::GenerateSlow(
3131 MacroAssembler* masm,
3132 const RuntimeCallHelper& call_helper) {
3133 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
3134
3135 __ Bind(&index_not_smi_);
3136 // If index is a heap number, try converting it to an integer.
3137 __ JumpIfNotHeapNumber(index_, index_not_number_);
3138 call_helper.BeforeCall(masm);
3139 // Save object_ on the stack and pass index_ as argument for runtime call.
3140 __ Push(object_, index_);
3141 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
3142 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
3143 } else {
3144 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
3145 // NumberToSmi discards numbers that are not exact integers.
3146 __ CallRuntime(Runtime::kNumberToSmi, 1);
3147 }
3148 // Save the conversion result before the pop instructions below
3149 // have a chance to overwrite it.
3150 __ Mov(index_, x0);
3151 __ Pop(object_);
3152 // Reload the instance type.
3153 __ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
3154 __ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
3155 call_helper.AfterCall(masm);
3156
3157 // If index is still not a smi, it must be out of range.
3158 __ JumpIfNotSmi(index_, index_out_of_range_);
3159 // Otherwise, return to the fast path.
3160 __ B(&got_smi_index_);
3161
3162 // Call runtime. We get here when the receiver is a string and the
3163 // index is a number, but the code of getting the actual character
3164 // is too complex (e.g., when the string needs to be flattened).
3165 __ Bind(&call_runtime_);
3166 call_helper.BeforeCall(masm);
3167 __ SmiTag(index_);
3168 __ Push(object_, index_);
3169 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3170 __ Mov(result_, x0);
3171 call_helper.AfterCall(masm);
3172 __ B(&exit_);
3173
3174 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3175}
3176
3177
3178void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3179 __ JumpIfNotSmi(code_, &slow_case_);
3180 __ Cmp(code_, Smi::FromInt(String::kMaxOneByteCharCode));
3181 __ B(hi, &slow_case_);
3182
3183 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3184 // At this point code register contains smi tagged one-byte char code.
3185 __ Add(result_, result_, Operand::UntagSmiAndScale(code_, kPointerSizeLog2));
3186 __ Ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3187 __ JumpIfRoot(result_, Heap::kUndefinedValueRootIndex, &slow_case_);
3188 __ Bind(&exit_);
3189}
3190
3191
3192void StringCharFromCodeGenerator::GenerateSlow(
3193 MacroAssembler* masm,
3194 const RuntimeCallHelper& call_helper) {
3195 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3196
3197 __ Bind(&slow_case_);
3198 call_helper.BeforeCall(masm);
3199 __ Push(code_);
3200 __ CallRuntime(Runtime::kCharFromCode, 1);
3201 __ Mov(result_, x0);
3202 call_helper.AfterCall(masm);
3203 __ B(&exit_);
3204
3205 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3206}
3207
3208
3209void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3210 // Inputs are in x0 (lhs) and x1 (rhs).
3211 DCHECK(state() == CompareICState::SMI);
3212 ASM_LOCATION("CompareICStub[Smis]");
3213 Label miss;
3214 // Bail out (to 'miss') unless both x0 and x1 are smis.
3215 __ JumpIfEitherNotSmi(x0, x1, &miss);
3216
3217 if (GetCondition() == eq) {
3218 // For equality we do not care about the sign of the result.
3219 __ Sub(x0, x0, x1);
3220 } else {
3221 // Untag before subtracting to avoid handling overflow.
3222 __ SmiUntag(x1);
3223 __ Sub(x0, x1, Operand::UntagSmi(x0));
3224 }
3225 __ Ret();
3226
3227 __ Bind(&miss);
3228 GenerateMiss(masm);
3229}
3230
3231
3232void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3233 DCHECK(state() == CompareICState::NUMBER);
3234 ASM_LOCATION("CompareICStub[HeapNumbers]");
3235
3236 Label unordered, maybe_undefined1, maybe_undefined2;
3237 Label miss, handle_lhs, values_in_d_regs;
3238 Label untag_rhs, untag_lhs;
3239
3240 Register result = x0;
3241 Register rhs = x0;
3242 Register lhs = x1;
3243 FPRegister rhs_d = d0;
3244 FPRegister lhs_d = d1;
3245
3246 if (left() == CompareICState::SMI) {
3247 __ JumpIfNotSmi(lhs, &miss);
3248 }
3249 if (right() == CompareICState::SMI) {
3250 __ JumpIfNotSmi(rhs, &miss);
3251 }
3252
3253 __ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
3254 __ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
3255
3256 // Load rhs if it's a heap number.
3257 __ JumpIfSmi(rhs, &handle_lhs);
3258 __ JumpIfNotHeapNumber(rhs, &maybe_undefined1);
3259 __ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
3260
3261 // Load lhs if it's a heap number.
3262 __ Bind(&handle_lhs);
3263 __ JumpIfSmi(lhs, &values_in_d_regs);
3264 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3265 __ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
3266
3267 __ Bind(&values_in_d_regs);
3268 __ Fcmp(lhs_d, rhs_d);
3269 __ B(vs, &unordered); // Overflow flag set if either is NaN.
3270 STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
3271 __ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
3272 __ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
3273 __ Ret();
3274
3275 __ Bind(&unordered);
3276 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3277 CompareICState::GENERIC, CompareICState::GENERIC);
3278 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3279
3280 __ Bind(&maybe_undefined1);
3281 if (Token::IsOrderedRelationalCompareOp(op())) {
3282 __ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
3283 __ JumpIfSmi(lhs, &unordered);
3284 __ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
3285 __ B(&unordered);
3286 }
3287
3288 __ Bind(&maybe_undefined2);
3289 if (Token::IsOrderedRelationalCompareOp(op())) {
3290 __ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
3291 }
3292
3293 __ Bind(&miss);
3294 GenerateMiss(masm);
3295}
3296
3297
3298void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3299 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3300 ASM_LOCATION("CompareICStub[InternalizedStrings]");
3301 Label miss;
3302
3303 Register result = x0;
3304 Register rhs = x0;
3305 Register lhs = x1;
3306
3307 // Check that both operands are heap objects.
3308 __ JumpIfEitherSmi(lhs, rhs, &miss);
3309
3310 // Check that both operands are internalized strings.
3311 Register rhs_map = x10;
3312 Register lhs_map = x11;
3313 Register rhs_type = x10;
3314 Register lhs_type = x11;
3315 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3316 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3317 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3318 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3319
3320 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
3321 __ Orr(x12, lhs_type, rhs_type);
3322 __ TestAndBranchIfAnySet(
3323 x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
3324
3325 // Internalized strings are compared by identity.
3326 STATIC_ASSERT(EQUAL == 0);
3327 __ Cmp(lhs, rhs);
3328 __ Cset(result, ne);
3329 __ Ret();
3330
3331 __ Bind(&miss);
3332 GenerateMiss(masm);
3333}
3334
3335
3336void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3337 DCHECK(state() == CompareICState::UNIQUE_NAME);
3338 ASM_LOCATION("CompareICStub[UniqueNames]");
3339 DCHECK(GetCondition() == eq);
3340 Label miss;
3341
3342 Register result = x0;
3343 Register rhs = x0;
3344 Register lhs = x1;
3345
3346 Register lhs_instance_type = w2;
3347 Register rhs_instance_type = w3;
3348
3349 // Check that both operands are heap objects.
3350 __ JumpIfEitherSmi(lhs, rhs, &miss);
3351
3352 // Check that both operands are unique names. This leaves the instance
3353 // types loaded in tmp1 and tmp2.
3354 __ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
3355 __ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
3356 __ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
3357 __ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
3358
3359 // To avoid a miss, each instance type should be either SYMBOL_TYPE or it
3360 // should have kInternalizedTag set.
3361 __ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss);
3362 __ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss);
3363
3364 // Unique names are compared by identity.
3365 STATIC_ASSERT(EQUAL == 0);
3366 __ Cmp(lhs, rhs);
3367 __ Cset(result, ne);
3368 __ Ret();
3369
3370 __ Bind(&miss);
3371 GenerateMiss(masm);
3372}
3373
3374
3375void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3376 DCHECK(state() == CompareICState::STRING);
3377 ASM_LOCATION("CompareICStub[Strings]");
3378
3379 Label miss;
3380
3381 bool equality = Token::IsEqualityOp(op());
3382
3383 Register result = x0;
3384 Register rhs = x0;
3385 Register lhs = x1;
3386
3387 // Check that both operands are heap objects.
3388 __ JumpIfEitherSmi(rhs, lhs, &miss);
3389
3390 // Check that both operands are strings.
3391 Register rhs_map = x10;
3392 Register lhs_map = x11;
3393 Register rhs_type = x10;
3394 Register lhs_type = x11;
3395 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3396 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3397 __ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
3398 __ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
3399 STATIC_ASSERT(kNotStringTag != 0);
3400 __ Orr(x12, lhs_type, rhs_type);
3401 __ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
3402
3403 // Fast check for identical strings.
3404 Label not_equal;
3405 __ Cmp(lhs, rhs);
3406 __ B(ne, &not_equal);
3407 __ Mov(result, EQUAL);
3408 __ Ret();
3409
3410 __ Bind(&not_equal);
3411 // Handle not identical strings
3412
3413 // Check that both strings are internalized strings. If they are, we're done
3414 // because we already know they are not identical. We know they are both
3415 // strings.
3416 if (equality) {
3417 DCHECK(GetCondition() == eq);
3418 STATIC_ASSERT(kInternalizedTag == 0);
3419 Label not_internalized_strings;
3420 __ Orr(x12, lhs_type, rhs_type);
3421 __ TestAndBranchIfAnySet(
3422 x12, kIsNotInternalizedMask, &not_internalized_strings);
3423 // Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
3424 __ Ret();
3425 __ Bind(&not_internalized_strings);
3426 }
3427
3428 // Check that both strings are sequential one-byte.
3429 Label runtime;
3430 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12,
3431 x13, &runtime);
3432
3433 // Compare flat one-byte strings. Returns when done.
3434 if (equality) {
3435 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
3436 x12);
3437 } else {
3438 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
3439 x12, x13);
3440 }
3441
3442 // Handle more complex cases in runtime.
3443 __ Bind(&runtime);
3444 __ Push(lhs, rhs);
3445 if (equality) {
3446 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3447 } else {
3448 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3449 }
3450
3451 __ Bind(&miss);
3452 GenerateMiss(masm);
3453}
3454
3455
3456void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3457 DCHECK(state() == CompareICState::OBJECT);
3458 ASM_LOCATION("CompareICStub[Objects]");
3459
3460 Label miss;
3461
3462 Register result = x0;
3463 Register rhs = x0;
3464 Register lhs = x1;
3465
3466 __ JumpIfEitherSmi(rhs, lhs, &miss);
3467
3468 __ JumpIfNotObjectType(rhs, x10, x10, JS_OBJECT_TYPE, &miss);
3469 __ JumpIfNotObjectType(lhs, x10, x10, JS_OBJECT_TYPE, &miss);
3470
3471 DCHECK(GetCondition() == eq);
3472 __ Sub(result, rhs, lhs);
3473 __ Ret();
3474
3475 __ Bind(&miss);
3476 GenerateMiss(masm);
3477}
3478
3479
3480void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3481 ASM_LOCATION("CompareICStub[KnownObjects]");
3482
3483 Label miss;
3484
3485 Register result = x0;
3486 Register rhs = x0;
3487 Register lhs = x1;
3488
3489 __ JumpIfEitherSmi(rhs, lhs, &miss);
3490
3491 Register rhs_map = x10;
3492 Register lhs_map = x11;
3493 __ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
3494 __ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
3495 __ Cmp(rhs_map, Operand(known_map_));
3496 __ B(ne, &miss);
3497 __ Cmp(lhs_map, Operand(known_map_));
3498 __ B(ne, &miss);
3499
3500 __ Sub(result, rhs, lhs);
3501 __ Ret();
3502
3503 __ Bind(&miss);
3504 GenerateMiss(masm);
3505}
3506
3507
3508// This method handles the case where a compare stub had the wrong
3509// implementation. It calls a miss handler, which re-writes the stub. All other
3510// CompareICStub::Generate* methods should fall back into this one if their
3511// operands were not the expected types.
3512void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3513 ASM_LOCATION("CompareICStub[Miss]");
3514
3515 Register stub_entry = x11;
3516 {
3517 ExternalReference miss =
3518 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3519
3520 FrameScope scope(masm, StackFrame::INTERNAL);
3521 Register op = x10;
3522 Register left = x1;
3523 Register right = x0;
3524 // Preserve some caller-saved registers.
3525 __ Push(x1, x0, lr);
3526 // Push the arguments.
3527 __ Mov(op, Smi::FromInt(this->op()));
3528 __ Push(left, right, op);
3529
3530 // Call the miss handler. This also pops the arguments.
3531 __ CallExternalReference(miss, 3);
3532
3533 // Compute the entry point of the rewritten stub.
3534 __ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
3535 // Restore caller-saved registers.
3536 __ Pop(lr, x0, x1);
3537 }
3538
3539 // Tail-call to the new stub.
3540 __ Jump(stub_entry);
3541}
3542
3543
3544void SubStringStub::Generate(MacroAssembler* masm) {
3545 ASM_LOCATION("SubStringStub::Generate");
3546 Label runtime;
3547
3548 // Stack frame on entry.
3549 // lr: return address
3550 // jssp[0]: substring "to" offset
3551 // jssp[8]: substring "from" offset
3552 // jssp[16]: pointer to string object
3553
3554 // This stub is called from the native-call %_SubString(...), so
3555 // nothing can be assumed about the arguments. It is tested that:
3556 // "string" is a sequential string,
3557 // both "from" and "to" are smis, and
3558 // 0 <= from <= to <= string.length (in debug mode.)
3559 // If any of these assumptions fail, we call the runtime system.
3560
3561 static const int kToOffset = 0 * kPointerSize;
3562 static const int kFromOffset = 1 * kPointerSize;
3563 static const int kStringOffset = 2 * kPointerSize;
3564
3565 Register to = x0;
3566 Register from = x15;
3567 Register input_string = x10;
3568 Register input_length = x11;
3569 Register input_type = x12;
3570 Register result_string = x0;
3571 Register result_length = x1;
3572 Register temp = x3;
3573
3574 __ Peek(to, kToOffset);
3575 __ Peek(from, kFromOffset);
3576
3577 // Check that both from and to are smis. If not, jump to runtime.
3578 __ JumpIfEitherNotSmi(from, to, &runtime);
3579 __ SmiUntag(from);
3580 __ SmiUntag(to);
3581
3582 // Calculate difference between from and to. If to < from, branch to runtime.
3583 __ Subs(result_length, to, from);
3584 __ B(mi, &runtime);
3585
3586 // Check from is positive.
3587 __ Tbnz(from, kWSignBit, &runtime);
3588
3589 // Make sure first argument is a string.
3590 __ Peek(input_string, kStringOffset);
3591 __ JumpIfSmi(input_string, &runtime);
3592 __ IsObjectJSStringType(input_string, input_type, &runtime);
3593
3594 Label single_char;
3595 __ Cmp(result_length, 1);
3596 __ B(eq, &single_char);
3597
3598 // Short-cut for the case of trivial substring.
3599 Label return_x0;
3600 __ Ldrsw(input_length,
3601 UntagSmiFieldMemOperand(input_string, String::kLengthOffset));
3602
3603 __ Cmp(result_length, input_length);
3604 __ CmovX(x0, input_string, eq);
3605 // Return original string.
3606 __ B(eq, &return_x0);
3607
3608 // Longer than original string's length or negative: unsafe arguments.
3609 __ B(hi, &runtime);
3610
3611 // Shorter than original string's length: an actual substring.
3612
3613 // x0 to substring end character offset
3614 // x1 result_length length of substring result
3615 // x10 input_string pointer to input string object
3616 // x10 unpacked_string pointer to unpacked string object
3617 // x11 input_length length of input string
3618 // x12 input_type instance type of input string
3619 // x15 from substring start character offset
3620
3621 // Deal with different string types: update the index if necessary and put
3622 // the underlying string into register unpacked_string.
3623 Label underlying_unpacked, sliced_string, seq_or_external_string;
3624 Label update_instance_type;
3625 // If the string is not indirect, it can only be sequential or external.
3626 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3627 STATIC_ASSERT(kIsIndirectStringMask != 0);
3628
3629 // Test for string types, and branch/fall through to appropriate unpacking
3630 // code.
3631 __ Tst(input_type, kIsIndirectStringMask);
3632 __ B(eq, &seq_or_external_string);
3633 __ Tst(input_type, kSlicedNotConsMask);
3634 __ B(ne, &sliced_string);
3635
3636 Register unpacked_string = input_string;
3637
3638 // Cons string. Check whether it is flat, then fetch first part.
3639 __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset));
3640 __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime);
3641 __ Ldr(unpacked_string,
3642 FieldMemOperand(input_string, ConsString::kFirstOffset));
3643 __ B(&update_instance_type);
3644
3645 __ Bind(&sliced_string);
3646 // Sliced string. Fetch parent and correct start index by offset.
3647 __ Ldrsw(temp,
3648 UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset));
3649 __ Add(from, from, temp);
3650 __ Ldr(unpacked_string,
3651 FieldMemOperand(input_string, SlicedString::kParentOffset));
3652
3653 __ Bind(&update_instance_type);
3654 __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset));
3655 __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset));
3656 // Now control must go to &underlying_unpacked. Since the no code is generated
3657 // before then we fall through instead of generating a useless branch.
3658
3659 __ Bind(&seq_or_external_string);
3660 // Sequential or external string. Registers unpacked_string and input_string
3661 // alias, so there's nothing to do here.
3662 // Note that if code is added here, the above code must be updated.
3663
3664 // x0 result_string pointer to result string object (uninit)
3665 // x1 result_length length of substring result
3666 // x10 unpacked_string pointer to unpacked string object
3667 // x11 input_length length of input string
3668 // x12 input_type instance type of input string
3669 // x15 from substring start character offset
3670 __ Bind(&underlying_unpacked);
3671
3672 if (FLAG_string_slices) {
3673 Label copy_routine;
3674 __ Cmp(result_length, SlicedString::kMinLength);
3675 // Short slice. Copy instead of slicing.
3676 __ B(lt, &copy_routine);
3677 // Allocate new sliced string. At this point we do not reload the instance
3678 // type including the string encoding because we simply rely on the info
3679 // provided by the original string. It does not matter if the original
3680 // string's encoding is wrong because we always have to recheck encoding of
3681 // the newly created string's parent anyway due to externalized strings.
3682 Label two_byte_slice, set_slice_header;
3683 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3684 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3685 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice);
3686 __ AllocateOneByteSlicedString(result_string, result_length, x3, x4,
3687 &runtime);
3688 __ B(&set_slice_header);
3689
3690 __ Bind(&two_byte_slice);
3691 __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4,
3692 &runtime);
3693
3694 __ Bind(&set_slice_header);
3695 __ SmiTag(from);
3696 __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset));
3697 __ Str(unpacked_string,
3698 FieldMemOperand(result_string, SlicedString::kParentOffset));
3699 __ B(&return_x0);
3700
3701 __ Bind(&copy_routine);
3702 }
3703
3704 // x0 result_string pointer to result string object (uninit)
3705 // x1 result_length length of substring result
3706 // x10 unpacked_string pointer to unpacked string object
3707 // x11 input_length length of input string
3708 // x12 input_type instance type of input string
3709 // x13 unpacked_char0 pointer to first char of unpacked string (uninit)
3710 // x13 substring_char0 pointer to first char of substring (uninit)
3711 // x14 result_char0 pointer to first char of result (uninit)
3712 // x15 from substring start character offset
3713 Register unpacked_char0 = x13;
3714 Register substring_char0 = x13;
3715 Register result_char0 = x14;
3716 Label two_byte_sequential, sequential_string, allocate_result;
3717 STATIC_ASSERT(kExternalStringTag != 0);
3718 STATIC_ASSERT(kSeqStringTag == 0);
3719
3720 __ Tst(input_type, kExternalStringTag);
3721 __ B(eq, &sequential_string);
3722
3723 __ Tst(input_type, kShortExternalStringTag);
3724 __ B(ne, &runtime);
3725 __ Ldr(unpacked_char0,
3726 FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset));
3727 // unpacked_char0 points to the first character of the underlying string.
3728 __ B(&allocate_result);
3729
3730 __ Bind(&sequential_string);
3731 // Locate first character of underlying subject string.
3732 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3733 __ Add(unpacked_char0, unpacked_string,
3734 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3735
3736 __ Bind(&allocate_result);
3737 // Sequential one-byte string. Allocate the result.
3738 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3739 __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential);
3740
3741 // Allocate and copy the resulting one-byte string.
3742 __ AllocateOneByteString(result_string, result_length, x3, x4, x5, &runtime);
3743
3744 // Locate first character of substring to copy.
3745 __ Add(substring_char0, unpacked_char0, from);
3746
3747 // Locate first character of result.
3748 __ Add(result_char0, result_string,
3749 SeqOneByteString::kHeaderSize - kHeapObjectTag);
3750
3751 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3752 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3753 __ B(&return_x0);
3754
3755 // Allocate and copy the resulting two-byte string.
3756 __ Bind(&two_byte_sequential);
3757 __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime);
3758
3759 // Locate first character of substring to copy.
3760 __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1));
3761
3762 // Locate first character of result.
3763 __ Add(result_char0, result_string,
3764 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3765
3766 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3767 __ Add(result_length, result_length, result_length);
3768 __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong);
3769
3770 __ Bind(&return_x0);
3771 Counters* counters = isolate()->counters();
3772 __ IncrementCounter(counters->sub_string_native(), 1, x3, x4);
3773 __ Drop(3);
3774 __ Ret();
3775
3776 __ Bind(&runtime);
3777 __ TailCallRuntime(Runtime::kSubString, 3, 1);
3778
3779 __ bind(&single_char);
3780 // x1: result_length
3781 // x10: input_string
3782 // x12: input_type
3783 // x15: from (untagged)
3784 __ SmiTag(from);
3785 StringCharAtGenerator generator(
3786 input_string, from, result_length, x0,
3787 &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3788 generator.GenerateFast(masm);
3789 __ Drop(3);
3790 __ Ret();
3791 generator.SkipSlow(masm, &runtime);
3792}
3793
3794
3795void StringHelper::GenerateFlatOneByteStringEquals(
3796 MacroAssembler* masm, Register left, Register right, Register scratch1,
3797 Register scratch2, Register scratch3) {
3798 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3));
3799 Register result = x0;
3800 Register left_length = scratch1;
3801 Register right_length = scratch2;
3802
3803 // Compare lengths. If lengths differ, strings can't be equal. Lengths are
3804 // smis, and don't need to be untagged.
3805 Label strings_not_equal, check_zero_length;
3806 __ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
3807 __ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
3808 __ Cmp(left_length, right_length);
3809 __ B(eq, &check_zero_length);
3810
3811 __ Bind(&strings_not_equal);
3812 __ Mov(result, Smi::FromInt(NOT_EQUAL));
3813 __ Ret();
3814
3815 // Check if the length is zero. If so, the strings must be equal (and empty.)
3816 Label compare_chars;
3817 __ Bind(&check_zero_length);
3818 STATIC_ASSERT(kSmiTag == 0);
3819 __ Cbnz(left_length, &compare_chars);
3820 __ Mov(result, Smi::FromInt(EQUAL));
3821 __ Ret();
3822
3823 // Compare characters. Falls through if all characters are equal.
3824 __ Bind(&compare_chars);
3825 GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2,
3826 scratch3, &strings_not_equal);
3827
3828 // Characters in strings are equal.
3829 __ Mov(result, Smi::FromInt(EQUAL));
3830 __ Ret();
3831}
3832
3833
3834void StringHelper::GenerateCompareFlatOneByteStrings(
3835 MacroAssembler* masm, Register left, Register right, Register scratch1,
3836 Register scratch2, Register scratch3, Register scratch4) {
3837 DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
3838 Label result_not_equal, compare_lengths;
3839
3840 // Find minimum length and length difference.
3841 Register length_delta = scratch3;
3842 __ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
3843 __ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
3844 __ Subs(length_delta, scratch1, scratch2);
3845
3846 Register min_length = scratch1;
3847 __ Csel(min_length, scratch2, scratch1, gt);
3848 __ Cbz(min_length, &compare_lengths);
3849
3850 // Compare loop.
3851 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3852 scratch4, &result_not_equal);
3853
3854 // Compare lengths - strings up to min-length are equal.
3855 __ Bind(&compare_lengths);
3856
3857 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3858
3859 // Use length_delta as result if it's zero.
3860 Register result = x0;
3861 __ Subs(result, length_delta, 0);
3862
3863 __ Bind(&result_not_equal);
3864 Register greater = x10;
3865 Register less = x11;
3866 __ Mov(greater, Smi::FromInt(GREATER));
3867 __ Mov(less, Smi::FromInt(LESS));
3868 __ CmovX(result, greater, gt);
3869 __ CmovX(result, less, lt);
3870 __ Ret();
3871}
3872
3873
3874void StringHelper::GenerateOneByteCharsCompareLoop(
3875 MacroAssembler* masm, Register left, Register right, Register length,
3876 Register scratch1, Register scratch2, Label* chars_not_equal) {
3877 DCHECK(!AreAliased(left, right, length, scratch1, scratch2));
3878
3879 // Change index to run from -length to -1 by adding length to string
3880 // start. This means that loop ends when index reaches zero, which
3881 // doesn't need an additional compare.
3882 __ SmiUntag(length);
3883 __ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3884 __ Add(left, left, scratch1);
3885 __ Add(right, right, scratch1);
3886
3887 Register index = length;
3888 __ Neg(index, length); // index = -length;
3889
3890 // Compare loop
3891 Label loop;
3892 __ Bind(&loop);
3893 __ Ldrb(scratch1, MemOperand(left, index));
3894 __ Ldrb(scratch2, MemOperand(right, index));
3895 __ Cmp(scratch1, scratch2);
3896 __ B(ne, chars_not_equal);
3897 __ Add(index, index, 1);
3898 __ Cbnz(index, &loop);
3899}
3900
3901
3902void StringCompareStub::Generate(MacroAssembler* masm) {
3903 Label runtime;
3904
3905 Counters* counters = isolate()->counters();
3906
3907 // Stack frame on entry.
3908 // sp[0]: right string
3909 // sp[8]: left string
3910 Register right = x10;
3911 Register left = x11;
3912 Register result = x0;
3913 __ Pop(right, left);
3914
3915 Label not_same;
3916 __ Subs(result, right, left);
3917 __ B(ne, &not_same);
3918 STATIC_ASSERT(EQUAL == 0);
3919 __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
3920 __ Ret();
3921
3922 __ Bind(&not_same);
3923
3924 // Check that both objects are sequential one-byte strings.
3925 __ JumpIfEitherIsNotSequentialOneByteStrings(left, right, x12, x13, &runtime);
3926
3927 // Compare flat one-byte strings natively. Remove arguments from stack first,
3928 // as this function will generate a return.
3929 __ IncrementCounter(counters->string_compare_native(), 1, x3, x4);
3930 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, x12, x13,
3931 x14, x15);
3932
3933 __ Bind(&runtime);
3934
3935 // Push arguments back on to the stack.
3936 // sp[0] = right string
3937 // sp[8] = left string.
3938 __ Push(left, right);
3939
3940 // Call the runtime.
3941 // Returns -1 (less), 0 (equal), or 1 (greater) tagged as a small integer.
3942 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3943}
3944
3945
3946void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3947 // ----------- S t a t e -------------
3948 // -- x1 : left
3949 // -- x0 : right
3950 // -- lr : return address
3951 // -----------------------------------
3952
3953 // Load x2 with the allocation site. We stick an undefined dummy value here
3954 // and replace it with the real allocation site later when we instantiate this
3955 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3956 __ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
3957
3958 // Make sure that we actually patched the allocation site.
3959 if (FLAG_debug_code) {
3960 __ AssertNotSmi(x2, kExpectedAllocationSite);
3961 __ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
3962 __ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
3963 kExpectedAllocationSite);
3964 }
3965
3966 // Tail call into the stub that handles binary operations with allocation
3967 // sites.
3968 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3969 __ TailCallStub(&stub);
3970}
3971
3972
3973void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3974 // We need some extra registers for this stub, they have been allocated
3975 // but we need to save them before using them.
3976 regs_.Save(masm);
3977
3978 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3979 Label dont_need_remembered_set;
3980
3981 Register val = regs_.scratch0();
3982 __ Ldr(val, MemOperand(regs_.address()));
3983 __ JumpIfNotInNewSpace(val, &dont_need_remembered_set);
3984
3985 __ CheckPageFlagSet(regs_.object(), val, 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3986 &dont_need_remembered_set);
3987
3988 // First notify the incremental marker if necessary, then update the
3989 // remembered set.
3990 CheckNeedsToInformIncrementalMarker(
3991 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3992 InformIncrementalMarker(masm);
3993 regs_.Restore(masm); // Restore the extra scratch registers we used.
3994
3995 __ RememberedSetHelper(object(), address(),
3996 value(), // scratch1
3997 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
3998
3999 __ Bind(&dont_need_remembered_set);
4000 }
4001
4002 CheckNeedsToInformIncrementalMarker(
4003 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4004 InformIncrementalMarker(masm);
4005 regs_.Restore(masm); // Restore the extra scratch registers we used.
4006 __ Ret();
4007}
4008
4009
4010void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4011 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4012 Register address =
4013 x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
4014 DCHECK(!address.Is(regs_.object()));
4015 DCHECK(!address.Is(x0));
4016 __ Mov(address, regs_.address());
4017 __ Mov(x0, regs_.object());
4018 __ Mov(x1, address);
4019 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4020
4021 AllowExternalCallThatCantCauseGC scope(masm);
4022 ExternalReference function =
4023 ExternalReference::incremental_marking_record_write_function(
4024 isolate());
4025 __ CallCFunction(function, 3, 0);
4026
4027 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4028}
4029
4030
4031void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4032 MacroAssembler* masm,
4033 OnNoNeedToInformIncrementalMarker on_no_need,
4034 Mode mode) {
4035 Label on_black;
4036 Label need_incremental;
4037 Label need_incremental_pop_scratch;
4038
4039 Register mem_chunk = regs_.scratch0();
4040 Register counter = regs_.scratch1();
4041 __ Bic(mem_chunk, regs_.object(), Page::kPageAlignmentMask);
4042 __ Ldr(counter,
4043 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4044 __ Subs(counter, counter, 1);
4045 __ Str(counter,
4046 MemOperand(mem_chunk, MemoryChunk::kWriteBarrierCounterOffset));
4047 __ B(mi, &need_incremental);
4048
4049 // If the object is not black we don't have to inform the incremental marker.
4050 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4051
4052 regs_.Restore(masm); // Restore the extra scratch registers we used.
4053 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4054 __ RememberedSetHelper(object(), address(),
4055 value(), // scratch1
4056 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4057 } else {
4058 __ Ret();
4059 }
4060
4061 __ Bind(&on_black);
4062 // Get the value from the slot.
4063 Register val = regs_.scratch0();
4064 __ Ldr(val, MemOperand(regs_.address()));
4065
4066 if (mode == INCREMENTAL_COMPACTION) {
4067 Label ensure_not_white;
4068
4069 __ CheckPageFlagClear(val, regs_.scratch1(),
4070 MemoryChunk::kEvacuationCandidateMask,
4071 &ensure_not_white);
4072
4073 __ CheckPageFlagClear(regs_.object(),
4074 regs_.scratch1(),
4075 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4076 &need_incremental);
4077
4078 __ Bind(&ensure_not_white);
4079 }
4080
4081 // We need extra registers for this, so we push the object and the address
4082 // register temporarily.
4083 __ Push(regs_.address(), regs_.object());
4084 __ EnsureNotWhite(val,
4085 regs_.scratch1(), // Scratch.
4086 regs_.object(), // Scratch.
4087 regs_.address(), // Scratch.
4088 regs_.scratch2(), // Scratch.
4089 &need_incremental_pop_scratch);
4090 __ Pop(regs_.object(), regs_.address());
4091
4092 regs_.Restore(masm); // Restore the extra scratch registers we used.
4093 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4094 __ RememberedSetHelper(object(), address(),
4095 value(), // scratch1
4096 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4097 } else {
4098 __ Ret();
4099 }
4100
4101 __ Bind(&need_incremental_pop_scratch);
4102 __ Pop(regs_.object(), regs_.address());
4103
4104 __ Bind(&need_incremental);
4105 // Fall through when we need to inform the incremental marker.
4106}
4107
4108
4109void RecordWriteStub::Generate(MacroAssembler* masm) {
4110 Label skip_to_incremental_noncompacting;
4111 Label skip_to_incremental_compacting;
4112
4113 // We patch these two first instructions back and forth between a nop and
4114 // real branch when we start and stop incremental heap marking.
4115 // Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
4116 // are generated.
4117 // See RecordWriteStub::Patch for details.
4118 {
4119 InstructionAccurateScope scope(masm, 2);
4120 __ adr(xzr, &skip_to_incremental_noncompacting);
4121 __ adr(xzr, &skip_to_incremental_compacting);
4122 }
4123
4124 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4125 __ RememberedSetHelper(object(), address(),
4126 value(), // scratch1
4127 save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
4128 }
4129 __ Ret();
4130
4131 __ Bind(&skip_to_incremental_noncompacting);
4132 GenerateIncremental(masm, INCREMENTAL);
4133
4134 __ Bind(&skip_to_incremental_compacting);
4135 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4136}
4137
4138
4139void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4140 // x0 value element value to store
4141 // x3 index_smi element index as smi
4142 // sp[0] array_index_smi array literal index in function as smi
4143 // sp[1] array array literal
4144
4145 Register value = x0;
4146 Register index_smi = x3;
4147
4148 Register array = x1;
4149 Register array_map = x2;
4150 Register array_index_smi = x4;
4151 __ PeekPair(array_index_smi, array, 0);
4152 __ Ldr(array_map, FieldMemOperand(array, JSObject::kMapOffset));
4153
4154 Label double_elements, smi_element, fast_elements, slow_elements;
4155 Register bitfield2 = x10;
4156 __ Ldrb(bitfield2, FieldMemOperand(array_map, Map::kBitField2Offset));
4157
4158 // Jump if array's ElementsKind is not FAST*_SMI_ELEMENTS, FAST_ELEMENTS or
4159 // FAST_HOLEY_ELEMENTS.
4160 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4161 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4162 STATIC_ASSERT(FAST_ELEMENTS == 2);
4163 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4164 __ Cmp(bitfield2, Map::kMaximumBitField2FastHoleyElementValue);
4165 __ B(hi, &double_elements);
4166
4167 __ JumpIfSmi(value, &smi_element);
4168
4169 // Jump if array's ElementsKind is not FAST_ELEMENTS or FAST_HOLEY_ELEMENTS.
4170 __ Tbnz(bitfield2, MaskToBit(FAST_ELEMENTS << Map::ElementsKindBits::kShift),
4171 &fast_elements);
4172
4173 // Store into the array literal requires an elements transition. Call into
4174 // the runtime.
4175 __ Bind(&slow_elements);
4176 __ Push(array, index_smi, value);
4177 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4178 __ Ldr(x11, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
4179 __ Push(x11, array_index_smi);
4180 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4181
4182 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4183 __ Bind(&fast_elements);
4184 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4185 __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
4186 __ Add(x11, x11, FixedArray::kHeaderSize - kHeapObjectTag);
4187 __ Str(value, MemOperand(x11));
4188 // Update the write barrier for the array store.
4189 __ RecordWrite(x10, x11, value, kLRHasNotBeenSaved, kDontSaveFPRegs,
4190 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4191 __ Ret();
4192
4193 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4194 // and value is Smi.
4195 __ Bind(&smi_element);
4196 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4197 __ Add(x11, x10, Operand::UntagSmiAndScale(index_smi, kPointerSizeLog2));
4198 __ Str(value, FieldMemOperand(x11, FixedArray::kHeaderSize));
4199 __ Ret();
4200
4201 __ Bind(&double_elements);
4202 __ Ldr(x10, FieldMemOperand(array, JSObject::kElementsOffset));
4203 __ StoreNumberToDoubleElements(value, index_smi, x10, x11, d0,
4204 &slow_elements);
4205 __ Ret();
4206}
4207
4208
4209void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4210 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4211 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4212 int parameter_count_offset =
4213 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4214 __ Ldr(x1, MemOperand(fp, parameter_count_offset));
4215 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4216 __ Add(x1, x1, 1);
4217 }
4218 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4219 __ Drop(x1);
4220 // Return to IC Miss stub, continuation still on stack.
4221 __ Ret();
4222}
4223
4224
4225void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4226 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4227 VectorLoadStub stub(isolate(), state());
4228 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4229}
4230
4231
4232void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4233 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4234 VectorKeyedLoadStub stub(isolate());
4235 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4236}
4237
4238
4239static unsigned int GetProfileEntryHookCallSize(MacroAssembler* masm) {
4240 // The entry hook is a "BumpSystemStackPointer" instruction (sub),
4241 // followed by a "Push lr" instruction, followed by a call.
4242 unsigned int size =
4243 Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
4244 if (CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
4245 // If ALWAYS_ALIGN_CSP then there will be an extra bic instruction in
4246 // "BumpSystemStackPointer".
4247 size += kInstructionSize;
4248 }
4249 return size;
4250}
4251
4252
4253void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4254 if (masm->isolate()->function_entry_hook() != NULL) {
4255 ProfileEntryHookStub stub(masm->isolate());
4256 Assembler::BlockConstPoolScope no_const_pools(masm);
4257 DontEmitDebugCodeScope no_debug_code(masm);
4258 Label entry_hook_call_start;
4259 __ Bind(&entry_hook_call_start);
4260 __ Push(lr);
4261 __ CallStub(&stub);
4262 DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
4263 GetProfileEntryHookCallSize(masm));
4264
4265 __ Pop(lr);
4266 }
4267}
4268
4269
4270void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4271 MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
4272
4273 // Save all kCallerSaved registers (including lr), since this can be called
4274 // from anywhere.
4275 // TODO(jbramley): What about FP registers?
4276 __ PushCPURegList(kCallerSaved);
4277 DCHECK(kCallerSaved.IncludesAliasOf(lr));
4278 const int kNumSavedRegs = kCallerSaved.Count();
4279
4280 // Compute the function's address as the first argument.
4281 __ Sub(x0, lr, GetProfileEntryHookCallSize(masm));
4282
4283#if V8_HOST_ARCH_ARM64
4284 uintptr_t entry_hook =
4285 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4286 __ Mov(x10, entry_hook);
4287#else
4288 // Under the simulator we need to indirect the entry hook through a trampoline
4289 // function at a known address.
4290 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4291 __ Mov(x10, Operand(ExternalReference(&dispatcher,
4292 ExternalReference::BUILTIN_CALL,
4293 isolate())));
4294 // It additionally takes an isolate as a third parameter
4295 __ Mov(x2, ExternalReference::isolate_address(isolate()));
4296#endif
4297
4298 // The caller's return address is above the saved temporaries.
4299 // Grab its location for the second argument to the hook.
4300 __ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
4301
4302 {
4303 // Create a dummy frame, as CallCFunction requires this.
4304 FrameScope frame(masm, StackFrame::MANUAL);
4305 __ CallCFunction(x10, 2, 0);
4306 }
4307
4308 __ PopCPURegList(kCallerSaved);
4309 __ Ret();
4310}
4311
4312
4313void DirectCEntryStub::Generate(MacroAssembler* masm) {
4314 // When calling into C++ code the stack pointer must be csp.
4315 // Therefore this code must use csp for peek/poke operations when the
4316 // stub is generated. When the stub is called
4317 // (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
4318 // and configure the stack pointer *before* doing the call.
4319 const Register old_stack_pointer = __ StackPointer();
4320 __ SetStackPointer(csp);
4321
4322 // Put return address on the stack (accessible to GC through exit frame pc).
4323 __ Poke(lr, 0);
4324 // Call the C++ function.
4325 __ Blr(x10);
4326 // Return to calling code.
4327 __ Peek(lr, 0);
4328 __ AssertFPCRState();
4329 __ Ret();
4330
4331 __ SetStackPointer(old_stack_pointer);
4332}
4333
4334void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
4335 Register target) {
4336 // Make sure the caller configured the stack pointer (see comment in
4337 // DirectCEntryStub::Generate).
4338 DCHECK(csp.Is(__ StackPointer()));
4339
4340 intptr_t code =
4341 reinterpret_cast<intptr_t>(GetCode().location());
4342 __ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
4343 __ Mov(x10, target);
4344 // Branch to the stub.
4345 __ Blr(lr);
4346}
4347
4348
4349// Probe the name dictionary in the 'elements' register.
4350// Jump to the 'done' label if a property with the given name is found.
4351// Jump to the 'miss' label otherwise.
4352//
4353// If lookup was successful 'scratch2' will be equal to elements + 4 * index.
4354// 'elements' and 'name' registers are preserved on miss.
4355void NameDictionaryLookupStub::GeneratePositiveLookup(
4356 MacroAssembler* masm,
4357 Label* miss,
4358 Label* done,
4359 Register elements,
4360 Register name,
4361 Register scratch1,
4362 Register scratch2) {
4363 DCHECK(!AreAliased(elements, name, scratch1, scratch2));
4364
4365 // Assert that name contains a string.
4366 __ AssertName(name);
4367
4368 // Compute the capacity mask.
4369 __ Ldrsw(scratch1, UntagSmiFieldMemOperand(elements, kCapacityOffset));
4370 __ Sub(scratch1, scratch1, 1);
4371
4372 // Generate an unrolled loop that performs a few probes before giving up.
4373 for (int i = 0; i < kInlinedProbes; i++) {
4374 // Compute the masked index: (hash + i + i * i) & mask.
4375 __ Ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
4376 if (i > 0) {
4377 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4378 // the hash in a separate instruction. The value hash + i + i * i is right
4379 // shifted in the following and instruction.
4380 DCHECK(NameDictionary::GetProbeOffset(i) <
4381 1 << (32 - Name::kHashFieldOffset));
4382 __ Add(scratch2, scratch2, Operand(
4383 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4384 }
4385 __ And(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
4386
4387 // Scale the index by multiplying by the element size.
4388 DCHECK(NameDictionary::kEntrySize == 3);
4389 __ Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4390
4391 // Check if the key is identical to the name.
4392 UseScratchRegisterScope temps(masm);
4393 Register scratch3 = temps.AcquireX();
4394 __ Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4395 __ Ldr(scratch3, FieldMemOperand(scratch2, kElementsStartOffset));
4396 __ Cmp(name, scratch3);
4397 __ B(eq, done);
4398 }
4399
4400 // The inlined probes didn't find the entry.
4401 // Call the complete stub to scan the whole dictionary.
4402
4403 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4404 spill_list.Combine(lr);
4405 spill_list.Remove(scratch1);
4406 spill_list.Remove(scratch2);
4407
4408 __ PushCPURegList(spill_list);
4409
4410 if (name.is(x0)) {
4411 DCHECK(!elements.is(x1));
4412 __ Mov(x1, name);
4413 __ Mov(x0, elements);
4414 } else {
4415 __ Mov(x0, elements);
4416 __ Mov(x1, name);
4417 }
4418
4419 Label not_found;
4420 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4421 __ CallStub(&stub);
4422 __ Cbz(x0, &not_found);
4423 __ Mov(scratch2, x2); // Move entry index into scratch2.
4424 __ PopCPURegList(spill_list);
4425 __ B(done);
4426
4427 __ Bind(&not_found);
4428 __ PopCPURegList(spill_list);
4429 __ B(miss);
4430}
4431
4432
4433void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
4434 Label* miss,
4435 Label* done,
4436 Register receiver,
4437 Register properties,
4438 Handle<Name> name,
4439 Register scratch0) {
4440 DCHECK(!AreAliased(receiver, properties, scratch0));
4441 DCHECK(name->IsUniqueName());
4442 // If names of slots in range from 1 to kProbes - 1 for the hash value are
4443 // not equal to the name and kProbes-th slot is not used (its name is the
4444 // undefined value), it guarantees the hash table doesn't contain the
4445 // property. It's true even if some slots represent deleted properties
4446 // (their names are the hole value).
4447 for (int i = 0; i < kInlinedProbes; i++) {
4448 // scratch0 points to properties hash.
4449 // Compute the masked index: (hash + i + i * i) & mask.
4450 Register index = scratch0;
4451 // Capacity is smi 2^n.
4452 __ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
4453 __ Sub(index, index, 1);
4454 __ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
4455
4456 // Scale the index by multiplying by the entry size.
4457 DCHECK(NameDictionary::kEntrySize == 3);
4458 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
4459
4460 Register entity_name = scratch0;
4461 // Having undefined at this place means the name is not contained.
4462 Register tmp = index;
4463 __ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
4464 __ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
4465
4466 __ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
4467
4468 // Stop if found the property.
4469 __ Cmp(entity_name, Operand(name));
4470 __ B(eq, miss);
4471
4472 Label good;
4473 __ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
4474
4475 // Check if the entry name is not a unique name.
4476 __ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
4477 __ Ldrb(entity_name,
4478 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
4479 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
4480 __ Bind(&good);
4481 }
4482
4483 CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
4484 spill_list.Combine(lr);
4485 spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
4486
4487 __ PushCPURegList(spill_list);
4488
4489 __ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
4490 __ Mov(x1, Operand(name));
4491 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
4492 __ CallStub(&stub);
4493 // Move stub return value to scratch0. Note that scratch0 is not included in
4494 // spill_list and won't be clobbered by PopCPURegList.
4495 __ Mov(scratch0, x0);
4496 __ PopCPURegList(spill_list);
4497
4498 __ Cbz(scratch0, done);
4499 __ B(miss);
4500}
4501
4502
4503void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4504 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4505 // we cannot call anything that could cause a GC from this stub.
4506 //
4507 // Arguments are in x0 and x1:
4508 // x0: property dictionary.
4509 // x1: the name of the property we are looking for.
4510 //
4511 // Return value is in x0 and is zero if lookup failed, non zero otherwise.
4512 // If the lookup is successful, x2 will contains the index of the entry.
4513
4514 Register result = x0;
4515 Register dictionary = x0;
4516 Register key = x1;
4517 Register index = x2;
4518 Register mask = x3;
4519 Register hash = x4;
4520 Register undefined = x5;
4521 Register entry_key = x6;
4522
4523 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4524
4525 __ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
4526 __ Sub(mask, mask, 1);
4527
4528 __ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4529 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4530
4531 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4532 // Compute the masked index: (hash + i + i * i) & mask.
4533 // Capacity is smi 2^n.
4534 if (i > 0) {
4535 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4536 // the hash in a separate instruction. The value hash + i + i * i is right
4537 // shifted in the following and instruction.
4538 DCHECK(NameDictionary::GetProbeOffset(i) <
4539 1 << (32 - Name::kHashFieldOffset));
4540 __ Add(index, hash,
4541 NameDictionary::GetProbeOffset(i) << Name::kHashShift);
4542 } else {
4543 __ Mov(index, hash);
4544 }
4545 __ And(index, mask, Operand(index, LSR, Name::kHashShift));
4546
4547 // Scale the index by multiplying by the entry size.
4548 DCHECK(NameDictionary::kEntrySize == 3);
4549 __ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
4550
4551 __ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
4552 __ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
4553
4554 // Having undefined at this place means the name is not contained.
4555 __ Cmp(entry_key, undefined);
4556 __ B(eq, &not_in_dictionary);
4557
4558 // Stop if found the property.
4559 __ Cmp(entry_key, key);
4560 __ B(eq, &in_dictionary);
4561
4562 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4563 // Check if the entry name is not a unique name.
4564 __ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4565 __ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4566 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4567 }
4568 }
4569
4570 __ Bind(&maybe_in_dictionary);
4571 // If we are doing negative lookup then probing failure should be
4572 // treated as a lookup success. For positive lookup, probing failure
4573 // should be treated as lookup failure.
4574 if (mode() == POSITIVE_LOOKUP) {
4575 __ Mov(result, 0);
4576 __ Ret();
4577 }
4578
4579 __ Bind(&in_dictionary);
4580 __ Mov(result, 1);
4581 __ Ret();
4582
4583 __ Bind(&not_in_dictionary);
4584 __ Mov(result, 0);
4585 __ Ret();
4586}
4587
4588
4589template<class T>
4590static void CreateArrayDispatch(MacroAssembler* masm,
4591 AllocationSiteOverrideMode mode) {
4592 ASM_LOCATION("CreateArrayDispatch");
4593 if (mode == DISABLE_ALLOCATION_SITES) {
4594 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4595 __ TailCallStub(&stub);
4596
4597 } else if (mode == DONT_OVERRIDE) {
4598 Register kind = x3;
4599 int last_index =
4600 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4601 for (int i = 0; i <= last_index; ++i) {
4602 Label next;
4603 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
4604 // TODO(jbramley): Is this the best way to handle this? Can we make the
4605 // tail calls conditional, rather than hopping over each one?
4606 __ CompareAndBranch(kind, candidate_kind, ne, &next);
4607 T stub(masm->isolate(), candidate_kind);
4608 __ TailCallStub(&stub);
4609 __ Bind(&next);
4610 }
4611
4612 // If we reached this point there is a problem.
4613 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4614
4615 } else {
4616 UNREACHABLE();
4617 }
4618}
4619
4620
4621// TODO(jbramley): If this needs to be a special case, make it a proper template
4622// specialization, and not a separate function.
4623static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4624 AllocationSiteOverrideMode mode) {
4625 ASM_LOCATION("CreateArrayDispatchOneArgument");
4626 // x0 - argc
4627 // x1 - constructor?
4628 // x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4629 // x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4630 // sp[0] - last argument
4631
4632 Register allocation_site = x2;
4633 Register kind = x3;
4634
4635 Label normal_sequence;
4636 if (mode == DONT_OVERRIDE) {
4637 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4638 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4639 STATIC_ASSERT(FAST_ELEMENTS == 2);
4640 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4641 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4642 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4643
4644 // Is the low bit set? If so, the array is holey.
4645 __ Tbnz(kind, 0, &normal_sequence);
4646 }
4647
4648 // Look at the last argument.
4649 // TODO(jbramley): What does a 0 argument represent?
4650 __ Peek(x10, 0);
4651 __ Cbz(x10, &normal_sequence);
4652
4653 if (mode == DISABLE_ALLOCATION_SITES) {
4654 ElementsKind initial = GetInitialFastElementsKind();
4655 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4656
4657 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4658 holey_initial,
4659 DISABLE_ALLOCATION_SITES);
4660 __ TailCallStub(&stub_holey);
4661
4662 __ Bind(&normal_sequence);
4663 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4664 initial,
4665 DISABLE_ALLOCATION_SITES);
4666 __ TailCallStub(&stub);
4667 } else if (mode == DONT_OVERRIDE) {
4668 // We are going to create a holey array, but our kind is non-holey.
4669 // Fix kind and retry (only if we have an allocation site in the slot).
4670 __ Orr(kind, kind, 1);
4671
4672 if (FLAG_debug_code) {
4673 __ Ldr(x10, FieldMemOperand(allocation_site, 0));
4674 __ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
4675 &normal_sequence);
4676 __ Assert(eq, kExpectedAllocationSite);
4677 }
4678
4679 // Save the resulting elements kind in type info. We can't just store 'kind'
4680 // in the AllocationSite::transition_info field because elements kind is
4681 // restricted to a portion of the field; upper bits need to be left alone.
4682 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4683 __ Ldr(x11, FieldMemOperand(allocation_site,
4684 AllocationSite::kTransitionInfoOffset));
4685 __ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
4686 __ Str(x11, FieldMemOperand(allocation_site,
4687 AllocationSite::kTransitionInfoOffset));
4688
4689 __ Bind(&normal_sequence);
4690 int last_index =
4691 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4692 for (int i = 0; i <= last_index; ++i) {
4693 Label next;
4694 ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
4695 __ CompareAndBranch(kind, candidate_kind, ne, &next);
4696 ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
4697 __ TailCallStub(&stub);
4698 __ Bind(&next);
4699 }
4700
4701 // If we reached this point there is a problem.
4702 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4703 } else {
4704 UNREACHABLE();
4705 }
4706}
4707
4708
4709template<class T>
4710static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4711 int to_index = GetSequenceIndexFromFastElementsKind(
4712 TERMINAL_FAST_ELEMENTS_KIND);
4713 for (int i = 0; i <= to_index; ++i) {
4714 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4715 T stub(isolate, kind);
4716 stub.GetCode();
4717 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4718 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4719 stub1.GetCode();
4720 }
4721 }
4722}
4723
4724
4725void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4726 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4727 isolate);
4728 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4729 isolate);
4730 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4731 isolate);
4732}
4733
4734
4735void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4736 Isolate* isolate) {
4737 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4738 for (int i = 0; i < 2; i++) {
4739 // For internal arrays we only need a few things
4740 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4741 stubh1.GetCode();
4742 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4743 stubh2.GetCode();
4744 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4745 stubh3.GetCode();
4746 }
4747}
4748
4749
4750void ArrayConstructorStub::GenerateDispatchToArrayStub(
4751 MacroAssembler* masm,
4752 AllocationSiteOverrideMode mode) {
4753 Register argc = x0;
4754 if (argument_count() == ANY) {
4755 Label zero_case, n_case;
4756 __ Cbz(argc, &zero_case);
4757 __ Cmp(argc, 1);
4758 __ B(ne, &n_case);
4759
4760 // One argument.
4761 CreateArrayDispatchOneArgument(masm, mode);
4762
4763 __ Bind(&zero_case);
4764 // No arguments.
4765 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4766
4767 __ Bind(&n_case);
4768 // N arguments.
4769 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4770
4771 } else if (argument_count() == NONE) {
4772 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4773 } else if (argument_count() == ONE) {
4774 CreateArrayDispatchOneArgument(masm, mode);
4775 } else if (argument_count() == MORE_THAN_ONE) {
4776 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4777 } else {
4778 UNREACHABLE();
4779 }
4780}
4781
4782
4783void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4784 ASM_LOCATION("ArrayConstructorStub::Generate");
4785 // ----------- S t a t e -------------
4786 // -- x0 : argc (only if argument_count() == ANY)
4787 // -- x1 : constructor
4788 // -- x2 : AllocationSite or undefined
4789 // -- sp[0] : return address
4790 // -- sp[4] : last argument
4791 // -----------------------------------
4792 Register constructor = x1;
4793 Register allocation_site = x2;
4794
4795 if (FLAG_debug_code) {
4796 // The array construct code is only set for the global and natives
4797 // builtin Array functions which always have maps.
4798
4799 Label unexpected_map, map_ok;
4800 // Initial map for the builtin Array function should be a map.
4801 __ Ldr(x10, FieldMemOperand(constructor,
4802 JSFunction::kPrototypeOrInitialMapOffset));
4803 // Will both indicate a NULL and a Smi.
4804 __ JumpIfSmi(x10, &unexpected_map);
4805 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
4806 __ Bind(&unexpected_map);
4807 __ Abort(kUnexpectedInitialMapForArrayFunction);
4808 __ Bind(&map_ok);
4809
4810 // We should either have undefined in the allocation_site register or a
4811 // valid AllocationSite.
4812 __ AssertUndefinedOrAllocationSite(allocation_site, x10);
4813 }
4814
4815 Register kind = x3;
4816 Label no_info;
4817 // Get the elements kind and case on that.
4818 __ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
4819
4820 __ Ldrsw(kind,
4821 UntagSmiFieldMemOperand(allocation_site,
4822 AllocationSite::kTransitionInfoOffset));
4823 __ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
4824 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4825
4826 __ Bind(&no_info);
4827 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4828}
4829
4830
4831void InternalArrayConstructorStub::GenerateCase(
4832 MacroAssembler* masm, ElementsKind kind) {
4833 Label zero_case, n_case;
4834 Register argc = x0;
4835
4836 __ Cbz(argc, &zero_case);
4837 __ CompareAndBranch(argc, 1, ne, &n_case);
4838
4839 // One argument.
4840 if (IsFastPackedElementsKind(kind)) {
4841 Label packed_case;
4842
4843 // We might need to create a holey array; look at the first argument.
4844 __ Peek(x10, 0);
4845 __ Cbz(x10, &packed_case);
4846
4847 InternalArraySingleArgumentConstructorStub
4848 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4849 __ TailCallStub(&stub1_holey);
4850
4851 __ Bind(&packed_case);
4852 }
4853 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4854 __ TailCallStub(&stub1);
4855
4856 __ Bind(&zero_case);
4857 // No arguments.
4858 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4859 __ TailCallStub(&stub0);
4860
4861 __ Bind(&n_case);
4862 // N arguments.
4863 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4864 __ TailCallStub(&stubN);
4865}
4866
4867
4868void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4869 // ----------- S t a t e -------------
4870 // -- x0 : argc
4871 // -- x1 : constructor
4872 // -- sp[0] : return address
4873 // -- sp[4] : last argument
4874 // -----------------------------------
4875
4876 Register constructor = x1;
4877
4878 if (FLAG_debug_code) {
4879 // The array construct code is only set for the global and natives
4880 // builtin Array functions which always have maps.
4881
4882 Label unexpected_map, map_ok;
4883 // Initial map for the builtin Array function should be a map.
4884 __ Ldr(x10, FieldMemOperand(constructor,
4885 JSFunction::kPrototypeOrInitialMapOffset));
4886 // Will both indicate a NULL and a Smi.
4887 __ JumpIfSmi(x10, &unexpected_map);
4888 __ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
4889 __ Bind(&unexpected_map);
4890 __ Abort(kUnexpectedInitialMapForArrayFunction);
4891 __ Bind(&map_ok);
4892 }
4893
4894 Register kind = w3;
4895 // Figure out the right elements kind
4896 __ Ldr(x10, FieldMemOperand(constructor,
4897 JSFunction::kPrototypeOrInitialMapOffset));
4898
4899 // Retrieve elements_kind from map.
4900 __ LoadElementsKindFromMap(kind, x10);
4901
4902 if (FLAG_debug_code) {
4903 Label done;
4904 __ Cmp(x3, FAST_ELEMENTS);
4905 __ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
4906 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4907 }
4908
4909 Label fast_elements_case;
4910 __ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
4911 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4912
4913 __ Bind(&fast_elements_case);
4914 GenerateCase(masm, FAST_ELEMENTS);
4915}
4916
4917
4918void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4919 // ----------- S t a t e -------------
4920 // -- x0 : callee
4921 // -- x4 : call_data
4922 // -- x2 : holder
4923 // -- x1 : api_function_address
4924 // -- cp : context
4925 // --
4926 // -- sp[0] : last argument
4927 // -- ...
4928 // -- sp[(argc - 1) * 8] : first argument
4929 // -- sp[argc * 8] : receiver
4930 // -----------------------------------
4931
4932 Register callee = x0;
4933 Register call_data = x4;
4934 Register holder = x2;
4935 Register api_function_address = x1;
4936 Register context = cp;
4937
4938 int argc = this->argc();
4939 bool is_store = this->is_store();
4940 bool call_data_undefined = this->call_data_undefined();
4941
4942 typedef FunctionCallbackArguments FCA;
4943
4944 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4945 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4946 STATIC_ASSERT(FCA::kDataIndex == 4);
4947 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4948 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4949 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4950 STATIC_ASSERT(FCA::kHolderIndex == 0);
4951 STATIC_ASSERT(FCA::kArgsLength == 7);
4952
4953 // FunctionCallbackArguments: context, callee and call data.
4954 __ Push(context, callee, call_data);
4955
4956 // Load context from callee
4957 __ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4958
4959 if (!call_data_undefined) {
4960 __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
4961 }
4962 Register isolate_reg = x5;
4963 __ Mov(isolate_reg, ExternalReference::isolate_address(isolate()));
4964
4965 // FunctionCallbackArguments:
4966 // return value, return value default, isolate, holder.
4967 __ Push(call_data, call_data, isolate_reg, holder);
4968
4969 // Prepare arguments.
4970 Register args = x6;
4971 __ Mov(args, masm->StackPointer());
4972
4973 // Allocate the v8::Arguments structure in the arguments' space, since it's
4974 // not controlled by GC.
4975 const int kApiStackSpace = 4;
4976
4977 // Allocate space for CallApiFunctionAndReturn can store some scratch
4978 // registeres on the stack.
4979 const int kCallApiFunctionSpillSpace = 4;
4980
4981 FrameScope frame_scope(masm, StackFrame::MANUAL);
4982 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
4983
4984 DCHECK(!AreAliased(x0, api_function_address));
4985 // x0 = FunctionCallbackInfo&
4986 // Arguments is after the return address.
4987 __ Add(x0, masm->StackPointer(), 1 * kPointerSize);
4988 // FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
4989 __ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4990 __ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
4991 // FunctionCallbackInfo::length_ = argc and
4992 // FunctionCallbackInfo::is_construct_call = 0
4993 __ Mov(x10, argc);
4994 __ Stp(x10, xzr, MemOperand(x0, 2 * kPointerSize));
4995
4996 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4997 ExternalReference thunk_ref =
4998 ExternalReference::invoke_function_callback(isolate());
4999
5000 AllowExternalCallThatCantCauseGC scope(masm);
5001 MemOperand context_restore_operand(
5002 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5003 // Stores return the first js argument
5004 int return_value_offset = 0;
5005 if (is_store) {
5006 return_value_offset = 2 + FCA::kArgsLength;
5007 } else {
5008 return_value_offset = 2 + FCA::kReturnValueOffset;
5009 }
5010 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5011
5012 const int spill_offset = 1 + kApiStackSpace;
5013 __ CallApiFunctionAndReturn(api_function_address,
5014 thunk_ref,
5015 kStackUnwindSpace,
5016 spill_offset,
5017 return_value_operand,
5018 &context_restore_operand);
5019}
5020
5021
5022void CallApiGetterStub::Generate(MacroAssembler* masm) {
5023 // ----------- S t a t e -------------
5024 // -- sp[0] : name
5025 // -- sp[8 - kArgsLength*8] : PropertyCallbackArguments object
5026 // -- ...
5027 // -- x2 : api_function_address
5028 // -----------------------------------
5029
5030 Register api_function_address = ApiGetterDescriptor::function_address();
5031 DCHECK(api_function_address.is(x2));
5032
5033 __ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
5034 __ Add(x1, x0, 1 * kPointerSize); // x1 = PCA
5035
5036 const int kApiStackSpace = 1;
5037
5038 // Allocate space for CallApiFunctionAndReturn can store some scratch
5039 // registeres on the stack.
5040 const int kCallApiFunctionSpillSpace = 4;
5041
5042 FrameScope frame_scope(masm, StackFrame::MANUAL);
5043 __ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
5044
5045 // Create PropertyAccessorInfo instance on the stack above the exit frame with
5046 // x1 (internal::Object** args_) as the data.
5047 __ Poke(x1, 1 * kPointerSize);
5048 __ Add(x1, masm->StackPointer(), 1 * kPointerSize); // x1 = AccessorInfo&
5049
5050 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5051
5052 ExternalReference thunk_ref =
5053 ExternalReference::invoke_accessor_getter_callback(isolate());
5054
5055 const int spill_offset = 1 + kApiStackSpace;
5056 __ CallApiFunctionAndReturn(api_function_address,
5057 thunk_ref,
5058 kStackUnwindSpace,
5059 spill_offset,
5060 MemOperand(fp, 6 * kPointerSize),
5061 NULL);
5062}
5063
5064
5065#undef __
5066
5067} } // namespace v8::internal
5068
5069#endif // V8_TARGET_ARCH_ARM64