blob: f670403ab8112fe9b274c6c6386e03daa62796f0 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM64
8
9#include "src/base/bits.h"
10#include "src/base/division-by-constant.h"
11#include "src/bootstrapper.h"
12#include "src/codegen.h"
13#include "src/cpu-profiler.h"
14#include "src/debug.h"
15#include "src/isolate-inl.h"
16#include "src/runtime.h"
17
18namespace v8 {
19namespace internal {
20
21// Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
22#define __
23
24
25MacroAssembler::MacroAssembler(Isolate* arg_isolate,
26 byte * buffer,
27 unsigned buffer_size)
28 : Assembler(arg_isolate, buffer, buffer_size),
29 generating_stub_(false),
30#if DEBUG
31 allow_macro_instructions_(true),
32#endif
33 has_frame_(false),
34 use_real_aborts_(true),
35 sp_(jssp),
36 tmp_list_(DefaultTmpList()),
37 fptmp_list_(DefaultFPTmpList()) {
38 if (isolate() != NULL) {
39 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
40 isolate());
41 }
42}
43
44
45CPURegList MacroAssembler::DefaultTmpList() {
46 return CPURegList(ip0, ip1);
47}
48
49
50CPURegList MacroAssembler::DefaultFPTmpList() {
51 return CPURegList(fp_scratch1, fp_scratch2);
52}
53
54
55void MacroAssembler::LogicalMacro(const Register& rd,
56 const Register& rn,
57 const Operand& operand,
58 LogicalOp op) {
59 UseScratchRegisterScope temps(this);
60
61 if (operand.NeedsRelocation(this)) {
62 Register temp = temps.AcquireX();
63 Ldr(temp, operand.immediate());
64 Logical(rd, rn, temp, op);
65
66 } else if (operand.IsImmediate()) {
67 int64_t immediate = operand.ImmediateValue();
68 unsigned reg_size = rd.SizeInBits();
69
70 // If the operation is NOT, invert the operation and immediate.
71 if ((op & NOT) == NOT) {
72 op = static_cast<LogicalOp>(op & ~NOT);
73 immediate = ~immediate;
74 }
75
76 // Ignore the top 32 bits of an immediate if we're moving to a W register.
77 if (rd.Is32Bits()) {
78 // Check that the top 32 bits are consistent.
79 DCHECK(((immediate >> kWRegSizeInBits) == 0) ||
80 ((immediate >> kWRegSizeInBits) == -1));
81 immediate &= kWRegMask;
82 }
83
84 DCHECK(rd.Is64Bits() || is_uint32(immediate));
85
86 // Special cases for all set or all clear immediates.
87 if (immediate == 0) {
88 switch (op) {
89 case AND:
90 Mov(rd, 0);
91 return;
92 case ORR: // Fall through.
93 case EOR:
94 Mov(rd, rn);
95 return;
96 case ANDS: // Fall through.
97 case BICS:
98 break;
99 default:
100 UNREACHABLE();
101 }
102 } else if ((rd.Is64Bits() && (immediate == -1L)) ||
103 (rd.Is32Bits() && (immediate == 0xffffffffL))) {
104 switch (op) {
105 case AND:
106 Mov(rd, rn);
107 return;
108 case ORR:
109 Mov(rd, immediate);
110 return;
111 case EOR:
112 Mvn(rd, rn);
113 return;
114 case ANDS: // Fall through.
115 case BICS:
116 break;
117 default:
118 UNREACHABLE();
119 }
120 }
121
122 unsigned n, imm_s, imm_r;
123 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
124 // Immediate can be encoded in the instruction.
125 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
126 } else {
127 // Immediate can't be encoded: synthesize using move immediate.
128 Register temp = temps.AcquireSameSizeAs(rn);
129 Operand imm_operand = MoveImmediateForShiftedOp(temp, immediate);
130 if (rd.Is(csp)) {
131 // If rd is the stack pointer we cannot use it as the destination
132 // register so we use the temp register as an intermediate again.
133 Logical(temp, rn, imm_operand, op);
134 Mov(csp, temp);
135 AssertStackConsistency();
136 } else {
137 Logical(rd, rn, imm_operand, op);
138 }
139 }
140
141 } else if (operand.IsExtendedRegister()) {
142 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
143 // Add/sub extended supports shift <= 4. We want to support exactly the
144 // same modes here.
145 DCHECK(operand.shift_amount() <= 4);
146 DCHECK(operand.reg().Is64Bits() ||
147 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
148 Register temp = temps.AcquireSameSizeAs(rn);
149 EmitExtendShift(temp, operand.reg(), operand.extend(),
150 operand.shift_amount());
151 Logical(rd, rn, temp, op);
152
153 } else {
154 // The operand can be encoded in the instruction.
155 DCHECK(operand.IsShiftedRegister());
156 Logical(rd, rn, operand, op);
157 }
158}
159
160
161void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
162 DCHECK(allow_macro_instructions_);
163 DCHECK(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
164 DCHECK(!rd.IsZero());
165
166 // TODO(all) extend to support more immediates.
167 //
168 // Immediates on Aarch64 can be produced using an initial value, and zero to
169 // three move keep operations.
170 //
171 // Initial values can be generated with:
172 // 1. 64-bit move zero (movz).
173 // 2. 32-bit move inverted (movn).
174 // 3. 64-bit move inverted.
175 // 4. 32-bit orr immediate.
176 // 5. 64-bit orr immediate.
177 // Move-keep may then be used to modify each of the 16-bit half-words.
178 //
179 // The code below supports all five initial value generators, and
180 // applying move-keep operations to move-zero and move-inverted initial
181 // values.
182
183 // Try to move the immediate in one instruction, and if that fails, switch to
184 // using multiple instructions.
185 if (!TryOneInstrMoveImmediate(rd, imm)) {
186 unsigned reg_size = rd.SizeInBits();
187
188 // Generic immediate case. Imm will be represented by
189 // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
190 // A move-zero or move-inverted is generated for the first non-zero or
191 // non-0xffff immX, and a move-keep for subsequent non-zero immX.
192
193 uint64_t ignored_halfword = 0;
194 bool invert_move = false;
195 // If the number of 0xffff halfwords is greater than the number of 0x0000
196 // halfwords, it's more efficient to use move-inverted.
197 if (CountClearHalfWords(~imm, reg_size) >
198 CountClearHalfWords(imm, reg_size)) {
199 ignored_halfword = 0xffffL;
200 invert_move = true;
201 }
202
203 // Mov instructions can't move immediate values into the stack pointer, so
204 // set up a temporary register, if needed.
205 UseScratchRegisterScope temps(this);
206 Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
207
208 // Iterate through the halfwords. Use movn/movz for the first non-ignored
209 // halfword, and movk for subsequent halfwords.
210 DCHECK((reg_size % 16) == 0);
211 bool first_mov_done = false;
212 for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
213 uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
214 if (imm16 != ignored_halfword) {
215 if (!first_mov_done) {
216 if (invert_move) {
217 movn(temp, (~imm16) & 0xffffL, 16 * i);
218 } else {
219 movz(temp, imm16, 16 * i);
220 }
221 first_mov_done = true;
222 } else {
223 // Construct a wider constant.
224 movk(temp, imm16, 16 * i);
225 }
226 }
227 }
228 DCHECK(first_mov_done);
229
230 // Move the temporary if the original destination register was the stack
231 // pointer.
232 if (rd.IsSP()) {
233 mov(rd, temp);
234 AssertStackConsistency();
235 }
236 }
237}
238
239
240void MacroAssembler::Mov(const Register& rd,
241 const Operand& operand,
242 DiscardMoveMode discard_mode) {
243 DCHECK(allow_macro_instructions_);
244 DCHECK(!rd.IsZero());
245
246 // Provide a swap register for instructions that need to write into the
247 // system stack pointer (and can't do this inherently).
248 UseScratchRegisterScope temps(this);
249 Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
250
251 if (operand.NeedsRelocation(this)) {
252 Ldr(dst, operand.immediate());
253
254 } else if (operand.IsImmediate()) {
255 // Call the macro assembler for generic immediates.
256 Mov(dst, operand.ImmediateValue());
257
258 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
259 // Emit a shift instruction if moving a shifted register. This operation
260 // could also be achieved using an orr instruction (like orn used by Mvn),
261 // but using a shift instruction makes the disassembly clearer.
262 EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
263
264 } else if (operand.IsExtendedRegister()) {
265 // Emit an extend instruction if moving an extended register. This handles
266 // extend with post-shift operations, too.
267 EmitExtendShift(dst, operand.reg(), operand.extend(),
268 operand.shift_amount());
269
270 } else {
271 // Otherwise, emit a register move only if the registers are distinct, or
272 // if they are not X registers.
273 //
274 // Note that mov(w0, w0) is not a no-op because it clears the top word of
275 // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
276 // registers is not required to clear the top word of the X register. In
277 // this case, the instruction is discarded.
278 //
279 // If csp is an operand, add #0 is emitted, otherwise, orr #0.
280 if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
281 (discard_mode == kDontDiscardForSameWReg))) {
282 Assembler::mov(rd, operand.reg());
283 }
284 // This case can handle writes into the system stack pointer directly.
285 dst = rd;
286 }
287
288 // Copy the result to the system stack pointer.
289 if (!dst.Is(rd)) {
290 DCHECK(rd.IsSP());
291 Assembler::mov(rd, dst);
292 }
293}
294
295
296void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
297 DCHECK(allow_macro_instructions_);
298
299 if (operand.NeedsRelocation(this)) {
300 Ldr(rd, operand.immediate());
301 mvn(rd, rd);
302
303 } else if (operand.IsImmediate()) {
304 // Call the macro assembler for generic immediates.
305 Mov(rd, ~operand.ImmediateValue());
306
307 } else if (operand.IsExtendedRegister()) {
308 // Emit two instructions for the extend case. This differs from Mov, as
309 // the extend and invert can't be achieved in one instruction.
310 EmitExtendShift(rd, operand.reg(), operand.extend(),
311 operand.shift_amount());
312 mvn(rd, rd);
313
314 } else {
315 mvn(rd, operand);
316 }
317}
318
319
320unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
321 DCHECK((reg_size % 8) == 0);
322 int count = 0;
323 for (unsigned i = 0; i < (reg_size / 16); i++) {
324 if ((imm & 0xffff) == 0) {
325 count++;
326 }
327 imm >>= 16;
328 }
329 return count;
330}
331
332
333// The movz instruction can generate immediates containing an arbitrary 16-bit
334// half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
335bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
336 DCHECK((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
337 return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
338}
339
340
341// The movn instruction can generate immediates containing an arbitrary 16-bit
342// half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
343bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
344 return IsImmMovz(~imm, reg_size);
345}
346
347
348void MacroAssembler::ConditionalCompareMacro(const Register& rn,
349 const Operand& operand,
350 StatusFlags nzcv,
351 Condition cond,
352 ConditionalCompareOp op) {
353 DCHECK((cond != al) && (cond != nv));
354 if (operand.NeedsRelocation(this)) {
355 UseScratchRegisterScope temps(this);
356 Register temp = temps.AcquireX();
357 Ldr(temp, operand.immediate());
358 ConditionalCompareMacro(rn, temp, nzcv, cond, op);
359
360 } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
361 (operand.IsImmediate() &&
362 IsImmConditionalCompare(operand.ImmediateValue()))) {
363 // The immediate can be encoded in the instruction, or the operand is an
364 // unshifted register: call the assembler.
365 ConditionalCompare(rn, operand, nzcv, cond, op);
366
367 } else {
368 // The operand isn't directly supported by the instruction: perform the
369 // operation on a temporary register.
370 UseScratchRegisterScope temps(this);
371 Register temp = temps.AcquireSameSizeAs(rn);
372 Mov(temp, operand);
373 ConditionalCompare(rn, temp, nzcv, cond, op);
374 }
375}
376
377
378void MacroAssembler::Csel(const Register& rd,
379 const Register& rn,
380 const Operand& operand,
381 Condition cond) {
382 DCHECK(allow_macro_instructions_);
383 DCHECK(!rd.IsZero());
384 DCHECK((cond != al) && (cond != nv));
385 if (operand.IsImmediate()) {
386 // Immediate argument. Handle special cases of 0, 1 and -1 using zero
387 // register.
388 int64_t imm = operand.ImmediateValue();
389 Register zr = AppropriateZeroRegFor(rn);
390 if (imm == 0) {
391 csel(rd, rn, zr, cond);
392 } else if (imm == 1) {
393 csinc(rd, rn, zr, cond);
394 } else if (imm == -1) {
395 csinv(rd, rn, zr, cond);
396 } else {
397 UseScratchRegisterScope temps(this);
398 Register temp = temps.AcquireSameSizeAs(rn);
399 Mov(temp, imm);
400 csel(rd, rn, temp, cond);
401 }
402 } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
403 // Unshifted register argument.
404 csel(rd, rn, operand.reg(), cond);
405 } else {
406 // All other arguments.
407 UseScratchRegisterScope temps(this);
408 Register temp = temps.AcquireSameSizeAs(rn);
409 Mov(temp, operand);
410 csel(rd, rn, temp, cond);
411 }
412}
413
414
415bool MacroAssembler::TryOneInstrMoveImmediate(const Register& dst,
416 int64_t imm) {
417 unsigned n, imm_s, imm_r;
418 int reg_size = dst.SizeInBits();
419 if (IsImmMovz(imm, reg_size) && !dst.IsSP()) {
420 // Immediate can be represented in a move zero instruction. Movz can't write
421 // to the stack pointer.
422 movz(dst, imm);
423 return true;
424 } else if (IsImmMovn(imm, reg_size) && !dst.IsSP()) {
425 // Immediate can be represented in a move not instruction. Movn can't write
426 // to the stack pointer.
427 movn(dst, dst.Is64Bits() ? ~imm : (~imm & kWRegMask));
428 return true;
429 } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
430 // Immediate can be represented in a logical orr instruction.
431 LogicalImmediate(dst, AppropriateZeroRegFor(dst), n, imm_s, imm_r, ORR);
432 return true;
433 }
434 return false;
435}
436
437
438Operand MacroAssembler::MoveImmediateForShiftedOp(const Register& dst,
439 int64_t imm) {
440 int reg_size = dst.SizeInBits();
441
442 // Encode the immediate in a single move instruction, if possible.
443 if (TryOneInstrMoveImmediate(dst, imm)) {
444 // The move was successful; nothing to do here.
445 } else {
446 // Pre-shift the immediate to the least-significant bits of the register.
447 int shift_low = CountTrailingZeros(imm, reg_size);
448 int64_t imm_low = imm >> shift_low;
449
450 // Pre-shift the immediate to the most-significant bits of the register. We
451 // insert set bits in the least-significant bits, as this creates a
452 // different immediate that may be encodable using movn or orr-immediate.
453 // If this new immediate is encodable, the set bits will be eliminated by
454 // the post shift on the following instruction.
455 int shift_high = CountLeadingZeros(imm, reg_size);
456 int64_t imm_high = (imm << shift_high) | ((1 << shift_high) - 1);
457
458 if (TryOneInstrMoveImmediate(dst, imm_low)) {
459 // The new immediate has been moved into the destination's low bits:
460 // return a new leftward-shifting operand.
461 return Operand(dst, LSL, shift_low);
462 } else if (TryOneInstrMoveImmediate(dst, imm_high)) {
463 // The new immediate has been moved into the destination's high bits:
464 // return a new rightward-shifting operand.
465 return Operand(dst, LSR, shift_high);
466 } else {
467 // Use the generic move operation to set up the immediate.
468 Mov(dst, imm);
469 }
470 }
471 return Operand(dst);
472}
473
474
475void MacroAssembler::AddSubMacro(const Register& rd,
476 const Register& rn,
477 const Operand& operand,
478 FlagsUpdate S,
479 AddSubOp op) {
480 if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
481 !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
482 // The instruction would be a nop. Avoid generating useless code.
483 return;
484 }
485
486 if (operand.NeedsRelocation(this)) {
487 UseScratchRegisterScope temps(this);
488 Register temp = temps.AcquireX();
489 Ldr(temp, operand.immediate());
490 AddSubMacro(rd, rn, temp, S, op);
491 } else if ((operand.IsImmediate() &&
492 !IsImmAddSub(operand.ImmediateValue())) ||
493 (rn.IsZero() && !operand.IsShiftedRegister()) ||
494 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
495 UseScratchRegisterScope temps(this);
496 Register temp = temps.AcquireSameSizeAs(rn);
497 if (operand.IsImmediate()) {
498 Operand imm_operand =
499 MoveImmediateForShiftedOp(temp, operand.ImmediateValue());
500 AddSub(rd, rn, imm_operand, S, op);
501 } else {
502 Mov(temp, operand);
503 AddSub(rd, rn, temp, S, op);
504 }
505 } else {
506 AddSub(rd, rn, operand, S, op);
507 }
508}
509
510
511void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
512 const Register& rn,
513 const Operand& operand,
514 FlagsUpdate S,
515 AddSubWithCarryOp op) {
516 DCHECK(rd.SizeInBits() == rn.SizeInBits());
517 UseScratchRegisterScope temps(this);
518
519 if (operand.NeedsRelocation(this)) {
520 Register temp = temps.AcquireX();
521 Ldr(temp, operand.immediate());
522 AddSubWithCarryMacro(rd, rn, temp, S, op);
523
524 } else if (operand.IsImmediate() ||
525 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
526 // Add/sub with carry (immediate or ROR shifted register.)
527 Register temp = temps.AcquireSameSizeAs(rn);
528 Mov(temp, operand);
529 AddSubWithCarry(rd, rn, temp, S, op);
530
531 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
532 // Add/sub with carry (shifted register).
533 DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
534 DCHECK(operand.shift() != ROR);
535 DCHECK(is_uintn(operand.shift_amount(),
536 rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
537 : kWRegSizeInBitsLog2));
538 Register temp = temps.AcquireSameSizeAs(rn);
539 EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
540 AddSubWithCarry(rd, rn, temp, S, op);
541
542 } else if (operand.IsExtendedRegister()) {
543 // Add/sub with carry (extended register).
544 DCHECK(operand.reg().SizeInBits() <= rd.SizeInBits());
545 // Add/sub extended supports a shift <= 4. We want to support exactly the
546 // same modes.
547 DCHECK(operand.shift_amount() <= 4);
548 DCHECK(operand.reg().Is64Bits() ||
549 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
550 Register temp = temps.AcquireSameSizeAs(rn);
551 EmitExtendShift(temp, operand.reg(), operand.extend(),
552 operand.shift_amount());
553 AddSubWithCarry(rd, rn, temp, S, op);
554
555 } else {
556 // The addressing mode is directly supported by the instruction.
557 AddSubWithCarry(rd, rn, operand, S, op);
558 }
559}
560
561
562void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
563 const MemOperand& addr,
564 LoadStoreOp op) {
565 int64_t offset = addr.offset();
566 LSDataSize size = CalcLSDataSize(op);
567
568 // Check if an immediate offset fits in the immediate field of the
569 // appropriate instruction. If not, emit two instructions to perform
570 // the operation.
571 if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
572 !IsImmLSUnscaled(offset)) {
573 // Immediate offset that can't be encoded using unsigned or unscaled
574 // addressing modes.
575 UseScratchRegisterScope temps(this);
576 Register temp = temps.AcquireSameSizeAs(addr.base());
577 Mov(temp, addr.offset());
578 LoadStore(rt, MemOperand(addr.base(), temp), op);
579 } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
580 // Post-index beyond unscaled addressing range.
581 LoadStore(rt, MemOperand(addr.base()), op);
582 add(addr.base(), addr.base(), offset);
583 } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
584 // Pre-index beyond unscaled addressing range.
585 add(addr.base(), addr.base(), offset);
586 LoadStore(rt, MemOperand(addr.base()), op);
587 } else {
588 // Encodable in one load/store instruction.
589 LoadStore(rt, addr, op);
590 }
591}
592
593void MacroAssembler::LoadStorePairMacro(const CPURegister& rt,
594 const CPURegister& rt2,
595 const MemOperand& addr,
596 LoadStorePairOp op) {
597 // TODO(all): Should we support register offset for load-store-pair?
598 DCHECK(!addr.IsRegisterOffset());
599
600 int64_t offset = addr.offset();
601 LSDataSize size = CalcLSPairDataSize(op);
602
603 // Check if the offset fits in the immediate field of the appropriate
604 // instruction. If not, emit two instructions to perform the operation.
605 if (IsImmLSPair(offset, size)) {
606 // Encodable in one load/store pair instruction.
607 LoadStorePair(rt, rt2, addr, op);
608 } else {
609 Register base = addr.base();
610 if (addr.IsImmediateOffset()) {
611 UseScratchRegisterScope temps(this);
612 Register temp = temps.AcquireSameSizeAs(base);
613 Add(temp, base, offset);
614 LoadStorePair(rt, rt2, MemOperand(temp), op);
615 } else if (addr.IsPostIndex()) {
616 LoadStorePair(rt, rt2, MemOperand(base), op);
617 Add(base, base, offset);
618 } else {
619 DCHECK(addr.IsPreIndex());
620 Add(base, base, offset);
621 LoadStorePair(rt, rt2, MemOperand(base), op);
622 }
623 }
624}
625
626
627void MacroAssembler::Load(const Register& rt,
628 const MemOperand& addr,
629 Representation r) {
630 DCHECK(!r.IsDouble());
631
632 if (r.IsInteger8()) {
633 Ldrsb(rt, addr);
634 } else if (r.IsUInteger8()) {
635 Ldrb(rt, addr);
636 } else if (r.IsInteger16()) {
637 Ldrsh(rt, addr);
638 } else if (r.IsUInteger16()) {
639 Ldrh(rt, addr);
640 } else if (r.IsInteger32()) {
641 Ldr(rt.W(), addr);
642 } else {
643 DCHECK(rt.Is64Bits());
644 Ldr(rt, addr);
645 }
646}
647
648
649void MacroAssembler::Store(const Register& rt,
650 const MemOperand& addr,
651 Representation r) {
652 DCHECK(!r.IsDouble());
653
654 if (r.IsInteger8() || r.IsUInteger8()) {
655 Strb(rt, addr);
656 } else if (r.IsInteger16() || r.IsUInteger16()) {
657 Strh(rt, addr);
658 } else if (r.IsInteger32()) {
659 Str(rt.W(), addr);
660 } else {
661 DCHECK(rt.Is64Bits());
662 if (r.IsHeapObject()) {
663 AssertNotSmi(rt);
664 } else if (r.IsSmi()) {
665 AssertSmi(rt);
666 }
667 Str(rt, addr);
668 }
669}
670
671
672bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
673 Label *label, ImmBranchType b_type) {
674 bool need_longer_range = false;
675 // There are two situations in which we care about the offset being out of
676 // range:
677 // - The label is bound but too far away.
678 // - The label is not bound but linked, and the previous branch
679 // instruction in the chain is too far away.
680 if (label->is_bound() || label->is_linked()) {
681 need_longer_range =
682 !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
683 }
684 if (!need_longer_range && !label->is_bound()) {
685 int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
686 unresolved_branches_.insert(
687 std::pair<int, FarBranchInfo>(max_reachable_pc,
688 FarBranchInfo(pc_offset(), label)));
689 // Also maintain the next pool check.
690 next_veneer_pool_check_ =
691 Min(next_veneer_pool_check_,
692 max_reachable_pc - kVeneerDistanceCheckMargin);
693 }
694 return need_longer_range;
695}
696
697
698void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
699 DCHECK(allow_macro_instructions_);
700 DCHECK(!rd.IsZero());
701
702 if (hint == kAdrNear) {
703 adr(rd, label);
704 return;
705 }
706
707 DCHECK(hint == kAdrFar);
708 if (label->is_bound()) {
709 int label_offset = label->pos() - pc_offset();
710 if (Instruction::IsValidPCRelOffset(label_offset)) {
711 adr(rd, label);
712 } else {
713 DCHECK(label_offset <= 0);
714 int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
715 adr(rd, min_adr_offset);
716 Add(rd, rd, label_offset - min_adr_offset);
717 }
718 } else {
719 UseScratchRegisterScope temps(this);
720 Register scratch = temps.AcquireX();
721
722 InstructionAccurateScope scope(
723 this, PatchingAssembler::kAdrFarPatchableNInstrs);
724 adr(rd, label);
725 for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
726 nop(ADR_FAR_NOP);
727 }
728 movz(scratch, 0);
729 }
730}
731
732
733void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
734 DCHECK((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
735 (bit == -1 || type >= kBranchTypeFirstUsingBit));
736 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
737 B(static_cast<Condition>(type), label);
738 } else {
739 switch (type) {
740 case always: B(label); break;
741 case never: break;
742 case reg_zero: Cbz(reg, label); break;
743 case reg_not_zero: Cbnz(reg, label); break;
744 case reg_bit_clear: Tbz(reg, bit, label); break;
745 case reg_bit_set: Tbnz(reg, bit, label); break;
746 default:
747 UNREACHABLE();
748 }
749 }
750}
751
752
753void MacroAssembler::B(Label* label, Condition cond) {
754 DCHECK(allow_macro_instructions_);
755 DCHECK((cond != al) && (cond != nv));
756
757 Label done;
758 bool need_extra_instructions =
759 NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
760
761 if (need_extra_instructions) {
762 b(&done, NegateCondition(cond));
763 B(label);
764 } else {
765 b(label, cond);
766 }
767 bind(&done);
768}
769
770
771void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
772 DCHECK(allow_macro_instructions_);
773
774 Label done;
775 bool need_extra_instructions =
776 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
777
778 if (need_extra_instructions) {
779 tbz(rt, bit_pos, &done);
780 B(label);
781 } else {
782 tbnz(rt, bit_pos, label);
783 }
784 bind(&done);
785}
786
787
788void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
789 DCHECK(allow_macro_instructions_);
790
791 Label done;
792 bool need_extra_instructions =
793 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
794
795 if (need_extra_instructions) {
796 tbnz(rt, bit_pos, &done);
797 B(label);
798 } else {
799 tbz(rt, bit_pos, label);
800 }
801 bind(&done);
802}
803
804
805void MacroAssembler::Cbnz(const Register& rt, Label* label) {
806 DCHECK(allow_macro_instructions_);
807
808 Label done;
809 bool need_extra_instructions =
810 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
811
812 if (need_extra_instructions) {
813 cbz(rt, &done);
814 B(label);
815 } else {
816 cbnz(rt, label);
817 }
818 bind(&done);
819}
820
821
822void MacroAssembler::Cbz(const Register& rt, Label* label) {
823 DCHECK(allow_macro_instructions_);
824
825 Label done;
826 bool need_extra_instructions =
827 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
828
829 if (need_extra_instructions) {
830 cbnz(rt, &done);
831 B(label);
832 } else {
833 cbz(rt, label);
834 }
835 bind(&done);
836}
837
838
839// Pseudo-instructions.
840
841
842void MacroAssembler::Abs(const Register& rd, const Register& rm,
843 Label* is_not_representable,
844 Label* is_representable) {
845 DCHECK(allow_macro_instructions_);
846 DCHECK(AreSameSizeAndType(rd, rm));
847
848 Cmp(rm, 1);
849 Cneg(rd, rm, lt);
850
851 // If the comparison sets the v flag, the input was the smallest value
852 // representable by rm, and the mathematical result of abs(rm) is not
853 // representable using two's complement.
854 if ((is_not_representable != NULL) && (is_representable != NULL)) {
855 B(is_not_representable, vs);
856 B(is_representable);
857 } else if (is_not_representable != NULL) {
858 B(is_not_representable, vs);
859 } else if (is_representable != NULL) {
860 B(is_representable, vc);
861 }
862}
863
864
865// Abstracted stack operations.
866
867
868void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
869 const CPURegister& src2, const CPURegister& src3) {
870 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
871
872 int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
873 int size = src0.SizeInBytes();
874
875 PushPreamble(count, size);
876 PushHelper(count, size, src0, src1, src2, src3);
877}
878
879
880void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
881 const CPURegister& src2, const CPURegister& src3,
882 const CPURegister& src4, const CPURegister& src5,
883 const CPURegister& src6, const CPURegister& src7) {
884 DCHECK(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
885
886 int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
887 int size = src0.SizeInBytes();
888
889 PushPreamble(count, size);
890 PushHelper(4, size, src0, src1, src2, src3);
891 PushHelper(count - 4, size, src4, src5, src6, src7);
892}
893
894
895void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
896 const CPURegister& dst2, const CPURegister& dst3) {
897 // It is not valid to pop into the same register more than once in one
898 // instruction, not even into the zero register.
899 DCHECK(!AreAliased(dst0, dst1, dst2, dst3));
900 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
901 DCHECK(dst0.IsValid());
902
903 int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
904 int size = dst0.SizeInBytes();
905
906 PopHelper(count, size, dst0, dst1, dst2, dst3);
907 PopPostamble(count, size);
908}
909
910
911void MacroAssembler::Push(const Register& src0, const FPRegister& src1) {
912 int size = src0.SizeInBytes() + src1.SizeInBytes();
913
914 PushPreamble(size);
915 // Reserve room for src0 and push src1.
916 str(src1, MemOperand(StackPointer(), -size, PreIndex));
917 // Fill the gap with src0.
918 str(src0, MemOperand(StackPointer(), src1.SizeInBytes()));
919}
920
921
922void MacroAssembler::PushPopQueue::PushQueued(
923 PreambleDirective preamble_directive) {
924 if (queued_.empty()) return;
925
926 if (preamble_directive == WITH_PREAMBLE) {
927 masm_->PushPreamble(size_);
928 }
929
930 int count = queued_.size();
931 int index = 0;
932 while (index < count) {
933 // PushHelper can only handle registers with the same size and type, and it
934 // can handle only four at a time. Batch them up accordingly.
935 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
936 int batch_index = 0;
937 do {
938 batch[batch_index++] = queued_[index++];
939 } while ((batch_index < 4) && (index < count) &&
940 batch[0].IsSameSizeAndType(queued_[index]));
941
942 masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
943 batch[0], batch[1], batch[2], batch[3]);
944 }
945
946 queued_.clear();
947}
948
949
950void MacroAssembler::PushPopQueue::PopQueued() {
951 if (queued_.empty()) return;
952
953 int count = queued_.size();
954 int index = 0;
955 while (index < count) {
956 // PopHelper can only handle registers with the same size and type, and it
957 // can handle only four at a time. Batch them up accordingly.
958 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
959 int batch_index = 0;
960 do {
961 batch[batch_index++] = queued_[index++];
962 } while ((batch_index < 4) && (index < count) &&
963 batch[0].IsSameSizeAndType(queued_[index]));
964
965 masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
966 batch[0], batch[1], batch[2], batch[3]);
967 }
968
969 masm_->PopPostamble(size_);
970 queued_.clear();
971}
972
973
974void MacroAssembler::PushCPURegList(CPURegList registers) {
975 int size = registers.RegisterSizeInBytes();
976
977 PushPreamble(registers.Count(), size);
978 // Push up to four registers at a time because if the current stack pointer is
979 // csp and reg_size is 32, registers must be pushed in blocks of four in order
980 // to maintain the 16-byte alignment for csp.
981 while (!registers.IsEmpty()) {
982 int count_before = registers.Count();
983 const CPURegister& src0 = registers.PopHighestIndex();
984 const CPURegister& src1 = registers.PopHighestIndex();
985 const CPURegister& src2 = registers.PopHighestIndex();
986 const CPURegister& src3 = registers.PopHighestIndex();
987 int count = count_before - registers.Count();
988 PushHelper(count, size, src0, src1, src2, src3);
989 }
990}
991
992
993void MacroAssembler::PopCPURegList(CPURegList registers) {
994 int size = registers.RegisterSizeInBytes();
995
996 // Pop up to four registers at a time because if the current stack pointer is
997 // csp and reg_size is 32, registers must be pushed in blocks of four in
998 // order to maintain the 16-byte alignment for csp.
999 while (!registers.IsEmpty()) {
1000 int count_before = registers.Count();
1001 const CPURegister& dst0 = registers.PopLowestIndex();
1002 const CPURegister& dst1 = registers.PopLowestIndex();
1003 const CPURegister& dst2 = registers.PopLowestIndex();
1004 const CPURegister& dst3 = registers.PopLowestIndex();
1005 int count = count_before - registers.Count();
1006 PopHelper(count, size, dst0, dst1, dst2, dst3);
1007 }
1008 PopPostamble(registers.Count(), size);
1009}
1010
1011
1012void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
1013 int size = src.SizeInBytes();
1014
1015 PushPreamble(count, size);
1016
1017 if (FLAG_optimize_for_size && count > 8) {
1018 UseScratchRegisterScope temps(this);
1019 Register temp = temps.AcquireX();
1020
1021 Label loop;
1022 __ Mov(temp, count / 2);
1023 __ Bind(&loop);
1024 PushHelper(2, size, src, src, NoReg, NoReg);
1025 __ Subs(temp, temp, 1);
1026 __ B(ne, &loop);
1027
1028 count %= 2;
1029 }
1030
1031 // Push up to four registers at a time if possible because if the current
1032 // stack pointer is csp and the register size is 32, registers must be pushed
1033 // in blocks of four in order to maintain the 16-byte alignment for csp.
1034 while (count >= 4) {
1035 PushHelper(4, size, src, src, src, src);
1036 count -= 4;
1037 }
1038 if (count >= 2) {
1039 PushHelper(2, size, src, src, NoReg, NoReg);
1040 count -= 2;
1041 }
1042 if (count == 1) {
1043 PushHelper(1, size, src, NoReg, NoReg, NoReg);
1044 count -= 1;
1045 }
1046 DCHECK(count == 0);
1047}
1048
1049
1050void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
1051 PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
1052
1053 UseScratchRegisterScope temps(this);
1054 Register temp = temps.AcquireSameSizeAs(count);
1055
1056 if (FLAG_optimize_for_size) {
1057 Label loop, done;
1058
1059 Subs(temp, count, 1);
1060 B(mi, &done);
1061
1062 // Push all registers individually, to save code size.
1063 Bind(&loop);
1064 Subs(temp, temp, 1);
1065 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1066 B(pl, &loop);
1067
1068 Bind(&done);
1069 } else {
1070 Label loop, leftover2, leftover1, done;
1071
1072 Subs(temp, count, 4);
1073 B(mi, &leftover2);
1074
1075 // Push groups of four first.
1076 Bind(&loop);
1077 Subs(temp, temp, 4);
1078 PushHelper(4, src.SizeInBytes(), src, src, src, src);
1079 B(pl, &loop);
1080
1081 // Push groups of two.
1082 Bind(&leftover2);
1083 Tbz(count, 1, &leftover1);
1084 PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
1085
1086 // Push the last one (if required).
1087 Bind(&leftover1);
1088 Tbz(count, 0, &done);
1089 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
1090
1091 Bind(&done);
1092 }
1093}
1094
1095
1096void MacroAssembler::PushHelper(int count, int size,
1097 const CPURegister& src0,
1098 const CPURegister& src1,
1099 const CPURegister& src2,
1100 const CPURegister& src3) {
1101 // Ensure that we don't unintentially modify scratch or debug registers.
1102 InstructionAccurateScope scope(this);
1103
1104 DCHECK(AreSameSizeAndType(src0, src1, src2, src3));
1105 DCHECK(size == src0.SizeInBytes());
1106
1107 // When pushing multiple registers, the store order is chosen such that
1108 // Push(a, b) is equivalent to Push(a) followed by Push(b).
1109 switch (count) {
1110 case 1:
1111 DCHECK(src1.IsNone() && src2.IsNone() && src3.IsNone());
1112 str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1113 break;
1114 case 2:
1115 DCHECK(src2.IsNone() && src3.IsNone());
1116 stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1117 break;
1118 case 3:
1119 DCHECK(src3.IsNone());
1120 stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1121 str(src0, MemOperand(StackPointer(), 2 * size));
1122 break;
1123 case 4:
1124 // Skip over 4 * size, then fill in the gap. This allows four W registers
1125 // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1126 // at all times.
1127 stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1128 stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1129 break;
1130 default:
1131 UNREACHABLE();
1132 }
1133}
1134
1135
1136void MacroAssembler::PopHelper(int count, int size,
1137 const CPURegister& dst0,
1138 const CPURegister& dst1,
1139 const CPURegister& dst2,
1140 const CPURegister& dst3) {
1141 // Ensure that we don't unintentially modify scratch or debug registers.
1142 InstructionAccurateScope scope(this);
1143
1144 DCHECK(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1145 DCHECK(size == dst0.SizeInBytes());
1146
1147 // When popping multiple registers, the load order is chosen such that
1148 // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1149 switch (count) {
1150 case 1:
1151 DCHECK(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1152 ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1153 break;
1154 case 2:
1155 DCHECK(dst2.IsNone() && dst3.IsNone());
1156 ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1157 break;
1158 case 3:
1159 DCHECK(dst3.IsNone());
1160 ldr(dst2, MemOperand(StackPointer(), 2 * size));
1161 ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1162 break;
1163 case 4:
1164 // Load the higher addresses first, then load the lower addresses and
1165 // skip the whole block in the second instruction. This allows four W
1166 // registers to be popped using csp, whilst maintaining 16-byte alignment
1167 // for csp at all times.
1168 ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1169 ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1170 break;
1171 default:
1172 UNREACHABLE();
1173 }
1174}
1175
1176
1177void MacroAssembler::PushPreamble(Operand total_size) {
1178 if (csp.Is(StackPointer())) {
1179 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1180 // on entry and the total size of the specified registers must also be a
1181 // multiple of 16 bytes.
1182 if (total_size.IsImmediate()) {
1183 DCHECK((total_size.ImmediateValue() % 16) == 0);
1184 }
1185
1186 // Don't check access size for non-immediate sizes. It's difficult to do
1187 // well, and it will be caught by hardware (or the simulator) anyway.
1188 } else {
1189 // Even if the current stack pointer is not the system stack pointer (csp),
1190 // the system stack pointer will still be modified in order to comply with
1191 // ABI rules about accessing memory below the system stack pointer.
1192 BumpSystemStackPointer(total_size);
1193 }
1194}
1195
1196
1197void MacroAssembler::PopPostamble(Operand total_size) {
1198 if (csp.Is(StackPointer())) {
1199 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1200 // on entry and the total size of the specified registers must also be a
1201 // multiple of 16 bytes.
1202 if (total_size.IsImmediate()) {
1203 DCHECK((total_size.ImmediateValue() % 16) == 0);
1204 }
1205
1206 // Don't check access size for non-immediate sizes. It's difficult to do
1207 // well, and it will be caught by hardware (or the simulator) anyway.
1208 } else if (emit_debug_code()) {
1209 // It is safe to leave csp where it is when unwinding the JavaScript stack,
1210 // but if we keep it matching StackPointer, the simulator can detect memory
1211 // accesses in the now-free part of the stack.
1212 SyncSystemStackPointer();
1213 }
1214}
1215
1216
1217void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1218 if (offset.IsImmediate()) {
1219 DCHECK(offset.ImmediateValue() >= 0);
1220 } else if (emit_debug_code()) {
1221 Cmp(xzr, offset);
1222 Check(le, kStackAccessBelowStackPointer);
1223 }
1224
1225 Str(src, MemOperand(StackPointer(), offset));
1226}
1227
1228
1229void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1230 if (offset.IsImmediate()) {
1231 DCHECK(offset.ImmediateValue() >= 0);
1232 } else if (emit_debug_code()) {
1233 Cmp(xzr, offset);
1234 Check(le, kStackAccessBelowStackPointer);
1235 }
1236
1237 Ldr(dst, MemOperand(StackPointer(), offset));
1238}
1239
1240
1241void MacroAssembler::PokePair(const CPURegister& src1,
1242 const CPURegister& src2,
1243 int offset) {
1244 DCHECK(AreSameSizeAndType(src1, src2));
1245 DCHECK((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1246 Stp(src1, src2, MemOperand(StackPointer(), offset));
1247}
1248
1249
1250void MacroAssembler::PeekPair(const CPURegister& dst1,
1251 const CPURegister& dst2,
1252 int offset) {
1253 DCHECK(AreSameSizeAndType(dst1, dst2));
1254 DCHECK((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1255 Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1256}
1257
1258
1259void MacroAssembler::PushCalleeSavedRegisters() {
1260 // Ensure that the macro-assembler doesn't use any scratch registers.
1261 InstructionAccurateScope scope(this);
1262
1263 // This method must not be called unless the current stack pointer is the
1264 // system stack pointer (csp).
1265 DCHECK(csp.Is(StackPointer()));
1266
1267 MemOperand tos(csp, -2 * kXRegSize, PreIndex);
1268
1269 stp(d14, d15, tos);
1270 stp(d12, d13, tos);
1271 stp(d10, d11, tos);
1272 stp(d8, d9, tos);
1273
1274 stp(x29, x30, tos);
1275 stp(x27, x28, tos); // x28 = jssp
1276 stp(x25, x26, tos);
1277 stp(x23, x24, tos);
1278 stp(x21, x22, tos);
1279 stp(x19, x20, tos);
1280}
1281
1282
1283void MacroAssembler::PopCalleeSavedRegisters() {
1284 // Ensure that the macro-assembler doesn't use any scratch registers.
1285 InstructionAccurateScope scope(this);
1286
1287 // This method must not be called unless the current stack pointer is the
1288 // system stack pointer (csp).
1289 DCHECK(csp.Is(StackPointer()));
1290
1291 MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1292
1293 ldp(x19, x20, tos);
1294 ldp(x21, x22, tos);
1295 ldp(x23, x24, tos);
1296 ldp(x25, x26, tos);
1297 ldp(x27, x28, tos); // x28 = jssp
1298 ldp(x29, x30, tos);
1299
1300 ldp(d8, d9, tos);
1301 ldp(d10, d11, tos);
1302 ldp(d12, d13, tos);
1303 ldp(d14, d15, tos);
1304}
1305
1306
1307void MacroAssembler::AssertStackConsistency() {
1308 // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1309 // much code to be generated.
1310 if (emit_debug_code() && use_real_aborts()) {
1311 if (csp.Is(StackPointer()) || CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
1312 // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true. We
1313 // can't check the alignment of csp without using a scratch register (or
1314 // clobbering the flags), but the processor (or simulator) will abort if
1315 // it is not properly aligned during a load.
1316 ldr(xzr, MemOperand(csp, 0));
1317 }
1318 if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1319 Label ok;
1320 // Check that csp <= StackPointer(), preserving all registers and NZCV.
1321 sub(StackPointer(), csp, StackPointer());
1322 cbz(StackPointer(), &ok); // Ok if csp == StackPointer().
1323 tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer().
1324
1325 // Avoid generating AssertStackConsistency checks for the Push in Abort.
1326 { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1327 Abort(kTheCurrentStackPointerIsBelowCsp);
1328 }
1329
1330 bind(&ok);
1331 // Restore StackPointer().
1332 sub(StackPointer(), csp, StackPointer());
1333 }
1334 }
1335}
1336
1337
1338void MacroAssembler::AssertFPCRState(Register fpcr) {
1339 if (emit_debug_code()) {
1340 Label unexpected_mode, done;
1341 UseScratchRegisterScope temps(this);
1342 if (fpcr.IsNone()) {
1343 fpcr = temps.AcquireX();
1344 Mrs(fpcr, FPCR);
1345 }
1346
1347 // Settings overridden by ConfiugreFPCR():
1348 // - Assert that default-NaN mode is set.
1349 Tbz(fpcr, DN_offset, &unexpected_mode);
1350
1351 // Settings left to their default values:
1352 // - Assert that flush-to-zero is not set.
1353 Tbnz(fpcr, FZ_offset, &unexpected_mode);
1354 // - Assert that the rounding mode is nearest-with-ties-to-even.
1355 STATIC_ASSERT(FPTieEven == 0);
1356 Tst(fpcr, RMode_mask);
1357 B(eq, &done);
1358
1359 Bind(&unexpected_mode);
1360 Abort(kUnexpectedFPCRMode);
1361
1362 Bind(&done);
1363 }
1364}
1365
1366
1367void MacroAssembler::ConfigureFPCR() {
1368 UseScratchRegisterScope temps(this);
1369 Register fpcr = temps.AcquireX();
1370 Mrs(fpcr, FPCR);
1371
1372 // If necessary, enable default-NaN mode. The default values of the other FPCR
1373 // options should be suitable, and AssertFPCRState will verify that.
1374 Label no_write_required;
1375 Tbnz(fpcr, DN_offset, &no_write_required);
1376
1377 Orr(fpcr, fpcr, DN_mask);
1378 Msr(FPCR, fpcr);
1379
1380 Bind(&no_write_required);
1381 AssertFPCRState(fpcr);
1382}
1383
1384
1385void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1386 const FPRegister& src) {
1387 AssertFPCRState();
1388
1389 // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1390 // for NaNs, which become the default NaN. We use fsub rather than fadd
1391 // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1392 Fsub(dst, src, fp_zero);
1393}
1394
1395
1396void MacroAssembler::LoadRoot(CPURegister destination,
1397 Heap::RootListIndex index) {
1398 // TODO(jbramley): Most root values are constants, and can be synthesized
1399 // without a load. Refer to the ARM back end for details.
1400 Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1401}
1402
1403
1404void MacroAssembler::StoreRoot(Register source,
1405 Heap::RootListIndex index) {
1406 Str(source, MemOperand(root, index << kPointerSizeLog2));
1407}
1408
1409
1410void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1411 Register false_root) {
1412 STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1413 Ldp(true_root, false_root,
1414 MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1415}
1416
1417
1418void MacroAssembler::LoadHeapObject(Register result,
1419 Handle<HeapObject> object) {
1420 AllowDeferredHandleDereference using_raw_address;
1421 if (isolate()->heap()->InNewSpace(*object)) {
1422 Handle<Cell> cell = isolate()->factory()->NewCell(object);
1423 Mov(result, Operand(cell));
1424 Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1425 } else {
1426 Mov(result, Operand(object));
1427 }
1428}
1429
1430
1431void MacroAssembler::LoadInstanceDescriptors(Register map,
1432 Register descriptors) {
1433 Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1434}
1435
1436
1437void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1438 Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1439 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1440}
1441
1442
1443void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1444 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1445 Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1446 And(dst, dst, Map::EnumLengthBits::kMask);
1447}
1448
1449
1450void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1451 EnumLengthUntagged(dst, map);
1452 SmiTag(dst, dst);
1453}
1454
1455
1456void MacroAssembler::CheckEnumCache(Register object,
1457 Register null_value,
1458 Register scratch0,
1459 Register scratch1,
1460 Register scratch2,
1461 Register scratch3,
1462 Label* call_runtime) {
1463 DCHECK(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1464 scratch3));
1465
1466 Register empty_fixed_array_value = scratch0;
1467 Register current_object = scratch1;
1468
1469 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1470 Label next, start;
1471
1472 Mov(current_object, object);
1473
1474 // Check if the enum length field is properly initialized, indicating that
1475 // there is an enum cache.
1476 Register map = scratch2;
1477 Register enum_length = scratch3;
1478 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1479
1480 EnumLengthUntagged(enum_length, map);
1481 Cmp(enum_length, kInvalidEnumCacheSentinel);
1482 B(eq, call_runtime);
1483
1484 B(&start);
1485
1486 Bind(&next);
1487 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1488
1489 // For all objects but the receiver, check that the cache is empty.
1490 EnumLengthUntagged(enum_length, map);
1491 Cbnz(enum_length, call_runtime);
1492
1493 Bind(&start);
1494
1495 // Check that there are no elements. Register current_object contains the
1496 // current JS object we've reached through the prototype chain.
1497 Label no_elements;
1498 Ldr(current_object, FieldMemOperand(current_object,
1499 JSObject::kElementsOffset));
1500 Cmp(current_object, empty_fixed_array_value);
1501 B(eq, &no_elements);
1502
1503 // Second chance, the object may be using the empty slow element dictionary.
1504 CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1505 B(ne, call_runtime);
1506
1507 Bind(&no_elements);
1508 Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1509 Cmp(current_object, null_value);
1510 B(ne, &next);
1511}
1512
1513
1514void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1515 Register scratch1,
1516 Register scratch2,
1517 Label* no_memento_found) {
1518 ExternalReference new_space_start =
1519 ExternalReference::new_space_start(isolate());
1520 ExternalReference new_space_allocation_top =
1521 ExternalReference::new_space_allocation_top_address(isolate());
1522
1523 Add(scratch1, receiver,
1524 JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1525 Cmp(scratch1, new_space_start);
1526 B(lt, no_memento_found);
1527
1528 Mov(scratch2, new_space_allocation_top);
1529 Ldr(scratch2, MemOperand(scratch2));
1530 Cmp(scratch1, scratch2);
1531 B(gt, no_memento_found);
1532
1533 Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1534 Cmp(scratch1,
1535 Operand(isolate()->factory()->allocation_memento_map()));
1536}
1537
1538
1539void MacroAssembler::JumpToHandlerEntry(Register exception,
1540 Register object,
1541 Register state,
1542 Register scratch1,
1543 Register scratch2) {
1544 // Handler expects argument in x0.
1545 DCHECK(exception.Is(x0));
1546
1547 // Compute the handler entry address and jump to it. The handler table is
1548 // a fixed array of (smi-tagged) code offsets.
1549 Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
1550 Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
1551 STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
1552 Lsr(scratch2, state, StackHandler::kKindWidth);
1553 Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
1554 Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
1555 Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
1556 Br(scratch1);
1557}
1558
1559
1560void MacroAssembler::InNewSpace(Register object,
1561 Condition cond,
1562 Label* branch) {
1563 DCHECK(cond == eq || cond == ne);
1564 UseScratchRegisterScope temps(this);
1565 Register temp = temps.AcquireX();
1566 And(temp, object, ExternalReference::new_space_mask(isolate()));
1567 Cmp(temp, ExternalReference::new_space_start(isolate()));
1568 B(cond, branch);
1569}
1570
1571
1572void MacroAssembler::Throw(Register value,
1573 Register scratch1,
1574 Register scratch2,
1575 Register scratch3,
1576 Register scratch4) {
1577 // Adjust this code if not the case.
1578 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1579 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1580 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1581 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1582 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1583 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1584
1585 // The handler expects the exception in x0.
1586 DCHECK(value.Is(x0));
1587
1588 // Drop the stack pointer to the top of the top handler.
1589 DCHECK(jssp.Is(StackPointer()));
1590 Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1591 isolate())));
1592 Ldr(jssp, MemOperand(scratch1));
1593 // Restore the next handler.
1594 Pop(scratch2);
1595 Str(scratch2, MemOperand(scratch1));
1596
1597 // Get the code object and state. Restore the context and frame pointer.
1598 Register object = scratch1;
1599 Register state = scratch2;
1600 Pop(object, state, cp, fp);
1601
1602 // If the handler is a JS frame, restore the context to the frame.
1603 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1604 // or cp.
1605 Label not_js_frame;
1606 Cbz(cp, &not_js_frame);
1607 Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1608 Bind(&not_js_frame);
1609
1610 JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1611}
1612
1613
1614void MacroAssembler::ThrowUncatchable(Register value,
1615 Register scratch1,
1616 Register scratch2,
1617 Register scratch3,
1618 Register scratch4) {
1619 // Adjust this code if not the case.
1620 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1621 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1622 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1623 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1624 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1625 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1626
1627 // The handler expects the exception in x0.
1628 DCHECK(value.Is(x0));
1629
1630 // Drop the stack pointer to the top of the top stack handler.
1631 DCHECK(jssp.Is(StackPointer()));
1632 Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1633 isolate())));
1634 Ldr(jssp, MemOperand(scratch1));
1635
1636 // Unwind the handlers until the ENTRY handler is found.
1637 Label fetch_next, check_kind;
1638 B(&check_kind);
1639 Bind(&fetch_next);
1640 Peek(jssp, StackHandlerConstants::kNextOffset);
1641
1642 Bind(&check_kind);
1643 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1644 Peek(scratch2, StackHandlerConstants::kStateOffset);
1645 TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
1646
1647 // Set the top handler address to next handler past the top ENTRY handler.
1648 Pop(scratch2);
1649 Str(scratch2, MemOperand(scratch1));
1650
1651 // Get the code object and state. Clear the context and frame pointer (0 was
1652 // saved in the handler).
1653 Register object = scratch1;
1654 Register state = scratch2;
1655 Pop(object, state, cp, fp);
1656
1657 JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1658}
1659
1660
1661void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1662 if (emit_debug_code()) {
1663 STATIC_ASSERT(kSmiTag == 0);
1664 Tst(object, kSmiTagMask);
1665 Check(eq, reason);
1666 }
1667}
1668
1669
1670void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1671 if (emit_debug_code()) {
1672 STATIC_ASSERT(kSmiTag == 0);
1673 Tst(object, kSmiTagMask);
1674 Check(ne, reason);
1675 }
1676}
1677
1678
1679void MacroAssembler::AssertName(Register object) {
1680 if (emit_debug_code()) {
1681 AssertNotSmi(object, kOperandIsASmiAndNotAName);
1682
1683 UseScratchRegisterScope temps(this);
1684 Register temp = temps.AcquireX();
1685
1686 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1687 CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1688 Check(ls, kOperandIsNotAName);
1689 }
1690}
1691
1692
1693void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1694 Register scratch) {
1695 if (emit_debug_code()) {
1696 Label done_checking;
1697 AssertNotSmi(object);
1698 JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1699 Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1700 CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1701 Assert(eq, kExpectedUndefinedOrCell);
1702 Bind(&done_checking);
1703 }
1704}
1705
1706
1707void MacroAssembler::AssertString(Register object) {
1708 if (emit_debug_code()) {
1709 UseScratchRegisterScope temps(this);
1710 Register temp = temps.AcquireX();
1711 STATIC_ASSERT(kSmiTag == 0);
1712 Tst(object, kSmiTagMask);
1713 Check(ne, kOperandIsASmiAndNotAString);
1714 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1715 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1716 Check(lo, kOperandIsNotAString);
1717 }
1718}
1719
1720
1721void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1722 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
1723 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1724}
1725
1726
1727void MacroAssembler::TailCallStub(CodeStub* stub) {
1728 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1729}
1730
1731
1732void MacroAssembler::CallRuntime(const Runtime::Function* f,
1733 int num_arguments,
1734 SaveFPRegsMode save_doubles) {
1735 // All arguments must be on the stack before this function is called.
1736 // x0 holds the return value after the call.
1737
1738 // Check that the number of arguments matches what the function expects.
1739 // If f->nargs is -1, the function can accept a variable number of arguments.
1740 CHECK(f->nargs < 0 || f->nargs == num_arguments);
1741
1742 // Place the necessary arguments.
1743 Mov(x0, num_arguments);
1744 Mov(x1, ExternalReference(f, isolate()));
1745
1746 CEntryStub stub(isolate(), 1, save_doubles);
1747 CallStub(&stub);
1748}
1749
1750
1751static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1752 return ref0.address() - ref1.address();
1753}
1754
1755
1756void MacroAssembler::CallApiFunctionAndReturn(
1757 Register function_address,
1758 ExternalReference thunk_ref,
1759 int stack_space,
1760 int spill_offset,
1761 MemOperand return_value_operand,
1762 MemOperand* context_restore_operand) {
1763 ASM_LOCATION("CallApiFunctionAndReturn");
1764 ExternalReference next_address =
1765 ExternalReference::handle_scope_next_address(isolate());
1766 const int kNextOffset = 0;
1767 const int kLimitOffset = AddressOffset(
1768 ExternalReference::handle_scope_limit_address(isolate()),
1769 next_address);
1770 const int kLevelOffset = AddressOffset(
1771 ExternalReference::handle_scope_level_address(isolate()),
1772 next_address);
1773
1774 DCHECK(function_address.is(x1) || function_address.is(x2));
1775
1776 Label profiler_disabled;
1777 Label end_profiler_check;
1778 Mov(x10, ExternalReference::is_profiling_address(isolate()));
1779 Ldrb(w10, MemOperand(x10));
1780 Cbz(w10, &profiler_disabled);
1781 Mov(x3, thunk_ref);
1782 B(&end_profiler_check);
1783
1784 Bind(&profiler_disabled);
1785 Mov(x3, function_address);
1786 Bind(&end_profiler_check);
1787
1788 // Save the callee-save registers we are going to use.
1789 // TODO(all): Is this necessary? ARM doesn't do it.
1790 STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
1791 Poke(x19, (spill_offset + 0) * kXRegSize);
1792 Poke(x20, (spill_offset + 1) * kXRegSize);
1793 Poke(x21, (spill_offset + 2) * kXRegSize);
1794 Poke(x22, (spill_offset + 3) * kXRegSize);
1795
1796 // Allocate HandleScope in callee-save registers.
1797 // We will need to restore the HandleScope after the call to the API function,
1798 // by allocating it in callee-save registers they will be preserved by C code.
1799 Register handle_scope_base = x22;
1800 Register next_address_reg = x19;
1801 Register limit_reg = x20;
1802 Register level_reg = w21;
1803
1804 Mov(handle_scope_base, next_address);
1805 Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1806 Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1807 Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1808 Add(level_reg, level_reg, 1);
1809 Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1810
1811 if (FLAG_log_timer_events) {
1812 FrameScope frame(this, StackFrame::MANUAL);
1813 PushSafepointRegisters();
1814 Mov(x0, ExternalReference::isolate_address(isolate()));
1815 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
1816 PopSafepointRegisters();
1817 }
1818
1819 // Native call returns to the DirectCEntry stub which redirects to the
1820 // return address pushed on stack (could have moved after GC).
1821 // DirectCEntry stub itself is generated early and never moves.
1822 DirectCEntryStub stub(isolate());
1823 stub.GenerateCall(this, x3);
1824
1825 if (FLAG_log_timer_events) {
1826 FrameScope frame(this, StackFrame::MANUAL);
1827 PushSafepointRegisters();
1828 Mov(x0, ExternalReference::isolate_address(isolate()));
1829 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
1830 PopSafepointRegisters();
1831 }
1832
1833 Label promote_scheduled_exception;
1834 Label exception_handled;
1835 Label delete_allocated_handles;
1836 Label leave_exit_frame;
1837 Label return_value_loaded;
1838
1839 // Load value from ReturnValue.
1840 Ldr(x0, return_value_operand);
1841 Bind(&return_value_loaded);
1842 // No more valid handles (the result handle was the last one). Restore
1843 // previous handle scope.
1844 Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1845 if (emit_debug_code()) {
1846 Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
1847 Cmp(w1, level_reg);
1848 Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
1849 }
1850 Sub(level_reg, level_reg, 1);
1851 Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1852 Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
1853 Cmp(limit_reg, x1);
1854 B(ne, &delete_allocated_handles);
1855
1856 Bind(&leave_exit_frame);
1857 // Restore callee-saved registers.
1858 Peek(x19, (spill_offset + 0) * kXRegSize);
1859 Peek(x20, (spill_offset + 1) * kXRegSize);
1860 Peek(x21, (spill_offset + 2) * kXRegSize);
1861 Peek(x22, (spill_offset + 3) * kXRegSize);
1862
1863 // Check if the function scheduled an exception.
1864 Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
1865 Ldr(x5, MemOperand(x5));
1866 JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
1867 Bind(&exception_handled);
1868
1869 bool restore_context = context_restore_operand != NULL;
1870 if (restore_context) {
1871 Ldr(cp, *context_restore_operand);
1872 }
1873
1874 LeaveExitFrame(false, x1, !restore_context);
1875 Drop(stack_space);
1876 Ret();
1877
1878 Bind(&promote_scheduled_exception);
1879 {
1880 FrameScope frame(this, StackFrame::INTERNAL);
1881 CallExternalReference(
1882 ExternalReference(
1883 Runtime::kPromoteScheduledException, isolate()), 0);
1884 }
1885 B(&exception_handled);
1886
1887 // HandleScope limit has changed. Delete allocated extensions.
1888 Bind(&delete_allocated_handles);
1889 Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1890 // Save the return value in a callee-save register.
1891 Register saved_result = x19;
1892 Mov(saved_result, x0);
1893 Mov(x0, ExternalReference::isolate_address(isolate()));
1894 CallCFunction(
1895 ExternalReference::delete_handle_scope_extensions(isolate()), 1);
1896 Mov(x0, saved_result);
1897 B(&leave_exit_frame);
1898}
1899
1900
1901void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1902 int num_arguments) {
1903 Mov(x0, num_arguments);
1904 Mov(x1, ext);
1905
1906 CEntryStub stub(isolate(), 1);
1907 CallStub(&stub);
1908}
1909
1910
1911void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1912 Mov(x1, builtin);
1913 CEntryStub stub(isolate(), 1);
1914 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1915}
1916
1917
1918void MacroAssembler::GetBuiltinFunction(Register target,
1919 Builtins::JavaScript id) {
1920 // Load the builtins object into target register.
1921 Ldr(target, GlobalObjectMemOperand());
1922 Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
1923 // Load the JavaScript builtin function from the builtins object.
1924 Ldr(target, FieldMemOperand(target,
1925 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
1926}
1927
1928
1929void MacroAssembler::GetBuiltinEntry(Register target,
1930 Register function,
1931 Builtins::JavaScript id) {
1932 DCHECK(!AreAliased(target, function));
1933 GetBuiltinFunction(function, id);
1934 // Load the code entry point from the builtins object.
1935 Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
1936}
1937
1938
1939void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1940 InvokeFlag flag,
1941 const CallWrapper& call_wrapper) {
1942 ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1943 // You can't call a builtin without a valid frame.
1944 DCHECK(flag == JUMP_FUNCTION || has_frame());
1945
1946 // Get the builtin entry in x2 and setup the function object in x1.
1947 GetBuiltinEntry(x2, x1, id);
1948 if (flag == CALL_FUNCTION) {
1949 call_wrapper.BeforeCall(CallSize(x2));
1950 Call(x2);
1951 call_wrapper.AfterCall();
1952 } else {
1953 DCHECK(flag == JUMP_FUNCTION);
1954 Jump(x2);
1955 }
1956}
1957
1958
1959void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1960 int num_arguments,
1961 int result_size) {
1962 // TODO(1236192): Most runtime routines don't need the number of
1963 // arguments passed in because it is constant. At some point we
1964 // should remove this need and make the runtime routine entry code
1965 // smarter.
1966 Mov(x0, num_arguments);
1967 JumpToExternalReference(ext);
1968}
1969
1970
1971void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1972 int num_arguments,
1973 int result_size) {
1974 TailCallExternalReference(ExternalReference(fid, isolate()),
1975 num_arguments,
1976 result_size);
1977}
1978
1979
1980void MacroAssembler::InitializeNewString(Register string,
1981 Register length,
1982 Heap::RootListIndex map_index,
1983 Register scratch1,
1984 Register scratch2) {
1985 DCHECK(!AreAliased(string, length, scratch1, scratch2));
1986 LoadRoot(scratch2, map_index);
1987 SmiTag(scratch1, length);
1988 Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1989
1990 Mov(scratch2, String::kEmptyHashField);
1991 Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1992 Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1993}
1994
1995
1996int MacroAssembler::ActivationFrameAlignment() {
1997#if V8_HOST_ARCH_ARM64
1998 // Running on the real platform. Use the alignment as mandated by the local
1999 // environment.
2000 // Note: This will break if we ever start generating snapshots on one ARM
2001 // platform for another ARM platform with a different alignment.
2002 return base::OS::ActivationFrameAlignment();
2003#else // V8_HOST_ARCH_ARM64
2004 // If we are using the simulator then we should always align to the expected
2005 // alignment. As the simulator is used to generate snapshots we do not know
2006 // if the target platform will need alignment, so this is controlled from a
2007 // flag.
2008 return FLAG_sim_stack_alignment;
2009#endif // V8_HOST_ARCH_ARM64
2010}
2011
2012
2013void MacroAssembler::CallCFunction(ExternalReference function,
2014 int num_of_reg_args) {
2015 CallCFunction(function, num_of_reg_args, 0);
2016}
2017
2018
2019void MacroAssembler::CallCFunction(ExternalReference function,
2020 int num_of_reg_args,
2021 int num_of_double_args) {
2022 UseScratchRegisterScope temps(this);
2023 Register temp = temps.AcquireX();
2024 Mov(temp, function);
2025 CallCFunction(temp, num_of_reg_args, num_of_double_args);
2026}
2027
2028
2029void MacroAssembler::CallCFunction(Register function,
2030 int num_of_reg_args,
2031 int num_of_double_args) {
2032 DCHECK(has_frame());
2033 // We can pass 8 integer arguments in registers. If we need to pass more than
2034 // that, we'll need to implement support for passing them on the stack.
2035 DCHECK(num_of_reg_args <= 8);
2036
2037 // If we're passing doubles, we're limited to the following prototypes
2038 // (defined by ExternalReference::Type):
2039 // BUILTIN_COMPARE_CALL: int f(double, double)
2040 // BUILTIN_FP_FP_CALL: double f(double, double)
2041 // BUILTIN_FP_CALL: double f(double)
2042 // BUILTIN_FP_INT_CALL: double f(double, int)
2043 if (num_of_double_args > 0) {
2044 DCHECK(num_of_reg_args <= 1);
2045 DCHECK((num_of_double_args + num_of_reg_args) <= 2);
2046 }
2047
2048
2049 // If the stack pointer is not csp, we need to derive an aligned csp from the
2050 // current stack pointer.
2051 const Register old_stack_pointer = StackPointer();
2052 if (!csp.Is(old_stack_pointer)) {
2053 AssertStackConsistency();
2054
2055 int sp_alignment = ActivationFrameAlignment();
2056 // The ABI mandates at least 16-byte alignment.
2057 DCHECK(sp_alignment >= 16);
2058 DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
2059
2060 // The current stack pointer is a callee saved register, and is preserved
2061 // across the call.
2062 DCHECK(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
2063
2064 // Align and synchronize the system stack pointer with jssp.
2065 Bic(csp, old_stack_pointer, sp_alignment - 1);
2066 SetStackPointer(csp);
2067 }
2068
2069 // Call directly. The function called cannot cause a GC, or allow preemption,
2070 // so the return address in the link register stays correct.
2071 Call(function);
2072
2073 if (!csp.Is(old_stack_pointer)) {
2074 if (emit_debug_code()) {
2075 // Because the stack pointer must be aligned on a 16-byte boundary, the
2076 // aligned csp can be up to 12 bytes below the jssp. This is the case
2077 // where we only pushed one W register on top of an aligned jssp.
2078 UseScratchRegisterScope temps(this);
2079 Register temp = temps.AcquireX();
2080 DCHECK(ActivationFrameAlignment() == 16);
2081 Sub(temp, csp, old_stack_pointer);
2082 // We want temp <= 0 && temp >= -12.
2083 Cmp(temp, 0);
2084 Ccmp(temp, -12, NFlag, le);
2085 Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
2086 }
2087 SetStackPointer(old_stack_pointer);
2088 }
2089}
2090
2091
2092void MacroAssembler::Jump(Register target) {
2093 Br(target);
2094}
2095
2096
2097void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
2098 UseScratchRegisterScope temps(this);
2099 Register temp = temps.AcquireX();
2100 Mov(temp, Operand(target, rmode));
2101 Br(temp);
2102}
2103
2104
2105void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
2106 DCHECK(!RelocInfo::IsCodeTarget(rmode));
2107 Jump(reinterpret_cast<intptr_t>(target), rmode);
2108}
2109
2110
2111void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
2112 DCHECK(RelocInfo::IsCodeTarget(rmode));
2113 AllowDeferredHandleDereference embedding_raw_address;
2114 Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
2115}
2116
2117
2118void MacroAssembler::Call(Register target) {
2119 BlockPoolsScope scope(this);
2120#ifdef DEBUG
2121 Label start_call;
2122 Bind(&start_call);
2123#endif
2124
2125 Blr(target);
2126
2127#ifdef DEBUG
2128 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2129#endif
2130}
2131
2132
2133void MacroAssembler::Call(Label* target) {
2134 BlockPoolsScope scope(this);
2135#ifdef DEBUG
2136 Label start_call;
2137 Bind(&start_call);
2138#endif
2139
2140 Bl(target);
2141
2142#ifdef DEBUG
2143 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2144#endif
2145}
2146
2147
2148// MacroAssembler::CallSize is sensitive to changes in this function, as it
2149// requires to know how many instructions are used to branch to the target.
2150void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
2151 BlockPoolsScope scope(this);
2152#ifdef DEBUG
2153 Label start_call;
2154 Bind(&start_call);
2155#endif
2156 // Statement positions are expected to be recorded when the target
2157 // address is loaded.
2158 positions_recorder()->WriteRecordedPositions();
2159
2160 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2161 DCHECK(rmode != RelocInfo::NONE32);
2162
2163 UseScratchRegisterScope temps(this);
2164 Register temp = temps.AcquireX();
2165
2166 if (rmode == RelocInfo::NONE64) {
2167 // Addresses are 48 bits so we never need to load the upper 16 bits.
2168 uint64_t imm = reinterpret_cast<uint64_t>(target);
2169 // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
2170 DCHECK(((imm >> 48) & 0xffff) == 0);
2171 movz(temp, (imm >> 0) & 0xffff, 0);
2172 movk(temp, (imm >> 16) & 0xffff, 16);
2173 movk(temp, (imm >> 32) & 0xffff, 32);
2174 } else {
2175 Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
2176 }
2177 Blr(temp);
2178#ifdef DEBUG
2179 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
2180#endif
2181}
2182
2183
2184void MacroAssembler::Call(Handle<Code> code,
2185 RelocInfo::Mode rmode,
2186 TypeFeedbackId ast_id) {
2187#ifdef DEBUG
2188 Label start_call;
2189 Bind(&start_call);
2190#endif
2191
2192 if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
2193 SetRecordedAstId(ast_id);
2194 rmode = RelocInfo::CODE_TARGET_WITH_ID;
2195 }
2196
2197 AllowDeferredHandleDereference embedding_raw_address;
2198 Call(reinterpret_cast<Address>(code.location()), rmode);
2199
2200#ifdef DEBUG
2201 // Check the size of the code generated.
2202 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
2203#endif
2204}
2205
2206
2207int MacroAssembler::CallSize(Register target) {
2208 USE(target);
2209 return kInstructionSize;
2210}
2211
2212
2213int MacroAssembler::CallSize(Label* target) {
2214 USE(target);
2215 return kInstructionSize;
2216}
2217
2218
2219int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2220 USE(target);
2221
2222 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2223 DCHECK(rmode != RelocInfo::NONE32);
2224
2225 if (rmode == RelocInfo::NONE64) {
2226 return kCallSizeWithoutRelocation;
2227 } else {
2228 return kCallSizeWithRelocation;
2229 }
2230}
2231
2232
2233int MacroAssembler::CallSize(Handle<Code> code,
2234 RelocInfo::Mode rmode,
2235 TypeFeedbackId ast_id) {
2236 USE(code);
2237 USE(ast_id);
2238
2239 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2240 DCHECK(rmode != RelocInfo::NONE32);
2241
2242 if (rmode == RelocInfo::NONE64) {
2243 return kCallSizeWithoutRelocation;
2244 } else {
2245 return kCallSizeWithRelocation;
2246 }
2247}
2248
2249
2250void MacroAssembler::JumpIfHeapNumber(Register object, Label* on_heap_number,
2251 SmiCheckType smi_check_type) {
2252 Label on_not_heap_number;
2253
2254 if (smi_check_type == DO_SMI_CHECK) {
2255 JumpIfSmi(object, &on_not_heap_number);
2256 }
2257
2258 AssertNotSmi(object);
2259
2260 UseScratchRegisterScope temps(this);
2261 Register temp = temps.AcquireX();
2262 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2263 JumpIfRoot(temp, Heap::kHeapNumberMapRootIndex, on_heap_number);
2264
2265 Bind(&on_not_heap_number);
2266}
2267
2268
2269void MacroAssembler::JumpIfNotHeapNumber(Register object,
2270 Label* on_not_heap_number,
2271 SmiCheckType smi_check_type) {
2272 if (smi_check_type == DO_SMI_CHECK) {
2273 JumpIfSmi(object, on_not_heap_number);
2274 }
2275
2276 AssertNotSmi(object);
2277
2278 UseScratchRegisterScope temps(this);
2279 Register temp = temps.AcquireX();
2280 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2281 JumpIfNotRoot(temp, Heap::kHeapNumberMapRootIndex, on_not_heap_number);
2282}
2283
2284
2285void MacroAssembler::LookupNumberStringCache(Register object,
2286 Register result,
2287 Register scratch1,
2288 Register scratch2,
2289 Register scratch3,
2290 Label* not_found) {
2291 DCHECK(!AreAliased(object, result, scratch1, scratch2, scratch3));
2292
2293 // Use of registers. Register result is used as a temporary.
2294 Register number_string_cache = result;
2295 Register mask = scratch3;
2296
2297 // Load the number string cache.
2298 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2299
2300 // Make the hash mask from the length of the number string cache. It
2301 // contains two elements (number and string) for each cache entry.
2302 Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
2303 FixedArray::kLengthOffset));
2304 Asr(mask, mask, 1); // Divide length by two.
2305 Sub(mask, mask, 1); // Make mask.
2306
2307 // Calculate the entry in the number string cache. The hash value in the
2308 // number string cache for smis is just the smi value, and the hash for
2309 // doubles is the xor of the upper and lower words. See
2310 // Heap::GetNumberStringCache.
2311 Label is_smi;
2312 Label load_result_from_cache;
2313
2314 JumpIfSmi(object, &is_smi);
2315 JumpIfNotHeapNumber(object, not_found);
2316
2317 STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
2318 Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
2319 Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
2320 Eor(scratch1, scratch1, scratch2);
2321 And(scratch1, scratch1, mask);
2322
2323 // Calculate address of entry in string cache: each entry consists of two
2324 // pointer sized fields.
2325 Add(scratch1, number_string_cache,
2326 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
2327
2328 Register probe = mask;
2329 Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2330 JumpIfSmi(probe, not_found);
2331 Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
2332 Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
2333 Fcmp(d0, d1);
2334 B(ne, not_found);
2335 B(&load_result_from_cache);
2336
2337 Bind(&is_smi);
2338 Register scratch = scratch1;
2339 And(scratch, mask, Operand::UntagSmi(object));
2340 // Calculate address of entry in string cache: each entry consists
2341 // of two pointer sized fields.
2342 Add(scratch, number_string_cache,
2343 Operand(scratch, LSL, kPointerSizeLog2 + 1));
2344
2345 // Check if the entry is the smi we are looking for.
2346 Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2347 Cmp(object, probe);
2348 B(ne, not_found);
2349
2350 // Get the result from the cache.
2351 Bind(&load_result_from_cache);
2352 Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
2353 IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
2354 scratch1, scratch2);
2355}
2356
2357
2358void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2359 FPRegister value,
2360 FPRegister scratch_d,
2361 Label* on_successful_conversion,
2362 Label* on_failed_conversion) {
2363 // Convert to an int and back again, then compare with the original value.
2364 Fcvtzs(as_int, value);
2365 Scvtf(scratch_d, as_int);
2366 Fcmp(value, scratch_d);
2367
2368 if (on_successful_conversion) {
2369 B(on_successful_conversion, eq);
2370 }
2371 if (on_failed_conversion) {
2372 B(on_failed_conversion, ne);
2373 }
2374}
2375
2376
2377void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2378 UseScratchRegisterScope temps(this);
2379 Register temp = temps.AcquireX();
2380 // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2381 // cause overflow.
2382 Fmov(temp, input);
2383 Cmp(temp, 1);
2384}
2385
2386
2387void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2388 Label* on_negative_zero) {
2389 TestForMinusZero(input);
2390 B(vs, on_negative_zero);
2391}
2392
2393
2394void MacroAssembler::JumpIfMinusZero(Register input,
2395 Label* on_negative_zero) {
2396 DCHECK(input.Is64Bits());
2397 // Floating point value is in an integer register. Detect -0.0 by subtracting
2398 // 1 (cmp), which will cause overflow.
2399 Cmp(input, 1);
2400 B(vs, on_negative_zero);
2401}
2402
2403
2404void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2405 // Clamp the value to [0..255].
2406 Cmp(input.W(), Operand(input.W(), UXTB));
2407 // If input < input & 0xff, it must be < 0, so saturate to 0.
2408 Csel(output.W(), wzr, input.W(), lt);
2409 // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2410 Csel(output.W(), output.W(), 255, le);
2411}
2412
2413
2414void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2415 ClampInt32ToUint8(in_out, in_out);
2416}
2417
2418
2419void MacroAssembler::ClampDoubleToUint8(Register output,
2420 DoubleRegister input,
2421 DoubleRegister dbl_scratch) {
2422 // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2423 // - Inputs lower than 0 (including -infinity) produce 0.
2424 // - Inputs higher than 255 (including +infinity) produce 255.
2425 // Also, it seems that PIXEL types use round-to-nearest rather than
2426 // round-towards-zero.
2427
2428 // Squash +infinity before the conversion, since Fcvtnu will normally
2429 // convert it to 0.
2430 Fmov(dbl_scratch, 255);
2431 Fmin(dbl_scratch, dbl_scratch, input);
2432
2433 // Convert double to unsigned integer. Values less than zero become zero.
2434 // Values greater than 255 have already been clamped to 255.
2435 Fcvtnu(output, dbl_scratch);
2436}
2437
2438
2439void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
2440 Register src,
2441 unsigned count,
2442 Register scratch1,
2443 Register scratch2,
2444 Register scratch3,
2445 Register scratch4,
2446 Register scratch5) {
2447 // Untag src and dst into scratch registers.
2448 // Copy src->dst in a tight loop.
2449 DCHECK(!AreAliased(dst, src,
2450 scratch1, scratch2, scratch3, scratch4, scratch5));
2451 DCHECK(count >= 2);
2452
2453 const Register& remaining = scratch3;
2454 Mov(remaining, count / 2);
2455
2456 const Register& dst_untagged = scratch1;
2457 const Register& src_untagged = scratch2;
2458 Sub(dst_untagged, dst, kHeapObjectTag);
2459 Sub(src_untagged, src, kHeapObjectTag);
2460
2461 // Copy fields in pairs.
2462 Label loop;
2463 Bind(&loop);
2464 Ldp(scratch4, scratch5,
2465 MemOperand(src_untagged, kXRegSize* 2, PostIndex));
2466 Stp(scratch4, scratch5,
2467 MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
2468 Sub(remaining, remaining, 1);
2469 Cbnz(remaining, &loop);
2470
2471 // Handle the leftovers.
2472 if (count & 1) {
2473 Ldr(scratch4, MemOperand(src_untagged));
2474 Str(scratch4, MemOperand(dst_untagged));
2475 }
2476}
2477
2478
2479void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
2480 Register src,
2481 unsigned count,
2482 Register scratch1,
2483 Register scratch2,
2484 Register scratch3,
2485 Register scratch4) {
2486 // Untag src and dst into scratch registers.
2487 // Copy src->dst in an unrolled loop.
2488 DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
2489
2490 const Register& dst_untagged = scratch1;
2491 const Register& src_untagged = scratch2;
2492 sub(dst_untagged, dst, kHeapObjectTag);
2493 sub(src_untagged, src, kHeapObjectTag);
2494
2495 // Copy fields in pairs.
2496 for (unsigned i = 0; i < count / 2; i++) {
2497 Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
2498 Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
2499 }
2500
2501 // Handle the leftovers.
2502 if (count & 1) {
2503 Ldr(scratch3, MemOperand(src_untagged));
2504 Str(scratch3, MemOperand(dst_untagged));
2505 }
2506}
2507
2508
2509void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
2510 Register src,
2511 unsigned count,
2512 Register scratch1,
2513 Register scratch2,
2514 Register scratch3) {
2515 // Untag src and dst into scratch registers.
2516 // Copy src->dst in an unrolled loop.
2517 DCHECK(!AreAliased(dst, src, scratch1, scratch2, scratch3));
2518
2519 const Register& dst_untagged = scratch1;
2520 const Register& src_untagged = scratch2;
2521 Sub(dst_untagged, dst, kHeapObjectTag);
2522 Sub(src_untagged, src, kHeapObjectTag);
2523
2524 // Copy fields one by one.
2525 for (unsigned i = 0; i < count; i++) {
2526 Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
2527 Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
2528 }
2529}
2530
2531
2532void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
2533 unsigned count) {
2534 // One of two methods is used:
2535 //
2536 // For high 'count' values where many scratch registers are available:
2537 // Untag src and dst into scratch registers.
2538 // Copy src->dst in a tight loop.
2539 //
2540 // For low 'count' values or where few scratch registers are available:
2541 // Untag src and dst into scratch registers.
2542 // Copy src->dst in an unrolled loop.
2543 //
2544 // In both cases, fields are copied in pairs if possible, and left-overs are
2545 // handled separately.
2546 DCHECK(!AreAliased(dst, src));
2547 DCHECK(!temps.IncludesAliasOf(dst));
2548 DCHECK(!temps.IncludesAliasOf(src));
2549 DCHECK(!temps.IncludesAliasOf(xzr));
2550
2551 if (emit_debug_code()) {
2552 Cmp(dst, src);
2553 Check(ne, kTheSourceAndDestinationAreTheSame);
2554 }
2555
2556 // The value of 'count' at which a loop will be generated (if there are
2557 // enough scratch registers).
2558 static const unsigned kLoopThreshold = 8;
2559
2560 UseScratchRegisterScope masm_temps(this);
2561 if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
2562 CopyFieldsLoopPairsHelper(dst, src, count,
2563 Register(temps.PopLowestIndex()),
2564 Register(temps.PopLowestIndex()),
2565 Register(temps.PopLowestIndex()),
2566 masm_temps.AcquireX(),
2567 masm_temps.AcquireX());
2568 } else if (temps.Count() >= 2) {
2569 CopyFieldsUnrolledPairsHelper(dst, src, count,
2570 Register(temps.PopLowestIndex()),
2571 Register(temps.PopLowestIndex()),
2572 masm_temps.AcquireX(),
2573 masm_temps.AcquireX());
2574 } else if (temps.Count() == 1) {
2575 CopyFieldsUnrolledHelper(dst, src, count,
2576 Register(temps.PopLowestIndex()),
2577 masm_temps.AcquireX(),
2578 masm_temps.AcquireX());
2579 } else {
2580 UNREACHABLE();
2581 }
2582}
2583
2584
2585void MacroAssembler::CopyBytes(Register dst,
2586 Register src,
2587 Register length,
2588 Register scratch,
2589 CopyHint hint) {
2590 UseScratchRegisterScope temps(this);
2591 Register tmp1 = temps.AcquireX();
2592 Register tmp2 = temps.AcquireX();
2593 DCHECK(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2594 DCHECK(!AreAliased(src, dst, csp));
2595
2596 if (emit_debug_code()) {
2597 // Check copy length.
2598 Cmp(length, 0);
2599 Assert(ge, kUnexpectedNegativeValue);
2600
2601 // Check src and dst buffers don't overlap.
2602 Add(scratch, src, length); // Calculate end of src buffer.
2603 Cmp(scratch, dst);
2604 Add(scratch, dst, length); // Calculate end of dst buffer.
2605 Ccmp(scratch, src, ZFlag, gt);
2606 Assert(le, kCopyBuffersOverlap);
2607 }
2608
2609 Label short_copy, short_loop, bulk_loop, done;
2610
2611 if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2612 Register bulk_length = scratch;
2613 int pair_size = 2 * kXRegSize;
2614 int pair_mask = pair_size - 1;
2615
2616 Bic(bulk_length, length, pair_mask);
2617 Cbz(bulk_length, &short_copy);
2618 Bind(&bulk_loop);
2619 Sub(bulk_length, bulk_length, pair_size);
2620 Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2621 Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2622 Cbnz(bulk_length, &bulk_loop);
2623
2624 And(length, length, pair_mask);
2625 }
2626
2627 Bind(&short_copy);
2628 Cbz(length, &done);
2629 Bind(&short_loop);
2630 Sub(length, length, 1);
2631 Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2632 Strb(tmp1, MemOperand(dst, 1, PostIndex));
2633 Cbnz(length, &short_loop);
2634
2635
2636 Bind(&done);
2637}
2638
2639
2640void MacroAssembler::FillFields(Register dst,
2641 Register field_count,
2642 Register filler) {
2643 DCHECK(!dst.Is(csp));
2644 UseScratchRegisterScope temps(this);
2645 Register field_ptr = temps.AcquireX();
2646 Register counter = temps.AcquireX();
2647 Label done;
2648
2649 // Decrement count. If the result < zero, count was zero, and there's nothing
2650 // to do. If count was one, flags are set to fail the gt condition at the end
2651 // of the pairs loop.
2652 Subs(counter, field_count, 1);
2653 B(lt, &done);
2654
2655 // There's at least one field to fill, so do this unconditionally.
2656 Str(filler, MemOperand(dst, kPointerSize, PostIndex));
2657
2658 // If the bottom bit of counter is set, there are an even number of fields to
2659 // fill, so pull the start pointer back by one field, allowing the pairs loop
2660 // to overwrite the field that was stored above.
2661 And(field_ptr, counter, 1);
2662 Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
2663
2664 // Store filler to memory in pairs.
2665 Label entry, loop;
2666 B(&entry);
2667 Bind(&loop);
2668 Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
2669 Subs(counter, counter, 2);
2670 Bind(&entry);
2671 B(gt, &loop);
2672
2673 Bind(&done);
2674}
2675
2676
2677void MacroAssembler::JumpIfEitherIsNotSequentialOneByteStrings(
2678 Register first, Register second, Register scratch1, Register scratch2,
2679 Label* failure, SmiCheckType smi_check) {
2680 if (smi_check == DO_SMI_CHECK) {
2681 JumpIfEitherSmi(first, second, failure);
2682 } else if (emit_debug_code()) {
2683 DCHECK(smi_check == DONT_DO_SMI_CHECK);
2684 Label not_smi;
2685 JumpIfEitherSmi(first, second, NULL, &not_smi);
2686
2687 // At least one input is a smi, but the flags indicated a smi check wasn't
2688 // needed.
2689 Abort(kUnexpectedSmi);
2690
2691 Bind(&not_smi);
2692 }
2693
2694 // Test that both first and second are sequential one-byte strings.
2695 Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2696 Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2697 Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2698 Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2699
2700 JumpIfEitherInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, scratch1,
2701 scratch2, failure);
2702}
2703
2704
2705void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialOneByte(
2706 Register first, Register second, Register scratch1, Register scratch2,
2707 Label* failure) {
2708 DCHECK(!AreAliased(scratch1, second));
2709 DCHECK(!AreAliased(scratch1, scratch2));
2710 static const int kFlatOneByteStringMask =
2711 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2712 static const int kFlatOneByteStringTag = ONE_BYTE_STRING_TYPE;
2713 And(scratch1, first, kFlatOneByteStringMask);
2714 And(scratch2, second, kFlatOneByteStringMask);
2715 Cmp(scratch1, kFlatOneByteStringTag);
2716 Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2717 B(ne, failure);
2718}
2719
2720
2721void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
2722 Register scratch,
2723 Label* failure) {
2724 const int kFlatOneByteStringMask =
2725 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2726 const int kFlatOneByteStringTag =
2727 kStringTag | kOneByteStringTag | kSeqStringTag;
2728 And(scratch, type, kFlatOneByteStringMask);
2729 Cmp(scratch, kFlatOneByteStringTag);
2730 B(ne, failure);
2731}
2732
2733
2734void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
2735 Register first, Register second, Register scratch1, Register scratch2,
2736 Label* failure) {
2737 DCHECK(!AreAliased(first, second, scratch1, scratch2));
2738 const int kFlatOneByteStringMask =
2739 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2740 const int kFlatOneByteStringTag =
2741 kStringTag | kOneByteStringTag | kSeqStringTag;
2742 And(scratch1, first, kFlatOneByteStringMask);
2743 And(scratch2, second, kFlatOneByteStringMask);
2744 Cmp(scratch1, kFlatOneByteStringTag);
2745 Ccmp(scratch2, kFlatOneByteStringTag, NoFlag, eq);
2746 B(ne, failure);
2747}
2748
2749
2750void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register type,
2751 Label* not_unique_name) {
2752 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2753 // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2754 // continue
2755 // } else {
2756 // goto not_unique_name
2757 // }
2758 Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2759 Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2760 B(ne, not_unique_name);
2761}
2762
2763
2764void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2765 const ParameterCount& actual,
2766 Handle<Code> code_constant,
2767 Register code_reg,
2768 Label* done,
2769 InvokeFlag flag,
2770 bool* definitely_mismatches,
2771 const CallWrapper& call_wrapper) {
2772 bool definitely_matches = false;
2773 *definitely_mismatches = false;
2774 Label regular_invoke;
2775
2776 // Check whether the expected and actual arguments count match. If not,
2777 // setup registers according to contract with ArgumentsAdaptorTrampoline:
2778 // x0: actual arguments count.
2779 // x1: function (passed through to callee).
2780 // x2: expected arguments count.
2781
2782 // The code below is made a lot easier because the calling code already sets
2783 // up actual and expected registers according to the contract if values are
2784 // passed in registers.
2785 DCHECK(actual.is_immediate() || actual.reg().is(x0));
2786 DCHECK(expected.is_immediate() || expected.reg().is(x2));
2787 DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
2788
2789 if (expected.is_immediate()) {
2790 DCHECK(actual.is_immediate());
2791 if (expected.immediate() == actual.immediate()) {
2792 definitely_matches = true;
2793
2794 } else {
2795 Mov(x0, actual.immediate());
2796 if (expected.immediate() ==
2797 SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2798 // Don't worry about adapting arguments for builtins that
2799 // don't want that done. Skip adaption code by making it look
2800 // like we have a match between expected and actual number of
2801 // arguments.
2802 definitely_matches = true;
2803 } else {
2804 *definitely_mismatches = true;
2805 // Set up x2 for the argument adaptor.
2806 Mov(x2, expected.immediate());
2807 }
2808 }
2809
2810 } else { // expected is a register.
2811 Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2812 : Operand(actual.reg());
2813 // If actual == expected perform a regular invocation.
2814 Cmp(expected.reg(), actual_op);
2815 B(eq, &regular_invoke);
2816 // Otherwise set up x0 for the argument adaptor.
2817 Mov(x0, actual_op);
2818 }
2819
2820 // If the argument counts may mismatch, generate a call to the argument
2821 // adaptor.
2822 if (!definitely_matches) {
2823 if (!code_constant.is_null()) {
2824 Mov(x3, Operand(code_constant));
2825 Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
2826 }
2827
2828 Handle<Code> adaptor =
2829 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2830 if (flag == CALL_FUNCTION) {
2831 call_wrapper.BeforeCall(CallSize(adaptor));
2832 Call(adaptor);
2833 call_wrapper.AfterCall();
2834 if (!*definitely_mismatches) {
2835 // If the arg counts don't match, no extra code is emitted by
2836 // MAsm::InvokeCode and we can just fall through.
2837 B(done);
2838 }
2839 } else {
2840 Jump(adaptor, RelocInfo::CODE_TARGET);
2841 }
2842 }
2843 Bind(&regular_invoke);
2844}
2845
2846
2847void MacroAssembler::InvokeCode(Register code,
2848 const ParameterCount& expected,
2849 const ParameterCount& actual,
2850 InvokeFlag flag,
2851 const CallWrapper& call_wrapper) {
2852 // You can't call a function without a valid frame.
2853 DCHECK(flag == JUMP_FUNCTION || has_frame());
2854
2855 Label done;
2856
2857 bool definitely_mismatches = false;
2858 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
2859 &definitely_mismatches, call_wrapper);
2860
2861 // If we are certain that actual != expected, then we know InvokePrologue will
2862 // have handled the call through the argument adaptor mechanism.
2863 // The called function expects the call kind in x5.
2864 if (!definitely_mismatches) {
2865 if (flag == CALL_FUNCTION) {
2866 call_wrapper.BeforeCall(CallSize(code));
2867 Call(code);
2868 call_wrapper.AfterCall();
2869 } else {
2870 DCHECK(flag == JUMP_FUNCTION);
2871 Jump(code);
2872 }
2873 }
2874
2875 // Continue here if InvokePrologue does handle the invocation due to
2876 // mismatched parameter counts.
2877 Bind(&done);
2878}
2879
2880
2881void MacroAssembler::InvokeFunction(Register function,
2882 const ParameterCount& actual,
2883 InvokeFlag flag,
2884 const CallWrapper& call_wrapper) {
2885 // You can't call a function without a valid frame.
2886 DCHECK(flag == JUMP_FUNCTION || has_frame());
2887
2888 // Contract with called JS functions requires that function is passed in x1.
2889 // (See FullCodeGenerator::Generate().)
2890 DCHECK(function.is(x1));
2891
2892 Register expected_reg = x2;
2893 Register code_reg = x3;
2894
2895 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2896 // The number of arguments is stored as an int32_t, and -1 is a marker
2897 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2898 // extension to correctly handle it.
2899 Ldr(expected_reg, FieldMemOperand(function,
2900 JSFunction::kSharedFunctionInfoOffset));
2901 Ldrsw(expected_reg,
2902 FieldMemOperand(expected_reg,
2903 SharedFunctionInfo::kFormalParameterCountOffset));
2904 Ldr(code_reg,
2905 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2906
2907 ParameterCount expected(expected_reg);
2908 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2909}
2910
2911
2912void MacroAssembler::InvokeFunction(Register function,
2913 const ParameterCount& expected,
2914 const ParameterCount& actual,
2915 InvokeFlag flag,
2916 const CallWrapper& call_wrapper) {
2917 // You can't call a function without a valid frame.
2918 DCHECK(flag == JUMP_FUNCTION || has_frame());
2919
2920 // Contract with called JS functions requires that function is passed in x1.
2921 // (See FullCodeGenerator::Generate().)
2922 DCHECK(function.Is(x1));
2923
2924 Register code_reg = x3;
2925
2926 // Set up the context.
2927 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2928
2929 // We call indirectly through the code field in the function to
2930 // allow recompilation to take effect without changing any of the
2931 // call sites.
2932 Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2933 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2934}
2935
2936
2937void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2938 const ParameterCount& expected,
2939 const ParameterCount& actual,
2940 InvokeFlag flag,
2941 const CallWrapper& call_wrapper) {
2942 // Contract with called JS functions requires that function is passed in x1.
2943 // (See FullCodeGenerator::Generate().)
2944 __ LoadObject(x1, function);
2945 InvokeFunction(x1, expected, actual, flag, call_wrapper);
2946}
2947
2948
2949void MacroAssembler::TryConvertDoubleToInt64(Register result,
2950 DoubleRegister double_input,
2951 Label* done) {
2952 // Try to convert with an FPU convert instruction. It's trivial to compute
2953 // the modulo operation on an integer register so we convert to a 64-bit
2954 // integer.
2955 //
2956 // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2957 // when the double is out of range. NaNs and infinities will be converted to 0
2958 // (as ECMA-262 requires).
2959 Fcvtzs(result.X(), double_input);
2960
2961 // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2962 // representable using a double, so if the result is one of those then we know
2963 // that saturation occured, and we need to manually handle the conversion.
2964 //
2965 // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2966 // 1 will cause signed overflow.
2967 Cmp(result.X(), 1);
2968 Ccmp(result.X(), -1, VFlag, vc);
2969
2970 B(vc, done);
2971}
2972
2973
2974void MacroAssembler::TruncateDoubleToI(Register result,
2975 DoubleRegister double_input) {
2976 Label done;
2977
2978 // Try to convert the double to an int64. If successful, the bottom 32 bits
2979 // contain our truncated int32 result.
2980 TryConvertDoubleToInt64(result, double_input, &done);
2981
2982 const Register old_stack_pointer = StackPointer();
2983 if (csp.Is(old_stack_pointer)) {
2984 // This currently only happens during compiler-unittest. If it arises
2985 // during regular code generation the DoubleToI stub should be updated to
2986 // cope with csp and have an extra parameter indicating which stack pointer
2987 // it should use.
2988 Push(jssp, xzr); // Push xzr to maintain csp required 16-bytes alignment.
2989 Mov(jssp, csp);
2990 SetStackPointer(jssp);
2991 }
2992
2993 // If we fell through then inline version didn't succeed - call stub instead.
2994 Push(lr, double_input);
2995
2996 DoubleToIStub stub(isolate(),
2997 jssp,
2998 result,
2999 0,
3000 true, // is_truncating
3001 true); // skip_fastpath
3002 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
3003
3004 DCHECK_EQ(xzr.SizeInBytes(), double_input.SizeInBytes());
3005 Pop(xzr, lr); // xzr to drop the double input on the stack.
3006
3007 if (csp.Is(old_stack_pointer)) {
3008 Mov(csp, jssp);
3009 SetStackPointer(csp);
3010 AssertStackConsistency();
3011 Pop(xzr, jssp);
3012 }
3013
3014 Bind(&done);
3015}
3016
3017
3018void MacroAssembler::TruncateHeapNumberToI(Register result,
3019 Register object) {
3020 Label done;
3021 DCHECK(!result.is(object));
3022 DCHECK(jssp.Is(StackPointer()));
3023
3024 Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
3025
3026 // Try to convert the double to an int64. If successful, the bottom 32 bits
3027 // contain our truncated int32 result.
3028 TryConvertDoubleToInt64(result, fp_scratch, &done);
3029
3030 // If we fell through then inline version didn't succeed - call stub instead.
3031 Push(lr);
3032 DoubleToIStub stub(isolate(),
3033 object,
3034 result,
3035 HeapNumber::kValueOffset - kHeapObjectTag,
3036 true, // is_truncating
3037 true); // skip_fastpath
3038 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
3039 Pop(lr);
3040
3041 Bind(&done);
3042}
3043
3044
3045void MacroAssembler::StubPrologue() {
3046 DCHECK(StackPointer().Is(jssp));
3047 UseScratchRegisterScope temps(this);
3048 Register temp = temps.AcquireX();
3049 __ Mov(temp, Smi::FromInt(StackFrame::STUB));
3050 // Compiled stubs don't age, and so they don't need the predictable code
3051 // ageing sequence.
3052 __ Push(lr, fp, cp, temp);
3053 __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
3054}
3055
3056
3057void MacroAssembler::Prologue(bool code_pre_aging) {
3058 if (code_pre_aging) {
3059 Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
3060 __ EmitCodeAgeSequence(stub);
3061 } else {
3062 __ EmitFrameSetupForCodeAgePatching();
3063 }
3064}
3065
3066
3067void MacroAssembler::EnterFrame(StackFrame::Type type) {
3068 DCHECK(jssp.Is(StackPointer()));
3069 UseScratchRegisterScope temps(this);
3070 Register type_reg = temps.AcquireX();
3071 Register code_reg = temps.AcquireX();
3072
3073 Push(lr, fp, cp);
3074 Mov(type_reg, Smi::FromInt(type));
3075 Mov(code_reg, Operand(CodeObject()));
3076 Push(type_reg, code_reg);
3077 // jssp[4] : lr
3078 // jssp[3] : fp
3079 // jssp[2] : cp
3080 // jssp[1] : type
3081 // jssp[0] : code object
3082
3083 // Adjust FP to point to saved FP.
3084 Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
3085}
3086
3087
3088void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3089 DCHECK(jssp.Is(StackPointer()));
3090 // Drop the execution stack down to the frame pointer and restore
3091 // the caller frame pointer and return address.
3092 Mov(jssp, fp);
3093 AssertStackConsistency();
3094 Pop(fp, lr);
3095}
3096
3097
3098void MacroAssembler::ExitFramePreserveFPRegs() {
3099 PushCPURegList(kCallerSavedFP);
3100}
3101
3102
3103void MacroAssembler::ExitFrameRestoreFPRegs() {
3104 // Read the registers from the stack without popping them. The stack pointer
3105 // will be reset as part of the unwinding process.
3106 CPURegList saved_fp_regs = kCallerSavedFP;
3107 DCHECK(saved_fp_regs.Count() % 2 == 0);
3108
3109 int offset = ExitFrameConstants::kLastExitFrameField;
3110 while (!saved_fp_regs.IsEmpty()) {
3111 const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
3112 const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
3113 offset -= 2 * kDRegSize;
3114 Ldp(dst1, dst0, MemOperand(fp, offset));
3115 }
3116}
3117
3118
3119void MacroAssembler::EnterExitFrame(bool save_doubles,
3120 const Register& scratch,
3121 int extra_space) {
3122 DCHECK(jssp.Is(StackPointer()));
3123
3124 // Set up the new stack frame.
3125 Mov(scratch, Operand(CodeObject()));
3126 Push(lr, fp);
3127 Mov(fp, StackPointer());
3128 Push(xzr, scratch);
3129 // fp[8]: CallerPC (lr)
3130 // fp -> fp[0]: CallerFP (old fp)
3131 // fp[-8]: Space reserved for SPOffset.
3132 // jssp -> fp[-16]: CodeObject()
3133 STATIC_ASSERT((2 * kPointerSize) ==
3134 ExitFrameConstants::kCallerSPDisplacement);
3135 STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
3136 STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
3137 STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
3138 STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
3139
3140 // Save the frame pointer and context pointer in the top frame.
3141 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3142 isolate())));
3143 Str(fp, MemOperand(scratch));
3144 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3145 isolate())));
3146 Str(cp, MemOperand(scratch));
3147
3148 STATIC_ASSERT((-2 * kPointerSize) ==
3149 ExitFrameConstants::kLastExitFrameField);
3150 if (save_doubles) {
3151 ExitFramePreserveFPRegs();
3152 }
3153
3154 // Reserve space for the return address and for user requested memory.
3155 // We do this before aligning to make sure that we end up correctly
3156 // aligned with the minimum of wasted space.
3157 Claim(extra_space + 1, kXRegSize);
3158 // fp[8]: CallerPC (lr)
3159 // fp -> fp[0]: CallerFP (old fp)
3160 // fp[-8]: Space reserved for SPOffset.
3161 // fp[-16]: CodeObject()
3162 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3163 // jssp[8]: Extra space reserved for caller (if extra_space != 0).
3164 // jssp -> jssp[0]: Space reserved for the return address.
3165
3166 // Align and synchronize the system stack pointer with jssp.
3167 AlignAndSetCSPForFrame();
3168 DCHECK(csp.Is(StackPointer()));
3169
3170 // fp[8]: CallerPC (lr)
3171 // fp -> fp[0]: CallerFP (old fp)
3172 // fp[-8]: Space reserved for SPOffset.
3173 // fp[-16]: CodeObject()
3174 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3175 // csp[8]: Memory reserved for the caller if extra_space != 0.
3176 // Alignment padding, if necessary.
3177 // csp -> csp[0]: Space reserved for the return address.
3178
3179 // ExitFrame::GetStateForFramePointer expects to find the return address at
3180 // the memory address immediately below the pointer stored in SPOffset.
3181 // It is not safe to derive much else from SPOffset, because the size of the
3182 // padding can vary.
3183 Add(scratch, csp, kXRegSize);
3184 Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
3185}
3186
3187
3188// Leave the current exit frame.
3189void MacroAssembler::LeaveExitFrame(bool restore_doubles,
3190 const Register& scratch,
3191 bool restore_context) {
3192 DCHECK(csp.Is(StackPointer()));
3193
3194 if (restore_doubles) {
3195 ExitFrameRestoreFPRegs();
3196 }
3197
3198 // Restore the context pointer from the top frame.
3199 if (restore_context) {
3200 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3201 isolate())));
3202 Ldr(cp, MemOperand(scratch));
3203 }
3204
3205 if (emit_debug_code()) {
3206 // Also emit debug code to clear the cp in the top frame.
3207 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3208 isolate())));
3209 Str(xzr, MemOperand(scratch));
3210 }
3211 // Clear the frame pointer from the top frame.
3212 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3213 isolate())));
3214 Str(xzr, MemOperand(scratch));
3215
3216 // Pop the exit frame.
3217 // fp[8]: CallerPC (lr)
3218 // fp -> fp[0]: CallerFP (old fp)
3219 // fp[...]: The rest of the frame.
3220 Mov(jssp, fp);
3221 SetStackPointer(jssp);
3222 AssertStackConsistency();
3223 Pop(fp, lr);
3224}
3225
3226
3227void MacroAssembler::SetCounter(StatsCounter* counter, int value,
3228 Register scratch1, Register scratch2) {
3229 if (FLAG_native_code_counters && counter->Enabled()) {
3230 Mov(scratch1, value);
3231 Mov(scratch2, ExternalReference(counter));
3232 Str(scratch1, MemOperand(scratch2));
3233 }
3234}
3235
3236
3237void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
3238 Register scratch1, Register scratch2) {
3239 DCHECK(value != 0);
3240 if (FLAG_native_code_counters && counter->Enabled()) {
3241 Mov(scratch2, ExternalReference(counter));
3242 Ldr(scratch1, MemOperand(scratch2));
3243 Add(scratch1, scratch1, value);
3244 Str(scratch1, MemOperand(scratch2));
3245 }
3246}
3247
3248
3249void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
3250 Register scratch1, Register scratch2) {
3251 IncrementCounter(counter, -value, scratch1, scratch2);
3252}
3253
3254
3255void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
3256 if (context_chain_length > 0) {
3257 // Move up the chain of contexts to the context containing the slot.
3258 Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3259 for (int i = 1; i < context_chain_length; i++) {
3260 Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3261 }
3262 } else {
3263 // Slot is in the current function context. Move it into the
3264 // destination register in case we store into it (the write barrier
3265 // cannot be allowed to destroy the context in cp).
3266 Mov(dst, cp);
3267 }
3268}
3269
3270
3271void MacroAssembler::DebugBreak() {
3272 Mov(x0, 0);
3273 Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
3274 CEntryStub ces(isolate(), 1);
3275 DCHECK(AllowThisStubCall(&ces));
3276 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3277}
3278
3279
3280void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
3281 int handler_index) {
3282 DCHECK(jssp.Is(StackPointer()));
3283 // Adjust this code if the asserts don't hold.
3284 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3285 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3286 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3287 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3288 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3289 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3290
3291 // For the JSEntry handler, we must preserve the live registers x0-x4.
3292 // (See JSEntryStub::GenerateBody().)
3293
3294 unsigned state =
3295 StackHandler::IndexField::encode(handler_index) |
3296 StackHandler::KindField::encode(kind);
3297
3298 // Set up the code object and the state for pushing.
3299 Mov(x10, Operand(CodeObject()));
3300 Mov(x11, state);
3301
3302 // Push the frame pointer, context, state, and code object.
3303 if (kind == StackHandler::JS_ENTRY) {
3304 DCHECK(Smi::FromInt(0) == 0);
3305 Push(xzr, xzr, x11, x10);
3306 } else {
3307 Push(fp, cp, x11, x10);
3308 }
3309
3310 // Link the current handler as the next handler.
3311 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3312 Ldr(x10, MemOperand(x11));
3313 Push(x10);
3314 // Set this new handler as the current one.
3315 Str(jssp, MemOperand(x11));
3316}
3317
3318
3319void MacroAssembler::PopTryHandler() {
3320 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3321 Pop(x10);
3322 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3323 Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
3324 Str(x10, MemOperand(x11));
3325}
3326
3327
3328void MacroAssembler::Allocate(int object_size,
3329 Register result,
3330 Register scratch1,
3331 Register scratch2,
3332 Label* gc_required,
3333 AllocationFlags flags) {
3334 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
3335 if (!FLAG_inline_new) {
3336 if (emit_debug_code()) {
3337 // Trash the registers to simulate an allocation failure.
3338 // We apply salt to the original zap value to easily spot the values.
3339 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3340 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3341 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3342 }
3343 B(gc_required);
3344 return;
3345 }
3346
3347 UseScratchRegisterScope temps(this);
3348 Register scratch3 = temps.AcquireX();
3349
3350 DCHECK(!AreAliased(result, scratch1, scratch2, scratch3));
3351 DCHECK(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3352
3353 // Make object size into bytes.
3354 if ((flags & SIZE_IN_WORDS) != 0) {
3355 object_size *= kPointerSize;
3356 }
3357 DCHECK(0 == (object_size & kObjectAlignmentMask));
3358
3359 // Check relative positions of allocation top and limit addresses.
3360 // The values must be adjacent in memory to allow the use of LDP.
3361 ExternalReference heap_allocation_top =
3362 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3363 ExternalReference heap_allocation_limit =
3364 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3365 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3366 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3367 DCHECK((limit - top) == kPointerSize);
3368
3369 // Set up allocation top address and object size registers.
3370 Register top_address = scratch1;
3371 Register allocation_limit = scratch2;
3372 Mov(top_address, Operand(heap_allocation_top));
3373
3374 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3375 // Load allocation top into result and the allocation limit.
3376 Ldp(result, allocation_limit, MemOperand(top_address));
3377 } else {
3378 if (emit_debug_code()) {
3379 // Assert that result actually contains top on entry.
3380 Ldr(scratch3, MemOperand(top_address));
3381 Cmp(result, scratch3);
3382 Check(eq, kUnexpectedAllocationTop);
3383 }
3384 // Load the allocation limit. 'result' already contains the allocation top.
3385 Ldr(allocation_limit, MemOperand(top_address, limit - top));
3386 }
3387
3388 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3389 // the same alignment on ARM64.
3390 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3391
3392 // Calculate new top and bail out if new space is exhausted.
3393 Adds(scratch3, result, object_size);
3394 Ccmp(scratch3, allocation_limit, CFlag, cc);
3395 B(hi, gc_required);
3396 Str(scratch3, MemOperand(top_address));
3397
3398 // Tag the object if requested.
3399 if ((flags & TAG_OBJECT) != 0) {
3400 ObjectTag(result, result);
3401 }
3402}
3403
3404
3405void MacroAssembler::Allocate(Register object_size,
3406 Register result,
3407 Register scratch1,
3408 Register scratch2,
3409 Label* gc_required,
3410 AllocationFlags flags) {
3411 if (!FLAG_inline_new) {
3412 if (emit_debug_code()) {
3413 // Trash the registers to simulate an allocation failure.
3414 // We apply salt to the original zap value to easily spot the values.
3415 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3416 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3417 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3418 }
3419 B(gc_required);
3420 return;
3421 }
3422
3423 UseScratchRegisterScope temps(this);
3424 Register scratch3 = temps.AcquireX();
3425
3426 DCHECK(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
3427 DCHECK(object_size.Is64Bits() && result.Is64Bits() &&
3428 scratch1.Is64Bits() && scratch2.Is64Bits());
3429
3430 // Check relative positions of allocation top and limit addresses.
3431 // The values must be adjacent in memory to allow the use of LDP.
3432 ExternalReference heap_allocation_top =
3433 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3434 ExternalReference heap_allocation_limit =
3435 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3436 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3437 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3438 DCHECK((limit - top) == kPointerSize);
3439
3440 // Set up allocation top address and object size registers.
3441 Register top_address = scratch1;
3442 Register allocation_limit = scratch2;
3443 Mov(top_address, heap_allocation_top);
3444
3445 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3446 // Load allocation top into result and the allocation limit.
3447 Ldp(result, allocation_limit, MemOperand(top_address));
3448 } else {
3449 if (emit_debug_code()) {
3450 // Assert that result actually contains top on entry.
3451 Ldr(scratch3, MemOperand(top_address));
3452 Cmp(result, scratch3);
3453 Check(eq, kUnexpectedAllocationTop);
3454 }
3455 // Load the allocation limit. 'result' already contains the allocation top.
3456 Ldr(allocation_limit, MemOperand(top_address, limit - top));
3457 }
3458
3459 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3460 // the same alignment on ARM64.
3461 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3462
3463 // Calculate new top and bail out if new space is exhausted
3464 if ((flags & SIZE_IN_WORDS) != 0) {
3465 Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
3466 } else {
3467 Adds(scratch3, result, object_size);
3468 }
3469
3470 if (emit_debug_code()) {
3471 Tst(scratch3, kObjectAlignmentMask);
3472 Check(eq, kUnalignedAllocationInNewSpace);
3473 }
3474
3475 Ccmp(scratch3, allocation_limit, CFlag, cc);
3476 B(hi, gc_required);
3477 Str(scratch3, MemOperand(top_address));
3478
3479 // Tag the object if requested.
3480 if ((flags & TAG_OBJECT) != 0) {
3481 ObjectTag(result, result);
3482 }
3483}
3484
3485
3486void MacroAssembler::UndoAllocationInNewSpace(Register object,
3487 Register scratch) {
3488 ExternalReference new_space_allocation_top =
3489 ExternalReference::new_space_allocation_top_address(isolate());
3490
3491 // Make sure the object has no tag before resetting top.
3492 Bic(object, object, kHeapObjectTagMask);
3493#ifdef DEBUG
3494 // Check that the object un-allocated is below the current top.
3495 Mov(scratch, new_space_allocation_top);
3496 Ldr(scratch, MemOperand(scratch));
3497 Cmp(object, scratch);
3498 Check(lt, kUndoAllocationOfNonAllocatedMemory);
3499#endif
3500 // Write the address of the object to un-allocate as the current top.
3501 Mov(scratch, new_space_allocation_top);
3502 Str(object, MemOperand(scratch));
3503}
3504
3505
3506void MacroAssembler::AllocateTwoByteString(Register result,
3507 Register length,
3508 Register scratch1,
3509 Register scratch2,
3510 Register scratch3,
3511 Label* gc_required) {
3512 DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3513 // Calculate the number of bytes needed for the characters in the string while
3514 // observing object alignment.
3515 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3516 Add(scratch1, length, length); // Length in bytes, not chars.
3517 Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3518 Bic(scratch1, scratch1, kObjectAlignmentMask);
3519
3520 // Allocate two-byte string in new space.
3521 Allocate(scratch1,
3522 result,
3523 scratch2,
3524 scratch3,
3525 gc_required,
3526 TAG_OBJECT);
3527
3528 // Set the map, length and hash field.
3529 InitializeNewString(result,
3530 length,
3531 Heap::kStringMapRootIndex,
3532 scratch1,
3533 scratch2);
3534}
3535
3536
3537void MacroAssembler::AllocateOneByteString(Register result, Register length,
3538 Register scratch1, Register scratch2,
3539 Register scratch3,
3540 Label* gc_required) {
3541 DCHECK(!AreAliased(result, length, scratch1, scratch2, scratch3));
3542 // Calculate the number of bytes needed for the characters in the string while
3543 // observing object alignment.
3544 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3545 STATIC_ASSERT(kCharSize == 1);
3546 Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3547 Bic(scratch1, scratch1, kObjectAlignmentMask);
3548
3549 // Allocate one-byte string in new space.
3550 Allocate(scratch1,
3551 result,
3552 scratch2,
3553 scratch3,
3554 gc_required,
3555 TAG_OBJECT);
3556
3557 // Set the map, length and hash field.
3558 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
3559 scratch1, scratch2);
3560}
3561
3562
3563void MacroAssembler::AllocateTwoByteConsString(Register result,
3564 Register length,
3565 Register scratch1,
3566 Register scratch2,
3567 Label* gc_required) {
3568 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3569 TAG_OBJECT);
3570
3571 InitializeNewString(result,
3572 length,
3573 Heap::kConsStringMapRootIndex,
3574 scratch1,
3575 scratch2);
3576}
3577
3578
3579void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
3580 Register scratch1,
3581 Register scratch2,
3582 Label* gc_required) {
3583 Allocate(ConsString::kSize,
3584 result,
3585 scratch1,
3586 scratch2,
3587 gc_required,
3588 TAG_OBJECT);
3589
3590 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
3591 scratch1, scratch2);
3592}
3593
3594
3595void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3596 Register length,
3597 Register scratch1,
3598 Register scratch2,
3599 Label* gc_required) {
3600 DCHECK(!AreAliased(result, length, scratch1, scratch2));
3601 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3602 TAG_OBJECT);
3603
3604 InitializeNewString(result,
3605 length,
3606 Heap::kSlicedStringMapRootIndex,
3607 scratch1,
3608 scratch2);
3609}
3610
3611
3612void MacroAssembler::AllocateOneByteSlicedString(Register result,
3613 Register length,
3614 Register scratch1,
3615 Register scratch2,
3616 Label* gc_required) {
3617 DCHECK(!AreAliased(result, length, scratch1, scratch2));
3618 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3619 TAG_OBJECT);
3620
3621 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
3622 scratch1, scratch2);
3623}
3624
3625
3626// Allocates a heap number or jumps to the need_gc label if the young space
3627// is full and a scavenge is needed.
3628void MacroAssembler::AllocateHeapNumber(Register result,
3629 Label* gc_required,
3630 Register scratch1,
3631 Register scratch2,
3632 CPURegister value,
3633 CPURegister heap_number_map,
3634 MutableMode mode) {
3635 DCHECK(!value.IsValid() || value.Is64Bits());
3636 UseScratchRegisterScope temps(this);
3637
3638 // Allocate an object in the heap for the heap number and tag it as a heap
3639 // object.
3640 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3641 NO_ALLOCATION_FLAGS);
3642
3643 Heap::RootListIndex map_index = mode == MUTABLE
3644 ? Heap::kMutableHeapNumberMapRootIndex
3645 : Heap::kHeapNumberMapRootIndex;
3646
3647 // Prepare the heap number map.
3648 if (!heap_number_map.IsValid()) {
3649 // If we have a valid value register, use the same type of register to store
3650 // the map so we can use STP to store both in one instruction.
3651 if (value.IsValid() && value.IsFPRegister()) {
3652 heap_number_map = temps.AcquireD();
3653 } else {
3654 heap_number_map = scratch1;
3655 }
3656 LoadRoot(heap_number_map, map_index);
3657 }
3658 if (emit_debug_code()) {
3659 Register map;
3660 if (heap_number_map.IsFPRegister()) {
3661 map = scratch1;
3662 Fmov(map, DoubleRegister(heap_number_map));
3663 } else {
3664 map = Register(heap_number_map);
3665 }
3666 AssertRegisterIsRoot(map, map_index);
3667 }
3668
3669 // Store the heap number map and the value in the allocated object.
3670 if (value.IsSameSizeAndType(heap_number_map)) {
3671 STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3672 HeapNumber::kValueOffset);
3673 Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3674 } else {
3675 Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3676 if (value.IsValid()) {
3677 Str(value, MemOperand(result, HeapNumber::kValueOffset));
3678 }
3679 }
3680 ObjectTag(result, result);
3681}
3682
3683
3684void MacroAssembler::JumpIfObjectType(Register object,
3685 Register map,
3686 Register type_reg,
3687 InstanceType type,
3688 Label* if_cond_pass,
3689 Condition cond) {
3690 CompareObjectType(object, map, type_reg, type);
3691 B(cond, if_cond_pass);
3692}
3693
3694
3695void MacroAssembler::JumpIfNotObjectType(Register object,
3696 Register map,
3697 Register type_reg,
3698 InstanceType type,
3699 Label* if_not_object) {
3700 JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3701}
3702
3703
3704// Sets condition flags based on comparison, and returns type in type_reg.
3705void MacroAssembler::CompareObjectType(Register object,
3706 Register map,
3707 Register type_reg,
3708 InstanceType type) {
3709 Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3710 CompareInstanceType(map, type_reg, type);
3711}
3712
3713
3714// Sets condition flags based on comparison, and returns type in type_reg.
3715void MacroAssembler::CompareInstanceType(Register map,
3716 Register type_reg,
3717 InstanceType type) {
3718 Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3719 Cmp(type_reg, type);
3720}
3721
3722
3723void MacroAssembler::CompareObjectMap(Register obj, Heap::RootListIndex index) {
3724 UseScratchRegisterScope temps(this);
3725 Register obj_map = temps.AcquireX();
3726 Ldr(obj_map, FieldMemOperand(obj, HeapObject::kMapOffset));
3727 CompareRoot(obj_map, index);
3728}
3729
3730
3731void MacroAssembler::CompareObjectMap(Register obj, Register scratch,
3732 Handle<Map> map) {
3733 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3734 CompareMap(scratch, map);
3735}
3736
3737
3738void MacroAssembler::CompareMap(Register obj_map,
3739 Handle<Map> map) {
3740 Cmp(obj_map, Operand(map));
3741}
3742
3743
3744void MacroAssembler::CheckMap(Register obj,
3745 Register scratch,
3746 Handle<Map> map,
3747 Label* fail,
3748 SmiCheckType smi_check_type) {
3749 if (smi_check_type == DO_SMI_CHECK) {
3750 JumpIfSmi(obj, fail);
3751 }
3752
3753 CompareObjectMap(obj, scratch, map);
3754 B(ne, fail);
3755}
3756
3757
3758void MacroAssembler::CheckMap(Register obj,
3759 Register scratch,
3760 Heap::RootListIndex index,
3761 Label* fail,
3762 SmiCheckType smi_check_type) {
3763 if (smi_check_type == DO_SMI_CHECK) {
3764 JumpIfSmi(obj, fail);
3765 }
3766 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3767 JumpIfNotRoot(scratch, index, fail);
3768}
3769
3770
3771void MacroAssembler::CheckMap(Register obj_map,
3772 Handle<Map> map,
3773 Label* fail,
3774 SmiCheckType smi_check_type) {
3775 if (smi_check_type == DO_SMI_CHECK) {
3776 JumpIfSmi(obj_map, fail);
3777 }
3778
3779 CompareMap(obj_map, map);
3780 B(ne, fail);
3781}
3782
3783
3784void MacroAssembler::DispatchMap(Register obj,
3785 Register scratch,
3786 Handle<Map> map,
3787 Handle<Code> success,
3788 SmiCheckType smi_check_type) {
3789 Label fail;
3790 if (smi_check_type == DO_SMI_CHECK) {
3791 JumpIfSmi(obj, &fail);
3792 }
3793 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3794 Cmp(scratch, Operand(map));
3795 B(ne, &fail);
3796 Jump(success, RelocInfo::CODE_TARGET);
3797 Bind(&fail);
3798}
3799
3800
3801void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3802 UseScratchRegisterScope temps(this);
3803 Register temp = temps.AcquireX();
3804 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3805 Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3806 Tst(temp, mask);
3807}
3808
3809
3810void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3811 // Load the map's "bit field 2".
3812 __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3813 // Retrieve elements_kind from bit field 2.
3814 DecodeField<Map::ElementsKindBits>(result);
3815}
3816
3817
3818void MacroAssembler::TryGetFunctionPrototype(Register function,
3819 Register result,
3820 Register scratch,
3821 Label* miss,
3822 BoundFunctionAction action) {
3823 DCHECK(!AreAliased(function, result, scratch));
3824
3825 Label non_instance;
3826 if (action == kMissOnBoundFunction) {
3827 // Check that the receiver isn't a smi.
3828 JumpIfSmi(function, miss);
3829
3830 // Check that the function really is a function. Load map into result reg.
3831 JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
3832
3833 Register scratch_w = scratch.W();
3834 Ldr(scratch,
3835 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3836 // On 64-bit platforms, compiler hints field is not a smi. See definition of
3837 // kCompilerHintsOffset in src/objects.h.
3838 Ldr(scratch_w,
3839 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3840 Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
3841
3842 // Make sure that the function has an instance prototype.
3843 Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
3844 Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
3845 }
3846
3847 // Get the prototype or initial map from the function.
3848 Ldr(result,
3849 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3850
3851 // If the prototype or initial map is the hole, don't return it and simply
3852 // miss the cache instead. This will allow us to allocate a prototype object
3853 // on-demand in the runtime system.
3854 JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3855
3856 // If the function does not have an initial map, we're done.
3857 Label done;
3858 JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3859
3860 // Get the prototype from the initial map.
3861 Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3862
3863 if (action == kMissOnBoundFunction) {
3864 B(&done);
3865
3866 // Non-instance prototype: fetch prototype from constructor field in initial
3867 // map.
3868 Bind(&non_instance);
3869 Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3870 }
3871
3872 // All done.
3873 Bind(&done);
3874}
3875
3876
3877void MacroAssembler::CompareRoot(const Register& obj,
3878 Heap::RootListIndex index) {
3879 UseScratchRegisterScope temps(this);
3880 Register temp = temps.AcquireX();
3881 DCHECK(!AreAliased(obj, temp));
3882 LoadRoot(temp, index);
3883 Cmp(obj, temp);
3884}
3885
3886
3887void MacroAssembler::JumpIfRoot(const Register& obj,
3888 Heap::RootListIndex index,
3889 Label* if_equal) {
3890 CompareRoot(obj, index);
3891 B(eq, if_equal);
3892}
3893
3894
3895void MacroAssembler::JumpIfNotRoot(const Register& obj,
3896 Heap::RootListIndex index,
3897 Label* if_not_equal) {
3898 CompareRoot(obj, index);
3899 B(ne, if_not_equal);
3900}
3901
3902
3903void MacroAssembler::CompareAndSplit(const Register& lhs,
3904 const Operand& rhs,
3905 Condition cond,
3906 Label* if_true,
3907 Label* if_false,
3908 Label* fall_through) {
3909 if ((if_true == if_false) && (if_false == fall_through)) {
3910 // Fall through.
3911 } else if (if_true == if_false) {
3912 B(if_true);
3913 } else if (if_false == fall_through) {
3914 CompareAndBranch(lhs, rhs, cond, if_true);
3915 } else if (if_true == fall_through) {
3916 CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3917 } else {
3918 CompareAndBranch(lhs, rhs, cond, if_true);
3919 B(if_false);
3920 }
3921}
3922
3923
3924void MacroAssembler::TestAndSplit(const Register& reg,
3925 uint64_t bit_pattern,
3926 Label* if_all_clear,
3927 Label* if_any_set,
3928 Label* fall_through) {
3929 if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3930 // Fall through.
3931 } else if (if_all_clear == if_any_set) {
3932 B(if_all_clear);
3933 } else if (if_all_clear == fall_through) {
3934 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3935 } else if (if_any_set == fall_through) {
3936 TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3937 } else {
3938 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3939 B(if_all_clear);
3940 }
3941}
3942
3943
3944void MacroAssembler::CheckFastElements(Register map,
3945 Register scratch,
3946 Label* fail) {
3947 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3948 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3949 STATIC_ASSERT(FAST_ELEMENTS == 2);
3950 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3951 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3952 Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3953 B(hi, fail);
3954}
3955
3956
3957void MacroAssembler::CheckFastObjectElements(Register map,
3958 Register scratch,
3959 Label* fail) {
3960 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3961 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3962 STATIC_ASSERT(FAST_ELEMENTS == 2);
3963 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3964 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3965 Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3966 // If cond==ls, set cond=hi, otherwise compare.
3967 Ccmp(scratch,
3968 Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3969 B(hi, fail);
3970}
3971
3972
3973// Note: The ARM version of this clobbers elements_reg, but this version does
3974// not. Some uses of this in ARM64 assume that elements_reg will be preserved.
3975void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3976 Register key_reg,
3977 Register elements_reg,
3978 Register scratch1,
3979 FPRegister fpscratch1,
3980 Label* fail,
3981 int elements_offset) {
3982 DCHECK(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3983 Label store_num;
3984
3985 // Speculatively convert the smi to a double - all smis can be exactly
3986 // represented as a double.
3987 SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3988
3989 // If value_reg is a smi, we're done.
3990 JumpIfSmi(value_reg, &store_num);
3991
3992 // Ensure that the object is a heap number.
3993 JumpIfNotHeapNumber(value_reg, fail);
3994
3995 Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3996
3997 // Canonicalize NaNs.
3998 CanonicalizeNaN(fpscratch1);
3999
4000 // Store the result.
4001 Bind(&store_num);
4002 Add(scratch1, elements_reg,
4003 Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
4004 Str(fpscratch1,
4005 FieldMemOperand(scratch1,
4006 FixedDoubleArray::kHeaderSize - elements_offset));
4007}
4008
4009
4010bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
4011 return has_frame_ || !stub->SometimesSetsUpAFrame();
4012}
4013
4014
4015void MacroAssembler::IndexFromHash(Register hash, Register index) {
4016 // If the hash field contains an array index pick it out. The assert checks
4017 // that the constants for the maximum number of digits for an array index
4018 // cached in the hash field and the number of bits reserved for it does not
4019 // conflict.
4020 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
4021 (1 << String::kArrayIndexValueBits));
4022 DecodeField<String::ArrayIndexValueBits>(index, hash);
4023 SmiTag(index, index);
4024}
4025
4026
4027void MacroAssembler::EmitSeqStringSetCharCheck(
4028 Register string,
4029 Register index,
4030 SeqStringSetCharCheckIndexType index_type,
4031 Register scratch,
4032 uint32_t encoding_mask) {
4033 DCHECK(!AreAliased(string, index, scratch));
4034
4035 if (index_type == kIndexIsSmi) {
4036 AssertSmi(index);
4037 }
4038
4039 // Check that string is an object.
4040 AssertNotSmi(string, kNonObject);
4041
4042 // Check that string has an appropriate map.
4043 Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
4044 Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4045
4046 And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
4047 Cmp(scratch, encoding_mask);
4048 Check(eq, kUnexpectedStringType);
4049
4050 Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
4051 Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
4052 Check(lt, kIndexIsTooLarge);
4053
4054 DCHECK_EQ(0, Smi::FromInt(0));
4055 Cmp(index, 0);
4056 Check(ge, kIndexIsNegative);
4057}
4058
4059
4060void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
4061 Register scratch1,
4062 Register scratch2,
4063 Label* miss) {
4064 DCHECK(!AreAliased(holder_reg, scratch1, scratch2));
4065 Label same_contexts;
4066
4067 // Load current lexical context from the stack frame.
4068 Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
4069 // In debug mode, make sure the lexical context is set.
4070#ifdef DEBUG
4071 Cmp(scratch1, 0);
4072 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
4073#endif
4074
4075 // Load the native context of the current context.
4076 int offset =
4077 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
4078 Ldr(scratch1, FieldMemOperand(scratch1, offset));
4079 Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4080
4081 // Check the context is a native context.
4082 if (emit_debug_code()) {
4083 // Read the first word and compare to the global_context_map.
4084 Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
4085 CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
4086 Check(eq, kExpectedNativeContext);
4087 }
4088
4089 // Check if both contexts are the same.
4090 Ldr(scratch2, FieldMemOperand(holder_reg,
4091 JSGlobalProxy::kNativeContextOffset));
4092 Cmp(scratch1, scratch2);
4093 B(&same_contexts, eq);
4094
4095 // Check the context is a native context.
4096 if (emit_debug_code()) {
4097 // We're short on scratch registers here, so use holder_reg as a scratch.
4098 Push(holder_reg);
4099 Register scratch3 = holder_reg;
4100
4101 CompareRoot(scratch2, Heap::kNullValueRootIndex);
4102 Check(ne, kExpectedNonNullContext);
4103
4104 Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4105 CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
4106 Check(eq, kExpectedNativeContext);
4107 Pop(holder_reg);
4108 }
4109
4110 // Check that the security token in the calling global object is
4111 // compatible with the security token in the receiving global
4112 // object.
4113 int token_offset = Context::kHeaderSize +
4114 Context::SECURITY_TOKEN_INDEX * kPointerSize;
4115
4116 Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
4117 Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
4118 Cmp(scratch1, scratch2);
4119 B(miss, ne);
4120
4121 Bind(&same_contexts);
4122}
4123
4124
4125// Compute the hash code from the untagged key. This must be kept in sync with
4126// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
4127// code-stub-hydrogen.cc
4128void MacroAssembler::GetNumberHash(Register key, Register scratch) {
4129 DCHECK(!AreAliased(key, scratch));
4130
4131 // Xor original key with a seed.
4132 LoadRoot(scratch, Heap::kHashSeedRootIndex);
4133 Eor(key, key, Operand::UntagSmi(scratch));
4134
4135 // The algorithm uses 32-bit integer values.
4136 key = key.W();
4137 scratch = scratch.W();
4138
4139 // Compute the hash code from the untagged key. This must be kept in sync
4140 // with ComputeIntegerHash in utils.h.
4141 //
4142 // hash = ~hash + (hash <<1 15);
4143 Mvn(scratch, key);
4144 Add(key, scratch, Operand(key, LSL, 15));
4145 // hash = hash ^ (hash >> 12);
4146 Eor(key, key, Operand(key, LSR, 12));
4147 // hash = hash + (hash << 2);
4148 Add(key, key, Operand(key, LSL, 2));
4149 // hash = hash ^ (hash >> 4);
4150 Eor(key, key, Operand(key, LSR, 4));
4151 // hash = hash * 2057;
4152 Mov(scratch, Operand(key, LSL, 11));
4153 Add(key, key, Operand(key, LSL, 3));
4154 Add(key, key, scratch);
4155 // hash = hash ^ (hash >> 16);
4156 Eor(key, key, Operand(key, LSR, 16));
4157}
4158
4159
4160void MacroAssembler::LoadFromNumberDictionary(Label* miss,
4161 Register elements,
4162 Register key,
4163 Register result,
4164 Register scratch0,
4165 Register scratch1,
4166 Register scratch2,
4167 Register scratch3) {
4168 DCHECK(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
4169
4170 Label done;
4171
4172 SmiUntag(scratch0, key);
4173 GetNumberHash(scratch0, scratch1);
4174
4175 // Compute the capacity mask.
4176 Ldrsw(scratch1,
4177 UntagSmiFieldMemOperand(elements,
4178 SeededNumberDictionary::kCapacityOffset));
4179 Sub(scratch1, scratch1, 1);
4180
4181 // Generate an unrolled loop that performs a few probes before giving up.
4182 for (int i = 0; i < kNumberDictionaryProbes; i++) {
4183 // Compute the masked index: (hash + i + i * i) & mask.
4184 if (i > 0) {
4185 Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
4186 } else {
4187 Mov(scratch2, scratch0);
4188 }
4189 And(scratch2, scratch2, scratch1);
4190
4191 // Scale the index by multiplying by the element size.
4192 DCHECK(SeededNumberDictionary::kEntrySize == 3);
4193 Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4194
4195 // Check if the key is identical to the name.
4196 Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4197 Ldr(scratch3,
4198 FieldMemOperand(scratch2,
4199 SeededNumberDictionary::kElementsStartOffset));
4200 Cmp(key, scratch3);
4201 if (i != (kNumberDictionaryProbes - 1)) {
4202 B(eq, &done);
4203 } else {
4204 B(ne, miss);
4205 }
4206 }
4207
4208 Bind(&done);
4209 // Check that the value is a normal property.
4210 const int kDetailsOffset =
4211 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
4212 Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
4213 TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
4214
4215 // Get the value at the masked, scaled index and return.
4216 const int kValueOffset =
4217 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
4218 Ldr(result, FieldMemOperand(scratch2, kValueOffset));
4219}
4220
4221
4222void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
4223 Register address,
4224 Register scratch1,
4225 SaveFPRegsMode fp_mode,
4226 RememberedSetFinalAction and_then) {
4227 DCHECK(!AreAliased(object, address, scratch1));
4228 Label done, store_buffer_overflow;
4229 if (emit_debug_code()) {
4230 Label ok;
4231 JumpIfNotInNewSpace(object, &ok);
4232 Abort(kRememberedSetPointerInNewSpace);
4233 bind(&ok);
4234 }
4235 UseScratchRegisterScope temps(this);
4236 Register scratch2 = temps.AcquireX();
4237
4238 // Load store buffer top.
4239 Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
4240 Ldr(scratch1, MemOperand(scratch2));
4241 // Store pointer to buffer and increment buffer top.
4242 Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
4243 // Write back new top of buffer.
4244 Str(scratch1, MemOperand(scratch2));
4245 // Call stub on end of buffer.
4246 // Check for end of buffer.
4247 DCHECK(StoreBuffer::kStoreBufferOverflowBit ==
4248 (1 << (14 + kPointerSizeLog2)));
4249 if (and_then == kFallThroughAtEnd) {
4250 Tbz(scratch1, (14 + kPointerSizeLog2), &done);
4251 } else {
4252 DCHECK(and_then == kReturnAtEnd);
4253 Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
4254 Ret();
4255 }
4256
4257 Bind(&store_buffer_overflow);
4258 Push(lr);
4259 StoreBufferOverflowStub store_buffer_overflow_stub(isolate(), fp_mode);
4260 CallStub(&store_buffer_overflow_stub);
4261 Pop(lr);
4262
4263 Bind(&done);
4264 if (and_then == kReturnAtEnd) {
4265 Ret();
4266 }
4267}
4268
4269
4270void MacroAssembler::PopSafepointRegisters() {
4271 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4272 PopXRegList(kSafepointSavedRegisters);
4273 Drop(num_unsaved);
4274}
4275
4276
4277void MacroAssembler::PushSafepointRegisters() {
4278 // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
4279 // adjust the stack for unsaved registers.
4280 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4281 DCHECK(num_unsaved >= 0);
4282 Claim(num_unsaved);
4283 PushXRegList(kSafepointSavedRegisters);
4284}
4285
4286
4287void MacroAssembler::PushSafepointRegistersAndDoubles() {
4288 PushSafepointRegisters();
4289 PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4290 FPRegister::kAllocatableFPRegisters));
4291}
4292
4293
4294void MacroAssembler::PopSafepointRegistersAndDoubles() {
4295 PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4296 FPRegister::kAllocatableFPRegisters));
4297 PopSafepointRegisters();
4298}
4299
4300
4301int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
4302 // Make sure the safepoint registers list is what we expect.
4303 DCHECK(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
4304
4305 // Safepoint registers are stored contiguously on the stack, but not all the
4306 // registers are saved. The following registers are excluded:
4307 // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
4308 // the macro assembler.
4309 // - x28 (jssp) because JS stack pointer doesn't need to be included in
4310 // safepoint registers.
4311 // - x31 (csp) because the system stack pointer doesn't need to be included
4312 // in safepoint registers.
4313 //
4314 // This function implements the mapping of register code to index into the
4315 // safepoint register slots.
4316 if ((reg_code >= 0) && (reg_code <= 15)) {
4317 return reg_code;
4318 } else if ((reg_code >= 18) && (reg_code <= 27)) {
4319 // Skip ip0 and ip1.
4320 return reg_code - 2;
4321 } else if ((reg_code == 29) || (reg_code == 30)) {
4322 // Also skip jssp.
4323 return reg_code - 3;
4324 } else {
4325 // This register has no safepoint register slot.
4326 UNREACHABLE();
4327 return -1;
4328 }
4329}
4330
4331
4332void MacroAssembler::CheckPageFlagSet(const Register& object,
4333 const Register& scratch,
4334 int mask,
4335 Label* if_any_set) {
4336 And(scratch, object, ~Page::kPageAlignmentMask);
4337 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4338 TestAndBranchIfAnySet(scratch, mask, if_any_set);
4339}
4340
4341
4342void MacroAssembler::CheckPageFlagClear(const Register& object,
4343 const Register& scratch,
4344 int mask,
4345 Label* if_all_clear) {
4346 And(scratch, object, ~Page::kPageAlignmentMask);
4347 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4348 TestAndBranchIfAllClear(scratch, mask, if_all_clear);
4349}
4350
4351
4352void MacroAssembler::RecordWriteField(
4353 Register object,
4354 int offset,
4355 Register value,
4356 Register scratch,
4357 LinkRegisterStatus lr_status,
4358 SaveFPRegsMode save_fp,
4359 RememberedSetAction remembered_set_action,
4360 SmiCheck smi_check,
4361 PointersToHereCheck pointers_to_here_check_for_value) {
4362 // First, check if a write barrier is even needed. The tests below
4363 // catch stores of Smis.
4364 Label done;
4365
4366 // Skip the barrier if writing a smi.
4367 if (smi_check == INLINE_SMI_CHECK) {
4368 JumpIfSmi(value, &done);
4369 }
4370
4371 // Although the object register is tagged, the offset is relative to the start
4372 // of the object, so offset must be a multiple of kPointerSize.
4373 DCHECK(IsAligned(offset, kPointerSize));
4374
4375 Add(scratch, object, offset - kHeapObjectTag);
4376 if (emit_debug_code()) {
4377 Label ok;
4378 Tst(scratch, (1 << kPointerSizeLog2) - 1);
4379 B(eq, &ok);
4380 Abort(kUnalignedCellInWriteBarrier);
4381 Bind(&ok);
4382 }
4383
4384 RecordWrite(object,
4385 scratch,
4386 value,
4387 lr_status,
4388 save_fp,
4389 remembered_set_action,
4390 OMIT_SMI_CHECK,
4391 pointers_to_here_check_for_value);
4392
4393 Bind(&done);
4394
4395 // Clobber clobbered input registers when running with the debug-code flag
4396 // turned on to provoke errors.
4397 if (emit_debug_code()) {
4398 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 4)));
4399 Mov(scratch, Operand(bit_cast<int64_t>(kZapValue + 8)));
4400 }
4401}
4402
4403
4404// Will clobber: object, map, dst.
4405// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4406void MacroAssembler::RecordWriteForMap(Register object,
4407 Register map,
4408 Register dst,
4409 LinkRegisterStatus lr_status,
4410 SaveFPRegsMode fp_mode) {
4411 ASM_LOCATION("MacroAssembler::RecordWrite");
4412 DCHECK(!AreAliased(object, map));
4413
4414 if (emit_debug_code()) {
4415 UseScratchRegisterScope temps(this);
4416 Register temp = temps.AcquireX();
4417
4418 CompareObjectMap(map, temp, isolate()->factory()->meta_map());
4419 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4420 }
4421
4422 if (!FLAG_incremental_marking) {
4423 return;
4424 }
4425
4426 if (emit_debug_code()) {
4427 UseScratchRegisterScope temps(this);
4428 Register temp = temps.AcquireX();
4429
4430 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4431 Cmp(temp, map);
4432 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4433 }
4434
4435 // First, check if a write barrier is even needed. The tests below
4436 // catch stores of smis and stores into the young generation.
4437 Label done;
4438
4439 // A single check of the map's pages interesting flag suffices, since it is
4440 // only set during incremental collection, and then it's also guaranteed that
4441 // the from object's page's interesting flag is also set. This optimization
4442 // relies on the fact that maps can never be in new space.
4443 CheckPageFlagClear(map,
4444 map, // Used as scratch.
4445 MemoryChunk::kPointersToHereAreInterestingMask,
4446 &done);
4447
4448 // Record the actual write.
4449 if (lr_status == kLRHasNotBeenSaved) {
4450 Push(lr);
4451 }
4452 Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4453 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4454 fp_mode);
4455 CallStub(&stub);
4456 if (lr_status == kLRHasNotBeenSaved) {
4457 Pop(lr);
4458 }
4459
4460 Bind(&done);
4461
4462 // Count number of write barriers in generated code.
4463 isolate()->counters()->write_barriers_static()->Increment();
4464 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, map,
4465 dst);
4466
4467 // Clobber clobbered registers when running with the debug-code flag
4468 // turned on to provoke errors.
4469 if (emit_debug_code()) {
4470 Mov(dst, Operand(bit_cast<int64_t>(kZapValue + 12)));
4471 Mov(map, Operand(bit_cast<int64_t>(kZapValue + 16)));
4472 }
4473}
4474
4475
4476// Will clobber: object, address, value.
4477// If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4478//
4479// The register 'object' contains a heap object pointer. The heap object tag is
4480// shifted away.
4481void MacroAssembler::RecordWrite(
4482 Register object,
4483 Register address,
4484 Register value,
4485 LinkRegisterStatus lr_status,
4486 SaveFPRegsMode fp_mode,
4487 RememberedSetAction remembered_set_action,
4488 SmiCheck smi_check,
4489 PointersToHereCheck pointers_to_here_check_for_value) {
4490 ASM_LOCATION("MacroAssembler::RecordWrite");
4491 DCHECK(!AreAliased(object, value));
4492
4493 if (emit_debug_code()) {
4494 UseScratchRegisterScope temps(this);
4495 Register temp = temps.AcquireX();
4496
4497 Ldr(temp, MemOperand(address));
4498 Cmp(temp, value);
4499 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4500 }
4501
4502 // First, check if a write barrier is even needed. The tests below
4503 // catch stores of smis and stores into the young generation.
4504 Label done;
4505
4506 if (smi_check == INLINE_SMI_CHECK) {
4507 DCHECK_EQ(0, kSmiTag);
4508 JumpIfSmi(value, &done);
4509 }
4510
4511 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4512 CheckPageFlagClear(value,
4513 value, // Used as scratch.
4514 MemoryChunk::kPointersToHereAreInterestingMask,
4515 &done);
4516 }
4517 CheckPageFlagClear(object,
4518 value, // Used as scratch.
4519 MemoryChunk::kPointersFromHereAreInterestingMask,
4520 &done);
4521
4522 // Record the actual write.
4523 if (lr_status == kLRHasNotBeenSaved) {
4524 Push(lr);
4525 }
4526 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4527 fp_mode);
4528 CallStub(&stub);
4529 if (lr_status == kLRHasNotBeenSaved) {
4530 Pop(lr);
4531 }
4532
4533 Bind(&done);
4534
4535 // Count number of write barriers in generated code.
4536 isolate()->counters()->write_barriers_static()->Increment();
4537 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, address,
4538 value);
4539
4540 // Clobber clobbered registers when running with the debug-code flag
4541 // turned on to provoke errors.
4542 if (emit_debug_code()) {
4543 Mov(address, Operand(bit_cast<int64_t>(kZapValue + 12)));
4544 Mov(value, Operand(bit_cast<int64_t>(kZapValue + 16)));
4545 }
4546}
4547
4548
4549void MacroAssembler::AssertHasValidColor(const Register& reg) {
4550 if (emit_debug_code()) {
4551 // The bit sequence is backward. The first character in the string
4552 // represents the least significant bit.
4553 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4554
4555 Label color_is_valid;
4556 Tbnz(reg, 0, &color_is_valid);
4557 Tbz(reg, 1, &color_is_valid);
4558 Abort(kUnexpectedColorFound);
4559 Bind(&color_is_valid);
4560 }
4561}
4562
4563
4564void MacroAssembler::GetMarkBits(Register addr_reg,
4565 Register bitmap_reg,
4566 Register shift_reg) {
4567 DCHECK(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4568 DCHECK(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4569 // addr_reg is divided into fields:
4570 // |63 page base 20|19 high 8|7 shift 3|2 0|
4571 // 'high' gives the index of the cell holding color bits for the object.
4572 // 'shift' gives the offset in the cell for this object's color.
4573 const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4574 UseScratchRegisterScope temps(this);
4575 Register temp = temps.AcquireX();
4576 Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4577 Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4578 Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4579 // bitmap_reg:
4580 // |63 page base 20|19 zeros 15|14 high 3|2 0|
4581 Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4582}
4583
4584
4585void MacroAssembler::HasColor(Register object,
4586 Register bitmap_scratch,
4587 Register shift_scratch,
4588 Label* has_color,
4589 int first_bit,
4590 int second_bit) {
4591 // See mark-compact.h for color definitions.
4592 DCHECK(!AreAliased(object, bitmap_scratch, shift_scratch));
4593
4594 GetMarkBits(object, bitmap_scratch, shift_scratch);
4595 Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4596 // Shift the bitmap down to get the color of the object in bits [1:0].
4597 Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4598
4599 AssertHasValidColor(bitmap_scratch);
4600
4601 // These bit sequences are backwards. The first character in the string
4602 // represents the least significant bit.
4603 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4604 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4605 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
4606
4607 // Check for the color.
4608 if (first_bit == 0) {
4609 // Checking for white.
4610 DCHECK(second_bit == 0);
4611 // We only need to test the first bit.
4612 Tbz(bitmap_scratch, 0, has_color);
4613 } else {
4614 Label other_color;
4615 // Checking for grey or black.
4616 Tbz(bitmap_scratch, 0, &other_color);
4617 if (second_bit == 0) {
4618 Tbz(bitmap_scratch, 1, has_color);
4619 } else {
4620 Tbnz(bitmap_scratch, 1, has_color);
4621 }
4622 Bind(&other_color);
4623 }
4624
4625 // Fall through if it does not have the right color.
4626}
4627
4628
4629void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
4630 Register scratch,
4631 Label* if_deprecated) {
4632 if (map->CanBeDeprecated()) {
4633 Mov(scratch, Operand(map));
4634 Ldrsw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
4635 TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
4636 }
4637}
4638
4639
4640void MacroAssembler::JumpIfBlack(Register object,
4641 Register scratch0,
4642 Register scratch1,
4643 Label* on_black) {
4644 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4645 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
4646}
4647
4648
4649void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4650 Register object,
4651 Register scratch0,
4652 Register scratch1,
4653 Label* found) {
4654 DCHECK(!AreAliased(object, scratch0, scratch1));
4655 Factory* factory = isolate()->factory();
4656 Register current = scratch0;
4657 Label loop_again;
4658
4659 // Scratch contains elements pointer.
4660 Mov(current, object);
4661
4662 // Loop based on the map going up the prototype chain.
4663 Bind(&loop_again);
4664 Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4665 Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4666 DecodeField<Map::ElementsKindBits>(scratch1);
4667 CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4668 Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4669 CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
4670}
4671
4672
4673void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
4674 Register result) {
4675 DCHECK(!result.Is(ldr_location));
4676 const uint32_t kLdrLitOffset_lsb = 5;
4677 const uint32_t kLdrLitOffset_width = 19;
4678 Ldr(result, MemOperand(ldr_location));
4679 if (emit_debug_code()) {
4680 And(result, result, LoadLiteralFMask);
4681 Cmp(result, LoadLiteralFixed);
4682 Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
4683 // The instruction was clobbered. Reload it.
4684 Ldr(result, MemOperand(ldr_location));
4685 }
4686 Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
4687 Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
4688}
4689
4690
4691void MacroAssembler::EnsureNotWhite(
4692 Register value,
4693 Register bitmap_scratch,
4694 Register shift_scratch,
4695 Register load_scratch,
4696 Register length_scratch,
4697 Label* value_is_white_and_not_data) {
4698 DCHECK(!AreAliased(
4699 value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4700
4701 // These bit sequences are backwards. The first character in the string
4702 // represents the least significant bit.
4703 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4704 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
4705 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
4706
4707 GetMarkBits(value, bitmap_scratch, shift_scratch);
4708 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4709 Lsr(load_scratch, load_scratch, shift_scratch);
4710
4711 AssertHasValidColor(load_scratch);
4712
4713 // If the value is black or grey we don't need to do anything.
4714 // Since both black and grey have a 1 in the first position and white does
4715 // not have a 1 there we only need to check one bit.
4716 Label done;
4717 Tbnz(load_scratch, 0, &done);
4718
4719 // Value is white. We check whether it is data that doesn't need scanning.
4720 Register map = load_scratch; // Holds map while checking type.
4721 Label is_data_object;
4722
4723 // Check for heap-number.
4724 Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
4725 Mov(length_scratch, HeapNumber::kSize);
4726 JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
4727
4728 // Check for strings.
4729 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4730 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4731 // If it's a string and it's not a cons string then it's an object containing
4732 // no GC pointers.
4733 Register instance_type = load_scratch;
4734 Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
4735 TestAndBranchIfAnySet(instance_type,
4736 kIsIndirectStringMask | kIsNotStringMask,
4737 value_is_white_and_not_data);
4738
4739 // It's a non-indirect (non-cons and non-slice) string.
4740 // If it's external, the length is just ExternalString::kSize.
4741 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4742 // External strings are the only ones with the kExternalStringTag bit
4743 // set.
4744 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
4745 DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
4746 Mov(length_scratch, ExternalString::kSize);
4747 TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
4748
4749 // Sequential string, either Latin1 or UC16.
4750 // For Latin1 (char-size of 1) we shift the smi tag away to get the length.
4751 // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
4752 // getting the length multiplied by 2.
4753 DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
4754 Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
4755 String::kLengthOffset));
4756 Tst(instance_type, kStringEncodingMask);
4757 Cset(load_scratch, eq);
4758 Lsl(length_scratch, length_scratch, load_scratch);
4759 Add(length_scratch,
4760 length_scratch,
4761 SeqString::kHeaderSize + kObjectAlignmentMask);
4762 Bic(length_scratch, length_scratch, kObjectAlignmentMask);
4763
4764 Bind(&is_data_object);
4765 // Value is a data object, and it is white. Mark it black. Since we know
4766 // that the object is white we can make it black by flipping one bit.
4767 Register mask = shift_scratch;
4768 Mov(load_scratch, 1);
4769 Lsl(mask, load_scratch, shift_scratch);
4770
4771 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4772 Orr(load_scratch, load_scratch, mask);
4773 Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4774
4775 Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
4776 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4777 Add(load_scratch, load_scratch, length_scratch);
4778 Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4779
4780 Bind(&done);
4781}
4782
4783
4784void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4785 if (emit_debug_code()) {
4786 Check(cond, reason);
4787 }
4788}
4789
4790
4791
4792void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4793 if (emit_debug_code()) {
4794 CheckRegisterIsClear(reg, reason);
4795 }
4796}
4797
4798
4799void MacroAssembler::AssertRegisterIsRoot(Register reg,
4800 Heap::RootListIndex index,
4801 BailoutReason reason) {
4802 if (emit_debug_code()) {
4803 CompareRoot(reg, index);
4804 Check(eq, reason);
4805 }
4806}
4807
4808
4809void MacroAssembler::AssertFastElements(Register elements) {
4810 if (emit_debug_code()) {
4811 UseScratchRegisterScope temps(this);
4812 Register temp = temps.AcquireX();
4813 Label ok;
4814 Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4815 JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4816 JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4817 JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4818 Abort(kJSObjectWithFastElementsMapHasSlowElements);
4819 Bind(&ok);
4820 }
4821}
4822
4823
4824void MacroAssembler::AssertIsString(const Register& object) {
4825 if (emit_debug_code()) {
4826 UseScratchRegisterScope temps(this);
4827 Register temp = temps.AcquireX();
4828 STATIC_ASSERT(kSmiTag == 0);
4829 Tst(object, kSmiTagMask);
4830 Check(ne, kOperandIsNotAString);
4831 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4832 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4833 Check(lo, kOperandIsNotAString);
4834 }
4835}
4836
4837
4838void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4839 Label ok;
4840 B(cond, &ok);
4841 Abort(reason);
4842 // Will not return here.
4843 Bind(&ok);
4844}
4845
4846
4847void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4848 Label ok;
4849 Cbz(reg, &ok);
4850 Abort(reason);
4851 // Will not return here.
4852 Bind(&ok);
4853}
4854
4855
4856void MacroAssembler::Abort(BailoutReason reason) {
4857#ifdef DEBUG
4858 RecordComment("Abort message: ");
4859 RecordComment(GetBailoutReason(reason));
4860
4861 if (FLAG_trap_on_abort) {
4862 Brk(0);
4863 return;
4864 }
4865#endif
4866
4867 // Abort is used in some contexts where csp is the stack pointer. In order to
4868 // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4869 // There is no risk of register corruption here because Abort doesn't return.
4870 Register old_stack_pointer = StackPointer();
4871 SetStackPointer(jssp);
4872 Mov(jssp, old_stack_pointer);
4873
4874 // We need some scratch registers for the MacroAssembler, so make sure we have
4875 // some. This is safe here because Abort never returns.
4876 RegList old_tmp_list = TmpList()->list();
4877 TmpList()->Combine(MacroAssembler::DefaultTmpList());
4878
4879 if (use_real_aborts()) {
4880 // Avoid infinite recursion; Push contains some assertions that use Abort.
4881 NoUseRealAbortsScope no_real_aborts(this);
4882
4883 Mov(x0, Smi::FromInt(reason));
4884 Push(x0);
4885
4886 if (!has_frame_) {
4887 // We don't actually want to generate a pile of code for this, so just
4888 // claim there is a stack frame, without generating one.
4889 FrameScope scope(this, StackFrame::NONE);
4890 CallRuntime(Runtime::kAbort, 1);
4891 } else {
4892 CallRuntime(Runtime::kAbort, 1);
4893 }
4894 } else {
4895 // Load the string to pass to Printf.
4896 Label msg_address;
4897 Adr(x0, &msg_address);
4898
4899 // Call Printf directly to report the error.
4900 CallPrintf();
4901
4902 // We need a way to stop execution on both the simulator and real hardware,
4903 // and Unreachable() is the best option.
4904 Unreachable();
4905
4906 // Emit the message string directly in the instruction stream.
4907 {
4908 BlockPoolsScope scope(this);
4909 Bind(&msg_address);
4910 EmitStringData(GetBailoutReason(reason));
4911 }
4912 }
4913
4914 SetStackPointer(old_stack_pointer);
4915 TmpList()->set_list(old_tmp_list);
4916}
4917
4918
4919void MacroAssembler::LoadTransitionedArrayMapConditional(
4920 ElementsKind expected_kind,
4921 ElementsKind transitioned_kind,
4922 Register map_in_out,
4923 Register scratch1,
4924 Register scratch2,
4925 Label* no_map_match) {
4926 // Load the global or builtins object from the current context.
4927 Ldr(scratch1, GlobalObjectMemOperand());
4928 Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4929
4930 // Check that the function's map is the same as the expected cached map.
4931 Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
4932 size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4933 Ldr(scratch2, FieldMemOperand(scratch1, offset));
4934 Cmp(map_in_out, scratch2);
4935 B(ne, no_map_match);
4936
4937 // Use the transitioned cached map.
4938 offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4939 Ldr(map_in_out, FieldMemOperand(scratch1, offset));
4940}
4941
4942
4943void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4944 // Load the global or builtins object from the current context.
4945 Ldr(function, GlobalObjectMemOperand());
4946 // Load the native context from the global or builtins object.
4947 Ldr(function, FieldMemOperand(function,
4948 GlobalObject::kNativeContextOffset));
4949 // Load the function from the native context.
4950 Ldr(function, ContextMemOperand(function, index));
4951}
4952
4953
4954void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4955 Register map,
4956 Register scratch) {
4957 // Load the initial map. The global functions all have initial maps.
4958 Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4959 if (emit_debug_code()) {
4960 Label ok, fail;
4961 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4962 B(&ok);
4963 Bind(&fail);
4964 Abort(kGlobalFunctionsMustHaveInitialMap);
4965 Bind(&ok);
4966 }
4967}
4968
4969
4970// This is the main Printf implementation. All other Printf variants call
4971// PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
4972void MacroAssembler::PrintfNoPreserve(const char * format,
4973 const CPURegister& arg0,
4974 const CPURegister& arg1,
4975 const CPURegister& arg2,
4976 const CPURegister& arg3) {
4977 // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4978 // in most cases anyway, so this restriction shouldn't be too serious.
4979 DCHECK(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4980
4981 // The provided arguments, and their proper procedure-call standard registers.
4982 CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4983 CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4984
4985 int arg_count = kPrintfMaxArgCount;
4986
4987 // The PCS varargs registers for printf. Note that x0 is used for the printf
4988 // format string.
4989 static const CPURegList kPCSVarargs =
4990 CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4991 static const CPURegList kPCSVarargsFP =
4992 CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4993
4994 // We can use caller-saved registers as scratch values, except for the
4995 // arguments and the PCS registers where they might need to go.
4996 CPURegList tmp_list = kCallerSaved;
4997 tmp_list.Remove(x0); // Used to pass the format string.
4998 tmp_list.Remove(kPCSVarargs);
4999 tmp_list.Remove(arg0, arg1, arg2, arg3);
5000
5001 CPURegList fp_tmp_list = kCallerSavedFP;
5002 fp_tmp_list.Remove(kPCSVarargsFP);
5003 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5004
5005 // Override the MacroAssembler's scratch register list. The lists will be
5006 // reset automatically at the end of the UseScratchRegisterScope.
5007 UseScratchRegisterScope temps(this);
5008 TmpList()->set_list(tmp_list.list());
5009 FPTmpList()->set_list(fp_tmp_list.list());
5010
5011 // Copies of the printf vararg registers that we can pop from.
5012 CPURegList pcs_varargs = kPCSVarargs;
5013 CPURegList pcs_varargs_fp = kPCSVarargsFP;
5014
5015 // Place the arguments. There are lots of clever tricks and optimizations we
5016 // could use here, but Printf is a debug tool so instead we just try to keep
5017 // it simple: Move each input that isn't already in the right place to a
5018 // scratch register, then move everything back.
5019 for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
5020 // Work out the proper PCS register for this argument.
5021 if (args[i].IsRegister()) {
5022 pcs[i] = pcs_varargs.PopLowestIndex().X();
5023 // We might only need a W register here. We need to know the size of the
5024 // argument so we can properly encode it for the simulator call.
5025 if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
5026 } else if (args[i].IsFPRegister()) {
5027 // In C, floats are always cast to doubles for varargs calls.
5028 pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
5029 } else {
5030 DCHECK(args[i].IsNone());
5031 arg_count = i;
5032 break;
5033 }
5034
5035 // If the argument is already in the right place, leave it where it is.
5036 if (args[i].Aliases(pcs[i])) continue;
5037
5038 // Otherwise, if the argument is in a PCS argument register, allocate an
5039 // appropriate scratch register and then move it out of the way.
5040 if (kPCSVarargs.IncludesAliasOf(args[i]) ||
5041 kPCSVarargsFP.IncludesAliasOf(args[i])) {
5042 if (args[i].IsRegister()) {
5043 Register old_arg = Register(args[i]);
5044 Register new_arg = temps.AcquireSameSizeAs(old_arg);
5045 Mov(new_arg, old_arg);
5046 args[i] = new_arg;
5047 } else {
5048 FPRegister old_arg = FPRegister(args[i]);
5049 FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
5050 Fmov(new_arg, old_arg);
5051 args[i] = new_arg;
5052 }
5053 }
5054 }
5055
5056 // Do a second pass to move values into their final positions and perform any
5057 // conversions that may be required.
5058 for (int i = 0; i < arg_count; i++) {
5059 DCHECK(pcs[i].type() == args[i].type());
5060 if (pcs[i].IsRegister()) {
5061 Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
5062 } else {
5063 DCHECK(pcs[i].IsFPRegister());
5064 if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
5065 Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
5066 } else {
5067 Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
5068 }
5069 }
5070 }
5071
5072 // Load the format string into x0, as per the procedure-call standard.
5073 //
5074 // To make the code as portable as possible, the format string is encoded
5075 // directly in the instruction stream. It might be cleaner to encode it in a
5076 // literal pool, but since Printf is usually used for debugging, it is
5077 // beneficial for it to be minimally dependent on other features.
5078 Label format_address;
5079 Adr(x0, &format_address);
5080
5081 // Emit the format string directly in the instruction stream.
5082 { BlockPoolsScope scope(this);
5083 Label after_data;
5084 B(&after_data);
5085 Bind(&format_address);
5086 EmitStringData(format);
5087 Unreachable();
5088 Bind(&after_data);
5089 }
5090
5091 // We don't pass any arguments on the stack, but we still need to align the C
5092 // stack pointer to a 16-byte boundary for PCS compliance.
5093 if (!csp.Is(StackPointer())) {
5094 Bic(csp, StackPointer(), 0xf);
5095 }
5096
5097 CallPrintf(arg_count, pcs);
5098}
5099
5100
5101void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
5102 // A call to printf needs special handling for the simulator, since the system
5103 // printf function will use a different instruction set and the procedure-call
5104 // standard will not be compatible.
5105#ifdef USE_SIMULATOR
5106 { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
5107 hlt(kImmExceptionIsPrintf);
5108 dc32(arg_count); // kPrintfArgCountOffset
5109
5110 // Determine the argument pattern.
5111 uint32_t arg_pattern_list = 0;
5112 for (int i = 0; i < arg_count; i++) {
5113 uint32_t arg_pattern;
5114 if (args[i].IsRegister()) {
5115 arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
5116 } else {
5117 DCHECK(args[i].Is64Bits());
5118 arg_pattern = kPrintfArgD;
5119 }
5120 DCHECK(arg_pattern < (1 << kPrintfArgPatternBits));
5121 arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
5122 }
5123 dc32(arg_pattern_list); // kPrintfArgPatternListOffset
5124 }
5125#else
5126 Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
5127#endif
5128}
5129
5130
5131void MacroAssembler::Printf(const char * format,
5132 CPURegister arg0,
5133 CPURegister arg1,
5134 CPURegister arg2,
5135 CPURegister arg3) {
5136 // We can only print sp if it is the current stack pointer.
5137 if (!csp.Is(StackPointer())) {
5138 DCHECK(!csp.Aliases(arg0));
5139 DCHECK(!csp.Aliases(arg1));
5140 DCHECK(!csp.Aliases(arg2));
5141 DCHECK(!csp.Aliases(arg3));
5142 }
5143
5144 // Printf is expected to preserve all registers, so make sure that none are
5145 // available as scratch registers until we've preserved them.
5146 RegList old_tmp_list = TmpList()->list();
5147 RegList old_fp_tmp_list = FPTmpList()->list();
5148 TmpList()->set_list(0);
5149 FPTmpList()->set_list(0);
5150
5151 // Preserve all caller-saved registers as well as NZCV.
5152 // If csp is the stack pointer, PushCPURegList asserts that the size of each
5153 // list is a multiple of 16 bytes.
5154 PushCPURegList(kCallerSaved);
5155 PushCPURegList(kCallerSavedFP);
5156
5157 // We can use caller-saved registers as scratch values (except for argN).
5158 CPURegList tmp_list = kCallerSaved;
5159 CPURegList fp_tmp_list = kCallerSavedFP;
5160 tmp_list.Remove(arg0, arg1, arg2, arg3);
5161 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5162 TmpList()->set_list(tmp_list.list());
5163 FPTmpList()->set_list(fp_tmp_list.list());
5164
5165 { UseScratchRegisterScope temps(this);
5166 // If any of the arguments are the current stack pointer, allocate a new
5167 // register for them, and adjust the value to compensate for pushing the
5168 // caller-saved registers.
5169 bool arg0_sp = StackPointer().Aliases(arg0);
5170 bool arg1_sp = StackPointer().Aliases(arg1);
5171 bool arg2_sp = StackPointer().Aliases(arg2);
5172 bool arg3_sp = StackPointer().Aliases(arg3);
5173 if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
5174 // Allocate a register to hold the original stack pointer value, to pass
5175 // to PrintfNoPreserve as an argument.
5176 Register arg_sp = temps.AcquireX();
5177 Add(arg_sp, StackPointer(),
5178 kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
5179 if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
5180 if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
5181 if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
5182 if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
5183 }
5184
5185 // Preserve NZCV.
5186 { UseScratchRegisterScope temps(this);
5187 Register tmp = temps.AcquireX();
5188 Mrs(tmp, NZCV);
5189 Push(tmp, xzr);
5190 }
5191
5192 PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
5193
5194 // Restore NZCV.
5195 { UseScratchRegisterScope temps(this);
5196 Register tmp = temps.AcquireX();
5197 Pop(xzr, tmp);
5198 Msr(NZCV, tmp);
5199 }
5200 }
5201
5202 PopCPURegList(kCallerSavedFP);
5203 PopCPURegList(kCallerSaved);
5204
5205 TmpList()->set_list(old_tmp_list);
5206 FPTmpList()->set_list(old_fp_tmp_list);
5207}
5208
5209
5210void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
5211 // TODO(jbramley): Other architectures use the internal memcpy to copy the
5212 // sequence. If this is a performance bottleneck, we should consider caching
5213 // the sequence and copying it in the same way.
5214 InstructionAccurateScope scope(this,
5215 kNoCodeAgeSequenceLength / kInstructionSize);
5216 DCHECK(jssp.Is(StackPointer()));
5217 EmitFrameSetupForCodeAgePatching(this);
5218}
5219
5220
5221
5222void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
5223 InstructionAccurateScope scope(this,
5224 kNoCodeAgeSequenceLength / kInstructionSize);
5225 DCHECK(jssp.Is(StackPointer()));
5226 EmitCodeAgeSequence(this, stub);
5227}
5228
5229
5230#undef __
5231#define __ assm->
5232
5233
5234void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
5235 Label start;
5236 __ bind(&start);
5237
5238 // We can do this sequence using four instructions, but the code ageing
5239 // sequence that patches it needs five, so we use the extra space to try to
5240 // simplify some addressing modes and remove some dependencies (compared to
5241 // using two stp instructions with write-back).
5242 __ sub(jssp, jssp, 4 * kXRegSize);
5243 __ sub(csp, csp, 4 * kXRegSize);
5244 __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
5245 __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
5246 __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
5247
5248 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5249}
5250
5251
5252void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
5253 Code * stub) {
5254 Label start;
5255 __ bind(&start);
5256 // When the stub is called, the sequence is replaced with the young sequence
5257 // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
5258 // stub jumps to &start, stored in x0. The young sequence does not call the
5259 // stub so there is no infinite loop here.
5260 //
5261 // A branch (br) is used rather than a call (blr) because this code replaces
5262 // the frame setup code that would normally preserve lr.
5263 __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
5264 __ adr(x0, &start);
5265 __ br(ip0);
5266 // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
5267 // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
5268 __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
5269 if (stub) {
5270 __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
5271 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5272 }
5273}
5274
5275
5276bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
5277 bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
5278 DCHECK(is_young ||
5279 isolate->code_aging_helper()->IsOld(sequence));
5280 return is_young;
5281}
5282
5283
5284void MacroAssembler::TruncatingDiv(Register result,
5285 Register dividend,
5286 int32_t divisor) {
5287 DCHECK(!AreAliased(result, dividend));
5288 DCHECK(result.Is32Bits() && dividend.Is32Bits());
5289 base::MagicNumbersForDivision<uint32_t> mag =
5290 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
5291 Mov(result, mag.multiplier);
5292 Smull(result.X(), dividend, result);
5293 Asr(result.X(), result.X(), 32);
5294 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
5295 if (divisor > 0 && neg) Add(result, result, dividend);
5296 if (divisor < 0 && !neg && mag.multiplier > 0) Sub(result, result, dividend);
5297 if (mag.shift > 0) Asr(result, result, mag.shift);
5298 Add(result, result, Operand(dividend, LSR, 31));
5299}
5300
5301
5302#undef __
5303
5304
5305UseScratchRegisterScope::~UseScratchRegisterScope() {
5306 available_->set_list(old_available_);
5307 availablefp_->set_list(old_availablefp_);
5308}
5309
5310
5311Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
5312 int code = AcquireNextAvailable(available_).code();
5313 return Register::Create(code, reg.SizeInBits());
5314}
5315
5316
5317FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
5318 int code = AcquireNextAvailable(availablefp_).code();
5319 return FPRegister::Create(code, reg.SizeInBits());
5320}
5321
5322
5323CPURegister UseScratchRegisterScope::AcquireNextAvailable(
5324 CPURegList* available) {
5325 CHECK(!available->IsEmpty());
5326 CPURegister result = available->PopLowestIndex();
5327 DCHECK(!AreAliased(result, xzr, csp));
5328 return result;
5329}
5330
5331
5332CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
5333 const CPURegister& reg) {
5334 DCHECK(available->IncludesAliasOf(reg));
5335 available->Remove(reg);
5336 return reg;
5337}
5338
5339
5340#define __ masm->
5341
5342
5343void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
5344 const Label* smi_check) {
5345 Assembler::BlockPoolsScope scope(masm);
5346 if (reg.IsValid()) {
5347 DCHECK(smi_check->is_bound());
5348 DCHECK(reg.Is64Bits());
5349
5350 // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
5351 // 'check' in the other bits. The possible offset is limited in that we
5352 // use BitField to pack the data, and the underlying data type is a
5353 // uint32_t.
5354 uint32_t delta = __ InstructionsGeneratedSince(smi_check);
5355 __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
5356 } else {
5357 DCHECK(!smi_check->is_bound());
5358
5359 // An offset of 0 indicates that there is no patch site.
5360 __ InlineData(0);
5361 }
5362}
5363
5364
5365InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
5366 : reg_(NoReg), smi_check_(NULL) {
5367 InstructionSequence* inline_data = InstructionSequence::At(info);
5368 DCHECK(inline_data->IsInlineData());
5369 if (inline_data->IsInlineData()) {
5370 uint64_t payload = inline_data->InlineData();
5371 // We use BitField to decode the payload, and BitField can only handle
5372 // 32-bit values.
5373 DCHECK(is_uint32(payload));
5374 if (payload != 0) {
5375 int reg_code = RegisterBits::decode(payload);
5376 reg_ = Register::XRegFromCode(reg_code);
5377 uint64_t smi_check_delta = DeltaBits::decode(payload);
5378 DCHECK(smi_check_delta != 0);
5379 smi_check_ = inline_data->preceding(smi_check_delta);
5380 }
5381 }
5382}
5383
5384
5385#undef __
5386
5387
5388} } // namespace v8::internal
5389
5390#endif // V8_TARGET_ARCH_ARM64