blob: 25a9efd26a521dd6ce6ec43d8b96d9d53759b3e0 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM64
8
9#include "src/code-factory.h"
10#include "src/code-stubs.h"
11#include "src/codegen.h"
12#include "src/compiler.h"
13#include "src/debug.h"
14#include "src/full-codegen.h"
15#include "src/ic/ic.h"
16#include "src/isolate-inl.h"
17#include "src/parser.h"
18#include "src/scopes.h"
19
20#include "src/arm64/code-stubs-arm64.h"
21#include "src/arm64/macro-assembler-arm64.h"
22
23namespace v8 {
24namespace internal {
25
26#define __ ACCESS_MASM(masm_)
27
28class JumpPatchSite BASE_EMBEDDED {
29 public:
30 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) {
31#ifdef DEBUG
32 info_emitted_ = false;
33#endif
34 }
35
36 ~JumpPatchSite() {
37 if (patch_site_.is_bound()) {
38 DCHECK(info_emitted_);
39 } else {
40 DCHECK(reg_.IsNone());
41 }
42 }
43
44 void EmitJumpIfNotSmi(Register reg, Label* target) {
45 // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
46 InstructionAccurateScope scope(masm_, 1);
47 DCHECK(!info_emitted_);
48 DCHECK(reg.Is64Bits());
49 DCHECK(!reg.Is(csp));
50 reg_ = reg;
51 __ bind(&patch_site_);
52 __ tbz(xzr, 0, target); // Always taken before patched.
53 }
54
55 void EmitJumpIfSmi(Register reg, Label* target) {
56 // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc.
57 InstructionAccurateScope scope(masm_, 1);
58 DCHECK(!info_emitted_);
59 DCHECK(reg.Is64Bits());
60 DCHECK(!reg.Is(csp));
61 reg_ = reg;
62 __ bind(&patch_site_);
63 __ tbnz(xzr, 0, target); // Never taken before patched.
64 }
65
66 void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) {
67 UseScratchRegisterScope temps(masm_);
68 Register temp = temps.AcquireX();
69 __ Orr(temp, reg1, reg2);
70 EmitJumpIfNotSmi(temp, target);
71 }
72
73 void EmitPatchInfo() {
74 Assembler::BlockPoolsScope scope(masm_);
75 InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_);
76#ifdef DEBUG
77 info_emitted_ = true;
78#endif
79 }
80
81 private:
82 MacroAssembler* masm_;
83 Label patch_site_;
84 Register reg_;
85#ifdef DEBUG
86 bool info_emitted_;
87#endif
88};
89
90
91// Generate code for a JS function. On entry to the function the receiver
92// and arguments have been pushed on the stack left to right. The actual
93// argument count matches the formal parameter count expected by the
94// function.
95//
96// The live registers are:
97// - x1: the JS function object being called (i.e. ourselves).
98// - cp: our context.
99// - fp: our caller's frame pointer.
100// - jssp: stack pointer.
101// - lr: return address.
102//
103// The function builds a JS frame. See JavaScriptFrameConstants in
104// frames-arm.h for its layout.
105void FullCodeGenerator::Generate() {
106 CompilationInfo* info = info_;
107 handler_table_ =
108 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
109
110 profiling_counter_ = isolate()->factory()->NewCell(
111 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
112 SetFunctionPosition(function());
113 Comment cmnt(masm_, "[ Function compiled by full code generator");
114
115 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
116
117#ifdef DEBUG
118 if (strlen(FLAG_stop_at) > 0 &&
119 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
120 __ Debug("stop-at", __LINE__, BREAK);
121 }
122#endif
123
124 // Sloppy mode functions and builtins need to replace the receiver with the
125 // global proxy when called as functions (without an explicit receiver
126 // object).
127 if (info->strict_mode() == SLOPPY && !info->is_native()) {
128 Label ok;
129 int receiver_offset = info->scope()->num_parameters() * kXRegSize;
130 __ Peek(x10, receiver_offset);
131 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
132
133 __ Ldr(x10, GlobalObjectMemOperand());
134 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset));
135 __ Poke(x10, receiver_offset);
136
137 __ Bind(&ok);
138 }
139
140
141 // Open a frame scope to indicate that there is a frame on the stack.
142 // The MANUAL indicates that the scope shouldn't actually generate code
143 // to set up the frame because we do it manually below.
144 FrameScope frame_scope(masm_, StackFrame::MANUAL);
145
146 // This call emits the following sequence in a way that can be patched for
147 // code ageing support:
148 // Push(lr, fp, cp, x1);
149 // Add(fp, jssp, 2 * kPointerSize);
150 info->set_prologue_offset(masm_->pc_offset());
151 __ Prologue(info->IsCodePreAgingActive());
152 info->AddNoFrameRange(0, masm_->pc_offset());
153
154 // Reserve space on the stack for locals.
155 { Comment cmnt(masm_, "[ Allocate locals");
156 int locals_count = info->scope()->num_stack_slots();
157 // Generators allocate locals, if any, in context slots.
158 DCHECK(!info->function()->is_generator() || locals_count == 0);
159
160 if (locals_count > 0) {
161 if (locals_count >= 128) {
162 Label ok;
163 DCHECK(jssp.Is(__ StackPointer()));
164 __ Sub(x10, jssp, locals_count * kPointerSize);
165 __ CompareRoot(x10, Heap::kRealStackLimitRootIndex);
166 __ B(hs, &ok);
167 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
168 __ Bind(&ok);
169 }
170 __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
171 if (FLAG_optimize_for_size) {
172 __ PushMultipleTimes(x10 , locals_count);
173 } else {
174 const int kMaxPushes = 32;
175 if (locals_count >= kMaxPushes) {
176 int loop_iterations = locals_count / kMaxPushes;
177 __ Mov(x3, loop_iterations);
178 Label loop_header;
179 __ Bind(&loop_header);
180 // Do pushes.
181 __ PushMultipleTimes(x10 , kMaxPushes);
182 __ Subs(x3, x3, 1);
183 __ B(ne, &loop_header);
184 }
185 int remaining = locals_count % kMaxPushes;
186 // Emit the remaining pushes.
187 __ PushMultipleTimes(x10 , remaining);
188 }
189 }
190 }
191
192 bool function_in_register_x1 = true;
193
194 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
195 if (heap_slots > 0) {
196 // Argument to NewContext is the function, which is still in x1.
197 Comment cmnt(masm_, "[ Allocate context");
198 bool need_write_barrier = true;
199 if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
200 __ Mov(x10, Operand(info->scope()->GetScopeInfo()));
201 __ Push(x1, x10);
202 __ CallRuntime(Runtime::kNewGlobalContext, 2);
203 } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
204 FastNewContextStub stub(isolate(), heap_slots);
205 __ CallStub(&stub);
206 // Result of FastNewContextStub is always in new space.
207 need_write_barrier = false;
208 } else {
209 __ Push(x1);
210 __ CallRuntime(Runtime::kNewFunctionContext, 1);
211 }
212 function_in_register_x1 = false;
213 // Context is returned in x0. It replaces the context passed to us.
214 // It's saved in the stack and kept live in cp.
215 __ Mov(cp, x0);
216 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
217 // Copy any necessary parameters into the context.
218 int num_parameters = info->scope()->num_parameters();
219 for (int i = 0; i < num_parameters; i++) {
220 Variable* var = scope()->parameter(i);
221 if (var->IsContextSlot()) {
222 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
223 (num_parameters - 1 - i) * kPointerSize;
224 // Load parameter from stack.
225 __ Ldr(x10, MemOperand(fp, parameter_offset));
226 // Store it in the context.
227 MemOperand target = ContextMemOperand(cp, var->index());
228 __ Str(x10, target);
229
230 // Update the write barrier.
231 if (need_write_barrier) {
232 __ RecordWriteContextSlot(
233 cp, target.offset(), x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
234 } else if (FLAG_debug_code) {
235 Label done;
236 __ JumpIfInNewSpace(cp, &done);
237 __ Abort(kExpectedNewSpaceObject);
238 __ bind(&done);
239 }
240 }
241 }
242 }
243
244 Variable* arguments = scope()->arguments();
245 if (arguments != NULL) {
246 // Function uses arguments object.
247 Comment cmnt(masm_, "[ Allocate arguments object");
248 if (!function_in_register_x1) {
249 // Load this again, if it's used by the local context below.
250 __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
251 } else {
252 __ Mov(x3, x1);
253 }
254 // Receiver is just before the parameters on the caller's stack.
255 int num_parameters = info->scope()->num_parameters();
256 int offset = num_parameters * kPointerSize;
257 __ Add(x2, fp, StandardFrameConstants::kCallerSPOffset + offset);
258 __ Mov(x1, Smi::FromInt(num_parameters));
259 __ Push(x3, x2, x1);
260
261 // Arguments to ArgumentsAccessStub:
262 // function, receiver address, parameter count.
263 // The stub will rewrite receiver and parameter count if the previous
264 // stack frame was an arguments adapter frame.
265 ArgumentsAccessStub::Type type;
266 if (strict_mode() == STRICT) {
267 type = ArgumentsAccessStub::NEW_STRICT;
268 } else if (function()->has_duplicate_parameters()) {
269 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
270 } else {
271 type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
272 }
273 ArgumentsAccessStub stub(isolate(), type);
274 __ CallStub(&stub);
275
276 SetVar(arguments, x0, x1, x2);
277 }
278
279 if (FLAG_trace) {
280 __ CallRuntime(Runtime::kTraceEnter, 0);
281 }
282
283
284 // Visit the declarations and body unless there is an illegal
285 // redeclaration.
286 if (scope()->HasIllegalRedeclaration()) {
287 Comment cmnt(masm_, "[ Declarations");
288 scope()->VisitIllegalRedeclaration(this);
289
290 } else {
291 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
292 { Comment cmnt(masm_, "[ Declarations");
293 if (scope()->is_function_scope() && scope()->function() != NULL) {
294 VariableDeclaration* function = scope()->function();
295 DCHECK(function->proxy()->var()->mode() == CONST ||
296 function->proxy()->var()->mode() == CONST_LEGACY);
297 DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
298 VisitVariableDeclaration(function);
299 }
300 VisitDeclarations(scope()->declarations());
301 }
302 }
303
304 { Comment cmnt(masm_, "[ Stack check");
305 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
306 Label ok;
307 DCHECK(jssp.Is(__ StackPointer()));
308 __ CompareRoot(jssp, Heap::kStackLimitRootIndex);
309 __ B(hs, &ok);
310 PredictableCodeSizeScope predictable(masm_,
311 Assembler::kCallSizeWithRelocation);
312 __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
313 __ Bind(&ok);
314 }
315
316 { Comment cmnt(masm_, "[ Body");
317 DCHECK(loop_depth() == 0);
318 VisitStatements(function()->body());
319 DCHECK(loop_depth() == 0);
320 }
321
322 // Always emit a 'return undefined' in case control fell off the end of
323 // the body.
324 { Comment cmnt(masm_, "[ return <undefined>;");
325 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
326 }
327 EmitReturnSequence();
328
329 // Force emission of the pools, so they don't get emitted in the middle
330 // of the back edge table.
331 masm()->CheckVeneerPool(true, false);
332 masm()->CheckConstPool(true, false);
333}
334
335
336void FullCodeGenerator::ClearAccumulator() {
337 __ Mov(x0, Smi::FromInt(0));
338}
339
340
341void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
342 __ Mov(x2, Operand(profiling_counter_));
343 __ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset));
344 __ Subs(x3, x3, Smi::FromInt(delta));
345 __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
346}
347
348
349void FullCodeGenerator::EmitProfilingCounterReset() {
350 int reset_value = FLAG_interrupt_budget;
351 if (info_->is_debug()) {
352 // Detect debug break requests as soon as possible.
353 reset_value = FLAG_interrupt_budget >> 4;
354 }
355 __ Mov(x2, Operand(profiling_counter_));
356 __ Mov(x3, Smi::FromInt(reset_value));
357 __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset));
358}
359
360
361void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
362 Label* back_edge_target) {
363 DCHECK(jssp.Is(__ StackPointer()));
364 Comment cmnt(masm_, "[ Back edge bookkeeping");
365 // Block literal pools whilst emitting back edge code.
366 Assembler::BlockPoolsScope block_const_pool(masm_);
367 Label ok;
368
369 DCHECK(back_edge_target->is_bound());
370 // We want to do a round rather than a floor of distance/kCodeSizeMultiplier
371 // to reduce the absolute error due to the integer division. To do that,
372 // we add kCodeSizeMultiplier/2 to the distance (equivalent to adding 0.5 to
373 // the result).
374 int distance =
375 masm_->SizeOfCodeGeneratedSince(back_edge_target) + kCodeSizeMultiplier / 2;
376 int weight = Min(kMaxBackEdgeWeight,
377 Max(1, distance / kCodeSizeMultiplier));
378 EmitProfilingCounterDecrement(weight);
379 __ B(pl, &ok);
380 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
381
382 // Record a mapping of this PC offset to the OSR id. This is used to find
383 // the AST id from the unoptimized code in order to use it as a key into
384 // the deoptimization input data found in the optimized code.
385 RecordBackEdge(stmt->OsrEntryId());
386
387 EmitProfilingCounterReset();
388
389 __ Bind(&ok);
390 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
391 // Record a mapping of the OSR id to this PC. This is used if the OSR
392 // entry becomes the target of a bailout. We don't expect it to be, but
393 // we want it to work if it is.
394 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
395}
396
397
398void FullCodeGenerator::EmitReturnSequence() {
399 Comment cmnt(masm_, "[ Return sequence");
400
401 if (return_label_.is_bound()) {
402 __ B(&return_label_);
403
404 } else {
405 __ Bind(&return_label_);
406 if (FLAG_trace) {
407 // Push the return value on the stack as the parameter.
408 // Runtime::TraceExit returns its parameter in x0.
409 __ Push(result_register());
410 __ CallRuntime(Runtime::kTraceExit, 1);
411 DCHECK(x0.Is(result_register()));
412 }
413 // Pretend that the exit is a backwards jump to the entry.
414 int weight = 1;
415 if (info_->ShouldSelfOptimize()) {
416 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
417 } else {
418 int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2;
419 weight = Min(kMaxBackEdgeWeight,
420 Max(1, distance / kCodeSizeMultiplier));
421 }
422 EmitProfilingCounterDecrement(weight);
423 Label ok;
424 __ B(pl, &ok);
425 __ Push(x0);
426 __ Call(isolate()->builtins()->InterruptCheck(),
427 RelocInfo::CODE_TARGET);
428 __ Pop(x0);
429 EmitProfilingCounterReset();
430 __ Bind(&ok);
431
432 // Make sure that the constant pool is not emitted inside of the return
433 // sequence. This sequence can get patched when the debugger is used. See
434 // debug-arm64.cc:BreakLocationIterator::SetDebugBreakAtReturn().
435 {
436 InstructionAccurateScope scope(masm_,
437 Assembler::kJSRetSequenceInstructions);
438 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
439 __ RecordJSReturn();
440 // This code is generated using Assembler methods rather than Macro
441 // Assembler methods because it will be patched later on, and so the size
442 // of the generated code must be consistent.
443 const Register& current_sp = __ StackPointer();
444 // Nothing ensures 16 bytes alignment here.
445 DCHECK(!current_sp.Is(csp));
446 __ mov(current_sp, fp);
447 int no_frame_start = masm_->pc_offset();
448 __ ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex));
449 // Drop the arguments and receiver and return.
450 // TODO(all): This implementation is overkill as it supports 2**31+1
451 // arguments, consider how to improve it without creating a security
452 // hole.
453 __ ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2);
454 __ add(current_sp, current_sp, ip0);
455 __ ret();
456 __ dc64(kXRegSize * (info_->scope()->num_parameters() + 1));
457 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
458 }
459 }
460}
461
462
463void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
464 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
465}
466
467
468void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
469 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
470 codegen()->GetVar(result_register(), var);
471}
472
473
474void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
475 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
476 codegen()->GetVar(result_register(), var);
477 __ Push(result_register());
478}
479
480
481void FullCodeGenerator::TestContext::Plug(Variable* var) const {
482 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
483 // For simplicity we always test the accumulator register.
484 codegen()->GetVar(result_register(), var);
485 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
486 codegen()->DoTest(this);
487}
488
489
490void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
491 // Root values have no side effects.
492}
493
494
495void FullCodeGenerator::AccumulatorValueContext::Plug(
496 Heap::RootListIndex index) const {
497 __ LoadRoot(result_register(), index);
498}
499
500
501void FullCodeGenerator::StackValueContext::Plug(
502 Heap::RootListIndex index) const {
503 __ LoadRoot(result_register(), index);
504 __ Push(result_register());
505}
506
507
508void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
509 codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
510 false_label_);
511 if (index == Heap::kUndefinedValueRootIndex ||
512 index == Heap::kNullValueRootIndex ||
513 index == Heap::kFalseValueRootIndex) {
514 if (false_label_ != fall_through_) __ B(false_label_);
515 } else if (index == Heap::kTrueValueRootIndex) {
516 if (true_label_ != fall_through_) __ B(true_label_);
517 } else {
518 __ LoadRoot(result_register(), index);
519 codegen()->DoTest(this);
520 }
521}
522
523
524void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
525}
526
527
528void FullCodeGenerator::AccumulatorValueContext::Plug(
529 Handle<Object> lit) const {
530 __ Mov(result_register(), Operand(lit));
531}
532
533
534void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
535 // Immediates cannot be pushed directly.
536 __ Mov(result_register(), Operand(lit));
537 __ Push(result_register());
538}
539
540
541void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
542 codegen()->PrepareForBailoutBeforeSplit(condition(),
543 true,
544 true_label_,
545 false_label_);
546 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
547 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
548 if (false_label_ != fall_through_) __ B(false_label_);
549 } else if (lit->IsTrue() || lit->IsJSObject()) {
550 if (true_label_ != fall_through_) __ B(true_label_);
551 } else if (lit->IsString()) {
552 if (String::cast(*lit)->length() == 0) {
553 if (false_label_ != fall_through_) __ B(false_label_);
554 } else {
555 if (true_label_ != fall_through_) __ B(true_label_);
556 }
557 } else if (lit->IsSmi()) {
558 if (Smi::cast(*lit)->value() == 0) {
559 if (false_label_ != fall_through_) __ B(false_label_);
560 } else {
561 if (true_label_ != fall_through_) __ B(true_label_);
562 }
563 } else {
564 // For simplicity we always test the accumulator register.
565 __ Mov(result_register(), Operand(lit));
566 codegen()->DoTest(this);
567 }
568}
569
570
571void FullCodeGenerator::EffectContext::DropAndPlug(int count,
572 Register reg) const {
573 DCHECK(count > 0);
574 __ Drop(count);
575}
576
577
578void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
579 int count,
580 Register reg) const {
581 DCHECK(count > 0);
582 __ Drop(count);
583 __ Move(result_register(), reg);
584}
585
586
587void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
588 Register reg) const {
589 DCHECK(count > 0);
590 if (count > 1) __ Drop(count - 1);
591 __ Poke(reg, 0);
592}
593
594
595void FullCodeGenerator::TestContext::DropAndPlug(int count,
596 Register reg) const {
597 DCHECK(count > 0);
598 // For simplicity we always test the accumulator register.
599 __ Drop(count);
600 __ Mov(result_register(), reg);
601 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
602 codegen()->DoTest(this);
603}
604
605
606void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
607 Label* materialize_false) const {
608 DCHECK(materialize_true == materialize_false);
609 __ Bind(materialize_true);
610}
611
612
613void FullCodeGenerator::AccumulatorValueContext::Plug(
614 Label* materialize_true,
615 Label* materialize_false) const {
616 Label done;
617 __ Bind(materialize_true);
618 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
619 __ B(&done);
620 __ Bind(materialize_false);
621 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
622 __ Bind(&done);
623}
624
625
626void FullCodeGenerator::StackValueContext::Plug(
627 Label* materialize_true,
628 Label* materialize_false) const {
629 Label done;
630 __ Bind(materialize_true);
631 __ LoadRoot(x10, Heap::kTrueValueRootIndex);
632 __ B(&done);
633 __ Bind(materialize_false);
634 __ LoadRoot(x10, Heap::kFalseValueRootIndex);
635 __ Bind(&done);
636 __ Push(x10);
637}
638
639
640void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
641 Label* materialize_false) const {
642 DCHECK(materialize_true == true_label_);
643 DCHECK(materialize_false == false_label_);
644}
645
646
647void FullCodeGenerator::EffectContext::Plug(bool flag) const {
648}
649
650
651void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
652 Heap::RootListIndex value_root_index =
653 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
654 __ LoadRoot(result_register(), value_root_index);
655}
656
657
658void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
659 Heap::RootListIndex value_root_index =
660 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
661 __ LoadRoot(x10, value_root_index);
662 __ Push(x10);
663}
664
665
666void FullCodeGenerator::TestContext::Plug(bool flag) const {
667 codegen()->PrepareForBailoutBeforeSplit(condition(),
668 true,
669 true_label_,
670 false_label_);
671 if (flag) {
672 if (true_label_ != fall_through_) {
673 __ B(true_label_);
674 }
675 } else {
676 if (false_label_ != fall_through_) {
677 __ B(false_label_);
678 }
679 }
680}
681
682
683void FullCodeGenerator::DoTest(Expression* condition,
684 Label* if_true,
685 Label* if_false,
686 Label* fall_through) {
687 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
688 CallIC(ic, condition->test_id());
689 __ CompareAndSplit(result_register(), 0, ne, if_true, if_false, fall_through);
690}
691
692
693// If (cond), branch to if_true.
694// If (!cond), branch to if_false.
695// fall_through is used as an optimization in cases where only one branch
696// instruction is necessary.
697void FullCodeGenerator::Split(Condition cond,
698 Label* if_true,
699 Label* if_false,
700 Label* fall_through) {
701 if (if_false == fall_through) {
702 __ B(cond, if_true);
703 } else if (if_true == fall_through) {
704 DCHECK(if_false != fall_through);
705 __ B(NegateCondition(cond), if_false);
706 } else {
707 __ B(cond, if_true);
708 __ B(if_false);
709 }
710}
711
712
713MemOperand FullCodeGenerator::StackOperand(Variable* var) {
714 // Offset is negative because higher indexes are at lower addresses.
715 int offset = -var->index() * kXRegSize;
716 // Adjust by a (parameter or local) base offset.
717 if (var->IsParameter()) {
718 offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
719 } else {
720 offset += JavaScriptFrameConstants::kLocal0Offset;
721 }
722 return MemOperand(fp, offset);
723}
724
725
726MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
727 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
728 if (var->IsContextSlot()) {
729 int context_chain_length = scope()->ContextChainLength(var->scope());
730 __ LoadContext(scratch, context_chain_length);
731 return ContextMemOperand(scratch, var->index());
732 } else {
733 return StackOperand(var);
734 }
735}
736
737
738void FullCodeGenerator::GetVar(Register dest, Variable* var) {
739 // Use destination as scratch.
740 MemOperand location = VarOperand(var, dest);
741 __ Ldr(dest, location);
742}
743
744
745void FullCodeGenerator::SetVar(Variable* var,
746 Register src,
747 Register scratch0,
748 Register scratch1) {
749 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
750 DCHECK(!AreAliased(src, scratch0, scratch1));
751 MemOperand location = VarOperand(var, scratch0);
752 __ Str(src, location);
753
754 // Emit the write barrier code if the location is in the heap.
755 if (var->IsContextSlot()) {
756 // scratch0 contains the correct context.
757 __ RecordWriteContextSlot(scratch0,
758 location.offset(),
759 src,
760 scratch1,
761 kLRHasBeenSaved,
762 kDontSaveFPRegs);
763 }
764}
765
766
767void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
768 bool should_normalize,
769 Label* if_true,
770 Label* if_false) {
771 // Only prepare for bailouts before splits if we're in a test
772 // context. Otherwise, we let the Visit function deal with the
773 // preparation to avoid preparing with the same AST id twice.
774 if (!context()->IsTest() || !info_->IsOptimizable()) return;
775
776 // TODO(all): Investigate to see if there is something to work on here.
777 Label skip;
778 if (should_normalize) {
779 __ B(&skip);
780 }
781 PrepareForBailout(expr, TOS_REG);
782 if (should_normalize) {
783 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
784 Split(eq, if_true, if_false, NULL);
785 __ Bind(&skip);
786 }
787}
788
789
790void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
791 // The variable in the declaration always resides in the current function
792 // context.
793 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
794 if (generate_debug_code_) {
795 // Check that we're not inside a with or catch context.
796 __ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset));
797 __ CompareRoot(x1, Heap::kWithContextMapRootIndex);
798 __ Check(ne, kDeclarationInWithContext);
799 __ CompareRoot(x1, Heap::kCatchContextMapRootIndex);
800 __ Check(ne, kDeclarationInCatchContext);
801 }
802}
803
804
805void FullCodeGenerator::VisitVariableDeclaration(
806 VariableDeclaration* declaration) {
807 // If it was not possible to allocate the variable at compile time, we
808 // need to "declare" it at runtime to make sure it actually exists in the
809 // local context.
810 VariableProxy* proxy = declaration->proxy();
811 VariableMode mode = declaration->mode();
812 Variable* variable = proxy->var();
813 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
814
815 switch (variable->location()) {
816 case Variable::UNALLOCATED:
817 globals_->Add(variable->name(), zone());
818 globals_->Add(variable->binding_needs_init()
819 ? isolate()->factory()->the_hole_value()
820 : isolate()->factory()->undefined_value(),
821 zone());
822 break;
823
824 case Variable::PARAMETER:
825 case Variable::LOCAL:
826 if (hole_init) {
827 Comment cmnt(masm_, "[ VariableDeclaration");
828 __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
829 __ Str(x10, StackOperand(variable));
830 }
831 break;
832
833 case Variable::CONTEXT:
834 if (hole_init) {
835 Comment cmnt(masm_, "[ VariableDeclaration");
836 EmitDebugCheckDeclarationContext(variable);
837 __ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
838 __ Str(x10, ContextMemOperand(cp, variable->index()));
839 // No write barrier since the_hole_value is in old space.
840 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
841 }
842 break;
843
844 case Variable::LOOKUP: {
845 Comment cmnt(masm_, "[ VariableDeclaration");
846 __ Mov(x2, Operand(variable->name()));
847 // Declaration nodes are always introduced in one of four modes.
848 DCHECK(IsDeclaredVariableMode(mode));
849 PropertyAttributes attr = IsImmutableVariableMode(mode) ? READ_ONLY
850 : NONE;
851 __ Mov(x1, Smi::FromInt(attr));
852 // Push initial value, if any.
853 // Note: For variables we must not push an initial value (such as
854 // 'undefined') because we may have a (legal) redeclaration and we
855 // must not destroy the current value.
856 if (hole_init) {
857 __ LoadRoot(x0, Heap::kTheHoleValueRootIndex);
858 __ Push(cp, x2, x1, x0);
859 } else {
860 // Pushing 0 (xzr) indicates no initial value.
861 __ Push(cp, x2, x1, xzr);
862 }
863 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
864 break;
865 }
866 }
867}
868
869
870void FullCodeGenerator::VisitFunctionDeclaration(
871 FunctionDeclaration* declaration) {
872 VariableProxy* proxy = declaration->proxy();
873 Variable* variable = proxy->var();
874 switch (variable->location()) {
875 case Variable::UNALLOCATED: {
876 globals_->Add(variable->name(), zone());
877 Handle<SharedFunctionInfo> function =
878 Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
879 // Check for stack overflow exception.
880 if (function.is_null()) return SetStackOverflow();
881 globals_->Add(function, zone());
882 break;
883 }
884
885 case Variable::PARAMETER:
886 case Variable::LOCAL: {
887 Comment cmnt(masm_, "[ Function Declaration");
888 VisitForAccumulatorValue(declaration->fun());
889 __ Str(result_register(), StackOperand(variable));
890 break;
891 }
892
893 case Variable::CONTEXT: {
894 Comment cmnt(masm_, "[ Function Declaration");
895 EmitDebugCheckDeclarationContext(variable);
896 VisitForAccumulatorValue(declaration->fun());
897 __ Str(result_register(), ContextMemOperand(cp, variable->index()));
898 int offset = Context::SlotOffset(variable->index());
899 // We know that we have written a function, which is not a smi.
900 __ RecordWriteContextSlot(cp,
901 offset,
902 result_register(),
903 x2,
904 kLRHasBeenSaved,
905 kDontSaveFPRegs,
906 EMIT_REMEMBERED_SET,
907 OMIT_SMI_CHECK);
908 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
909 break;
910 }
911
912 case Variable::LOOKUP: {
913 Comment cmnt(masm_, "[ Function Declaration");
914 __ Mov(x2, Operand(variable->name()));
915 __ Mov(x1, Smi::FromInt(NONE));
916 __ Push(cp, x2, x1);
917 // Push initial value for function declaration.
918 VisitForStackValue(declaration->fun());
919 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
920 break;
921 }
922 }
923}
924
925
926void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
927 Variable* variable = declaration->proxy()->var();
928 DCHECK(variable->location() == Variable::CONTEXT);
929 DCHECK(variable->interface()->IsFrozen());
930
931 Comment cmnt(masm_, "[ ModuleDeclaration");
932 EmitDebugCheckDeclarationContext(variable);
933
934 // Load instance object.
935 __ LoadContext(x1, scope_->ContextChainLength(scope_->GlobalScope()));
936 __ Ldr(x1, ContextMemOperand(x1, variable->interface()->Index()));
937 __ Ldr(x1, ContextMemOperand(x1, Context::EXTENSION_INDEX));
938
939 // Assign it.
940 __ Str(x1, ContextMemOperand(cp, variable->index()));
941 // We know that we have written a module, which is not a smi.
942 __ RecordWriteContextSlot(cp,
943 Context::SlotOffset(variable->index()),
944 x1,
945 x3,
946 kLRHasBeenSaved,
947 kDontSaveFPRegs,
948 EMIT_REMEMBERED_SET,
949 OMIT_SMI_CHECK);
950 PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
951
952 // Traverse info body.
953 Visit(declaration->module());
954}
955
956
957void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
958 VariableProxy* proxy = declaration->proxy();
959 Variable* variable = proxy->var();
960 switch (variable->location()) {
961 case Variable::UNALLOCATED:
962 // TODO(rossberg)
963 break;
964
965 case Variable::CONTEXT: {
966 Comment cmnt(masm_, "[ ImportDeclaration");
967 EmitDebugCheckDeclarationContext(variable);
968 // TODO(rossberg)
969 break;
970 }
971
972 case Variable::PARAMETER:
973 case Variable::LOCAL:
974 case Variable::LOOKUP:
975 UNREACHABLE();
976 }
977}
978
979
980void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
981 // TODO(rossberg)
982}
983
984
985void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
986 // Call the runtime to declare the globals.
987 __ Mov(x11, Operand(pairs));
988 Register flags = xzr;
989 if (Smi::FromInt(DeclareGlobalsFlags())) {
990 flags = x10;
991 __ Mov(flags, Smi::FromInt(DeclareGlobalsFlags()));
992 }
993 __ Push(cp, x11, flags);
994 __ CallRuntime(Runtime::kDeclareGlobals, 3);
995 // Return value is ignored.
996}
997
998
999void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
1000 // Call the runtime to declare the modules.
1001 __ Push(descriptions);
1002 __ CallRuntime(Runtime::kDeclareModules, 1);
1003 // Return value is ignored.
1004}
1005
1006
1007void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
1008 ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement");
1009 Comment cmnt(masm_, "[ SwitchStatement");
1010 Breakable nested_statement(this, stmt);
1011 SetStatementPosition(stmt);
1012
1013 // Keep the switch value on the stack until a case matches.
1014 VisitForStackValue(stmt->tag());
1015 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1016
1017 ZoneList<CaseClause*>* clauses = stmt->cases();
1018 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
1019
1020 Label next_test; // Recycled for each test.
1021 // Compile all the tests with branches to their bodies.
1022 for (int i = 0; i < clauses->length(); i++) {
1023 CaseClause* clause = clauses->at(i);
1024 clause->body_target()->Unuse();
1025
1026 // The default is not a test, but remember it as final fall through.
1027 if (clause->is_default()) {
1028 default_clause = clause;
1029 continue;
1030 }
1031
1032 Comment cmnt(masm_, "[ Case comparison");
1033 __ Bind(&next_test);
1034 next_test.Unuse();
1035
1036 // Compile the label expression.
1037 VisitForAccumulatorValue(clause->label());
1038
1039 // Perform the comparison as if via '==='.
1040 __ Peek(x1, 0); // Switch value.
1041
1042 JumpPatchSite patch_site(masm_);
1043 if (ShouldInlineSmiCase(Token::EQ_STRICT)) {
1044 Label slow_case;
1045 patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
1046 __ Cmp(x1, x0);
1047 __ B(ne, &next_test);
1048 __ Drop(1); // Switch value is no longer needed.
1049 __ B(clause->body_target());
1050 __ Bind(&slow_case);
1051 }
1052
1053 // Record position before stub call for type feedback.
1054 SetSourcePosition(clause->position());
1055 Handle<Code> ic =
1056 CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
1057 CallIC(ic, clause->CompareId());
1058 patch_site.EmitPatchInfo();
1059
1060 Label skip;
1061 __ B(&skip);
1062 PrepareForBailout(clause, TOS_REG);
1063 __ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test);
1064 __ Drop(1);
1065 __ B(clause->body_target());
1066 __ Bind(&skip);
1067
1068 __ Cbnz(x0, &next_test);
1069 __ Drop(1); // Switch value is no longer needed.
1070 __ B(clause->body_target());
1071 }
1072
1073 // Discard the test value and jump to the default if present, otherwise to
1074 // the end of the statement.
1075 __ Bind(&next_test);
1076 __ Drop(1); // Switch value is no longer needed.
1077 if (default_clause == NULL) {
1078 __ B(nested_statement.break_label());
1079 } else {
1080 __ B(default_clause->body_target());
1081 }
1082
1083 // Compile all the case bodies.
1084 for (int i = 0; i < clauses->length(); i++) {
1085 Comment cmnt(masm_, "[ Case body");
1086 CaseClause* clause = clauses->at(i);
1087 __ Bind(clause->body_target());
1088 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1089 VisitStatements(clause->statements());
1090 }
1091
1092 __ Bind(nested_statement.break_label());
1093 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1094}
1095
1096
1097void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1098 ASM_LOCATION("FullCodeGenerator::VisitForInStatement");
1099 Comment cmnt(masm_, "[ ForInStatement");
1100 int slot = stmt->ForInFeedbackSlot();
1101 // TODO(all): This visitor probably needs better comments and a revisit.
1102 SetStatementPosition(stmt);
1103
1104 Label loop, exit;
1105 ForIn loop_statement(this, stmt);
1106 increment_loop_depth();
1107
1108 // Get the object to enumerate over. If the object is null or undefined, skip
1109 // over the loop. See ECMA-262 version 5, section 12.6.4.
1110 VisitForAccumulatorValue(stmt->enumerable());
1111 __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit);
1112 Register null_value = x15;
1113 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1114 __ Cmp(x0, null_value);
1115 __ B(eq, &exit);
1116
1117 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1118
1119 // Convert the object to a JS object.
1120 Label convert, done_convert;
1121 __ JumpIfSmi(x0, &convert);
1122 __ JumpIfObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE, &done_convert, ge);
1123 __ Bind(&convert);
1124 __ Push(x0);
1125 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1126 __ Bind(&done_convert);
1127 __ Push(x0);
1128
1129 // Check for proxies.
1130 Label call_runtime;
1131 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1132 __ JumpIfObjectType(x0, x10, x11, LAST_JS_PROXY_TYPE, &call_runtime, le);
1133
1134 // Check cache validity in generated code. This is a fast case for
1135 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1136 // guarantee cache validity, call the runtime system to check cache
1137 // validity or get the property names in a fixed array.
1138 __ CheckEnumCache(x0, null_value, x10, x11, x12, x13, &call_runtime);
1139
1140 // The enum cache is valid. Load the map of the object being
1141 // iterated over and use the cache for the iteration.
1142 Label use_cache;
1143 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
1144 __ B(&use_cache);
1145
1146 // Get the set of properties to enumerate.
1147 __ Bind(&call_runtime);
1148 __ Push(x0); // Duplicate the enumerable object on the stack.
1149 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1150
1151 // If we got a map from the runtime call, we can do a fast
1152 // modification check. Otherwise, we got a fixed array, and we have
1153 // to do a slow check.
1154 Label fixed_array, no_descriptors;
1155 __ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset));
1156 __ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array);
1157
1158 // We got a map in register x0. Get the enumeration cache from it.
1159 __ Bind(&use_cache);
1160
1161 __ EnumLengthUntagged(x1, x0);
1162 __ Cbz(x1, &no_descriptors);
1163
1164 __ LoadInstanceDescriptors(x0, x2);
1165 __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset));
1166 __ Ldr(x2,
1167 FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset));
1168
1169 // Set up the four remaining stack slots.
1170 __ SmiTag(x1);
1171 // Map, enumeration cache, enum cache length, zero (both last as smis).
1172 __ Push(x0, x2, x1, xzr);
1173 __ B(&loop);
1174
1175 __ Bind(&no_descriptors);
1176 __ Drop(1);
1177 __ B(&exit);
1178
1179 // We got a fixed array in register x0. Iterate through that.
1180 __ Bind(&fixed_array);
1181
1182 __ LoadObject(x1, FeedbackVector());
1183 __ Mov(x10, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1184 __ Str(x10, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(slot)));
1185
1186 __ Mov(x1, Smi::FromInt(1)); // Smi indicates slow check.
1187 __ Peek(x10, 0); // Get enumerated object.
1188 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1189 // TODO(all): similar check was done already. Can we avoid it here?
1190 __ CompareObjectType(x10, x11, x12, LAST_JS_PROXY_TYPE);
1191 DCHECK(Smi::FromInt(0) == 0);
1192 __ CzeroX(x1, le); // Zero indicates proxy.
1193 __ Ldr(x2, FieldMemOperand(x0, FixedArray::kLengthOffset));
1194 // Smi and array, fixed array length (as smi) and initial index.
1195 __ Push(x1, x0, x2, xzr);
1196
1197 // Generate code for doing the condition check.
1198 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1199 __ Bind(&loop);
1200 // Load the current count to x0, load the length to x1.
1201 __ PeekPair(x0, x1, 0);
1202 __ Cmp(x0, x1); // Compare to the array length.
1203 __ B(hs, loop_statement.break_label());
1204
1205 // Get the current entry of the array into register r3.
1206 __ Peek(x10, 2 * kXRegSize);
1207 __ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2));
1208 __ Ldr(x3, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag));
1209
1210 // Get the expected map from the stack or a smi in the
1211 // permanent slow case into register x10.
1212 __ Peek(x2, 3 * kXRegSize);
1213
1214 // Check if the expected map still matches that of the enumerable.
1215 // If not, we may have to filter the key.
1216 Label update_each;
1217 __ Peek(x1, 4 * kXRegSize);
1218 __ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset));
1219 __ Cmp(x11, x2);
1220 __ B(eq, &update_each);
1221
1222 // For proxies, no filtering is done.
1223 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1224 STATIC_ASSERT(kSmiTag == 0);
1225 __ Cbz(x2, &update_each);
1226
1227 // Convert the entry to a string or (smi) 0 if it isn't a property
1228 // any more. If the property has been removed while iterating, we
1229 // just skip it.
1230 __ Push(x1, x3);
1231 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1232 __ Mov(x3, x0);
1233 __ Cbz(x0, loop_statement.continue_label());
1234
1235 // Update the 'each' property or variable from the possibly filtered
1236 // entry in register x3.
1237 __ Bind(&update_each);
1238 __ Mov(result_register(), x3);
1239 // Perform the assignment as if via '='.
1240 { EffectContext context(this);
1241 EmitAssignment(stmt->each());
1242 }
1243
1244 // Generate code for the body of the loop.
1245 Visit(stmt->body());
1246
1247 // Generate code for going to the next element by incrementing
1248 // the index (smi) stored on top of the stack.
1249 __ Bind(loop_statement.continue_label());
1250 // TODO(all): We could use a callee saved register to avoid popping.
1251 __ Pop(x0);
1252 __ Add(x0, x0, Smi::FromInt(1));
1253 __ Push(x0);
1254
1255 EmitBackEdgeBookkeeping(stmt, &loop);
1256 __ B(&loop);
1257
1258 // Remove the pointers stored on the stack.
1259 __ Bind(loop_statement.break_label());
1260 __ Drop(5);
1261
1262 // Exit and decrement the loop depth.
1263 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1264 __ Bind(&exit);
1265 decrement_loop_depth();
1266}
1267
1268
1269void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
1270 Comment cmnt(masm_, "[ ForOfStatement");
1271 SetStatementPosition(stmt);
1272
1273 Iteration loop_statement(this, stmt);
1274 increment_loop_depth();
1275
1276 // var iterator = iterable[Symbol.iterator]();
1277 VisitForEffect(stmt->assign_iterator());
1278
1279 // Loop entry.
1280 __ Bind(loop_statement.continue_label());
1281
1282 // result = iterator.next()
1283 VisitForEffect(stmt->next_result());
1284
1285 // if (result.done) break;
1286 Label result_not_done;
1287 VisitForControl(stmt->result_done(),
1288 loop_statement.break_label(),
1289 &result_not_done,
1290 &result_not_done);
1291 __ Bind(&result_not_done);
1292
1293 // each = result.value
1294 VisitForEffect(stmt->assign_each());
1295
1296 // Generate code for the body of the loop.
1297 Visit(stmt->body());
1298
1299 // Check stack before looping.
1300 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1301 EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1302 __ B(loop_statement.continue_label());
1303
1304 // Exit and decrement the loop depth.
1305 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1306 __ Bind(loop_statement.break_label());
1307 decrement_loop_depth();
1308}
1309
1310
1311void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1312 bool pretenure) {
1313 // Use the fast case closure allocation code that allocates in new space for
1314 // nested functions that don't need literals cloning. If we're running with
1315 // the --always-opt or the --prepare-always-opt flag, we need to use the
1316 // runtime function so that the new function we are creating here gets a
1317 // chance to have its code optimized and doesn't just get a copy of the
1318 // existing unoptimized code.
1319 if (!FLAG_always_opt &&
1320 !FLAG_prepare_always_opt &&
1321 !pretenure &&
1322 scope()->is_function_scope() &&
1323 info->num_literals() == 0) {
1324 FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
1325 __ Mov(x2, Operand(info));
1326 __ CallStub(&stub);
1327 } else {
1328 __ Mov(x11, Operand(info));
1329 __ LoadRoot(x10, pretenure ? Heap::kTrueValueRootIndex
1330 : Heap::kFalseValueRootIndex);
1331 __ Push(cp, x11, x10);
1332 __ CallRuntime(Runtime::kNewClosure, 3);
1333 }
1334 context()->Plug(x0);
1335}
1336
1337
1338void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1339 Comment cmnt(masm_, "[ VariableProxy");
1340 EmitVariableLoad(expr);
1341}
1342
1343
1344void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
1345 Comment cnmt(masm_, "[ SuperReference ");
1346
1347 __ ldr(LoadDescriptor::ReceiverRegister(),
1348 MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1349
1350 Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
1351 __ Mov(LoadDescriptor::NameRegister(), Operand(home_object_symbol));
1352
1353 CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
1354
1355 __ Mov(x10, Operand(isolate()->factory()->undefined_value()));
1356 __ cmp(x0, x10);
1357 Label done;
1358 __ b(&done, ne);
1359 __ CallRuntime(Runtime::kThrowNonMethodError, 0);
1360 __ bind(&done);
1361}
1362
1363
1364void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1365 TypeofState typeof_state,
1366 Label* slow) {
1367 Register current = cp;
1368 Register next = x10;
1369 Register temp = x11;
1370
1371 Scope* s = scope();
1372 while (s != NULL) {
1373 if (s->num_heap_slots() > 0) {
1374 if (s->calls_sloppy_eval()) {
1375 // Check that extension is NULL.
1376 __ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX));
1377 __ Cbnz(temp, slow);
1378 }
1379 // Load next context in chain.
1380 __ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX));
1381 // Walk the rest of the chain without clobbering cp.
1382 current = next;
1383 }
1384 // If no outer scope calls eval, we do not need to check more
1385 // context extensions.
1386 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1387 s = s->outer_scope();
1388 }
1389
1390 if (s->is_eval_scope()) {
1391 Label loop, fast;
1392 __ Mov(next, current);
1393
1394 __ Bind(&loop);
1395 // Terminate at native context.
1396 __ Ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1397 __ JumpIfRoot(temp, Heap::kNativeContextMapRootIndex, &fast);
1398 // Check that extension is NULL.
1399 __ Ldr(temp, ContextMemOperand(next, Context::EXTENSION_INDEX));
1400 __ Cbnz(temp, slow);
1401 // Load next context in chain.
1402 __ Ldr(next, ContextMemOperand(next, Context::PREVIOUS_INDEX));
1403 __ B(&loop);
1404 __ Bind(&fast);
1405 }
1406
1407 __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
1408 __ Mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name()));
1409 if (FLAG_vector_ics) {
1410 __ Mov(VectorLoadICDescriptor::SlotRegister(),
1411 Smi::FromInt(proxy->VariableFeedbackSlot()));
1412 }
1413
1414 ContextualMode mode = (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL
1415 : CONTEXTUAL;
1416 CallLoadIC(mode);
1417}
1418
1419
1420MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1421 Label* slow) {
1422 DCHECK(var->IsContextSlot());
1423 Register context = cp;
1424 Register next = x10;
1425 Register temp = x11;
1426
1427 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1428 if (s->num_heap_slots() > 0) {
1429 if (s->calls_sloppy_eval()) {
1430 // Check that extension is NULL.
1431 __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1432 __ Cbnz(temp, slow);
1433 }
1434 __ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX));
1435 // Walk the rest of the chain without clobbering cp.
1436 context = next;
1437 }
1438 }
1439 // Check that last extension is NULL.
1440 __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX));
1441 __ Cbnz(temp, slow);
1442
1443 // This function is used only for loads, not stores, so it's safe to
1444 // return an cp-based operand (the write barrier cannot be allowed to
1445 // destroy the cp register).
1446 return ContextMemOperand(context, var->index());
1447}
1448
1449
1450void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1451 TypeofState typeof_state,
1452 Label* slow,
1453 Label* done) {
1454 // Generate fast-case code for variables that might be shadowed by
1455 // eval-introduced variables. Eval is used a lot without
1456 // introducing variables. In those cases, we do not want to
1457 // perform a runtime call for all variables in the scope
1458 // containing the eval.
1459 Variable* var = proxy->var();
1460 if (var->mode() == DYNAMIC_GLOBAL) {
1461 EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1462 __ B(done);
1463 } else if (var->mode() == DYNAMIC_LOCAL) {
1464 Variable* local = var->local_if_not_shadowed();
1465 __ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow));
1466 if (local->mode() == LET || local->mode() == CONST ||
1467 local->mode() == CONST_LEGACY) {
1468 __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done);
1469 if (local->mode() == CONST_LEGACY) {
1470 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1471 } else { // LET || CONST
1472 __ Mov(x0, Operand(var->name()));
1473 __ Push(x0);
1474 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1475 }
1476 }
1477 __ B(done);
1478 }
1479}
1480
1481
1482void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1483 // Record position before possible IC call.
1484 SetSourcePosition(proxy->position());
1485 Variable* var = proxy->var();
1486
1487 // Three cases: global variables, lookup variables, and all other types of
1488 // variables.
1489 switch (var->location()) {
1490 case Variable::UNALLOCATED: {
1491 Comment cmnt(masm_, "Global variable");
1492 __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
1493 __ Mov(LoadDescriptor::NameRegister(), Operand(var->name()));
1494 if (FLAG_vector_ics) {
1495 __ Mov(VectorLoadICDescriptor::SlotRegister(),
1496 Smi::FromInt(proxy->VariableFeedbackSlot()));
1497 }
1498 CallLoadIC(CONTEXTUAL);
1499 context()->Plug(x0);
1500 break;
1501 }
1502
1503 case Variable::PARAMETER:
1504 case Variable::LOCAL:
1505 case Variable::CONTEXT: {
1506 Comment cmnt(masm_, var->IsContextSlot()
1507 ? "Context variable"
1508 : "Stack variable");
1509 if (var->binding_needs_init()) {
1510 // var->scope() may be NULL when the proxy is located in eval code and
1511 // refers to a potential outside binding. Currently those bindings are
1512 // always looked up dynamically, i.e. in that case
1513 // var->location() == LOOKUP.
1514 // always holds.
1515 DCHECK(var->scope() != NULL);
1516
1517 // Check if the binding really needs an initialization check. The check
1518 // can be skipped in the following situation: we have a LET or CONST
1519 // binding in harmony mode, both the Variable and the VariableProxy have
1520 // the same declaration scope (i.e. they are both in global code, in the
1521 // same function or in the same eval code) and the VariableProxy is in
1522 // the source physically located after the initializer of the variable.
1523 //
1524 // We cannot skip any initialization checks for CONST in non-harmony
1525 // mode because const variables may be declared but never initialized:
1526 // if (false) { const x; }; var y = x;
1527 //
1528 // The condition on the declaration scopes is a conservative check for
1529 // nested functions that access a binding and are called before the
1530 // binding is initialized:
1531 // function() { f(); let x = 1; function f() { x = 2; } }
1532 //
1533 bool skip_init_check;
1534 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1535 skip_init_check = false;
1536 } else {
1537 // Check that we always have valid source position.
1538 DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1539 DCHECK(proxy->position() != RelocInfo::kNoPosition);
1540 skip_init_check = var->mode() != CONST_LEGACY &&
1541 var->initializer_position() < proxy->position();
1542 }
1543
1544 if (!skip_init_check) {
1545 // Let and const need a read barrier.
1546 GetVar(x0, var);
1547 Label done;
1548 __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done);
1549 if (var->mode() == LET || var->mode() == CONST) {
1550 // Throw a reference error when using an uninitialized let/const
1551 // binding in harmony mode.
1552 __ Mov(x0, Operand(var->name()));
1553 __ Push(x0);
1554 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1555 __ Bind(&done);
1556 } else {
1557 // Uninitalized const bindings outside of harmony mode are unholed.
1558 DCHECK(var->mode() == CONST_LEGACY);
1559 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
1560 __ Bind(&done);
1561 }
1562 context()->Plug(x0);
1563 break;
1564 }
1565 }
1566 context()->Plug(var);
1567 break;
1568 }
1569
1570 case Variable::LOOKUP: {
1571 Label done, slow;
1572 // Generate code for loading from variables potentially shadowed by
1573 // eval-introduced variables.
1574 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1575 __ Bind(&slow);
1576 Comment cmnt(masm_, "Lookup variable");
1577 __ Mov(x1, Operand(var->name()));
1578 __ Push(cp, x1); // Context and name.
1579 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1580 __ Bind(&done);
1581 context()->Plug(x0);
1582 break;
1583 }
1584 }
1585}
1586
1587
1588void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1589 Comment cmnt(masm_, "[ RegExpLiteral");
1590 Label materialized;
1591 // Registers will be used as follows:
1592 // x5 = materialized value (RegExp literal)
1593 // x4 = JS function, literals array
1594 // x3 = literal index
1595 // x2 = RegExp pattern
1596 // x1 = RegExp flags
1597 // x0 = RegExp literal clone
1598 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1599 __ Ldr(x4, FieldMemOperand(x10, JSFunction::kLiteralsOffset));
1600 int literal_offset =
1601 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1602 __ Ldr(x5, FieldMemOperand(x4, literal_offset));
1603 __ JumpIfNotRoot(x5, Heap::kUndefinedValueRootIndex, &materialized);
1604
1605 // Create regexp literal using runtime function.
1606 // Result will be in x0.
1607 __ Mov(x3, Smi::FromInt(expr->literal_index()));
1608 __ Mov(x2, Operand(expr->pattern()));
1609 __ Mov(x1, Operand(expr->flags()));
1610 __ Push(x4, x3, x2, x1);
1611 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1612 __ Mov(x5, x0);
1613
1614 __ Bind(&materialized);
1615 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1616 Label allocated, runtime_allocate;
1617 __ Allocate(size, x0, x2, x3, &runtime_allocate, TAG_OBJECT);
1618 __ B(&allocated);
1619
1620 __ Bind(&runtime_allocate);
1621 __ Mov(x10, Smi::FromInt(size));
1622 __ Push(x5, x10);
1623 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1624 __ Pop(x5);
1625
1626 __ Bind(&allocated);
1627 // After this, registers are used as follows:
1628 // x0: Newly allocated regexp.
1629 // x5: Materialized regexp.
1630 // x10, x11, x12: temps.
1631 __ CopyFields(x0, x5, CPURegList(x10, x11, x12), size / kPointerSize);
1632 context()->Plug(x0);
1633}
1634
1635
1636void FullCodeGenerator::EmitAccessor(Expression* expression) {
1637 if (expression == NULL) {
1638 __ LoadRoot(x10, Heap::kNullValueRootIndex);
1639 __ Push(x10);
1640 } else {
1641 VisitForStackValue(expression);
1642 }
1643}
1644
1645
1646void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1647 Comment cmnt(masm_, "[ ObjectLiteral");
1648
1649 expr->BuildConstantProperties(isolate());
1650 Handle<FixedArray> constant_properties = expr->constant_properties();
1651 __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1652 __ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset));
1653 __ Mov(x2, Smi::FromInt(expr->literal_index()));
1654 __ Mov(x1, Operand(constant_properties));
1655 int flags = expr->fast_elements()
1656 ? ObjectLiteral::kFastElements
1657 : ObjectLiteral::kNoFlags;
1658 flags |= expr->has_function()
1659 ? ObjectLiteral::kHasFunction
1660 : ObjectLiteral::kNoFlags;
1661 __ Mov(x0, Smi::FromInt(flags));
1662 int properties_count = constant_properties->length() / 2;
1663 const int max_cloned_properties =
1664 FastCloneShallowObjectStub::kMaximumClonedProperties;
1665 if (expr->may_store_doubles() || expr->depth() > 1 ||
1666 masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
1667 properties_count > max_cloned_properties) {
1668 __ Push(x3, x2, x1, x0);
1669 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1670 } else {
1671 FastCloneShallowObjectStub stub(isolate(), properties_count);
1672 __ CallStub(&stub);
1673 }
1674
1675 // If result_saved is true the result is on top of the stack. If
1676 // result_saved is false the result is in x0.
1677 bool result_saved = false;
1678
1679 // Mark all computed expressions that are bound to a key that
1680 // is shadowed by a later occurrence of the same key. For the
1681 // marked expressions, no store code is emitted.
1682 expr->CalculateEmitStore(zone());
1683
1684 AccessorTable accessor_table(zone());
1685 for (int i = 0; i < expr->properties()->length(); i++) {
1686 ObjectLiteral::Property* property = expr->properties()->at(i);
1687 if (property->IsCompileTimeValue()) continue;
1688
1689 Literal* key = property->key();
1690 Expression* value = property->value();
1691 if (!result_saved) {
1692 __ Push(x0); // Save result on stack
1693 result_saved = true;
1694 }
1695 switch (property->kind()) {
1696 case ObjectLiteral::Property::CONSTANT:
1697 UNREACHABLE();
1698 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1699 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1700 // Fall through.
1701 case ObjectLiteral::Property::COMPUTED:
1702 if (key->value()->IsInternalizedString()) {
1703 if (property->emit_store()) {
1704 VisitForAccumulatorValue(value);
1705 DCHECK(StoreDescriptor::ValueRegister().is(x0));
1706 __ Mov(StoreDescriptor::NameRegister(), Operand(key->value()));
1707 __ Peek(StoreDescriptor::ReceiverRegister(), 0);
1708 CallStoreIC(key->LiteralFeedbackId());
1709 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1710 } else {
1711 VisitForEffect(value);
1712 }
1713 break;
1714 }
1715 if (property->emit_store()) {
1716 // Duplicate receiver on stack.
1717 __ Peek(x0, 0);
1718 __ Push(x0);
1719 VisitForStackValue(key);
1720 VisitForStackValue(value);
1721 __ Mov(x0, Smi::FromInt(SLOPPY)); // Strict mode
1722 __ Push(x0);
1723 __ CallRuntime(Runtime::kSetProperty, 4);
1724 } else {
1725 VisitForEffect(key);
1726 VisitForEffect(value);
1727 }
1728 break;
1729 case ObjectLiteral::Property::PROTOTYPE:
1730 if (property->emit_store()) {
1731 // Duplicate receiver on stack.
1732 __ Peek(x0, 0);
1733 __ Push(x0);
1734 VisitForStackValue(value);
1735 __ CallRuntime(Runtime::kSetPrototype, 2);
1736 } else {
1737 VisitForEffect(value);
1738 }
1739 break;
1740 case ObjectLiteral::Property::GETTER:
1741 accessor_table.lookup(key)->second->getter = value;
1742 break;
1743 case ObjectLiteral::Property::SETTER:
1744 accessor_table.lookup(key)->second->setter = value;
1745 break;
1746 }
1747 }
1748
1749 // Emit code to define accessors, using only a single call to the runtime for
1750 // each pair of corresponding getters and setters.
1751 for (AccessorTable::Iterator it = accessor_table.begin();
1752 it != accessor_table.end();
1753 ++it) {
1754 __ Peek(x10, 0); // Duplicate receiver.
1755 __ Push(x10);
1756 VisitForStackValue(it->first);
1757 EmitAccessor(it->second->getter);
1758 EmitAccessor(it->second->setter);
1759 __ Mov(x10, Smi::FromInt(NONE));
1760 __ Push(x10);
1761 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1762 }
1763
1764 if (expr->has_function()) {
1765 DCHECK(result_saved);
1766 __ Peek(x0, 0);
1767 __ Push(x0);
1768 __ CallRuntime(Runtime::kToFastProperties, 1);
1769 }
1770
1771 if (result_saved) {
1772 context()->PlugTOS();
1773 } else {
1774 context()->Plug(x0);
1775 }
1776}
1777
1778
1779void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1780 Comment cmnt(masm_, "[ ArrayLiteral");
1781
1782 expr->BuildConstantElements(isolate());
1783 int flags = (expr->depth() == 1) ? ArrayLiteral::kShallowElements
1784 : ArrayLiteral::kNoFlags;
1785
1786 ZoneList<Expression*>* subexprs = expr->values();
1787 int length = subexprs->length();
1788 Handle<FixedArray> constant_elements = expr->constant_elements();
1789 DCHECK_EQ(2, constant_elements->length());
1790 ElementsKind constant_elements_kind =
1791 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1792 bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
1793 Handle<FixedArrayBase> constant_elements_values(
1794 FixedArrayBase::cast(constant_elements->get(1)));
1795
1796 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1797 if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1798 // If the only customer of allocation sites is transitioning, then
1799 // we can turn it off if we don't have anywhere else to transition to.
1800 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1801 }
1802
1803 __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1804 __ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset));
1805 __ Mov(x2, Smi::FromInt(expr->literal_index()));
1806 __ Mov(x1, Operand(constant_elements));
1807 if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1808 __ Mov(x0, Smi::FromInt(flags));
1809 __ Push(x3, x2, x1, x0);
1810 __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1811 } else {
1812 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1813 __ CallStub(&stub);
1814 }
1815
1816 bool result_saved = false; // Is the result saved to the stack?
1817
1818 // Emit code to evaluate all the non-constant subexpressions and to store
1819 // them into the newly cloned array.
1820 for (int i = 0; i < length; i++) {
1821 Expression* subexpr = subexprs->at(i);
1822 // If the subexpression is a literal or a simple materialized literal it
1823 // is already set in the cloned array.
1824 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1825
1826 if (!result_saved) {
1827 __ Mov(x1, Smi::FromInt(expr->literal_index()));
1828 __ Push(x0, x1);
1829 result_saved = true;
1830 }
1831 VisitForAccumulatorValue(subexpr);
1832
1833 if (IsFastObjectElementsKind(constant_elements_kind)) {
1834 int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1835 __ Peek(x6, kPointerSize); // Copy of array literal.
1836 __ Ldr(x1, FieldMemOperand(x6, JSObject::kElementsOffset));
1837 __ Str(result_register(), FieldMemOperand(x1, offset));
1838 // Update the write barrier for the array store.
1839 __ RecordWriteField(x1, offset, result_register(), x10,
1840 kLRHasBeenSaved, kDontSaveFPRegs,
1841 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1842 } else {
1843 __ Mov(x3, Smi::FromInt(i));
1844 StoreArrayLiteralElementStub stub(isolate());
1845 __ CallStub(&stub);
1846 }
1847
1848 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1849 }
1850
1851 if (result_saved) {
1852 __ Drop(1); // literal index
1853 context()->PlugTOS();
1854 } else {
1855 context()->Plug(x0);
1856 }
1857}
1858
1859
1860void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1861 DCHECK(expr->target()->IsValidReferenceExpression());
1862
1863 Comment cmnt(masm_, "[ Assignment");
1864
1865 // Left-hand side can only be a property, a global or a (parameter or local)
1866 // slot.
1867 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1868 LhsKind assign_type = VARIABLE;
1869 Property* property = expr->target()->AsProperty();
1870 if (property != NULL) {
1871 assign_type = (property->key()->IsPropertyName())
1872 ? NAMED_PROPERTY
1873 : KEYED_PROPERTY;
1874 }
1875
1876 // Evaluate LHS expression.
1877 switch (assign_type) {
1878 case VARIABLE:
1879 // Nothing to do here.
1880 break;
1881 case NAMED_PROPERTY:
1882 if (expr->is_compound()) {
1883 // We need the receiver both on the stack and in the register.
1884 VisitForStackValue(property->obj());
1885 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
1886 } else {
1887 VisitForStackValue(property->obj());
1888 }
1889 break;
1890 case KEYED_PROPERTY:
1891 if (expr->is_compound()) {
1892 VisitForStackValue(property->obj());
1893 VisitForStackValue(property->key());
1894 __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
1895 __ Peek(LoadDescriptor::NameRegister(), 0);
1896 } else {
1897 VisitForStackValue(property->obj());
1898 VisitForStackValue(property->key());
1899 }
1900 break;
1901 }
1902
1903 // For compound assignments we need another deoptimization point after the
1904 // variable/property load.
1905 if (expr->is_compound()) {
1906 { AccumulatorValueContext context(this);
1907 switch (assign_type) {
1908 case VARIABLE:
1909 EmitVariableLoad(expr->target()->AsVariableProxy());
1910 PrepareForBailout(expr->target(), TOS_REG);
1911 break;
1912 case NAMED_PROPERTY:
1913 EmitNamedPropertyLoad(property);
1914 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1915 break;
1916 case KEYED_PROPERTY:
1917 EmitKeyedPropertyLoad(property);
1918 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1919 break;
1920 }
1921 }
1922
1923 Token::Value op = expr->binary_op();
1924 __ Push(x0); // Left operand goes on the stack.
1925 VisitForAccumulatorValue(expr->value());
1926
1927 OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1928 ? OVERWRITE_RIGHT
1929 : NO_OVERWRITE;
1930 SetSourcePosition(expr->position() + 1);
1931 AccumulatorValueContext context(this);
1932 if (ShouldInlineSmiCase(op)) {
1933 EmitInlineSmiBinaryOp(expr->binary_operation(),
1934 op,
1935 mode,
1936 expr->target(),
1937 expr->value());
1938 } else {
1939 EmitBinaryOp(expr->binary_operation(), op, mode);
1940 }
1941
1942 // Deoptimization point in case the binary operation may have side effects.
1943 PrepareForBailout(expr->binary_operation(), TOS_REG);
1944 } else {
1945 VisitForAccumulatorValue(expr->value());
1946 }
1947
1948 // Record source position before possible IC call.
1949 SetSourcePosition(expr->position());
1950
1951 // Store the value.
1952 switch (assign_type) {
1953 case VARIABLE:
1954 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1955 expr->op());
1956 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1957 context()->Plug(x0);
1958 break;
1959 case NAMED_PROPERTY:
1960 EmitNamedPropertyAssignment(expr);
1961 break;
1962 case KEYED_PROPERTY:
1963 EmitKeyedPropertyAssignment(expr);
1964 break;
1965 }
1966}
1967
1968
1969void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
1970 SetSourcePosition(prop->position());
1971 Literal* key = prop->key()->AsLiteral();
1972 DCHECK(!prop->IsSuperAccess());
1973
1974 __ Mov(LoadDescriptor::NameRegister(), Operand(key->value()));
1975 if (FLAG_vector_ics) {
1976 __ Mov(VectorLoadICDescriptor::SlotRegister(),
1977 Smi::FromInt(prop->PropertyFeedbackSlot()));
1978 CallLoadIC(NOT_CONTEXTUAL);
1979 } else {
1980 CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
1981 }
1982}
1983
1984
1985void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
1986 SetSourcePosition(prop->position());
1987 Literal* key = prop->key()->AsLiteral();
1988 DCHECK(!key->value()->IsSmi());
1989 DCHECK(prop->IsSuperAccess());
1990
1991 SuperReference* super_ref = prop->obj()->AsSuperReference();
1992 EmitLoadHomeObject(super_ref);
1993 __ Push(x0);
1994 VisitForStackValue(super_ref->this_var());
1995 __ Push(key->value());
1996 __ CallRuntime(Runtime::kLoadFromSuper, 3);
1997}
1998
1999
2000void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2001 SetSourcePosition(prop->position());
2002 // Call keyed load IC. It has arguments key and receiver in r0 and r1.
2003 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2004 if (FLAG_vector_ics) {
2005 __ Mov(VectorLoadICDescriptor::SlotRegister(),
2006 Smi::FromInt(prop->PropertyFeedbackSlot()));
2007 CallIC(ic);
2008 } else {
2009 CallIC(ic, prop->PropertyFeedbackId());
2010 }
2011}
2012
2013
2014void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2015 Token::Value op,
2016 OverwriteMode mode,
2017 Expression* left_expr,
2018 Expression* right_expr) {
2019 Label done, both_smis, stub_call;
2020
2021 // Get the arguments.
2022 Register left = x1;
2023 Register right = x0;
2024 Register result = x0;
2025 __ Pop(left);
2026
2027 // Perform combined smi check on both operands.
2028 __ Orr(x10, left, right);
2029 JumpPatchSite patch_site(masm_);
2030 patch_site.EmitJumpIfSmi(x10, &both_smis);
2031
2032 __ Bind(&stub_call);
2033
2034 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2035 {
2036 Assembler::BlockPoolsScope scope(masm_);
2037 CallIC(code, expr->BinaryOperationFeedbackId());
2038 patch_site.EmitPatchInfo();
2039 }
2040 __ B(&done);
2041
2042 __ Bind(&both_smis);
2043 // Smi case. This code works in the same way as the smi-smi case in the type
2044 // recording binary operation stub, see
2045 // BinaryOpStub::GenerateSmiSmiOperation for comments.
2046 // TODO(all): That doesn't exist any more. Where are the comments?
2047 //
2048 // The set of operations that needs to be supported here is controlled by
2049 // FullCodeGenerator::ShouldInlineSmiCase().
2050 switch (op) {
2051 case Token::SAR:
2052 __ Ubfx(right, right, kSmiShift, 5);
2053 __ Asr(result, left, right);
2054 __ Bic(result, result, kSmiShiftMask);
2055 break;
2056 case Token::SHL:
2057 __ Ubfx(right, right, kSmiShift, 5);
2058 __ Lsl(result, left, right);
2059 break;
2060 case Token::SHR:
2061 // If `left >>> right` >= 0x80000000, the result is not representable in a
2062 // signed 32-bit smi.
2063 __ Ubfx(right, right, kSmiShift, 5);
2064 __ Lsr(x10, left, right);
2065 __ Tbnz(x10, kXSignBit, &stub_call);
2066 __ Bic(result, x10, kSmiShiftMask);
2067 break;
2068 case Token::ADD:
2069 __ Adds(x10, left, right);
2070 __ B(vs, &stub_call);
2071 __ Mov(result, x10);
2072 break;
2073 case Token::SUB:
2074 __ Subs(x10, left, right);
2075 __ B(vs, &stub_call);
2076 __ Mov(result, x10);
2077 break;
2078 case Token::MUL: {
2079 Label not_minus_zero, done;
2080 STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == (kXRegSizeInBits / 2));
2081 STATIC_ASSERT(kSmiTag == 0);
2082 __ Smulh(x10, left, right);
2083 __ Cbnz(x10, &not_minus_zero);
2084 __ Eor(x11, left, right);
2085 __ Tbnz(x11, kXSignBit, &stub_call);
2086 __ Mov(result, x10);
2087 __ B(&done);
2088 __ Bind(&not_minus_zero);
2089 __ Cls(x11, x10);
2090 __ Cmp(x11, kXRegSizeInBits - kSmiShift);
2091 __ B(lt, &stub_call);
2092 __ SmiTag(result, x10);
2093 __ Bind(&done);
2094 break;
2095 }
2096 case Token::BIT_OR:
2097 __ Orr(result, left, right);
2098 break;
2099 case Token::BIT_AND:
2100 __ And(result, left, right);
2101 break;
2102 case Token::BIT_XOR:
2103 __ Eor(result, left, right);
2104 break;
2105 default:
2106 UNREACHABLE();
2107 }
2108
2109 __ Bind(&done);
2110 context()->Plug(x0);
2111}
2112
2113
2114void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
2115 Token::Value op,
2116 OverwriteMode mode) {
2117 __ Pop(x1);
2118 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2119 JumpPatchSite patch_site(masm_); // Unbound, signals no inlined smi code.
2120 {
2121 Assembler::BlockPoolsScope scope(masm_);
2122 CallIC(code, expr->BinaryOperationFeedbackId());
2123 patch_site.EmitPatchInfo();
2124 }
2125 context()->Plug(x0);
2126}
2127
2128
2129void FullCodeGenerator::EmitAssignment(Expression* expr) {
2130 DCHECK(expr->IsValidReferenceExpression());
2131
2132 // Left-hand side can only be a property, a global or a (parameter or local)
2133 // slot.
2134 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2135 LhsKind assign_type = VARIABLE;
2136 Property* prop = expr->AsProperty();
2137 if (prop != NULL) {
2138 assign_type = (prop->key()->IsPropertyName())
2139 ? NAMED_PROPERTY
2140 : KEYED_PROPERTY;
2141 }
2142
2143 switch (assign_type) {
2144 case VARIABLE: {
2145 Variable* var = expr->AsVariableProxy()->var();
2146 EffectContext context(this);
2147 EmitVariableAssignment(var, Token::ASSIGN);
2148 break;
2149 }
2150 case NAMED_PROPERTY: {
2151 __ Push(x0); // Preserve value.
2152 VisitForAccumulatorValue(prop->obj());
2153 // TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid
2154 // this copy.
2155 __ Mov(StoreDescriptor::ReceiverRegister(), x0);
2156 __ Pop(StoreDescriptor::ValueRegister()); // Restore value.
2157 __ Mov(StoreDescriptor::NameRegister(),
2158 Operand(prop->key()->AsLiteral()->value()));
2159 CallStoreIC();
2160 break;
2161 }
2162 case KEYED_PROPERTY: {
2163 __ Push(x0); // Preserve value.
2164 VisitForStackValue(prop->obj());
2165 VisitForAccumulatorValue(prop->key());
2166 __ Mov(StoreDescriptor::NameRegister(), x0);
2167 __ Pop(StoreDescriptor::ReceiverRegister(),
2168 StoreDescriptor::ValueRegister());
2169 Handle<Code> ic =
2170 CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2171 CallIC(ic);
2172 break;
2173 }
2174 }
2175 context()->Plug(x0);
2176}
2177
2178
2179void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2180 Variable* var, MemOperand location) {
2181 __ Str(result_register(), location);
2182 if (var->IsContextSlot()) {
2183 // RecordWrite may destroy all its register arguments.
2184 __ Mov(x10, result_register());
2185 int offset = Context::SlotOffset(var->index());
2186 __ RecordWriteContextSlot(
2187 x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
2188 }
2189}
2190
2191
2192void FullCodeGenerator::EmitVariableAssignment(Variable* var,
2193 Token::Value op) {
2194 ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment");
2195 if (var->IsUnallocated()) {
2196 // Global var, const, or let.
2197 __ Mov(StoreDescriptor::NameRegister(), Operand(var->name()));
2198 __ Ldr(StoreDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
2199 CallStoreIC();
2200
2201 } else if (op == Token::INIT_CONST_LEGACY) {
2202 // Const initializers need a write barrier.
2203 DCHECK(!var->IsParameter()); // No const parameters.
2204 if (var->IsLookupSlot()) {
2205 __ Mov(x1, Operand(var->name()));
2206 __ Push(x0, cp, x1);
2207 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2208 } else {
2209 DCHECK(var->IsStackLocal() || var->IsContextSlot());
2210 Label skip;
2211 MemOperand location = VarOperand(var, x1);
2212 __ Ldr(x10, location);
2213 __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &skip);
2214 EmitStoreToStackLocalOrContextSlot(var, location);
2215 __ Bind(&skip);
2216 }
2217
2218 } else if (var->mode() == LET && op != Token::INIT_LET) {
2219 // Non-initializing assignment to let variable needs a write barrier.
2220 DCHECK(!var->IsLookupSlot());
2221 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2222 Label assign;
2223 MemOperand location = VarOperand(var, x1);
2224 __ Ldr(x10, location);
2225 __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign);
2226 __ Mov(x10, Operand(var->name()));
2227 __ Push(x10);
2228 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2229 // Perform the assignment.
2230 __ Bind(&assign);
2231 EmitStoreToStackLocalOrContextSlot(var, location);
2232
2233 } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2234 if (var->IsLookupSlot()) {
2235 // Assignment to var.
2236 __ Mov(x11, Operand(var->name()));
2237 __ Mov(x10, Smi::FromInt(strict_mode()));
2238 // jssp[0] : mode.
2239 // jssp[8] : name.
2240 // jssp[16] : context.
2241 // jssp[24] : value.
2242 __ Push(x0, cp, x11, x10);
2243 __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2244 } else {
2245 // Assignment to var or initializing assignment to let/const in harmony
2246 // mode.
2247 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2248 MemOperand location = VarOperand(var, x1);
2249 if (FLAG_debug_code && op == Token::INIT_LET) {
2250 __ Ldr(x10, location);
2251 __ CompareRoot(x10, Heap::kTheHoleValueRootIndex);
2252 __ Check(eq, kLetBindingReInitialization);
2253 }
2254 EmitStoreToStackLocalOrContextSlot(var, location);
2255 }
2256 }
2257 // Non-initializing assignments to consts are ignored.
2258}
2259
2260
2261void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2262 ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment");
2263 // Assignment to a property, using a named store IC.
2264 Property* prop = expr->target()->AsProperty();
2265 DCHECK(prop != NULL);
2266 DCHECK(prop->key()->IsLiteral());
2267
2268 // Record source code position before IC call.
2269 SetSourcePosition(expr->position());
2270 __ Mov(StoreDescriptor::NameRegister(),
2271 Operand(prop->key()->AsLiteral()->value()));
2272 __ Pop(StoreDescriptor::ReceiverRegister());
2273 CallStoreIC(expr->AssignmentFeedbackId());
2274
2275 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2276 context()->Plug(x0);
2277}
2278
2279
2280void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2281 ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment");
2282 // Assignment to a property, using a keyed store IC.
2283
2284 // Record source code position before IC call.
2285 SetSourcePosition(expr->position());
2286 // TODO(all): Could we pass this in registers rather than on the stack?
2287 __ Pop(StoreDescriptor::NameRegister(), StoreDescriptor::ReceiverRegister());
2288 DCHECK(StoreDescriptor::ValueRegister().is(x0));
2289
2290 Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2291 CallIC(ic, expr->AssignmentFeedbackId());
2292
2293 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2294 context()->Plug(x0);
2295}
2296
2297
2298void FullCodeGenerator::VisitProperty(Property* expr) {
2299 Comment cmnt(masm_, "[ Property");
2300 Expression* key = expr->key();
2301
2302 if (key->IsPropertyName()) {
2303 if (!expr->IsSuperAccess()) {
2304 VisitForAccumulatorValue(expr->obj());
2305 __ Move(LoadDescriptor::ReceiverRegister(), x0);
2306 EmitNamedPropertyLoad(expr);
2307 } else {
2308 EmitNamedSuperPropertyLoad(expr);
2309 }
2310 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2311 context()->Plug(x0);
2312 } else {
2313 VisitForStackValue(expr->obj());
2314 VisitForAccumulatorValue(expr->key());
2315 __ Move(LoadDescriptor::NameRegister(), x0);
2316 __ Pop(LoadDescriptor::ReceiverRegister());
2317 EmitKeyedPropertyLoad(expr);
2318 context()->Plug(x0);
2319 }
2320}
2321
2322
2323void FullCodeGenerator::CallIC(Handle<Code> code,
2324 TypeFeedbackId ast_id) {
2325 ic_total_count_++;
2326 // All calls must have a predictable size in full-codegen code to ensure that
2327 // the debugger can patch them correctly.
2328 __ Call(code, RelocInfo::CODE_TARGET, ast_id);
2329}
2330
2331
2332// Code common for calls using the IC.
2333void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2334 Expression* callee = expr->expression();
2335
2336 CallICState::CallType call_type =
2337 callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2338
2339 // Get the target function.
2340 if (call_type == CallICState::FUNCTION) {
2341 { StackValueContext context(this);
2342 EmitVariableLoad(callee->AsVariableProxy());
2343 PrepareForBailout(callee, NO_REGISTERS);
2344 }
2345 // Push undefined as receiver. This is patched in the method prologue if it
2346 // is a sloppy mode method.
2347 __ Push(isolate()->factory()->undefined_value());
2348 } else {
2349 // Load the function from the receiver.
2350 DCHECK(callee->IsProperty());
2351 DCHECK(!callee->AsProperty()->IsSuperAccess());
2352 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2353 EmitNamedPropertyLoad(callee->AsProperty());
2354 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2355 // Push the target function under the receiver.
2356 __ Pop(x10);
2357 __ Push(x0, x10);
2358 }
2359
2360 EmitCall(expr, call_type);
2361}
2362
2363
2364void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2365 Expression* callee = expr->expression();
2366 DCHECK(callee->IsProperty());
2367 Property* prop = callee->AsProperty();
2368 DCHECK(prop->IsSuperAccess());
2369
2370 SetSourcePosition(prop->position());
2371 Literal* key = prop->key()->AsLiteral();
2372 DCHECK(!key->value()->IsSmi());
2373
2374 // Load the function from the receiver.
2375 const Register scratch = x10;
2376 SuperReference* super_ref = callee->AsProperty()->obj()->AsSuperReference();
2377 EmitLoadHomeObject(super_ref);
2378 __ Push(x0);
2379 VisitForAccumulatorValue(super_ref->this_var());
2380 __ Push(x0);
2381 __ Peek(scratch, kPointerSize);
2382 __ Push(scratch, x0);
2383 __ Push(key->value());
2384
2385 // Stack here:
2386 // - home_object
2387 // - this (receiver)
2388 // - home_object <-- LoadFromSuper will pop here and below.
2389 // - this (receiver)
2390 // - key
2391 __ CallRuntime(Runtime::kLoadFromSuper, 3);
2392
2393 // Replace home_object with target function.
2394 __ Poke(x0, kPointerSize);
2395
2396 // Stack here:
2397 // - target function
2398 // - this (receiver)
2399 EmitCall(expr, CallICState::METHOD);
2400}
2401
2402
2403// Code common for calls using the IC.
2404void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2405 Expression* key) {
2406 // Load the key.
2407 VisitForAccumulatorValue(key);
2408
2409 Expression* callee = expr->expression();
2410
2411 // Load the function from the receiver.
2412 DCHECK(callee->IsProperty());
2413 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
2414 __ Move(LoadDescriptor::NameRegister(), x0);
2415 EmitKeyedPropertyLoad(callee->AsProperty());
2416 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2417
2418 // Push the target function under the receiver.
2419 __ Pop(x10);
2420 __ Push(x0, x10);
2421
2422 EmitCall(expr, CallICState::METHOD);
2423}
2424
2425
2426void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2427 // Load the arguments.
2428 ZoneList<Expression*>* args = expr->arguments();
2429 int arg_count = args->length();
2430 { PreservePositionScope scope(masm()->positions_recorder());
2431 for (int i = 0; i < arg_count; i++) {
2432 VisitForStackValue(args->at(i));
2433 }
2434 }
2435 // Record source position of the IC call.
2436 SetSourcePosition(expr->position());
2437
2438 Handle<Code> ic = CallIC::initialize_stub(
2439 isolate(), arg_count, call_type);
2440 __ Mov(x3, Smi::FromInt(expr->CallFeedbackSlot()));
2441 __ Peek(x1, (arg_count + 1) * kXRegSize);
2442 // Don't assign a type feedback id to the IC, since type feedback is provided
2443 // by the vector above.
2444 CallIC(ic);
2445
2446 RecordJSReturnSite(expr);
2447 // Restore context register.
2448 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2449 context()->DropAndPlug(1, x0);
2450}
2451
2452
2453void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2454 ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval");
2455 // Prepare to push a copy of the first argument or undefined if it doesn't
2456 // exist.
2457 if (arg_count > 0) {
2458 __ Peek(x9, arg_count * kXRegSize);
2459 } else {
2460 __ LoadRoot(x9, Heap::kUndefinedValueRootIndex);
2461 }
2462
2463 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2464 // Prepare to push the receiver of the enclosing function.
2465 int receiver_offset = 2 + info_->scope()->num_parameters();
2466 __ Ldr(x11, MemOperand(fp, receiver_offset * kPointerSize));
2467
2468 // Prepare to push the language mode.
2469 __ Mov(x12, Smi::FromInt(strict_mode()));
2470 // Prepare to push the start position of the scope the calls resides in.
2471 __ Mov(x13, Smi::FromInt(scope()->start_position()));
2472
2473 // Push.
2474 __ Push(x9, x10, x11, x12, x13);
2475
2476 // Do the runtime call.
2477 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
2478}
2479
2480
2481void FullCodeGenerator::VisitCall(Call* expr) {
2482#ifdef DEBUG
2483 // We want to verify that RecordJSReturnSite gets called on all paths
2484 // through this function. Avoid early returns.
2485 expr->return_is_recorded_ = false;
2486#endif
2487
2488 Comment cmnt(masm_, "[ Call");
2489 Expression* callee = expr->expression();
2490 Call::CallType call_type = expr->GetCallType(isolate());
2491
2492 if (call_type == Call::POSSIBLY_EVAL_CALL) {
2493 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2494 // to resolve the function we need to call and the receiver of the
2495 // call. Then we call the resolved function using the given
2496 // arguments.
2497 ZoneList<Expression*>* args = expr->arguments();
2498 int arg_count = args->length();
2499
2500 {
2501 PreservePositionScope pos_scope(masm()->positions_recorder());
2502 VisitForStackValue(callee);
2503 __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
2504 __ Push(x10); // Reserved receiver slot.
2505
2506 // Push the arguments.
2507 for (int i = 0; i < arg_count; i++) {
2508 VisitForStackValue(args->at(i));
2509 }
2510
2511 // Push a copy of the function (found below the arguments) and
2512 // resolve eval.
2513 __ Peek(x10, (arg_count + 1) * kPointerSize);
2514 __ Push(x10);
2515 EmitResolvePossiblyDirectEval(arg_count);
2516
2517 // The runtime call returns a pair of values in x0 (function) and
2518 // x1 (receiver). Touch up the stack with the right values.
2519 __ PokePair(x1, x0, arg_count * kPointerSize);
2520 }
2521
2522 // Record source position for debugger.
2523 SetSourcePosition(expr->position());
2524
2525 // Call the evaluated function.
2526 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2527 __ Peek(x1, (arg_count + 1) * kXRegSize);
2528 __ CallStub(&stub);
2529 RecordJSReturnSite(expr);
2530 // Restore context register.
2531 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2532 context()->DropAndPlug(1, x0);
2533
2534 } else if (call_type == Call::GLOBAL_CALL) {
2535 EmitCallWithLoadIC(expr);
2536
2537 } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2538 // Call to a lookup slot (dynamically introduced variable).
2539 VariableProxy* proxy = callee->AsVariableProxy();
2540 Label slow, done;
2541
2542 { PreservePositionScope scope(masm()->positions_recorder());
2543 // Generate code for loading from variables potentially shadowed
2544 // by eval-introduced variables.
2545 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2546 }
2547
2548 __ Bind(&slow);
2549 // Call the runtime to find the function to call (returned in x0)
2550 // and the object holding it (returned in x1).
2551 __ Mov(x10, Operand(proxy->name()));
2552 __ Push(context_register(), x10);
2553 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2554 __ Push(x0, x1); // Receiver, function.
2555
2556 // If fast case code has been generated, emit code to push the
2557 // function and receiver and have the slow path jump around this
2558 // code.
2559 if (done.is_linked()) {
2560 Label call;
2561 __ B(&call);
2562 __ Bind(&done);
2563 // Push function.
2564 // The receiver is implicitly the global receiver. Indicate this
2565 // by passing the undefined to the call function stub.
2566 __ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
2567 __ Push(x0, x1);
2568 __ Bind(&call);
2569 }
2570
2571 // The receiver is either the global receiver or an object found
2572 // by LoadContextSlot.
2573 EmitCall(expr);
2574 } else if (call_type == Call::PROPERTY_CALL) {
2575 Property* property = callee->AsProperty();
2576 bool is_named_call = property->key()->IsPropertyName();
2577 // super.x() is handled in EmitCallWithLoadIC.
2578 if (property->IsSuperAccess() && is_named_call) {
2579 EmitSuperCallWithLoadIC(expr);
2580 } else {
2581 {
2582 PreservePositionScope scope(masm()->positions_recorder());
2583 VisitForStackValue(property->obj());
2584 }
2585 if (is_named_call) {
2586 EmitCallWithLoadIC(expr);
2587 } else {
2588 EmitKeyedCallWithLoadIC(expr, property->key());
2589 }
2590 }
2591 } else {
2592 DCHECK(call_type == Call::OTHER_CALL);
2593 // Call to an arbitrary expression not handled specially above.
2594 { PreservePositionScope scope(masm()->positions_recorder());
2595 VisitForStackValue(callee);
2596 }
2597 __ LoadRoot(x1, Heap::kUndefinedValueRootIndex);
2598 __ Push(x1);
2599 // Emit function call.
2600 EmitCall(expr);
2601 }
2602
2603#ifdef DEBUG
2604 // RecordJSReturnSite should have been called.
2605 DCHECK(expr->return_is_recorded_);
2606#endif
2607}
2608
2609
2610void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2611 Comment cmnt(masm_, "[ CallNew");
2612 // According to ECMA-262, section 11.2.2, page 44, the function
2613 // expression in new calls must be evaluated before the
2614 // arguments.
2615
2616 // Push constructor on the stack. If it's not a function it's used as
2617 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2618 // ignored.
2619 VisitForStackValue(expr->expression());
2620
2621 // Push the arguments ("left-to-right") on the stack.
2622 ZoneList<Expression*>* args = expr->arguments();
2623 int arg_count = args->length();
2624 for (int i = 0; i < arg_count; i++) {
2625 VisitForStackValue(args->at(i));
2626 }
2627
2628 // Call the construct call builtin that handles allocation and
2629 // constructor invocation.
2630 SetSourcePosition(expr->position());
2631
2632 // Load function and argument count into x1 and x0.
2633 __ Mov(x0, arg_count);
2634 __ Peek(x1, arg_count * kXRegSize);
2635
2636 // Record call targets in unoptimized code.
2637 if (FLAG_pretenuring_call_new) {
2638 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2639 DCHECK(expr->AllocationSiteFeedbackSlot() ==
2640 expr->CallNewFeedbackSlot() + 1);
2641 }
2642
2643 __ LoadObject(x2, FeedbackVector());
2644 __ Mov(x3, Smi::FromInt(expr->CallNewFeedbackSlot()));
2645
2646 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2647 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2648 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2649 context()->Plug(x0);
2650}
2651
2652
2653void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2654 ZoneList<Expression*>* args = expr->arguments();
2655 DCHECK(args->length() == 1);
2656
2657 VisitForAccumulatorValue(args->at(0));
2658
2659 Label materialize_true, materialize_false;
2660 Label* if_true = NULL;
2661 Label* if_false = NULL;
2662 Label* fall_through = NULL;
2663 context()->PrepareTest(&materialize_true, &materialize_false,
2664 &if_true, &if_false, &fall_through);
2665
2666 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2667 __ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through);
2668
2669 context()->Plug(if_true, if_false);
2670}
2671
2672
2673void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
2674 ZoneList<Expression*>* args = expr->arguments();
2675 DCHECK(args->length() == 1);
2676
2677 VisitForAccumulatorValue(args->at(0));
2678
2679 Label materialize_true, materialize_false;
2680 Label* if_true = NULL;
2681 Label* if_false = NULL;
2682 Label* fall_through = NULL;
2683 context()->PrepareTest(&materialize_true, &materialize_false,
2684 &if_true, &if_false, &fall_through);
2685
2686 uint64_t sign_mask = V8_UINT64_C(1) << (kSmiShift + kSmiValueSize - 1);
2687
2688 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2689 __ TestAndSplit(x0, kSmiTagMask | sign_mask, if_true, if_false, fall_through);
2690
2691 context()->Plug(if_true, if_false);
2692}
2693
2694
2695void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
2696 ZoneList<Expression*>* args = expr->arguments();
2697 DCHECK(args->length() == 1);
2698
2699 VisitForAccumulatorValue(args->at(0));
2700
2701 Label materialize_true, materialize_false;
2702 Label* if_true = NULL;
2703 Label* if_false = NULL;
2704 Label* fall_through = NULL;
2705 context()->PrepareTest(&materialize_true, &materialize_false,
2706 &if_true, &if_false, &fall_through);
2707
2708 __ JumpIfSmi(x0, if_false);
2709 __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
2710 __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
2711 // Undetectable objects behave like undefined when tested with typeof.
2712 __ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset));
2713 __ Tbnz(x11, Map::kIsUndetectable, if_false);
2714 __ Ldrb(x12, FieldMemOperand(x10, Map::kInstanceTypeOffset));
2715 __ Cmp(x12, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
2716 __ B(lt, if_false);
2717 __ Cmp(x12, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
2718 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2719 Split(le, if_true, if_false, fall_through);
2720
2721 context()->Plug(if_true, if_false);
2722}
2723
2724
2725void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
2726 ZoneList<Expression*>* args = expr->arguments();
2727 DCHECK(args->length() == 1);
2728
2729 VisitForAccumulatorValue(args->at(0));
2730
2731 Label materialize_true, materialize_false;
2732 Label* if_true = NULL;
2733 Label* if_false = NULL;
2734 Label* fall_through = NULL;
2735 context()->PrepareTest(&materialize_true, &materialize_false,
2736 &if_true, &if_false, &fall_through);
2737
2738 __ JumpIfSmi(x0, if_false);
2739 __ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE);
2740 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2741 Split(ge, if_true, if_false, fall_through);
2742
2743 context()->Plug(if_true, if_false);
2744}
2745
2746
2747void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
2748 ASM_LOCATION("FullCodeGenerator::EmitIsUndetectableObject");
2749 ZoneList<Expression*>* args = expr->arguments();
2750 DCHECK(args->length() == 1);
2751
2752 VisitForAccumulatorValue(args->at(0));
2753
2754 Label materialize_true, materialize_false;
2755 Label* if_true = NULL;
2756 Label* if_false = NULL;
2757 Label* fall_through = NULL;
2758 context()->PrepareTest(&materialize_true, &materialize_false,
2759 &if_true, &if_false, &fall_through);
2760
2761 __ JumpIfSmi(x0, if_false);
2762 __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
2763 __ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset));
2764 __ Tst(x11, 1 << Map::kIsUndetectable);
2765 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2766 Split(ne, if_true, if_false, fall_through);
2767
2768 context()->Plug(if_true, if_false);
2769}
2770
2771
2772void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
2773 CallRuntime* expr) {
2774 ZoneList<Expression*>* args = expr->arguments();
2775 DCHECK(args->length() == 1);
2776 VisitForAccumulatorValue(args->at(0));
2777
2778 Label materialize_true, materialize_false, skip_lookup;
2779 Label* if_true = NULL;
2780 Label* if_false = NULL;
2781 Label* fall_through = NULL;
2782 context()->PrepareTest(&materialize_true, &materialize_false,
2783 &if_true, &if_false, &fall_through);
2784
2785 Register object = x0;
2786 __ AssertNotSmi(object);
2787
2788 Register map = x10;
2789 Register bitfield2 = x11;
2790 __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
2791 __ Ldrb(bitfield2, FieldMemOperand(map, Map::kBitField2Offset));
2792 __ Tbnz(bitfield2, Map::kStringWrapperSafeForDefaultValueOf, &skip_lookup);
2793
2794 // Check for fast case object. Generate false result for slow case object.
2795 Register props = x12;
2796 Register props_map = x12;
2797 Register hash_table_map = x13;
2798 __ Ldr(props, FieldMemOperand(object, JSObject::kPropertiesOffset));
2799 __ Ldr(props_map, FieldMemOperand(props, HeapObject::kMapOffset));
2800 __ LoadRoot(hash_table_map, Heap::kHashTableMapRootIndex);
2801 __ Cmp(props_map, hash_table_map);
2802 __ B(eq, if_false);
2803
2804 // Look for valueOf name in the descriptor array, and indicate false if found.
2805 // Since we omit an enumeration index check, if it is added via a transition
2806 // that shares its descriptor array, this is a false positive.
2807 Label loop, done;
2808
2809 // Skip loop if no descriptors are valid.
2810 Register descriptors = x12;
2811 Register descriptors_length = x13;
2812 __ NumberOfOwnDescriptors(descriptors_length, map);
2813 __ Cbz(descriptors_length, &done);
2814
2815 __ LoadInstanceDescriptors(map, descriptors);
2816
2817 // Calculate the end of the descriptor array.
2818 Register descriptors_end = x14;
2819 __ Mov(x15, DescriptorArray::kDescriptorSize);
2820 __ Mul(descriptors_length, descriptors_length, x15);
2821 // Calculate location of the first key name.
2822 __ Add(descriptors, descriptors,
2823 DescriptorArray::kFirstOffset - kHeapObjectTag);
2824 // Calculate the end of the descriptor array.
2825 __ Add(descriptors_end, descriptors,
2826 Operand(descriptors_length, LSL, kPointerSizeLog2));
2827
2828 // Loop through all the keys in the descriptor array. If one of these is the
2829 // string "valueOf" the result is false.
2830 Register valueof_string = x1;
2831 int descriptor_size = DescriptorArray::kDescriptorSize * kPointerSize;
2832 __ Mov(valueof_string, Operand(isolate()->factory()->value_of_string()));
2833 __ Bind(&loop);
2834 __ Ldr(x15, MemOperand(descriptors, descriptor_size, PostIndex));
2835 __ Cmp(x15, valueof_string);
2836 __ B(eq, if_false);
2837 __ Cmp(descriptors, descriptors_end);
2838 __ B(ne, &loop);
2839
2840 __ Bind(&done);
2841
2842 // Set the bit in the map to indicate that there is no local valueOf field.
2843 __ Ldrb(x2, FieldMemOperand(map, Map::kBitField2Offset));
2844 __ Orr(x2, x2, 1 << Map::kStringWrapperSafeForDefaultValueOf);
2845 __ Strb(x2, FieldMemOperand(map, Map::kBitField2Offset));
2846
2847 __ Bind(&skip_lookup);
2848
2849 // If a valueOf property is not found on the object check that its prototype
2850 // is the unmodified String prototype. If not result is false.
2851 Register prototype = x1;
2852 Register global_idx = x2;
2853 Register native_context = x2;
2854 Register string_proto = x3;
2855 Register proto_map = x4;
2856 __ Ldr(prototype, FieldMemOperand(map, Map::kPrototypeOffset));
2857 __ JumpIfSmi(prototype, if_false);
2858 __ Ldr(proto_map, FieldMemOperand(prototype, HeapObject::kMapOffset));
2859 __ Ldr(global_idx, GlobalObjectMemOperand());
2860 __ Ldr(native_context,
2861 FieldMemOperand(global_idx, GlobalObject::kNativeContextOffset));
2862 __ Ldr(string_proto,
2863 ContextMemOperand(native_context,
2864 Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
2865 __ Cmp(proto_map, string_proto);
2866
2867 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2868 Split(eq, if_true, if_false, fall_through);
2869
2870 context()->Plug(if_true, if_false);
2871}
2872
2873
2874void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
2875 ZoneList<Expression*>* args = expr->arguments();
2876 DCHECK(args->length() == 1);
2877
2878 VisitForAccumulatorValue(args->at(0));
2879
2880 Label materialize_true, materialize_false;
2881 Label* if_true = NULL;
2882 Label* if_false = NULL;
2883 Label* fall_through = NULL;
2884 context()->PrepareTest(&materialize_true, &materialize_false,
2885 &if_true, &if_false, &fall_through);
2886
2887 __ JumpIfSmi(x0, if_false);
2888 __ CompareObjectType(x0, x10, x11, JS_FUNCTION_TYPE);
2889 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2890 Split(eq, if_true, if_false, fall_through);
2891
2892 context()->Plug(if_true, if_false);
2893}
2894
2895
2896void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
2897 ZoneList<Expression*>* args = expr->arguments();
2898 DCHECK(args->length() == 1);
2899
2900 VisitForAccumulatorValue(args->at(0));
2901
2902 Label materialize_true, materialize_false;
2903 Label* if_true = NULL;
2904 Label* if_false = NULL;
2905 Label* fall_through = NULL;
2906 context()->PrepareTest(&materialize_true, &materialize_false,
2907 &if_true, &if_false, &fall_through);
2908
2909 // Only a HeapNumber can be -0.0, so return false if we have something else.
2910 __ JumpIfNotHeapNumber(x0, if_false, DO_SMI_CHECK);
2911
2912 // Test the bit pattern.
2913 __ Ldr(x10, FieldMemOperand(x0, HeapNumber::kValueOffset));
2914 __ Cmp(x10, 1); // Set V on 0x8000000000000000.
2915
2916 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2917 Split(vs, if_true, if_false, fall_through);
2918
2919 context()->Plug(if_true, if_false);
2920}
2921
2922
2923void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
2924 ZoneList<Expression*>* args = expr->arguments();
2925 DCHECK(args->length() == 1);
2926
2927 VisitForAccumulatorValue(args->at(0));
2928
2929 Label materialize_true, materialize_false;
2930 Label* if_true = NULL;
2931 Label* if_false = NULL;
2932 Label* fall_through = NULL;
2933 context()->PrepareTest(&materialize_true, &materialize_false,
2934 &if_true, &if_false, &fall_through);
2935
2936 __ JumpIfSmi(x0, if_false);
2937 __ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE);
2938 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2939 Split(eq, if_true, if_false, fall_through);
2940
2941 context()->Plug(if_true, if_false);
2942}
2943
2944
2945void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
2946 ZoneList<Expression*>* args = expr->arguments();
2947 DCHECK(args->length() == 1);
2948
2949 VisitForAccumulatorValue(args->at(0));
2950
2951 Label materialize_true, materialize_false;
2952 Label* if_true = NULL;
2953 Label* if_false = NULL;
2954 Label* fall_through = NULL;
2955 context()->PrepareTest(&materialize_true, &materialize_false,
2956 &if_true, &if_false, &fall_through);
2957
2958 __ JumpIfSmi(x0, if_false);
2959 __ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE);
2960 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2961 Split(eq, if_true, if_false, fall_through);
2962
2963 context()->Plug(if_true, if_false);
2964}
2965
2966
2967
2968void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
2969 DCHECK(expr->arguments()->length() == 0);
2970
2971 Label materialize_true, materialize_false;
2972 Label* if_true = NULL;
2973 Label* if_false = NULL;
2974 Label* fall_through = NULL;
2975 context()->PrepareTest(&materialize_true, &materialize_false,
2976 &if_true, &if_false, &fall_through);
2977
2978 // Get the frame pointer for the calling frame.
2979 __ Ldr(x2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
2980
2981 // Skip the arguments adaptor frame if it exists.
2982 Label check_frame_marker;
2983 __ Ldr(x1, MemOperand(x2, StandardFrameConstants::kContextOffset));
2984 __ Cmp(x1, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
2985 __ B(ne, &check_frame_marker);
2986 __ Ldr(x2, MemOperand(x2, StandardFrameConstants::kCallerFPOffset));
2987
2988 // Check the marker in the calling frame.
2989 __ Bind(&check_frame_marker);
2990 __ Ldr(x1, MemOperand(x2, StandardFrameConstants::kMarkerOffset));
2991 __ Cmp(x1, Smi::FromInt(StackFrame::CONSTRUCT));
2992 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2993 Split(eq, if_true, if_false, fall_through);
2994
2995 context()->Plug(if_true, if_false);
2996}
2997
2998
2999void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3000 ZoneList<Expression*>* args = expr->arguments();
3001 DCHECK(args->length() == 2);
3002
3003 // Load the two objects into registers and perform the comparison.
3004 VisitForStackValue(args->at(0));
3005 VisitForAccumulatorValue(args->at(1));
3006
3007 Label materialize_true, materialize_false;
3008 Label* if_true = NULL;
3009 Label* if_false = NULL;
3010 Label* fall_through = NULL;
3011 context()->PrepareTest(&materialize_true, &materialize_false,
3012 &if_true, &if_false, &fall_through);
3013
3014 __ Pop(x1);
3015 __ Cmp(x0, x1);
3016 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3017 Split(eq, if_true, if_false, fall_through);
3018
3019 context()->Plug(if_true, if_false);
3020}
3021
3022
3023void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3024 ZoneList<Expression*>* args = expr->arguments();
3025 DCHECK(args->length() == 1);
3026
3027 // ArgumentsAccessStub expects the key in x1.
3028 VisitForAccumulatorValue(args->at(0));
3029 __ Mov(x1, x0);
3030 __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3031 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3032 __ CallStub(&stub);
3033 context()->Plug(x0);
3034}
3035
3036
3037void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3038 DCHECK(expr->arguments()->length() == 0);
3039 Label exit;
3040 // Get the number of formal parameters.
3041 __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters()));
3042
3043 // Check if the calling frame is an arguments adaptor frame.
3044 __ Ldr(x12, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3045 __ Ldr(x13, MemOperand(x12, StandardFrameConstants::kContextOffset));
3046 __ Cmp(x13, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3047 __ B(ne, &exit);
3048
3049 // Arguments adaptor case: Read the arguments length from the
3050 // adaptor frame.
3051 __ Ldr(x0, MemOperand(x12, ArgumentsAdaptorFrameConstants::kLengthOffset));
3052
3053 __ Bind(&exit);
3054 context()->Plug(x0);
3055}
3056
3057
3058void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3059 ASM_LOCATION("FullCodeGenerator::EmitClassOf");
3060 ZoneList<Expression*>* args = expr->arguments();
3061 DCHECK(args->length() == 1);
3062 Label done, null, function, non_function_constructor;
3063
3064 VisitForAccumulatorValue(args->at(0));
3065
3066 // If the object is a smi, we return null.
3067 __ JumpIfSmi(x0, &null);
3068
3069 // Check that the object is a JS object but take special care of JS
3070 // functions to make sure they have 'Function' as their class.
3071 // Assume that there are only two callable types, and one of them is at
3072 // either end of the type range for JS object types. Saves extra comparisons.
3073 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3074 __ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE);
3075 // x10: object's map.
3076 // x11: object's type.
3077 __ B(lt, &null);
3078 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3079 FIRST_SPEC_OBJECT_TYPE + 1);
3080 __ B(eq, &function);
3081
3082 __ Cmp(x11, LAST_SPEC_OBJECT_TYPE);
3083 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3084 LAST_SPEC_OBJECT_TYPE - 1);
3085 __ B(eq, &function);
3086 // Assume that there is no larger type.
3087 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3088
3089 // Check if the constructor in the map is a JS function.
3090 __ Ldr(x12, FieldMemOperand(x10, Map::kConstructorOffset));
3091 __ JumpIfNotObjectType(x12, x13, x14, JS_FUNCTION_TYPE,
3092 &non_function_constructor);
3093
3094 // x12 now contains the constructor function. Grab the
3095 // instance class name from there.
3096 __ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset));
3097 __ Ldr(x0,
3098 FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset));
3099 __ B(&done);
3100
3101 // Functions have class 'Function'.
3102 __ Bind(&function);
3103 __ LoadRoot(x0, Heap::kFunction_stringRootIndex);
3104 __ B(&done);
3105
3106 // Objects with a non-function constructor have class 'Object'.
3107 __ Bind(&non_function_constructor);
3108 __ LoadRoot(x0, Heap::kObject_stringRootIndex);
3109 __ B(&done);
3110
3111 // Non-JS objects have class null.
3112 __ Bind(&null);
3113 __ LoadRoot(x0, Heap::kNullValueRootIndex);
3114
3115 // All done.
3116 __ Bind(&done);
3117
3118 context()->Plug(x0);
3119}
3120
3121
3122void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3123 // Load the arguments on the stack and call the stub.
3124 SubStringStub stub(isolate());
3125 ZoneList<Expression*>* args = expr->arguments();
3126 DCHECK(args->length() == 3);
3127 VisitForStackValue(args->at(0));
3128 VisitForStackValue(args->at(1));
3129 VisitForStackValue(args->at(2));
3130 __ CallStub(&stub);
3131 context()->Plug(x0);
3132}
3133
3134
3135void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3136 // Load the arguments on the stack and call the stub.
3137 RegExpExecStub stub(isolate());
3138 ZoneList<Expression*>* args = expr->arguments();
3139 DCHECK(args->length() == 4);
3140 VisitForStackValue(args->at(0));
3141 VisitForStackValue(args->at(1));
3142 VisitForStackValue(args->at(2));
3143 VisitForStackValue(args->at(3));
3144 __ CallStub(&stub);
3145 context()->Plug(x0);
3146}
3147
3148
3149void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3150 ASM_LOCATION("FullCodeGenerator::EmitValueOf");
3151 ZoneList<Expression*>* args = expr->arguments();
3152 DCHECK(args->length() == 1);
3153 VisitForAccumulatorValue(args->at(0)); // Load the object.
3154
3155 Label done;
3156 // If the object is a smi return the object.
3157 __ JumpIfSmi(x0, &done);
3158 // If the object is not a value type, return the object.
3159 __ JumpIfNotObjectType(x0, x10, x11, JS_VALUE_TYPE, &done);
3160 __ Ldr(x0, FieldMemOperand(x0, JSValue::kValueOffset));
3161
3162 __ Bind(&done);
3163 context()->Plug(x0);
3164}
3165
3166
3167void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3168 ZoneList<Expression*>* args = expr->arguments();
3169 DCHECK(args->length() == 2);
3170 DCHECK_NE(NULL, args->at(1)->AsLiteral());
3171 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3172
3173 VisitForAccumulatorValue(args->at(0)); // Load the object.
3174
3175 Label runtime, done, not_date_object;
3176 Register object = x0;
3177 Register result = x0;
3178 Register stamp_addr = x10;
3179 Register stamp_cache = x11;
3180
3181 __ JumpIfSmi(object, &not_date_object);
3182 __ JumpIfNotObjectType(object, x10, x10, JS_DATE_TYPE, &not_date_object);
3183
3184 if (index->value() == 0) {
3185 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
3186 __ B(&done);
3187 } else {
3188 if (index->value() < JSDate::kFirstUncachedField) {
3189 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3190 __ Mov(x10, stamp);
3191 __ Ldr(stamp_addr, MemOperand(x10));
3192 __ Ldr(stamp_cache, FieldMemOperand(object, JSDate::kCacheStampOffset));
3193 __ Cmp(stamp_addr, stamp_cache);
3194 __ B(ne, &runtime);
3195 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
3196 kPointerSize * index->value()));
3197 __ B(&done);
3198 }
3199
3200 __ Bind(&runtime);
3201 __ Mov(x1, index);
3202 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3203 __ B(&done);
3204 }
3205
3206 __ Bind(&not_date_object);
3207 __ CallRuntime(Runtime::kThrowNotDateError, 0);
3208 __ Bind(&done);
3209 context()->Plug(x0);
3210}
3211
3212
3213void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3214 ZoneList<Expression*>* args = expr->arguments();
3215 DCHECK_EQ(3, args->length());
3216
3217 Register string = x0;
3218 Register index = x1;
3219 Register value = x2;
3220 Register scratch = x10;
3221
3222 VisitForStackValue(args->at(0)); // index
3223 VisitForStackValue(args->at(1)); // value
3224 VisitForAccumulatorValue(args->at(2)); // string
3225 __ Pop(value, index);
3226
3227 if (FLAG_debug_code) {
3228 __ AssertSmi(value, kNonSmiValue);
3229 __ AssertSmi(index, kNonSmiIndex);
3230 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3231 __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3232 one_byte_seq_type);
3233 }
3234
3235 __ Add(scratch, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3236 __ SmiUntag(value);
3237 __ SmiUntag(index);
3238 __ Strb(value, MemOperand(scratch, index));
3239 context()->Plug(string);
3240}
3241
3242
3243void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3244 ZoneList<Expression*>* args = expr->arguments();
3245 DCHECK_EQ(3, args->length());
3246
3247 Register string = x0;
3248 Register index = x1;
3249 Register value = x2;
3250 Register scratch = x10;
3251
3252 VisitForStackValue(args->at(0)); // index
3253 VisitForStackValue(args->at(1)); // value
3254 VisitForAccumulatorValue(args->at(2)); // string
3255 __ Pop(value, index);
3256
3257 if (FLAG_debug_code) {
3258 __ AssertSmi(value, kNonSmiValue);
3259 __ AssertSmi(index, kNonSmiIndex);
3260 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3261 __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch,
3262 two_byte_seq_type);
3263 }
3264
3265 __ Add(scratch, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
3266 __ SmiUntag(value);
3267 __ SmiUntag(index);
3268 __ Strh(value, MemOperand(scratch, index, LSL, 1));
3269 context()->Plug(string);
3270}
3271
3272
3273void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3274 // Load the arguments on the stack and call the MathPow stub.
3275 ZoneList<Expression*>* args = expr->arguments();
3276 DCHECK(args->length() == 2);
3277 VisitForStackValue(args->at(0));
3278 VisitForStackValue(args->at(1));
3279 MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3280 __ CallStub(&stub);
3281 context()->Plug(x0);
3282}
3283
3284
3285void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3286 ZoneList<Expression*>* args = expr->arguments();
3287 DCHECK(args->length() == 2);
3288 VisitForStackValue(args->at(0)); // Load the object.
3289 VisitForAccumulatorValue(args->at(1)); // Load the value.
3290 __ Pop(x1);
3291 // x0 = value.
3292 // x1 = object.
3293
3294 Label done;
3295 // If the object is a smi, return the value.
3296 __ JumpIfSmi(x1, &done);
3297
3298 // If the object is not a value type, return the value.
3299 __ JumpIfNotObjectType(x1, x10, x11, JS_VALUE_TYPE, &done);
3300
3301 // Store the value.
3302 __ Str(x0, FieldMemOperand(x1, JSValue::kValueOffset));
3303 // Update the write barrier. Save the value as it will be
3304 // overwritten by the write barrier code and is needed afterward.
3305 __ Mov(x10, x0);
3306 __ RecordWriteField(
3307 x1, JSValue::kValueOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
3308
3309 __ Bind(&done);
3310 context()->Plug(x0);
3311}
3312
3313
3314void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3315 ZoneList<Expression*>* args = expr->arguments();
3316 DCHECK_EQ(args->length(), 1);
3317
3318 // Load the argument into x0 and call the stub.
3319 VisitForAccumulatorValue(args->at(0));
3320
3321 NumberToStringStub stub(isolate());
3322 __ CallStub(&stub);
3323 context()->Plug(x0);
3324}
3325
3326
3327void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3328 ZoneList<Expression*>* args = expr->arguments();
3329 DCHECK(args->length() == 1);
3330
3331 VisitForAccumulatorValue(args->at(0));
3332
3333 Label done;
3334 Register code = x0;
3335 Register result = x1;
3336
3337 StringCharFromCodeGenerator generator(code, result);
3338 generator.GenerateFast(masm_);
3339 __ B(&done);
3340
3341 NopRuntimeCallHelper call_helper;
3342 generator.GenerateSlow(masm_, call_helper);
3343
3344 __ Bind(&done);
3345 context()->Plug(result);
3346}
3347
3348
3349void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3350 ZoneList<Expression*>* args = expr->arguments();
3351 DCHECK(args->length() == 2);
3352
3353 VisitForStackValue(args->at(0));
3354 VisitForAccumulatorValue(args->at(1));
3355
3356 Register object = x1;
3357 Register index = x0;
3358 Register result = x3;
3359
3360 __ Pop(object);
3361
3362 Label need_conversion;
3363 Label index_out_of_range;
3364 Label done;
3365 StringCharCodeAtGenerator generator(object,
3366 index,
3367 result,
3368 &need_conversion,
3369 &need_conversion,
3370 &index_out_of_range,
3371 STRING_INDEX_IS_NUMBER);
3372 generator.GenerateFast(masm_);
3373 __ B(&done);
3374
3375 __ Bind(&index_out_of_range);
3376 // When the index is out of range, the spec requires us to return NaN.
3377 __ LoadRoot(result, Heap::kNanValueRootIndex);
3378 __ B(&done);
3379
3380 __ Bind(&need_conversion);
3381 // Load the undefined value into the result register, which will
3382 // trigger conversion.
3383 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3384 __ B(&done);
3385
3386 NopRuntimeCallHelper call_helper;
3387 generator.GenerateSlow(masm_, call_helper);
3388
3389 __ Bind(&done);
3390 context()->Plug(result);
3391}
3392
3393
3394void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3395 ZoneList<Expression*>* args = expr->arguments();
3396 DCHECK(args->length() == 2);
3397
3398 VisitForStackValue(args->at(0));
3399 VisitForAccumulatorValue(args->at(1));
3400
3401 Register object = x1;
3402 Register index = x0;
3403 Register result = x0;
3404
3405 __ Pop(object);
3406
3407 Label need_conversion;
3408 Label index_out_of_range;
3409 Label done;
3410 StringCharAtGenerator generator(object,
3411 index,
3412 x3,
3413 result,
3414 &need_conversion,
3415 &need_conversion,
3416 &index_out_of_range,
3417 STRING_INDEX_IS_NUMBER);
3418 generator.GenerateFast(masm_);
3419 __ B(&done);
3420
3421 __ Bind(&index_out_of_range);
3422 // When the index is out of range, the spec requires us to return
3423 // the empty string.
3424 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3425 __ B(&done);
3426
3427 __ Bind(&need_conversion);
3428 // Move smi zero into the result register, which will trigger conversion.
3429 __ Mov(result, Smi::FromInt(0));
3430 __ B(&done);
3431
3432 NopRuntimeCallHelper call_helper;
3433 generator.GenerateSlow(masm_, call_helper);
3434
3435 __ Bind(&done);
3436 context()->Plug(result);
3437}
3438
3439
3440void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3441 ASM_LOCATION("FullCodeGenerator::EmitStringAdd");
3442 ZoneList<Expression*>* args = expr->arguments();
3443 DCHECK_EQ(2, args->length());
3444
3445 VisitForStackValue(args->at(0));
3446 VisitForAccumulatorValue(args->at(1));
3447
3448 __ Pop(x1);
3449 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3450 __ CallStub(&stub);
3451
3452 context()->Plug(x0);
3453}
3454
3455
3456void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3457 ZoneList<Expression*>* args = expr->arguments();
3458 DCHECK_EQ(2, args->length());
3459 VisitForStackValue(args->at(0));
3460 VisitForStackValue(args->at(1));
3461
3462 StringCompareStub stub(isolate());
3463 __ CallStub(&stub);
3464 context()->Plug(x0);
3465}
3466
3467
3468void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3469 ASM_LOCATION("FullCodeGenerator::EmitCallFunction");
3470 ZoneList<Expression*>* args = expr->arguments();
3471 DCHECK(args->length() >= 2);
3472
3473 int arg_count = args->length() - 2; // 2 ~ receiver and function.
3474 for (int i = 0; i < arg_count + 1; i++) {
3475 VisitForStackValue(args->at(i));
3476 }
3477 VisitForAccumulatorValue(args->last()); // Function.
3478
3479 Label runtime, done;
3480 // Check for non-function argument (including proxy).
3481 __ JumpIfSmi(x0, &runtime);
3482 __ JumpIfNotObjectType(x0, x1, x1, JS_FUNCTION_TYPE, &runtime);
3483
3484 // InvokeFunction requires the function in x1. Move it in there.
3485 __ Mov(x1, x0);
3486 ParameterCount count(arg_count);
3487 __ InvokeFunction(x1, count, CALL_FUNCTION, NullCallWrapper());
3488 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3489 __ B(&done);
3490
3491 __ Bind(&runtime);
3492 __ Push(x0);
3493 __ CallRuntime(Runtime::kCall, args->length());
3494 __ Bind(&done);
3495
3496 context()->Plug(x0);
3497}
3498
3499
3500void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3501 RegExpConstructResultStub stub(isolate());
3502 ZoneList<Expression*>* args = expr->arguments();
3503 DCHECK(args->length() == 3);
3504 VisitForStackValue(args->at(0));
3505 VisitForStackValue(args->at(1));
3506 VisitForAccumulatorValue(args->at(2));
3507 __ Pop(x1, x2);
3508 __ CallStub(&stub);
3509 context()->Plug(x0);
3510}
3511
3512
3513void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3514 ZoneList<Expression*>* args = expr->arguments();
3515 DCHECK_EQ(2, args->length());
3516 DCHECK_NE(NULL, args->at(0)->AsLiteral());
3517 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3518
3519 Handle<FixedArray> jsfunction_result_caches(
3520 isolate()->native_context()->jsfunction_result_caches());
3521 if (jsfunction_result_caches->length() <= cache_id) {
3522 __ Abort(kAttemptToUseUndefinedCache);
3523 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
3524 context()->Plug(x0);
3525 return;
3526 }
3527
3528 VisitForAccumulatorValue(args->at(1));
3529
3530 Register key = x0;
3531 Register cache = x1;
3532 __ Ldr(cache, GlobalObjectMemOperand());
3533 __ Ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
3534 __ Ldr(cache, ContextMemOperand(cache,
3535 Context::JSFUNCTION_RESULT_CACHES_INDEX));
3536 __ Ldr(cache,
3537 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
3538
3539 Label done;
3540 __ Ldrsw(x2, UntagSmiFieldMemOperand(cache,
3541 JSFunctionResultCache::kFingerOffset));
3542 __ Add(x3, cache, FixedArray::kHeaderSize - kHeapObjectTag);
3543 __ Add(x3, x3, Operand(x2, LSL, kPointerSizeLog2));
3544
3545 // Load the key and data from the cache.
3546 __ Ldp(x2, x3, MemOperand(x3));
3547
3548 __ Cmp(key, x2);
3549 __ CmovX(x0, x3, eq);
3550 __ B(eq, &done);
3551
3552 // Call runtime to perform the lookup.
3553 __ Push(cache, key);
3554 __ CallRuntime(Runtime::kGetFromCache, 2);
3555
3556 __ Bind(&done);
3557 context()->Plug(x0);
3558}
3559
3560
3561void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3562 ZoneList<Expression*>* args = expr->arguments();
3563 VisitForAccumulatorValue(args->at(0));
3564
3565 Label materialize_true, materialize_false;
3566 Label* if_true = NULL;
3567 Label* if_false = NULL;
3568 Label* fall_through = NULL;
3569 context()->PrepareTest(&materialize_true, &materialize_false,
3570 &if_true, &if_false, &fall_through);
3571
3572 __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3573 __ Tst(x10, String::kContainsCachedArrayIndexMask);
3574 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3575 Split(eq, if_true, if_false, fall_through);
3576
3577 context()->Plug(if_true, if_false);
3578}
3579
3580
3581void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3582 ZoneList<Expression*>* args = expr->arguments();
3583 DCHECK(args->length() == 1);
3584 VisitForAccumulatorValue(args->at(0));
3585
3586 __ AssertString(x0);
3587
3588 __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset));
3589 __ IndexFromHash(x10, x0);
3590
3591 context()->Plug(x0);
3592}
3593
3594
3595void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3596 ASM_LOCATION("FullCodeGenerator::EmitFastOneByteArrayJoin");
3597
3598 ZoneList<Expression*>* args = expr->arguments();
3599 DCHECK(args->length() == 2);
3600 VisitForStackValue(args->at(1));
3601 VisitForAccumulatorValue(args->at(0));
3602
3603 Register array = x0;
3604 Register result = x0;
3605 Register elements = x1;
3606 Register element = x2;
3607 Register separator = x3;
3608 Register array_length = x4;
3609 Register result_pos = x5;
3610 Register map = x6;
3611 Register string_length = x10;
3612 Register elements_end = x11;
3613 Register string = x12;
3614 Register scratch1 = x13;
3615 Register scratch2 = x14;
3616 Register scratch3 = x7;
3617 Register separator_length = x15;
3618
3619 Label bailout, done, one_char_separator, long_separator,
3620 non_trivial_array, not_size_one_array, loop,
3621 empty_separator_loop, one_char_separator_loop,
3622 one_char_separator_loop_entry, long_separator_loop;
3623
3624 // The separator operand is on the stack.
3625 __ Pop(separator);
3626
3627 // Check that the array is a JSArray.
3628 __ JumpIfSmi(array, &bailout);
3629 __ JumpIfNotObjectType(array, map, scratch1, JS_ARRAY_TYPE, &bailout);
3630
3631 // Check that the array has fast elements.
3632 __ CheckFastElements(map, scratch1, &bailout);
3633
3634 // If the array has length zero, return the empty string.
3635 // Load and untag the length of the array.
3636 // It is an unsigned value, so we can skip sign extension.
3637 // We assume little endianness.
3638 __ Ldrsw(array_length,
3639 UntagSmiFieldMemOperand(array, JSArray::kLengthOffset));
3640 __ Cbnz(array_length, &non_trivial_array);
3641 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3642 __ B(&done);
3643
3644 __ Bind(&non_trivial_array);
3645 // Get the FixedArray containing array's elements.
3646 __ Ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3647
3648 // Check that all array elements are sequential one-byte strings, and
3649 // accumulate the sum of their lengths.
3650 __ Mov(string_length, 0);
3651 __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3652 __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3653 // Loop condition: while (element < elements_end).
3654 // Live values in registers:
3655 // elements: Fixed array of strings.
3656 // array_length: Length of the fixed array of strings (not smi)
3657 // separator: Separator string
3658 // string_length: Accumulated sum of string lengths (not smi).
3659 // element: Current array element.
3660 // elements_end: Array end.
3661 if (FLAG_debug_code) {
3662 __ Cmp(array_length, 0);
3663 __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3664 }
3665 __ Bind(&loop);
3666 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3667 __ JumpIfSmi(string, &bailout);
3668 __ Ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3669 __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3670 __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3671 __ Ldrsw(scratch1,
3672 UntagSmiFieldMemOperand(string, SeqOneByteString::kLengthOffset));
3673 __ Adds(string_length, string_length, scratch1);
3674 __ B(vs, &bailout);
3675 __ Cmp(element, elements_end);
3676 __ B(lt, &loop);
3677
3678 // If array_length is 1, return elements[0], a string.
3679 __ Cmp(array_length, 1);
3680 __ B(ne, &not_size_one_array);
3681 __ Ldr(result, FieldMemOperand(elements, FixedArray::kHeaderSize));
3682 __ B(&done);
3683
3684 __ Bind(&not_size_one_array);
3685
3686 // Live values in registers:
3687 // separator: Separator string
3688 // array_length: Length of the array (not smi).
3689 // string_length: Sum of string lengths (not smi).
3690 // elements: FixedArray of strings.
3691
3692 // Check that the separator is a flat one-byte string.
3693 __ JumpIfSmi(separator, &bailout);
3694 __ Ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3695 __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3696 __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout);
3697
3698 // Add (separator length times array_length) - separator length to the
3699 // string_length to get the length of the result string.
3700 // Load the separator length as untagged.
3701 // We assume little endianness, and that the length is positive.
3702 __ Ldrsw(separator_length,
3703 UntagSmiFieldMemOperand(separator,
3704 SeqOneByteString::kLengthOffset));
3705 __ Sub(string_length, string_length, separator_length);
3706 __ Umaddl(string_length, array_length.W(), separator_length.W(),
3707 string_length);
3708
3709 // Get first element in the array.
3710 __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag);
3711 // Live values in registers:
3712 // element: First array element
3713 // separator: Separator string
3714 // string_length: Length of result string (not smi)
3715 // array_length: Length of the array (not smi).
3716 __ AllocateOneByteString(result, string_length, scratch1, scratch2, scratch3,
3717 &bailout);
3718
3719 // Prepare for looping. Set up elements_end to end of the array. Set
3720 // result_pos to the position of the result where to write the first
3721 // character.
3722 // TODO(all): useless unless AllocateOneByteString trashes the register.
3723 __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3724 __ Add(result_pos, result, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3725
3726 // Check the length of the separator.
3727 __ Cmp(separator_length, 1);
3728 __ B(eq, &one_char_separator);
3729 __ B(gt, &long_separator);
3730
3731 // Empty separator case
3732 __ Bind(&empty_separator_loop);
3733 // Live values in registers:
3734 // result_pos: the position to which we are currently copying characters.
3735 // element: Current array element.
3736 // elements_end: Array end.
3737
3738 // Copy next array element to the result.
3739 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3740 __ Ldrsw(string_length,
3741 UntagSmiFieldMemOperand(string, String::kLengthOffset));
3742 __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3743 __ CopyBytes(result_pos, string, string_length, scratch1);
3744 __ Cmp(element, elements_end);
3745 __ B(lt, &empty_separator_loop); // End while (element < elements_end).
3746 __ B(&done);
3747
3748 // One-character separator case
3749 __ Bind(&one_char_separator);
3750 // Replace separator with its one-byte character value.
3751 __ Ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
3752 // Jump into the loop after the code that copies the separator, so the first
3753 // element is not preceded by a separator
3754 __ B(&one_char_separator_loop_entry);
3755
3756 __ Bind(&one_char_separator_loop);
3757 // Live values in registers:
3758 // result_pos: the position to which we are currently copying characters.
3759 // element: Current array element.
3760 // elements_end: Array end.
3761 // separator: Single separator one-byte char (in lower byte).
3762
3763 // Copy the separator character to the result.
3764 __ Strb(separator, MemOperand(result_pos, 1, PostIndex));
3765
3766 // Copy next array element to the result.
3767 __ Bind(&one_char_separator_loop_entry);
3768 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3769 __ Ldrsw(string_length,
3770 UntagSmiFieldMemOperand(string, String::kLengthOffset));
3771 __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3772 __ CopyBytes(result_pos, string, string_length, scratch1);
3773 __ Cmp(element, elements_end);
3774 __ B(lt, &one_char_separator_loop); // End while (element < elements_end).
3775 __ B(&done);
3776
3777 // Long separator case (separator is more than one character). Entry is at the
3778 // label long_separator below.
3779 __ Bind(&long_separator_loop);
3780 // Live values in registers:
3781 // result_pos: the position to which we are currently copying characters.
3782 // element: Current array element.
3783 // elements_end: Array end.
3784 // separator: Separator string.
3785
3786 // Copy the separator to the result.
3787 // TODO(all): hoist next two instructions.
3788 __ Ldrsw(string_length,
3789 UntagSmiFieldMemOperand(separator, String::kLengthOffset));
3790 __ Add(string, separator, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3791 __ CopyBytes(result_pos, string, string_length, scratch1);
3792
3793 __ Bind(&long_separator);
3794 __ Ldr(string, MemOperand(element, kPointerSize, PostIndex));
3795 __ Ldrsw(string_length,
3796 UntagSmiFieldMemOperand(string, String::kLengthOffset));
3797 __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag);
3798 __ CopyBytes(result_pos, string, string_length, scratch1);
3799 __ Cmp(element, elements_end);
3800 __ B(lt, &long_separator_loop); // End while (element < elements_end).
3801 __ B(&done);
3802
3803 __ Bind(&bailout);
3804 // Returning undefined will force slower code to handle it.
3805 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3806 __ Bind(&done);
3807 context()->Plug(result);
3808}
3809
3810
3811void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
3812 DCHECK(expr->arguments()->length() == 0);
3813 ExternalReference debug_is_active =
3814 ExternalReference::debug_is_active_address(isolate());
3815 __ Mov(x10, debug_is_active);
3816 __ Ldrb(x0, MemOperand(x10));
3817 __ SmiTag(x0);
3818 context()->Plug(x0);
3819}
3820
3821
3822void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
3823 if (expr->function() != NULL &&
3824 expr->function()->intrinsic_type == Runtime::INLINE) {
3825 Comment cmnt(masm_, "[ InlineRuntimeCall");
3826 EmitInlineRuntimeCall(expr);
3827 return;
3828 }
3829
3830 Comment cmnt(masm_, "[ CallRunTime");
3831 ZoneList<Expression*>* args = expr->arguments();
3832 int arg_count = args->length();
3833
3834 if (expr->is_jsruntime()) {
3835 // Push the builtins object as the receiver.
3836 __ Ldr(x10, GlobalObjectMemOperand());
3837 __ Ldr(LoadDescriptor::ReceiverRegister(),
3838 FieldMemOperand(x10, GlobalObject::kBuiltinsOffset));
3839 __ Push(LoadDescriptor::ReceiverRegister());
3840
3841 // Load the function from the receiver.
3842 Handle<String> name = expr->name();
3843 __ Mov(LoadDescriptor::NameRegister(), Operand(name));
3844 if (FLAG_vector_ics) {
3845 __ Mov(VectorLoadICDescriptor::SlotRegister(),
3846 Smi::FromInt(expr->CallRuntimeFeedbackSlot()));
3847 CallLoadIC(NOT_CONTEXTUAL);
3848 } else {
3849 CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
3850 }
3851
3852 // Push the target function under the receiver.
3853 __ Pop(x10);
3854 __ Push(x0, x10);
3855
3856 int arg_count = args->length();
3857 for (int i = 0; i < arg_count; i++) {
3858 VisitForStackValue(args->at(i));
3859 }
3860
3861 // Record source position of the IC call.
3862 SetSourcePosition(expr->position());
3863 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
3864 __ Peek(x1, (arg_count + 1) * kPointerSize);
3865 __ CallStub(&stub);
3866
3867 // Restore context register.
3868 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3869
3870 context()->DropAndPlug(1, x0);
3871 } else {
3872 // Push the arguments ("left-to-right").
3873 for (int i = 0; i < arg_count; i++) {
3874 VisitForStackValue(args->at(i));
3875 }
3876
3877 // Call the C runtime function.
3878 __ CallRuntime(expr->function(), arg_count);
3879 context()->Plug(x0);
3880 }
3881}
3882
3883
3884void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
3885 switch (expr->op()) {
3886 case Token::DELETE: {
3887 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
3888 Property* property = expr->expression()->AsProperty();
3889 VariableProxy* proxy = expr->expression()->AsVariableProxy();
3890
3891 if (property != NULL) {
3892 VisitForStackValue(property->obj());
3893 VisitForStackValue(property->key());
3894 __ Mov(x10, Smi::FromInt(strict_mode()));
3895 __ Push(x10);
3896 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
3897 context()->Plug(x0);
3898 } else if (proxy != NULL) {
3899 Variable* var = proxy->var();
3900 // Delete of an unqualified identifier is disallowed in strict mode
3901 // but "delete this" is allowed.
3902 DCHECK(strict_mode() == SLOPPY || var->is_this());
3903 if (var->IsUnallocated()) {
3904 __ Ldr(x12, GlobalObjectMemOperand());
3905 __ Mov(x11, Operand(var->name()));
3906 __ Mov(x10, Smi::FromInt(SLOPPY));
3907 __ Push(x12, x11, x10);
3908 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
3909 context()->Plug(x0);
3910 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
3911 // Result of deleting non-global, non-dynamic variables is false.
3912 // The subexpression does not have side effects.
3913 context()->Plug(var->is_this());
3914 } else {
3915 // Non-global variable. Call the runtime to try to delete from the
3916 // context where the variable was introduced.
3917 __ Mov(x2, Operand(var->name()));
3918 __ Push(context_register(), x2);
3919 __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
3920 context()->Plug(x0);
3921 }
3922 } else {
3923 // Result of deleting non-property, non-variable reference is true.
3924 // The subexpression may have side effects.
3925 VisitForEffect(expr->expression());
3926 context()->Plug(true);
3927 }
3928 break;
3929 break;
3930 }
3931 case Token::VOID: {
3932 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
3933 VisitForEffect(expr->expression());
3934 context()->Plug(Heap::kUndefinedValueRootIndex);
3935 break;
3936 }
3937 case Token::NOT: {
3938 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
3939 if (context()->IsEffect()) {
3940 // Unary NOT has no side effects so it's only necessary to visit the
3941 // subexpression. Match the optimizing compiler by not branching.
3942 VisitForEffect(expr->expression());
3943 } else if (context()->IsTest()) {
3944 const TestContext* test = TestContext::cast(context());
3945 // The labels are swapped for the recursive call.
3946 VisitForControl(expr->expression(),
3947 test->false_label(),
3948 test->true_label(),
3949 test->fall_through());
3950 context()->Plug(test->true_label(), test->false_label());
3951 } else {
3952 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
3953 // TODO(jbramley): This could be much more efficient using (for
3954 // example) the CSEL instruction.
3955 Label materialize_true, materialize_false, done;
3956 VisitForControl(expr->expression(),
3957 &materialize_false,
3958 &materialize_true,
3959 &materialize_true);
3960
3961 __ Bind(&materialize_true);
3962 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
3963 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
3964 __ B(&done);
3965
3966 __ Bind(&materialize_false);
3967 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
3968 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
3969 __ B(&done);
3970
3971 __ Bind(&done);
3972 if (context()->IsStackValue()) {
3973 __ Push(result_register());
3974 }
3975 }
3976 break;
3977 }
3978 case Token::TYPEOF: {
3979 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
3980 {
3981 StackValueContext context(this);
3982 VisitForTypeofValue(expr->expression());
3983 }
3984 __ CallRuntime(Runtime::kTypeof, 1);
3985 context()->Plug(x0);
3986 break;
3987 }
3988 default:
3989 UNREACHABLE();
3990 }
3991}
3992
3993
3994void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
3995 DCHECK(expr->expression()->IsValidReferenceExpression());
3996
3997 Comment cmnt(masm_, "[ CountOperation");
3998 SetSourcePosition(expr->position());
3999
4000 // Expression can only be a property, a global or a (parameter or local)
4001 // slot.
4002 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
4003 LhsKind assign_type = VARIABLE;
4004 Property* prop = expr->expression()->AsProperty();
4005 // In case of a property we use the uninitialized expression context
4006 // of the key to detect a named property.
4007 if (prop != NULL) {
4008 assign_type =
4009 (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
4010 }
4011
4012 // Evaluate expression and get value.
4013 if (assign_type == VARIABLE) {
4014 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4015 AccumulatorValueContext context(this);
4016 EmitVariableLoad(expr->expression()->AsVariableProxy());
4017 } else {
4018 // Reserve space for result of postfix operation.
4019 if (expr->is_postfix() && !context()->IsEffect()) {
4020 __ Push(xzr);
4021 }
4022 if (assign_type == NAMED_PROPERTY) {
4023 // Put the object both on the stack and in the register.
4024 VisitForStackValue(prop->obj());
4025 __ Peek(LoadDescriptor::ReceiverRegister(), 0);
4026 EmitNamedPropertyLoad(prop);
4027 } else {
4028 // KEYED_PROPERTY
4029 VisitForStackValue(prop->obj());
4030 VisitForStackValue(prop->key());
4031 __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize);
4032 __ Peek(LoadDescriptor::NameRegister(), 0);
4033 EmitKeyedPropertyLoad(prop);
4034 }
4035 }
4036
4037 // We need a second deoptimization point after loading the value
4038 // in case evaluating the property load my have a side effect.
4039 if (assign_type == VARIABLE) {
4040 PrepareForBailout(expr->expression(), TOS_REG);
4041 } else {
4042 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4043 }
4044
4045 // Inline smi case if we are in a loop.
4046 Label stub_call, done;
4047 JumpPatchSite patch_site(masm_);
4048
4049 int count_value = expr->op() == Token::INC ? 1 : -1;
4050 if (ShouldInlineSmiCase(expr->op())) {
4051 Label slow;
4052 patch_site.EmitJumpIfNotSmi(x0, &slow);
4053
4054 // Save result for postfix expressions.
4055 if (expr->is_postfix()) {
4056 if (!context()->IsEffect()) {
4057 // Save the result on the stack. If we have a named or keyed property we
4058 // store the result under the receiver that is currently on top of the
4059 // stack.
4060 switch (assign_type) {
4061 case VARIABLE:
4062 __ Push(x0);
4063 break;
4064 case NAMED_PROPERTY:
4065 __ Poke(x0, kPointerSize);
4066 break;
4067 case KEYED_PROPERTY:
4068 __ Poke(x0, kPointerSize * 2);
4069 break;
4070 }
4071 }
4072 }
4073
4074 __ Adds(x0, x0, Smi::FromInt(count_value));
4075 __ B(vc, &done);
4076 // Call stub. Undo operation first.
4077 __ Sub(x0, x0, Smi::FromInt(count_value));
4078 __ B(&stub_call);
4079 __ Bind(&slow);
4080 }
4081 ToNumberStub convert_stub(isolate());
4082 __ CallStub(&convert_stub);
4083
4084 // Save result for postfix expressions.
4085 if (expr->is_postfix()) {
4086 if (!context()->IsEffect()) {
4087 // Save the result on the stack. If we have a named or keyed property
4088 // we store the result under the receiver that is currently on top
4089 // of the stack.
4090 switch (assign_type) {
4091 case VARIABLE:
4092 __ Push(x0);
4093 break;
4094 case NAMED_PROPERTY:
4095 __ Poke(x0, kXRegSize);
4096 break;
4097 case KEYED_PROPERTY:
4098 __ Poke(x0, 2 * kXRegSize);
4099 break;
4100 }
4101 }
4102 }
4103
4104 __ Bind(&stub_call);
4105 __ Mov(x1, x0);
4106 __ Mov(x0, Smi::FromInt(count_value));
4107
4108 // Record position before stub call.
4109 SetSourcePosition(expr->position());
4110
4111 {
4112 Assembler::BlockPoolsScope scope(masm_);
4113 Handle<Code> code =
4114 CodeFactory::BinaryOpIC(isolate(), Token::ADD, NO_OVERWRITE).code();
4115 CallIC(code, expr->CountBinOpFeedbackId());
4116 patch_site.EmitPatchInfo();
4117 }
4118 __ Bind(&done);
4119
4120 // Store the value returned in x0.
4121 switch (assign_type) {
4122 case VARIABLE:
4123 if (expr->is_postfix()) {
4124 { EffectContext context(this);
4125 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4126 Token::ASSIGN);
4127 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4128 context.Plug(x0);
4129 }
4130 // For all contexts except EffectConstant We have the result on
4131 // top of the stack.
4132 if (!context()->IsEffect()) {
4133 context()->PlugTOS();
4134 }
4135 } else {
4136 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4137 Token::ASSIGN);
4138 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4139 context()->Plug(x0);
4140 }
4141 break;
4142 case NAMED_PROPERTY: {
4143 __ Mov(StoreDescriptor::NameRegister(),
4144 Operand(prop->key()->AsLiteral()->value()));
4145 __ Pop(StoreDescriptor::ReceiverRegister());
4146 CallStoreIC(expr->CountStoreFeedbackId());
4147 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4148 if (expr->is_postfix()) {
4149 if (!context()->IsEffect()) {
4150 context()->PlugTOS();
4151 }
4152 } else {
4153 context()->Plug(x0);
4154 }
4155 break;
4156 }
4157 case KEYED_PROPERTY: {
4158 __ Pop(StoreDescriptor::NameRegister());
4159 __ Pop(StoreDescriptor::ReceiverRegister());
4160 Handle<Code> ic =
4161 CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
4162 CallIC(ic, expr->CountStoreFeedbackId());
4163 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4164 if (expr->is_postfix()) {
4165 if (!context()->IsEffect()) {
4166 context()->PlugTOS();
4167 }
4168 } else {
4169 context()->Plug(x0);
4170 }
4171 break;
4172 }
4173 }
4174}
4175
4176
4177void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4178 DCHECK(!context()->IsEffect());
4179 DCHECK(!context()->IsTest());
4180 VariableProxy* proxy = expr->AsVariableProxy();
4181 if (proxy != NULL && proxy->var()->IsUnallocated()) {
4182 Comment cmnt(masm_, "Global variable");
4183 __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand());
4184 __ Mov(LoadDescriptor::NameRegister(), Operand(proxy->name()));
4185 if (FLAG_vector_ics) {
4186 __ Mov(VectorLoadICDescriptor::SlotRegister(),
4187 Smi::FromInt(proxy->VariableFeedbackSlot()));
4188 }
4189 // Use a regular load, not a contextual load, to avoid a reference
4190 // error.
4191 CallLoadIC(NOT_CONTEXTUAL);
4192 PrepareForBailout(expr, TOS_REG);
4193 context()->Plug(x0);
4194 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4195 Label done, slow;
4196
4197 // Generate code for loading from variables potentially shadowed
4198 // by eval-introduced variables.
4199 EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4200
4201 __ Bind(&slow);
4202 __ Mov(x0, Operand(proxy->name()));
4203 __ Push(cp, x0);
4204 __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4205 PrepareForBailout(expr, TOS_REG);
4206 __ Bind(&done);
4207
4208 context()->Plug(x0);
4209 } else {
4210 // This expression cannot throw a reference error at the top level.
4211 VisitInDuplicateContext(expr);
4212 }
4213}
4214
4215
4216void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4217 Expression* sub_expr,
4218 Handle<String> check) {
4219 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof");
4220 Comment cmnt(masm_, "[ EmitLiteralCompareTypeof");
4221 Label materialize_true, materialize_false;
4222 Label* if_true = NULL;
4223 Label* if_false = NULL;
4224 Label* fall_through = NULL;
4225 context()->PrepareTest(&materialize_true, &materialize_false,
4226 &if_true, &if_false, &fall_through);
4227
4228 { AccumulatorValueContext context(this);
4229 VisitForTypeofValue(sub_expr);
4230 }
4231 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4232
4233 Factory* factory = isolate()->factory();
4234 if (String::Equals(check, factory->number_string())) {
4235 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string");
4236 __ JumpIfSmi(x0, if_true);
4237 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4238 __ CompareRoot(x0, Heap::kHeapNumberMapRootIndex);
4239 Split(eq, if_true, if_false, fall_through);
4240 } else if (String::Equals(check, factory->string_string())) {
4241 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string");
4242 __ JumpIfSmi(x0, if_false);
4243 // Check for undetectable objects => false.
4244 __ JumpIfObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE, if_false, ge);
4245 __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4246 __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_true, if_false,
4247 fall_through);
4248 } else if (String::Equals(check, factory->symbol_string())) {
4249 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string");
4250 __ JumpIfSmi(x0, if_false);
4251 __ CompareObjectType(x0, x0, x1, SYMBOL_TYPE);
4252 Split(eq, if_true, if_false, fall_through);
4253 } else if (String::Equals(check, factory->boolean_string())) {
4254 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string");
4255 __ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true);
4256 __ CompareRoot(x0, Heap::kFalseValueRootIndex);
4257 Split(eq, if_true, if_false, fall_through);
4258 } else if (String::Equals(check, factory->undefined_string())) {
4259 ASM_LOCATION(
4260 "FullCodeGenerator::EmitLiteralCompareTypeof undefined_string");
4261 __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, if_true);
4262 __ JumpIfSmi(x0, if_false);
4263 // Check for undetectable objects => true.
4264 __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset));
4265 __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset));
4266 __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true,
4267 fall_through);
4268 } else if (String::Equals(check, factory->function_string())) {
4269 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string");
4270 __ JumpIfSmi(x0, if_false);
4271 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4272 __ JumpIfObjectType(x0, x10, x11, JS_FUNCTION_TYPE, if_true);
4273 __ CompareAndSplit(x11, JS_FUNCTION_PROXY_TYPE, eq, if_true, if_false,
4274 fall_through);
4275
4276 } else if (String::Equals(check, factory->object_string())) {
4277 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string");
4278 __ JumpIfSmi(x0, if_false);
4279 __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true);
4280 // Check for JS objects => true.
4281 Register map = x10;
4282 __ JumpIfObjectType(x0, map, x11, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE,
4283 if_false, lt);
4284 __ CompareInstanceType(map, x11, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4285 __ B(gt, if_false);
4286 // Check for undetectable objects => false.
4287 __ Ldrb(x10, FieldMemOperand(map, Map::kBitFieldOffset));
4288
4289 __ TestAndSplit(x10, 1 << Map::kIsUndetectable, if_true, if_false,
4290 fall_through);
4291
4292 } else {
4293 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other");
4294 if (if_false != fall_through) __ B(if_false);
4295 }
4296 context()->Plug(if_true, if_false);
4297}
4298
4299
4300void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4301 Comment cmnt(masm_, "[ CompareOperation");
4302 SetSourcePosition(expr->position());
4303
4304 // Try to generate an optimized comparison with a literal value.
4305 // TODO(jbramley): This only checks common values like NaN or undefined.
4306 // Should it also handle ARM64 immediate operands?
4307 if (TryLiteralCompare(expr)) {
4308 return;
4309 }
4310
4311 // Assign labels according to context()->PrepareTest.
4312 Label materialize_true;
4313 Label materialize_false;
4314 Label* if_true = NULL;
4315 Label* if_false = NULL;
4316 Label* fall_through = NULL;
4317 context()->PrepareTest(&materialize_true, &materialize_false,
4318 &if_true, &if_false, &fall_through);
4319
4320 Token::Value op = expr->op();
4321 VisitForStackValue(expr->left());
4322 switch (op) {
4323 case Token::IN:
4324 VisitForStackValue(expr->right());
4325 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4326 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4327 __ CompareRoot(x0, Heap::kTrueValueRootIndex);
4328 Split(eq, if_true, if_false, fall_through);
4329 break;
4330
4331 case Token::INSTANCEOF: {
4332 VisitForStackValue(expr->right());
4333 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4334 __ CallStub(&stub);
4335 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4336 // The stub returns 0 for true.
4337 __ CompareAndSplit(x0, 0, eq, if_true, if_false, fall_through);
4338 break;
4339 }
4340
4341 default: {
4342 VisitForAccumulatorValue(expr->right());
4343 Condition cond = CompareIC::ComputeCondition(op);
4344
4345 // Pop the stack value.
4346 __ Pop(x1);
4347
4348 JumpPatchSite patch_site(masm_);
4349 if (ShouldInlineSmiCase(op)) {
4350 Label slow_case;
4351 patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case);
4352 __ Cmp(x1, x0);
4353 Split(cond, if_true, if_false, NULL);
4354 __ Bind(&slow_case);
4355 }
4356
4357 // Record position and call the compare IC.
4358 SetSourcePosition(expr->position());
4359 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
4360 CallIC(ic, expr->CompareOperationFeedbackId());
4361 patch_site.EmitPatchInfo();
4362 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4363 __ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through);
4364 }
4365 }
4366
4367 // Convert the result of the comparison into one expected for this
4368 // expression's context.
4369 context()->Plug(if_true, if_false);
4370}
4371
4372
4373void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4374 Expression* sub_expr,
4375 NilValue nil) {
4376 ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil");
4377 Label materialize_true, materialize_false;
4378 Label* if_true = NULL;
4379 Label* if_false = NULL;
4380 Label* fall_through = NULL;
4381 context()->PrepareTest(&materialize_true, &materialize_false,
4382 &if_true, &if_false, &fall_through);
4383
4384 VisitForAccumulatorValue(sub_expr);
4385 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4386
4387 if (expr->op() == Token::EQ_STRICT) {
4388 Heap::RootListIndex nil_value = nil == kNullValue ?
4389 Heap::kNullValueRootIndex :
4390 Heap::kUndefinedValueRootIndex;
4391 __ CompareRoot(x0, nil_value);
4392 Split(eq, if_true, if_false, fall_through);
4393 } else {
4394 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4395 CallIC(ic, expr->CompareOperationFeedbackId());
4396 __ CompareAndSplit(x0, 0, ne, if_true, if_false, fall_through);
4397 }
4398
4399 context()->Plug(if_true, if_false);
4400}
4401
4402
4403void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4404 __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4405 context()->Plug(x0);
4406}
4407
4408
4409void FullCodeGenerator::VisitYield(Yield* expr) {
4410 Comment cmnt(masm_, "[ Yield");
4411 // Evaluate yielded value first; the initial iterator definition depends on
4412 // this. It stays on the stack while we update the iterator.
4413 VisitForStackValue(expr->expression());
4414
4415 // TODO(jbramley): Tidy this up once the merge is done, using named registers
4416 // and suchlike. The implementation changes a little by bleeding_edge so I
4417 // don't want to spend too much time on it now.
4418
4419 switch (expr->yield_kind()) {
4420 case Yield::kSuspend:
4421 // Pop value from top-of-stack slot; box result into result register.
4422 EmitCreateIteratorResult(false);
4423 __ Push(result_register());
4424 // Fall through.
4425 case Yield::kInitial: {
4426 Label suspend, continuation, post_runtime, resume;
4427
4428 __ B(&suspend);
4429
4430 // TODO(jbramley): This label is bound here because the following code
4431 // looks at its pos(). Is it possible to do something more efficient here,
4432 // perhaps using Adr?
4433 __ Bind(&continuation);
4434 __ B(&resume);
4435
4436 __ Bind(&suspend);
4437 VisitForAccumulatorValue(expr->generator_object());
4438 DCHECK((continuation.pos() > 0) && Smi::IsValid(continuation.pos()));
4439 __ Mov(x1, Smi::FromInt(continuation.pos()));
4440 __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4441 __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4442 __ Mov(x1, cp);
4443 __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4444 kLRHasBeenSaved, kDontSaveFPRegs);
4445 __ Add(x1, fp, StandardFrameConstants::kExpressionsOffset);
4446 __ Cmp(__ StackPointer(), x1);
4447 __ B(eq, &post_runtime);
4448 __ Push(x0); // generator object
4449 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
4450 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4451 __ Bind(&post_runtime);
4452 __ Pop(result_register());
4453 EmitReturnSequence();
4454
4455 __ Bind(&resume);
4456 context()->Plug(result_register());
4457 break;
4458 }
4459
4460 case Yield::kFinal: {
4461 VisitForAccumulatorValue(expr->generator_object());
4462 __ Mov(x1, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
4463 __ Str(x1, FieldMemOperand(result_register(),
4464 JSGeneratorObject::kContinuationOffset));
4465 // Pop value from top-of-stack slot, box result into result register.
4466 EmitCreateIteratorResult(true);
4467 EmitUnwindBeforeReturn();
4468 EmitReturnSequence();
4469 break;
4470 }
4471
4472 case Yield::kDelegating: {
4473 VisitForStackValue(expr->generator_object());
4474
4475 // Initial stack layout is as follows:
4476 // [sp + 1 * kPointerSize] iter
4477 // [sp + 0 * kPointerSize] g
4478
4479 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
4480 Label l_next, l_call, l_loop;
4481 Register load_receiver = LoadDescriptor::ReceiverRegister();
4482 Register load_name = LoadDescriptor::NameRegister();
4483
4484 // Initial send value is undefined.
4485 __ LoadRoot(x0, Heap::kUndefinedValueRootIndex);
4486 __ B(&l_next);
4487
4488 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
4489 __ Bind(&l_catch);
4490 handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
4491 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
4492 __ Peek(x3, 1 * kPointerSize); // iter
4493 __ Push(load_name, x3, x0); // "throw", iter, except
4494 __ B(&l_call);
4495
4496 // try { received = %yield result }
4497 // Shuffle the received result above a try handler and yield it without
4498 // re-boxing.
4499 __ Bind(&l_try);
4500 __ Pop(x0); // result
4501 __ PushTryHandler(StackHandler::CATCH, expr->index());
4502 const int handler_size = StackHandlerConstants::kSize;
4503 __ Push(x0); // result
4504 __ B(&l_suspend);
4505
4506 // TODO(jbramley): This label is bound here because the following code
4507 // looks at its pos(). Is it possible to do something more efficient here,
4508 // perhaps using Adr?
4509 __ Bind(&l_continuation);
4510 __ B(&l_resume);
4511
4512 __ Bind(&l_suspend);
4513 const int generator_object_depth = kPointerSize + handler_size;
4514 __ Peek(x0, generator_object_depth);
4515 __ Push(x0); // g
4516 DCHECK((l_continuation.pos() > 0) && Smi::IsValid(l_continuation.pos()));
4517 __ Mov(x1, Smi::FromInt(l_continuation.pos()));
4518 __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset));
4519 __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset));
4520 __ Mov(x1, cp);
4521 __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2,
4522 kLRHasBeenSaved, kDontSaveFPRegs);
4523 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
4524 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4525 __ Pop(x0); // result
4526 EmitReturnSequence();
4527 __ Bind(&l_resume); // received in x0
4528 __ PopTryHandler();
4529
4530 // receiver = iter; f = 'next'; arg = received;
4531 __ Bind(&l_next);
4532
4533 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
4534 __ Peek(x3, 1 * kPointerSize); // iter
4535 __ Push(load_name, x3, x0); // "next", iter, received
4536
4537 // result = receiver[f](arg);
4538 __ Bind(&l_call);
4539 __ Peek(load_receiver, 1 * kPointerSize);
4540 __ Peek(load_name, 2 * kPointerSize);
4541 if (FLAG_vector_ics) {
4542 __ Mov(VectorLoadICDescriptor::SlotRegister(),
4543 Smi::FromInt(expr->KeyedLoadFeedbackSlot()));
4544 }
4545 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
4546 CallIC(ic, TypeFeedbackId::None());
4547 __ Mov(x1, x0);
4548 __ Poke(x1, 2 * kPointerSize);
4549 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
4550 __ CallStub(&stub);
4551
4552 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4553 __ Drop(1); // The function is still on the stack; drop it.
4554
4555 // if (!result.done) goto l_try;
4556 __ Bind(&l_loop);
4557 __ Move(load_receiver, x0);
4558
4559 __ Push(load_receiver); // save result
4560 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
4561 if (FLAG_vector_ics) {
4562 __ Mov(VectorLoadICDescriptor::SlotRegister(),
4563 Smi::FromInt(expr->DoneFeedbackSlot()));
4564 }
4565 CallLoadIC(NOT_CONTEXTUAL); // x0=result.done
4566 // The ToBooleanStub argument (result.done) is in x0.
4567 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
4568 CallIC(bool_ic);
4569 __ Cbz(x0, &l_try);
4570
4571 // result.value
4572 __ Pop(load_receiver); // result
4573 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
4574 if (FLAG_vector_ics) {
4575 __ Mov(VectorLoadICDescriptor::SlotRegister(),
4576 Smi::FromInt(expr->ValueFeedbackSlot()));
4577 }
4578 CallLoadIC(NOT_CONTEXTUAL); // x0=result.value
4579 context()->DropAndPlug(2, x0); // drop iter and g
4580 break;
4581 }
4582 }
4583}
4584
4585
4586void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
4587 Expression *value,
4588 JSGeneratorObject::ResumeMode resume_mode) {
4589 ASM_LOCATION("FullCodeGenerator::EmitGeneratorResume");
4590 Register value_reg = x0;
4591 Register generator_object = x1;
4592 Register the_hole = x2;
4593 Register operand_stack_size = w3;
4594 Register function = x4;
4595
4596 // The value stays in x0, and is ultimately read by the resumed generator, as
4597 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
4598 // is read to throw the value when the resumed generator is already closed. r1
4599 // will hold the generator object until the activation has been resumed.
4600 VisitForStackValue(generator);
4601 VisitForAccumulatorValue(value);
4602 __ Pop(generator_object);
4603
4604 // Check generator state.
4605 Label wrong_state, closed_state, done;
4606 __ Ldr(x10, FieldMemOperand(generator_object,
4607 JSGeneratorObject::kContinuationOffset));
4608 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
4609 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
4610 __ CompareAndBranch(x10, Smi::FromInt(0), eq, &closed_state);
4611 __ CompareAndBranch(x10, Smi::FromInt(0), lt, &wrong_state);
4612
4613 // Load suspended function and context.
4614 __ Ldr(cp, FieldMemOperand(generator_object,
4615 JSGeneratorObject::kContextOffset));
4616 __ Ldr(function, FieldMemOperand(generator_object,
4617 JSGeneratorObject::kFunctionOffset));
4618
4619 // Load receiver and store as the first argument.
4620 __ Ldr(x10, FieldMemOperand(generator_object,
4621 JSGeneratorObject::kReceiverOffset));
4622 __ Push(x10);
4623
4624 // Push holes for the rest of the arguments to the generator function.
4625 __ Ldr(x10, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
4626
4627 // The number of arguments is stored as an int32_t, and -1 is a marker
4628 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
4629 // extension to correctly handle it. However, in this case, we operate on
4630 // 32-bit W registers, so extension isn't required.
4631 __ Ldr(w10, FieldMemOperand(x10,
4632 SharedFunctionInfo::kFormalParameterCountOffset));
4633 __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex);
4634 __ PushMultipleTimes(the_hole, w10);
4635
4636 // Enter a new JavaScript frame, and initialize its slots as they were when
4637 // the generator was suspended.
4638 Label resume_frame;
4639 __ Bl(&resume_frame);
4640 __ B(&done);
4641
4642 __ Bind(&resume_frame);
4643 __ Push(lr, // Return address.
4644 fp, // Caller's frame pointer.
4645 cp, // Callee's context.
4646 function); // Callee's JS Function.
4647 __ Add(fp, __ StackPointer(), kPointerSize * 2);
4648
4649 // Load and untag the operand stack size.
4650 __ Ldr(x10, FieldMemOperand(generator_object,
4651 JSGeneratorObject::kOperandStackOffset));
4652 __ Ldr(operand_stack_size,
4653 UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset));
4654
4655 // If we are sending a value and there is no operand stack, we can jump back
4656 // in directly.
4657 if (resume_mode == JSGeneratorObject::NEXT) {
4658 Label slow_resume;
4659 __ Cbnz(operand_stack_size, &slow_resume);
4660 __ Ldr(x10, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
4661 __ Ldrsw(x11,
4662 UntagSmiFieldMemOperand(generator_object,
4663 JSGeneratorObject::kContinuationOffset));
4664 __ Add(x10, x10, x11);
4665 __ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
4666 __ Str(x12, FieldMemOperand(generator_object,
4667 JSGeneratorObject::kContinuationOffset));
4668 __ Br(x10);
4669
4670 __ Bind(&slow_resume);
4671 }
4672
4673 // Otherwise, we push holes for the operand stack and call the runtime to fix
4674 // up the stack and the handlers.
4675 __ PushMultipleTimes(the_hole, operand_stack_size);
4676
4677 __ Mov(x10, Smi::FromInt(resume_mode));
4678 __ Push(generator_object, result_register(), x10);
4679 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
4680 // Not reached: the runtime call returns elsewhere.
4681 __ Unreachable();
4682
4683 // Reach here when generator is closed.
4684 __ Bind(&closed_state);
4685 if (resume_mode == JSGeneratorObject::NEXT) {
4686 // Return completed iterator result when generator is closed.
4687 __ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
4688 __ Push(x10);
4689 // Pop value from top-of-stack slot; box result into result register.
4690 EmitCreateIteratorResult(true);
4691 } else {
4692 // Throw the provided value.
4693 __ Push(value_reg);
4694 __ CallRuntime(Runtime::kThrow, 1);
4695 }
4696 __ B(&done);
4697
4698 // Throw error if we attempt to operate on a running generator.
4699 __ Bind(&wrong_state);
4700 __ Push(generator_object);
4701 __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
4702
4703 __ Bind(&done);
4704 context()->Plug(result_register());
4705}
4706
4707
4708void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
4709 Label gc_required;
4710 Label allocated;
4711
4712 Handle<Map> map(isolate()->native_context()->iterator_result_map());
4713
4714 // Allocate and populate an object with this form: { value: VAL, done: DONE }
4715
4716 Register result = x0;
4717 __ Allocate(map->instance_size(), result, x10, x11, &gc_required, TAG_OBJECT);
4718 __ B(&allocated);
4719
4720 __ Bind(&gc_required);
4721 __ Push(Smi::FromInt(map->instance_size()));
4722 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
4723 __ Ldr(context_register(),
4724 MemOperand(fp, StandardFrameConstants::kContextOffset));
4725
4726 __ Bind(&allocated);
4727 Register map_reg = x1;
4728 Register result_value = x2;
4729 Register boolean_done = x3;
4730 Register empty_fixed_array = x4;
4731 Register untagged_result = x5;
4732 __ Mov(map_reg, Operand(map));
4733 __ Pop(result_value);
4734 __ Mov(boolean_done, Operand(isolate()->factory()->ToBoolean(done)));
4735 __ Mov(empty_fixed_array, Operand(isolate()->factory()->empty_fixed_array()));
4736 DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
4737 STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize ==
4738 JSObject::kElementsOffset);
4739 STATIC_ASSERT(JSGeneratorObject::kResultValuePropertyOffset + kPointerSize ==
4740 JSGeneratorObject::kResultDonePropertyOffset);
4741 __ ObjectUntag(untagged_result, result);
4742 __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset));
4743 __ Stp(empty_fixed_array, empty_fixed_array,
4744 MemOperand(untagged_result, JSObject::kPropertiesOffset));
4745 __ Stp(result_value, boolean_done,
4746 MemOperand(untagged_result,
4747 JSGeneratorObject::kResultValuePropertyOffset));
4748
4749 // Only the value field needs a write barrier, as the other values are in the
4750 // root set.
4751 __ RecordWriteField(result, JSGeneratorObject::kResultValuePropertyOffset,
4752 x10, x11, kLRHasBeenSaved, kDontSaveFPRegs);
4753}
4754
4755
4756// TODO(all): I don't like this method.
4757// It seems to me that in too many places x0 is used in place of this.
4758// Also, this function is not suitable for all places where x0 should be
4759// abstracted (eg. when used as an argument). But some places assume that the
4760// first argument register is x0, and use this function instead.
4761// Considering that most of the register allocation is hard-coded in the
4762// FullCodeGen, that it is unlikely we will need to change it extensively, and
4763// that abstracting the allocation through functions would not yield any
4764// performance benefit, I think the existence of this function is debatable.
4765Register FullCodeGenerator::result_register() {
4766 return x0;
4767}
4768
4769
4770Register FullCodeGenerator::context_register() {
4771 return cp;
4772}
4773
4774
4775void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4776 DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset);
4777 __ Str(value, MemOperand(fp, frame_offset));
4778}
4779
4780
4781void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4782 __ Ldr(dst, ContextMemOperand(cp, context_index));
4783}
4784
4785
4786void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4787 Scope* declaration_scope = scope()->DeclarationScope();
4788 if (declaration_scope->is_global_scope() ||
4789 declaration_scope->is_module_scope()) {
4790 // Contexts nested in the native context have a canonical empty function
4791 // as their closure, not the anonymous closure containing the global
4792 // code. Pass a smi sentinel and let the runtime look up the empty
4793 // function.
4794 DCHECK(kSmiTag == 0);
4795 __ Push(xzr);
4796 } else if (declaration_scope->is_eval_scope()) {
4797 // Contexts created by a call to eval have the same closure as the
4798 // context calling eval, not the anonymous closure containing the eval
4799 // code. Fetch it from the context.
4800 __ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX));
4801 __ Push(x10);
4802 } else {
4803 DCHECK(declaration_scope->is_function_scope());
4804 __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4805 __ Push(x10);
4806 }
4807}
4808
4809
4810void FullCodeGenerator::EnterFinallyBlock() {
4811 ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock");
4812 DCHECK(!result_register().is(x10));
4813 // Preserve the result register while executing finally block.
4814 // Also cook the return address in lr to the stack (smi encoded Code* delta).
4815 __ Sub(x10, lr, Operand(masm_->CodeObject()));
4816 __ SmiTag(x10);
4817 __ Push(result_register(), x10);
4818
4819 // Store pending message while executing finally block.
4820 ExternalReference pending_message_obj =
4821 ExternalReference::address_of_pending_message_obj(isolate());
4822 __ Mov(x10, pending_message_obj);
4823 __ Ldr(x10, MemOperand(x10));
4824
4825 ExternalReference has_pending_message =
4826 ExternalReference::address_of_has_pending_message(isolate());
4827 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
4828 __ Mov(x11, has_pending_message);
4829 __ Ldrb(x11, MemOperand(x11));
4830 __ SmiTag(x11);
4831
4832 __ Push(x10, x11);
4833
4834 ExternalReference pending_message_script =
4835 ExternalReference::address_of_pending_message_script(isolate());
4836 __ Mov(x10, pending_message_script);
4837 __ Ldr(x10, MemOperand(x10));
4838 __ Push(x10);
4839}
4840
4841
4842void FullCodeGenerator::ExitFinallyBlock() {
4843 ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock");
4844 DCHECK(!result_register().is(x10));
4845
4846 // Restore pending message from stack.
4847 __ Pop(x10, x11, x12);
4848 ExternalReference pending_message_script =
4849 ExternalReference::address_of_pending_message_script(isolate());
4850 __ Mov(x13, pending_message_script);
4851 __ Str(x10, MemOperand(x13));
4852
4853 __ SmiUntag(x11);
4854 ExternalReference has_pending_message =
4855 ExternalReference::address_of_has_pending_message(isolate());
4856 __ Mov(x13, has_pending_message);
4857 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
4858 __ Strb(x11, MemOperand(x13));
4859
4860 ExternalReference pending_message_obj =
4861 ExternalReference::address_of_pending_message_obj(isolate());
4862 __ Mov(x13, pending_message_obj);
4863 __ Str(x12, MemOperand(x13));
4864
4865 // Restore result register and cooked return address from the stack.
4866 __ Pop(x10, result_register());
4867
4868 // Uncook the return address (see EnterFinallyBlock).
4869 __ SmiUntag(x10);
4870 __ Add(x11, x10, Operand(masm_->CodeObject()));
4871 __ Br(x11);
4872}
4873
4874
4875#undef __
4876
4877
4878void BackEdgeTable::PatchAt(Code* unoptimized_code,
4879 Address pc,
4880 BackEdgeState target_state,
4881 Code* replacement_code) {
4882 // Turn the jump into a nop.
4883 Address branch_address = pc - 3 * kInstructionSize;
4884 PatchingAssembler patcher(branch_address, 1);
4885
4886 DCHECK(Instruction::Cast(branch_address)
4887 ->IsNop(Assembler::INTERRUPT_CODE_NOP) ||
4888 (Instruction::Cast(branch_address)->IsCondBranchImm() &&
4889 Instruction::Cast(branch_address)->ImmPCOffset() ==
4890 6 * kInstructionSize));
4891
4892 switch (target_state) {
4893 case INTERRUPT:
4894 // <decrement profiling counter>
4895 // .. .. .. .. b.pl ok
4896 // .. .. .. .. ldr x16, pc+<interrupt stub address>
4897 // .. .. .. .. blr x16
4898 // ... more instructions.
4899 // ok-label
4900 // Jump offset is 6 instructions.
4901 patcher.b(6, pl);
4902 break;
4903 case ON_STACK_REPLACEMENT:
4904 case OSR_AFTER_STACK_CHECK:
4905 // <decrement profiling counter>
4906 // .. .. .. .. mov x0, x0 (NOP)
4907 // .. .. .. .. ldr x16, pc+<on-stack replacement address>
4908 // .. .. .. .. blr x16
4909 patcher.nop(Assembler::INTERRUPT_CODE_NOP);
4910 break;
4911 }
4912
4913 // Replace the call address.
4914 Instruction* load = Instruction::Cast(pc)->preceding(2);
4915 Address interrupt_address_pointer =
4916 reinterpret_cast<Address>(load) + load->ImmPCOffset();
4917 DCHECK((Memory::uint64_at(interrupt_address_pointer) ==
4918 reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4919 ->builtins()
4920 ->OnStackReplacement()
4921 ->entry())) ||
4922 (Memory::uint64_at(interrupt_address_pointer) ==
4923 reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4924 ->builtins()
4925 ->InterruptCheck()
4926 ->entry())) ||
4927 (Memory::uint64_at(interrupt_address_pointer) ==
4928 reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4929 ->builtins()
4930 ->OsrAfterStackCheck()
4931 ->entry())) ||
4932 (Memory::uint64_at(interrupt_address_pointer) ==
4933 reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate()
4934 ->builtins()
4935 ->OnStackReplacement()
4936 ->entry())));
4937 Memory::uint64_at(interrupt_address_pointer) =
4938 reinterpret_cast<uint64_t>(replacement_code->entry());
4939
4940 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4941 unoptimized_code, reinterpret_cast<Address>(load), replacement_code);
4942}
4943
4944
4945BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4946 Isolate* isolate,
4947 Code* unoptimized_code,
4948 Address pc) {
4949 // TODO(jbramley): There should be some extra assertions here (as in the ARM
4950 // back-end), but this function is gone in bleeding_edge so it might not
4951 // matter anyway.
4952 Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3);
4953
4954 if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) {
4955 Instruction* load = Instruction::Cast(pc)->preceding(2);
4956 uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) +
4957 load->ImmPCOffset());
4958 if (entry == reinterpret_cast<uint64_t>(
4959 isolate->builtins()->OnStackReplacement()->entry())) {
4960 return ON_STACK_REPLACEMENT;
4961 } else if (entry == reinterpret_cast<uint64_t>(
4962 isolate->builtins()->OsrAfterStackCheck()->entry())) {
4963 return OSR_AFTER_STACK_CHECK;
4964 } else {
4965 UNREACHABLE();
4966 }
4967 }
4968
4969 return INTERRUPT;
4970}
4971
4972
4973#define __ ACCESS_MASM(masm())
4974
4975
4976FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4977 int* stack_depth,
4978 int* context_length) {
4979 ASM_LOCATION("FullCodeGenerator::TryFinally::Exit");
4980 // The macros used here must preserve the result register.
4981
4982 // Because the handler block contains the context of the finally
4983 // code, we can restore it directly from there for the finally code
4984 // rather than iteratively unwinding contexts via their previous
4985 // links.
4986 __ Drop(*stack_depth); // Down to the handler block.
4987 if (*context_length > 0) {
4988 // Restore the context to its dedicated register and the stack.
4989 __ Peek(cp, StackHandlerConstants::kContextOffset);
4990 __ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4991 }
4992 __ PopTryHandler();
4993 __ Bl(finally_entry_);
4994
4995 *stack_depth = 0;
4996 *context_length = 0;
4997 return previous_;
4998}
4999
5000
5001#undef __
5002
5003
5004} } // namespace v8::internal
5005
5006#endif // V8_TARGET_ARCH_ARM64