Ben Murdoch | b8a8cc1 | 2014-11-26 15:28:44 +0000 | [diff] [blame^] | 1 | // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include <deque> |
| 6 | #include <queue> |
| 7 | |
| 8 | #include "src/compiler/scheduler.h" |
| 9 | |
| 10 | #include "src/compiler/graph.h" |
| 11 | #include "src/compiler/graph-inl.h" |
| 12 | #include "src/compiler/node.h" |
| 13 | #include "src/compiler/node-properties.h" |
| 14 | #include "src/compiler/node-properties-inl.h" |
| 15 | #include "src/data-flow.h" |
| 16 | |
| 17 | namespace v8 { |
| 18 | namespace internal { |
| 19 | namespace compiler { |
| 20 | |
| 21 | static inline void Trace(const char* msg, ...) { |
| 22 | if (FLAG_trace_turbo_scheduler) { |
| 23 | va_list arguments; |
| 24 | va_start(arguments, msg); |
| 25 | base::OS::VPrint(msg, arguments); |
| 26 | va_end(arguments); |
| 27 | } |
| 28 | } |
| 29 | |
| 30 | |
| 31 | // Internal class to build a control flow graph (i.e the basic blocks and edges |
| 32 | // between them within a Schedule) from the node graph. |
| 33 | // Visits the control edges of the graph backwards from end in order to find |
| 34 | // the connected control subgraph, needed for scheduling. |
| 35 | class CFGBuilder { |
| 36 | public: |
| 37 | Scheduler* scheduler_; |
| 38 | Schedule* schedule_; |
| 39 | ZoneQueue<Node*> queue_; |
| 40 | NodeVector control_; |
| 41 | |
| 42 | CFGBuilder(Zone* zone, Scheduler* scheduler) |
| 43 | : scheduler_(scheduler), |
| 44 | schedule_(scheduler->schedule_), |
| 45 | queue_(zone), |
| 46 | control_(zone) {} |
| 47 | |
| 48 | // Run the control flow graph construction algorithm by walking the graph |
| 49 | // backwards from end through control edges, building and connecting the |
| 50 | // basic blocks for control nodes. |
| 51 | void Run() { |
| 52 | Graph* graph = scheduler_->graph_; |
| 53 | FixNode(schedule_->start(), graph->start()); |
| 54 | Queue(graph->end()); |
| 55 | |
| 56 | while (!queue_.empty()) { // Breadth-first backwards traversal. |
| 57 | Node* node = queue_.front(); |
| 58 | queue_.pop(); |
| 59 | int max = NodeProperties::PastControlIndex(node); |
| 60 | for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { |
| 61 | Queue(node->InputAt(i)); |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | for (NodeVector::iterator i = control_.begin(); i != control_.end(); ++i) { |
| 66 | ConnectBlocks(*i); // Connect block to its predecessor/successors. |
| 67 | } |
| 68 | |
| 69 | FixNode(schedule_->end(), graph->end()); |
| 70 | } |
| 71 | |
| 72 | void FixNode(BasicBlock* block, Node* node) { |
| 73 | schedule_->AddNode(block, node); |
| 74 | scheduler_->GetData(node)->is_connected_control_ = true; |
| 75 | scheduler_->GetData(node)->placement_ = Scheduler::kFixed; |
| 76 | } |
| 77 | |
| 78 | void Queue(Node* node) { |
| 79 | // Mark the connected control nodes as they queued. |
| 80 | Scheduler::SchedulerData* data = scheduler_->GetData(node); |
| 81 | if (!data->is_connected_control_) { |
| 82 | BuildBlocks(node); |
| 83 | queue_.push(node); |
| 84 | control_.push_back(node); |
| 85 | data->is_connected_control_ = true; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | void BuildBlocks(Node* node) { |
| 90 | switch (node->opcode()) { |
| 91 | case IrOpcode::kLoop: |
| 92 | case IrOpcode::kMerge: |
| 93 | BuildBlockForNode(node); |
| 94 | break; |
| 95 | case IrOpcode::kBranch: |
| 96 | BuildBlocksForSuccessors(node, IrOpcode::kIfTrue, IrOpcode::kIfFalse); |
| 97 | break; |
| 98 | default: |
| 99 | break; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | void ConnectBlocks(Node* node) { |
| 104 | switch (node->opcode()) { |
| 105 | case IrOpcode::kLoop: |
| 106 | case IrOpcode::kMerge: |
| 107 | ConnectMerge(node); |
| 108 | break; |
| 109 | case IrOpcode::kBranch: |
| 110 | scheduler_->schedule_root_nodes_.push_back(node); |
| 111 | ConnectBranch(node); |
| 112 | break; |
| 113 | case IrOpcode::kReturn: |
| 114 | scheduler_->schedule_root_nodes_.push_back(node); |
| 115 | ConnectReturn(node); |
| 116 | break; |
| 117 | default: |
| 118 | break; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | void BuildBlockForNode(Node* node) { |
| 123 | if (schedule_->block(node) == NULL) { |
| 124 | BasicBlock* block = schedule_->NewBasicBlock(); |
| 125 | Trace("Create block B%d for #%d:%s\n", block->id(), node->id(), |
| 126 | node->op()->mnemonic()); |
| 127 | FixNode(block, node); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void BuildBlocksForSuccessors(Node* node, IrOpcode::Value a, |
| 132 | IrOpcode::Value b) { |
| 133 | Node* successors[2]; |
| 134 | CollectSuccessorProjections(node, successors, a, b); |
| 135 | BuildBlockForNode(successors[0]); |
| 136 | BuildBlockForNode(successors[1]); |
| 137 | } |
| 138 | |
| 139 | // Collect the branch-related projections from a node, such as IfTrue, |
| 140 | // IfFalse. |
| 141 | // TODO(titzer): consider moving this to node.h |
| 142 | void CollectSuccessorProjections(Node* node, Node** buffer, |
| 143 | IrOpcode::Value true_opcode, |
| 144 | IrOpcode::Value false_opcode) { |
| 145 | buffer[0] = NULL; |
| 146 | buffer[1] = NULL; |
| 147 | for (UseIter i = node->uses().begin(); i != node->uses().end(); ++i) { |
| 148 | if ((*i)->opcode() == true_opcode) { |
| 149 | DCHECK_EQ(NULL, buffer[0]); |
| 150 | buffer[0] = *i; |
| 151 | } |
| 152 | if ((*i)->opcode() == false_opcode) { |
| 153 | DCHECK_EQ(NULL, buffer[1]); |
| 154 | buffer[1] = *i; |
| 155 | } |
| 156 | } |
| 157 | DCHECK_NE(NULL, buffer[0]); |
| 158 | DCHECK_NE(NULL, buffer[1]); |
| 159 | } |
| 160 | |
| 161 | void CollectSuccessorBlocks(Node* node, BasicBlock** buffer, |
| 162 | IrOpcode::Value true_opcode, |
| 163 | IrOpcode::Value false_opcode) { |
| 164 | Node* successors[2]; |
| 165 | CollectSuccessorProjections(node, successors, true_opcode, false_opcode); |
| 166 | buffer[0] = schedule_->block(successors[0]); |
| 167 | buffer[1] = schedule_->block(successors[1]); |
| 168 | } |
| 169 | |
| 170 | void ConnectBranch(Node* branch) { |
| 171 | Node* branch_block_node = NodeProperties::GetControlInput(branch); |
| 172 | BasicBlock* branch_block = schedule_->block(branch_block_node); |
| 173 | DCHECK(branch_block != NULL); |
| 174 | |
| 175 | BasicBlock* successor_blocks[2]; |
| 176 | CollectSuccessorBlocks(branch, successor_blocks, IrOpcode::kIfTrue, |
| 177 | IrOpcode::kIfFalse); |
| 178 | |
| 179 | TraceConnect(branch, branch_block, successor_blocks[0]); |
| 180 | TraceConnect(branch, branch_block, successor_blocks[1]); |
| 181 | |
| 182 | schedule_->AddBranch(branch_block, branch, successor_blocks[0], |
| 183 | successor_blocks[1]); |
| 184 | } |
| 185 | |
| 186 | void ConnectMerge(Node* merge) { |
| 187 | BasicBlock* block = schedule_->block(merge); |
| 188 | DCHECK(block != NULL); |
| 189 | // For all of the merge's control inputs, add a goto at the end to the |
| 190 | // merge's basic block. |
| 191 | for (InputIter j = merge->inputs().begin(); j != merge->inputs().end(); |
| 192 | ++j) { |
| 193 | BasicBlock* predecessor_block = schedule_->block(*j); |
| 194 | if ((*j)->opcode() != IrOpcode::kReturn) { |
| 195 | TraceConnect(merge, predecessor_block, block); |
| 196 | schedule_->AddGoto(predecessor_block, block); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void ConnectReturn(Node* ret) { |
| 202 | Node* return_block_node = NodeProperties::GetControlInput(ret); |
| 203 | BasicBlock* return_block = schedule_->block(return_block_node); |
| 204 | TraceConnect(ret, return_block, NULL); |
| 205 | schedule_->AddReturn(return_block, ret); |
| 206 | } |
| 207 | |
| 208 | void TraceConnect(Node* node, BasicBlock* block, BasicBlock* succ) { |
| 209 | DCHECK_NE(NULL, block); |
| 210 | if (succ == NULL) { |
| 211 | Trace("Connect #%d:%s, B%d -> end\n", node->id(), node->op()->mnemonic(), |
| 212 | block->id()); |
| 213 | } else { |
| 214 | Trace("Connect #%d:%s, B%d -> B%d\n", node->id(), node->op()->mnemonic(), |
| 215 | block->id(), succ->id()); |
| 216 | } |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | |
| 221 | Scheduler::SchedulerData Scheduler::DefaultSchedulerData() { |
| 222 | SchedulerData def = {0, 0, false, false, kUnknown}; |
| 223 | return def; |
| 224 | } |
| 225 | |
| 226 | |
| 227 | Scheduler::Scheduler(Zone* zone, Graph* graph, Schedule* schedule) |
| 228 | : zone_(zone), |
| 229 | graph_(graph), |
| 230 | schedule_(schedule), |
| 231 | scheduled_nodes_(zone), |
| 232 | schedule_root_nodes_(zone), |
| 233 | node_data_(graph_->NodeCount(), DefaultSchedulerData(), zone), |
| 234 | has_floating_control_(false) {} |
| 235 | |
| 236 | |
| 237 | Schedule* Scheduler::ComputeSchedule(Graph* graph) { |
| 238 | Schedule* schedule; |
| 239 | bool had_floating_control = false; |
| 240 | do { |
| 241 | Zone tmp_zone(graph->zone()->isolate()); |
| 242 | schedule = new (graph->zone()) Schedule(graph->zone()); |
| 243 | Scheduler scheduler(&tmp_zone, graph, schedule); |
| 244 | |
| 245 | scheduler.BuildCFG(); |
| 246 | |
| 247 | Scheduler::ComputeSpecialRPO(schedule); |
| 248 | scheduler.GenerateImmediateDominatorTree(); |
| 249 | |
| 250 | scheduler.PrepareUses(); |
| 251 | scheduler.ScheduleEarly(); |
| 252 | scheduler.ScheduleLate(); |
| 253 | |
| 254 | had_floating_control = scheduler.ConnectFloatingControl(); |
| 255 | } while (had_floating_control); |
| 256 | |
| 257 | return schedule; |
| 258 | } |
| 259 | |
| 260 | |
| 261 | Scheduler::Placement Scheduler::GetPlacement(Node* node) { |
| 262 | SchedulerData* data = GetData(node); |
| 263 | if (data->placement_ == kUnknown) { // Compute placement, once, on demand. |
| 264 | switch (node->opcode()) { |
| 265 | case IrOpcode::kParameter: |
| 266 | // Parameters are always fixed to the start node. |
| 267 | data->placement_ = kFixed; |
| 268 | break; |
| 269 | case IrOpcode::kPhi: |
| 270 | case IrOpcode::kEffectPhi: { |
| 271 | // Phis and effect phis are fixed if their control inputs are. |
| 272 | data->placement_ = GetPlacement(NodeProperties::GetControlInput(node)); |
| 273 | break; |
| 274 | } |
| 275 | #define DEFINE_FLOATING_CONTROL_CASE(V) case IrOpcode::k##V: |
| 276 | CONTROL_OP_LIST(DEFINE_FLOATING_CONTROL_CASE) |
| 277 | #undef DEFINE_FLOATING_CONTROL_CASE |
| 278 | { |
| 279 | // Control nodes that were not control-reachable from end may float. |
| 280 | data->placement_ = kSchedulable; |
| 281 | if (!data->is_connected_control_) { |
| 282 | data->is_floating_control_ = true; |
| 283 | has_floating_control_ = true; |
| 284 | Trace("Floating control found: #%d:%s\n", node->id(), |
| 285 | node->op()->mnemonic()); |
| 286 | } |
| 287 | break; |
| 288 | } |
| 289 | default: |
| 290 | data->placement_ = kSchedulable; |
| 291 | break; |
| 292 | } |
| 293 | } |
| 294 | return data->placement_; |
| 295 | } |
| 296 | |
| 297 | |
| 298 | void Scheduler::BuildCFG() { |
| 299 | Trace("---------------- CREATING CFG ------------------\n"); |
| 300 | CFGBuilder cfg_builder(zone_, this); |
| 301 | cfg_builder.Run(); |
| 302 | // Initialize per-block data. |
| 303 | scheduled_nodes_.resize(schedule_->BasicBlockCount(), NodeVector(zone_)); |
| 304 | } |
| 305 | |
| 306 | |
| 307 | BasicBlock* Scheduler::GetCommonDominator(BasicBlock* b1, BasicBlock* b2) { |
| 308 | while (b1 != b2) { |
| 309 | int b1_rpo = GetRPONumber(b1); |
| 310 | int b2_rpo = GetRPONumber(b2); |
| 311 | DCHECK(b1_rpo != b2_rpo); |
| 312 | if (b1_rpo < b2_rpo) { |
| 313 | b2 = b2->dominator_; |
| 314 | } else { |
| 315 | b1 = b1->dominator_; |
| 316 | } |
| 317 | } |
| 318 | return b1; |
| 319 | } |
| 320 | |
| 321 | |
| 322 | void Scheduler::GenerateImmediateDominatorTree() { |
| 323 | // Build the dominator graph. TODO(danno): consider using Lengauer & Tarjan's |
| 324 | // if this becomes really slow. |
| 325 | Trace("------------ IMMEDIATE BLOCK DOMINATORS -----------\n"); |
| 326 | for (size_t i = 0; i < schedule_->rpo_order_.size(); i++) { |
| 327 | BasicBlock* current_rpo = schedule_->rpo_order_[i]; |
| 328 | if (current_rpo != schedule_->start()) { |
| 329 | BasicBlock::Predecessors::iterator current_pred = |
| 330 | current_rpo->predecessors().begin(); |
| 331 | BasicBlock::Predecessors::iterator end = |
| 332 | current_rpo->predecessors().end(); |
| 333 | DCHECK(current_pred != end); |
| 334 | BasicBlock* dominator = *current_pred; |
| 335 | ++current_pred; |
| 336 | // For multiple predecessors, walk up the rpo ordering until a common |
| 337 | // dominator is found. |
| 338 | int current_rpo_pos = GetRPONumber(current_rpo); |
| 339 | while (current_pred != end) { |
| 340 | // Don't examine backwards edges |
| 341 | BasicBlock* pred = *current_pred; |
| 342 | if (GetRPONumber(pred) < current_rpo_pos) { |
| 343 | dominator = GetCommonDominator(dominator, *current_pred); |
| 344 | } |
| 345 | ++current_pred; |
| 346 | } |
| 347 | current_rpo->dominator_ = dominator; |
| 348 | Trace("Block %d's idom is %d\n", current_rpo->id(), dominator->id()); |
| 349 | } |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | |
| 354 | class ScheduleEarlyNodeVisitor : public NullNodeVisitor { |
| 355 | public: |
| 356 | explicit ScheduleEarlyNodeVisitor(Scheduler* scheduler) |
| 357 | : has_changed_rpo_constraints_(true), |
| 358 | scheduler_(scheduler), |
| 359 | schedule_(scheduler->schedule_) {} |
| 360 | |
| 361 | GenericGraphVisit::Control Pre(Node* node) { |
| 362 | int max_rpo = 0; |
| 363 | // Fixed nodes already know their schedule early position. |
| 364 | if (scheduler_->GetPlacement(node) == Scheduler::kFixed) { |
| 365 | BasicBlock* block = schedule_->block(node); |
| 366 | DCHECK(block != NULL); |
| 367 | max_rpo = block->rpo_number_; |
| 368 | if (scheduler_->GetData(node)->minimum_rpo_ != max_rpo) { |
| 369 | has_changed_rpo_constraints_ = true; |
| 370 | } |
| 371 | scheduler_->GetData(node)->minimum_rpo_ = max_rpo; |
| 372 | Trace("Preschedule #%d:%s minimum_rpo = %d\n", node->id(), |
| 373 | node->op()->mnemonic(), max_rpo); |
| 374 | } |
| 375 | return GenericGraphVisit::CONTINUE; |
| 376 | } |
| 377 | |
| 378 | GenericGraphVisit::Control Post(Node* node) { |
| 379 | int max_rpo = 0; |
| 380 | // Otherwise, the minimum rpo for the node is the max of all of the inputs. |
| 381 | if (scheduler_->GetPlacement(node) != Scheduler::kFixed) { |
| 382 | for (InputIter i = node->inputs().begin(); i != node->inputs().end(); |
| 383 | ++i) { |
| 384 | int control_rpo = scheduler_->GetData(*i)->minimum_rpo_; |
| 385 | if (control_rpo > max_rpo) { |
| 386 | max_rpo = control_rpo; |
| 387 | } |
| 388 | } |
| 389 | if (scheduler_->GetData(node)->minimum_rpo_ != max_rpo) { |
| 390 | has_changed_rpo_constraints_ = true; |
| 391 | } |
| 392 | scheduler_->GetData(node)->minimum_rpo_ = max_rpo; |
| 393 | Trace("Postschedule #%d:%s minimum_rpo = %d\n", node->id(), |
| 394 | node->op()->mnemonic(), max_rpo); |
| 395 | } |
| 396 | return GenericGraphVisit::CONTINUE; |
| 397 | } |
| 398 | |
| 399 | // TODO(mstarzinger): Dirty hack to unblock others, schedule early should be |
| 400 | // rewritten to use a pre-order traversal from the start instead. |
| 401 | bool has_changed_rpo_constraints_; |
| 402 | |
| 403 | private: |
| 404 | Scheduler* scheduler_; |
| 405 | Schedule* schedule_; |
| 406 | }; |
| 407 | |
| 408 | |
| 409 | void Scheduler::ScheduleEarly() { |
| 410 | Trace("------------------- SCHEDULE EARLY ----------------\n"); |
| 411 | |
| 412 | int fixpoint_count = 0; |
| 413 | ScheduleEarlyNodeVisitor visitor(this); |
| 414 | while (visitor.has_changed_rpo_constraints_) { |
| 415 | visitor.has_changed_rpo_constraints_ = false; |
| 416 | graph_->VisitNodeInputsFromEnd(&visitor); |
| 417 | fixpoint_count++; |
| 418 | } |
| 419 | |
| 420 | Trace("It took %d iterations to determine fixpoint\n", fixpoint_count); |
| 421 | } |
| 422 | |
| 423 | |
| 424 | class PrepareUsesVisitor : public NullNodeVisitor { |
| 425 | public: |
| 426 | explicit PrepareUsesVisitor(Scheduler* scheduler) |
| 427 | : scheduler_(scheduler), schedule_(scheduler->schedule_) {} |
| 428 | |
| 429 | GenericGraphVisit::Control Pre(Node* node) { |
| 430 | if (scheduler_->GetPlacement(node) == Scheduler::kFixed) { |
| 431 | // Fixed nodes are always roots for schedule late. |
| 432 | scheduler_->schedule_root_nodes_.push_back(node); |
| 433 | if (!schedule_->IsScheduled(node)) { |
| 434 | // Make sure root nodes are scheduled in their respective blocks. |
| 435 | Trace(" Scheduling fixed position node #%d:%s\n", node->id(), |
| 436 | node->op()->mnemonic()); |
| 437 | IrOpcode::Value opcode = node->opcode(); |
| 438 | BasicBlock* block = |
| 439 | opcode == IrOpcode::kParameter |
| 440 | ? schedule_->start() |
| 441 | : schedule_->block(NodeProperties::GetControlInput(node)); |
| 442 | DCHECK(block != NULL); |
| 443 | schedule_->AddNode(block, node); |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | return GenericGraphVisit::CONTINUE; |
| 448 | } |
| 449 | |
| 450 | void PostEdge(Node* from, int index, Node* to) { |
| 451 | // If the edge is from an unscheduled node, then tally it in the use count |
| 452 | // for all of its inputs. The same criterion will be used in ScheduleLate |
| 453 | // for decrementing use counts. |
| 454 | if (!schedule_->IsScheduled(from)) { |
| 455 | DCHECK_NE(Scheduler::kFixed, scheduler_->GetPlacement(from)); |
| 456 | ++(scheduler_->GetData(to)->unscheduled_count_); |
| 457 | Trace(" Use count of #%d:%s (used by #%d:%s)++ = %d\n", to->id(), |
| 458 | to->op()->mnemonic(), from->id(), from->op()->mnemonic(), |
| 459 | scheduler_->GetData(to)->unscheduled_count_); |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | private: |
| 464 | Scheduler* scheduler_; |
| 465 | Schedule* schedule_; |
| 466 | }; |
| 467 | |
| 468 | |
| 469 | void Scheduler::PrepareUses() { |
| 470 | Trace("------------------- PREPARE USES ------------------\n"); |
| 471 | // Count the uses of every node, it will be used to ensure that all of a |
| 472 | // node's uses are scheduled before the node itself. |
| 473 | PrepareUsesVisitor prepare_uses(this); |
| 474 | graph_->VisitNodeInputsFromEnd(&prepare_uses); |
| 475 | } |
| 476 | |
| 477 | |
| 478 | class ScheduleLateNodeVisitor : public NullNodeVisitor { |
| 479 | public: |
| 480 | explicit ScheduleLateNodeVisitor(Scheduler* scheduler) |
| 481 | : scheduler_(scheduler), schedule_(scheduler_->schedule_) {} |
| 482 | |
| 483 | GenericGraphVisit::Control Pre(Node* node) { |
| 484 | // Don't schedule nodes that are already scheduled. |
| 485 | if (schedule_->IsScheduled(node)) { |
| 486 | return GenericGraphVisit::CONTINUE; |
| 487 | } |
| 488 | Scheduler::SchedulerData* data = scheduler_->GetData(node); |
| 489 | DCHECK_EQ(Scheduler::kSchedulable, data->placement_); |
| 490 | |
| 491 | // If all the uses of a node have been scheduled, then the node itself can |
| 492 | // be scheduled. |
| 493 | bool eligible = data->unscheduled_count_ == 0; |
| 494 | Trace("Testing for schedule eligibility for #%d:%s = %s\n", node->id(), |
| 495 | node->op()->mnemonic(), eligible ? "true" : "false"); |
| 496 | if (!eligible) return GenericGraphVisit::DEFER; |
| 497 | |
| 498 | // Determine the dominating block for all of the uses of this node. It is |
| 499 | // the latest block that this node can be scheduled in. |
| 500 | BasicBlock* block = NULL; |
| 501 | for (Node::Uses::iterator i = node->uses().begin(); i != node->uses().end(); |
| 502 | ++i) { |
| 503 | BasicBlock* use_block = GetBlockForUse(i.edge()); |
| 504 | block = block == NULL ? use_block : use_block == NULL |
| 505 | ? block |
| 506 | : scheduler_->GetCommonDominator( |
| 507 | block, use_block); |
| 508 | } |
| 509 | DCHECK(block != NULL); |
| 510 | |
| 511 | int min_rpo = data->minimum_rpo_; |
| 512 | Trace( |
| 513 | "Schedule late conservative for #%d:%s is B%d at loop depth %d, " |
| 514 | "minimum_rpo = %d\n", |
| 515 | node->id(), node->op()->mnemonic(), block->id(), block->loop_depth_, |
| 516 | min_rpo); |
| 517 | // Hoist nodes out of loops if possible. Nodes can be hoisted iteratively |
| 518 | // into enclosing loop pre-headers until they would preceed their |
| 519 | // ScheduleEarly position. |
| 520 | BasicBlock* hoist_block = block; |
| 521 | while (hoist_block != NULL && hoist_block->rpo_number_ >= min_rpo) { |
| 522 | if (hoist_block->loop_depth_ < block->loop_depth_) { |
| 523 | block = hoist_block; |
| 524 | Trace(" hoisting #%d:%s to block %d\n", node->id(), |
| 525 | node->op()->mnemonic(), block->id()); |
| 526 | } |
| 527 | // Try to hoist to the pre-header of the loop header. |
| 528 | hoist_block = hoist_block->loop_header(); |
| 529 | if (hoist_block != NULL) { |
| 530 | BasicBlock* pre_header = hoist_block->dominator_; |
| 531 | DCHECK(pre_header == NULL || |
| 532 | *hoist_block->predecessors().begin() == pre_header); |
| 533 | Trace( |
| 534 | " hoist to pre-header B%d of loop header B%d, depth would be %d\n", |
| 535 | pre_header->id(), hoist_block->id(), pre_header->loop_depth_); |
| 536 | hoist_block = pre_header; |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | ScheduleNode(block, node); |
| 541 | |
| 542 | return GenericGraphVisit::CONTINUE; |
| 543 | } |
| 544 | |
| 545 | private: |
| 546 | BasicBlock* GetBlockForUse(Node::Edge edge) { |
| 547 | Node* use = edge.from(); |
| 548 | IrOpcode::Value opcode = use->opcode(); |
| 549 | if (opcode == IrOpcode::kPhi || opcode == IrOpcode::kEffectPhi) { |
| 550 | // If the use is from a fixed (i.e. non-floating) phi, use the block |
| 551 | // of the corresponding control input to the merge. |
| 552 | int index = edge.index(); |
| 553 | if (scheduler_->GetPlacement(use) == Scheduler::kFixed) { |
| 554 | Trace(" input@%d into a fixed phi #%d:%s\n", index, use->id(), |
| 555 | use->op()->mnemonic()); |
| 556 | Node* merge = NodeProperties::GetControlInput(use, 0); |
| 557 | opcode = merge->opcode(); |
| 558 | DCHECK(opcode == IrOpcode::kMerge || opcode == IrOpcode::kLoop); |
| 559 | use = NodeProperties::GetControlInput(merge, index); |
| 560 | } |
| 561 | } |
| 562 | BasicBlock* result = schedule_->block(use); |
| 563 | if (result == NULL) return NULL; |
| 564 | Trace(" must dominate use #%d:%s in B%d\n", use->id(), |
| 565 | use->op()->mnemonic(), result->id()); |
| 566 | return result; |
| 567 | } |
| 568 | |
| 569 | void ScheduleNode(BasicBlock* block, Node* node) { |
| 570 | schedule_->PlanNode(block, node); |
| 571 | scheduler_->scheduled_nodes_[block->id()].push_back(node); |
| 572 | |
| 573 | // Reduce the use count of the node's inputs to potentially make them |
| 574 | // schedulable. |
| 575 | for (InputIter i = node->inputs().begin(); i != node->inputs().end(); ++i) { |
| 576 | Scheduler::SchedulerData* data = scheduler_->GetData(*i); |
| 577 | DCHECK(data->unscheduled_count_ > 0); |
| 578 | --data->unscheduled_count_; |
| 579 | if (FLAG_trace_turbo_scheduler) { |
| 580 | Trace(" Use count for #%d:%s (used by #%d:%s)-- = %d\n", (*i)->id(), |
| 581 | (*i)->op()->mnemonic(), i.edge().from()->id(), |
| 582 | i.edge().from()->op()->mnemonic(), data->unscheduled_count_); |
| 583 | if (data->unscheduled_count_ == 0) { |
| 584 | Trace(" newly eligible #%d:%s\n", (*i)->id(), |
| 585 | (*i)->op()->mnemonic()); |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | Scheduler* scheduler_; |
| 592 | Schedule* schedule_; |
| 593 | }; |
| 594 | |
| 595 | |
| 596 | void Scheduler::ScheduleLate() { |
| 597 | Trace("------------------- SCHEDULE LATE -----------------\n"); |
| 598 | if (FLAG_trace_turbo_scheduler) { |
| 599 | Trace("roots: "); |
| 600 | for (NodeVectorIter i = schedule_root_nodes_.begin(); |
| 601 | i != schedule_root_nodes_.end(); ++i) { |
| 602 | Trace("#%d:%s ", (*i)->id(), (*i)->op()->mnemonic()); |
| 603 | } |
| 604 | Trace("\n"); |
| 605 | } |
| 606 | |
| 607 | // Schedule: Places nodes in dominator block of all their uses. |
| 608 | ScheduleLateNodeVisitor schedule_late_visitor(this); |
| 609 | |
| 610 | { |
| 611 | Zone zone(zone_->isolate()); |
| 612 | GenericGraphVisit::Visit<ScheduleLateNodeVisitor, |
| 613 | NodeInputIterationTraits<Node> >( |
| 614 | graph_, &zone, schedule_root_nodes_.begin(), schedule_root_nodes_.end(), |
| 615 | &schedule_late_visitor); |
| 616 | } |
| 617 | |
| 618 | // Add collected nodes for basic blocks to their blocks in the right order. |
| 619 | int block_num = 0; |
| 620 | for (NodeVectorVectorIter i = scheduled_nodes_.begin(); |
| 621 | i != scheduled_nodes_.end(); ++i) { |
| 622 | for (NodeVectorRIter j = i->rbegin(); j != i->rend(); ++j) { |
| 623 | schedule_->AddNode(schedule_->all_blocks_.at(block_num), *j); |
| 624 | } |
| 625 | block_num++; |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | |
| 630 | bool Scheduler::ConnectFloatingControl() { |
| 631 | if (!has_floating_control_) return false; |
| 632 | |
| 633 | Trace("Connecting floating control...\n"); |
| 634 | |
| 635 | // Process blocks and instructions backwards to find and connect floating |
| 636 | // control nodes into the control graph according to the block they were |
| 637 | // scheduled into. |
| 638 | int max = static_cast<int>(schedule_->rpo_order()->size()); |
| 639 | for (int i = max - 1; i >= 0; i--) { |
| 640 | BasicBlock* block = schedule_->rpo_order()->at(i); |
| 641 | // TODO(titzer): we place at most one floating control structure per |
| 642 | // basic block because scheduling currently can interleave phis from |
| 643 | // one subgraph with the merges from another subgraph. |
| 644 | bool one_placed = false; |
| 645 | for (int j = static_cast<int>(block->nodes_.size()) - 1; j >= 0; j--) { |
| 646 | Node* node = block->nodes_[j]; |
| 647 | SchedulerData* data = GetData(node); |
| 648 | if (data->is_floating_control_ && !data->is_connected_control_ && |
| 649 | !one_placed) { |
| 650 | Trace(" Floating control #%d:%s was scheduled in B%d\n", node->id(), |
| 651 | node->op()->mnemonic(), block->id()); |
| 652 | ConnectFloatingControlSubgraph(block, node); |
| 653 | one_placed = true; |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | return true; |
| 659 | } |
| 660 | |
| 661 | |
| 662 | void Scheduler::ConnectFloatingControlSubgraph(BasicBlock* block, Node* end) { |
| 663 | Node* block_start = block->nodes_[0]; |
| 664 | DCHECK(IrOpcode::IsControlOpcode(block_start->opcode())); |
| 665 | // Find the current "control successor" of the node that starts the block |
| 666 | // by searching the control uses for a control input edge from a connected |
| 667 | // control node. |
| 668 | Node* control_succ = NULL; |
| 669 | for (UseIter i = block_start->uses().begin(); i != block_start->uses().end(); |
| 670 | ++i) { |
| 671 | Node::Edge edge = i.edge(); |
| 672 | if (NodeProperties::IsControlEdge(edge) && |
| 673 | GetData(edge.from())->is_connected_control_) { |
| 674 | DCHECK_EQ(NULL, control_succ); |
| 675 | control_succ = edge.from(); |
| 676 | control_succ->ReplaceInput(edge.index(), end); |
| 677 | } |
| 678 | } |
| 679 | DCHECK_NE(NULL, control_succ); |
| 680 | Trace(" Inserting floating control end %d:%s between %d:%s -> %d:%s\n", |
| 681 | end->id(), end->op()->mnemonic(), control_succ->id(), |
| 682 | control_succ->op()->mnemonic(), block_start->id(), |
| 683 | block_start->op()->mnemonic()); |
| 684 | |
| 685 | // Find the "start" node of the control subgraph, which should be the |
| 686 | // unique node that is itself floating control but has a control input that |
| 687 | // is not floating. |
| 688 | Node* start = NULL; |
| 689 | ZoneQueue<Node*> queue(zone_); |
| 690 | queue.push(end); |
| 691 | GetData(end)->is_connected_control_ = true; |
| 692 | while (!queue.empty()) { |
| 693 | Node* node = queue.front(); |
| 694 | queue.pop(); |
| 695 | Trace(" Search #%d:%s for control subgraph start\n", node->id(), |
| 696 | node->op()->mnemonic()); |
| 697 | int max = NodeProperties::PastControlIndex(node); |
| 698 | for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { |
| 699 | Node* input = node->InputAt(i); |
| 700 | SchedulerData* data = GetData(input); |
| 701 | if (data->is_floating_control_) { |
| 702 | // {input} is floating control. |
| 703 | if (!data->is_connected_control_) { |
| 704 | // First time seeing {input} during this traversal, queue it. |
| 705 | queue.push(input); |
| 706 | data->is_connected_control_ = true; |
| 707 | } |
| 708 | } else { |
| 709 | // Otherwise, {node} is the start node, because it is floating control |
| 710 | // but is connected to {input} that is not floating control. |
| 711 | DCHECK_EQ(NULL, start); // There can be only one. |
| 712 | start = node; |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | DCHECK_NE(NULL, start); |
| 718 | start->ReplaceInput(NodeProperties::FirstControlIndex(start), block_start); |
| 719 | |
| 720 | Trace(" Connecting floating control start %d:%s to %d:%s\n", start->id(), |
| 721 | start->op()->mnemonic(), block_start->id(), |
| 722 | block_start->op()->mnemonic()); |
| 723 | } |
| 724 | |
| 725 | |
| 726 | // Numbering for BasicBlockData.rpo_number_ for this block traversal: |
| 727 | static const int kBlockOnStack = -2; |
| 728 | static const int kBlockVisited1 = -3; |
| 729 | static const int kBlockVisited2 = -4; |
| 730 | static const int kBlockUnvisited1 = -1; |
| 731 | static const int kBlockUnvisited2 = kBlockVisited1; |
| 732 | |
| 733 | struct SpecialRPOStackFrame { |
| 734 | BasicBlock* block; |
| 735 | int index; |
| 736 | }; |
| 737 | |
| 738 | struct BlockList { |
| 739 | BasicBlock* block; |
| 740 | BlockList* next; |
| 741 | |
| 742 | BlockList* Add(Zone* zone, BasicBlock* b) { |
| 743 | BlockList* list = static_cast<BlockList*>(zone->New(sizeof(BlockList))); |
| 744 | list->block = b; |
| 745 | list->next = this; |
| 746 | return list; |
| 747 | } |
| 748 | |
| 749 | void Serialize(BasicBlockVector* final_order) { |
| 750 | for (BlockList* l = this; l != NULL; l = l->next) { |
| 751 | l->block->rpo_number_ = static_cast<int>(final_order->size()); |
| 752 | final_order->push_back(l->block); |
| 753 | } |
| 754 | } |
| 755 | }; |
| 756 | |
| 757 | struct LoopInfo { |
| 758 | BasicBlock* header; |
| 759 | ZoneList<BasicBlock*>* outgoing; |
| 760 | BitVector* members; |
| 761 | LoopInfo* prev; |
| 762 | BlockList* end; |
| 763 | BlockList* start; |
| 764 | |
| 765 | void AddOutgoing(Zone* zone, BasicBlock* block) { |
| 766 | if (outgoing == NULL) outgoing = new (zone) ZoneList<BasicBlock*>(2, zone); |
| 767 | outgoing->Add(block, zone); |
| 768 | } |
| 769 | }; |
| 770 | |
| 771 | |
| 772 | static int Push(SpecialRPOStackFrame* stack, int depth, BasicBlock* child, |
| 773 | int unvisited) { |
| 774 | if (child->rpo_number_ == unvisited) { |
| 775 | stack[depth].block = child; |
| 776 | stack[depth].index = 0; |
| 777 | child->rpo_number_ = kBlockOnStack; |
| 778 | return depth + 1; |
| 779 | } |
| 780 | return depth; |
| 781 | } |
| 782 | |
| 783 | |
| 784 | // Computes loop membership from the backedges of the control flow graph. |
| 785 | static LoopInfo* ComputeLoopInfo( |
| 786 | Zone* zone, SpecialRPOStackFrame* queue, int num_loops, int num_blocks, |
| 787 | ZoneList<std::pair<BasicBlock*, int> >* backedges) { |
| 788 | LoopInfo* loops = zone->NewArray<LoopInfo>(num_loops); |
| 789 | memset(loops, 0, num_loops * sizeof(LoopInfo)); |
| 790 | |
| 791 | // Compute loop membership starting from backedges. |
| 792 | // O(max(loop_depth) * max(|loop|) |
| 793 | for (int i = 0; i < backedges->length(); i++) { |
| 794 | BasicBlock* member = backedges->at(i).first; |
| 795 | BasicBlock* header = member->SuccessorAt(backedges->at(i).second); |
| 796 | int loop_num = header->loop_end_; |
| 797 | if (loops[loop_num].header == NULL) { |
| 798 | loops[loop_num].header = header; |
| 799 | loops[loop_num].members = new (zone) BitVector(num_blocks, zone); |
| 800 | } |
| 801 | |
| 802 | int queue_length = 0; |
| 803 | if (member != header) { |
| 804 | // As long as the header doesn't have a backedge to itself, |
| 805 | // Push the member onto the queue and process its predecessors. |
| 806 | if (!loops[loop_num].members->Contains(member->id())) { |
| 807 | loops[loop_num].members->Add(member->id()); |
| 808 | } |
| 809 | queue[queue_length++].block = member; |
| 810 | } |
| 811 | |
| 812 | // Propagate loop membership backwards. All predecessors of M up to the |
| 813 | // loop header H are members of the loop too. O(|blocks between M and H|). |
| 814 | while (queue_length > 0) { |
| 815 | BasicBlock* block = queue[--queue_length].block; |
| 816 | for (int i = 0; i < block->PredecessorCount(); i++) { |
| 817 | BasicBlock* pred = block->PredecessorAt(i); |
| 818 | if (pred != header) { |
| 819 | if (!loops[loop_num].members->Contains(pred->id())) { |
| 820 | loops[loop_num].members->Add(pred->id()); |
| 821 | queue[queue_length++].block = pred; |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | } |
| 827 | return loops; |
| 828 | } |
| 829 | |
| 830 | |
| 831 | #if DEBUG |
| 832 | static void PrintRPO(int num_loops, LoopInfo* loops, BasicBlockVector* order) { |
| 833 | PrintF("-- RPO with %d loops ", num_loops); |
| 834 | if (num_loops > 0) { |
| 835 | PrintF("("); |
| 836 | for (int i = 0; i < num_loops; i++) { |
| 837 | if (i > 0) PrintF(" "); |
| 838 | PrintF("B%d", loops[i].header->id()); |
| 839 | } |
| 840 | PrintF(") "); |
| 841 | } |
| 842 | PrintF("-- \n"); |
| 843 | |
| 844 | for (int i = 0; i < static_cast<int>(order->size()); i++) { |
| 845 | BasicBlock* block = (*order)[i]; |
| 846 | int bid = block->id(); |
| 847 | PrintF("%5d:", i); |
| 848 | for (int i = 0; i < num_loops; i++) { |
| 849 | bool membership = loops[i].members->Contains(bid); |
| 850 | bool range = loops[i].header->LoopContains(block); |
| 851 | PrintF(membership ? " |" : " "); |
| 852 | PrintF(range ? "x" : " "); |
| 853 | } |
| 854 | PrintF(" B%d: ", bid); |
| 855 | if (block->loop_end_ >= 0) { |
| 856 | PrintF(" range: [%d, %d)", block->rpo_number_, block->loop_end_); |
| 857 | } |
| 858 | PrintF("\n"); |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | |
| 863 | static void VerifySpecialRPO(int num_loops, LoopInfo* loops, |
| 864 | BasicBlockVector* order) { |
| 865 | DCHECK(order->size() > 0); |
| 866 | DCHECK((*order)[0]->id() == 0); // entry should be first. |
| 867 | |
| 868 | for (int i = 0; i < num_loops; i++) { |
| 869 | LoopInfo* loop = &loops[i]; |
| 870 | BasicBlock* header = loop->header; |
| 871 | |
| 872 | DCHECK(header != NULL); |
| 873 | DCHECK(header->rpo_number_ >= 0); |
| 874 | DCHECK(header->rpo_number_ < static_cast<int>(order->size())); |
| 875 | DCHECK(header->loop_end_ >= 0); |
| 876 | DCHECK(header->loop_end_ <= static_cast<int>(order->size())); |
| 877 | DCHECK(header->loop_end_ > header->rpo_number_); |
| 878 | |
| 879 | // Verify the start ... end list relationship. |
| 880 | int links = 0; |
| 881 | BlockList* l = loop->start; |
| 882 | DCHECK(l != NULL && l->block == header); |
| 883 | bool end_found; |
| 884 | while (true) { |
| 885 | if (l == NULL || l == loop->end) { |
| 886 | end_found = (loop->end == l); |
| 887 | break; |
| 888 | } |
| 889 | // The list should be in same order as the final result. |
| 890 | DCHECK(l->block->rpo_number_ == links + loop->header->rpo_number_); |
| 891 | links++; |
| 892 | l = l->next; |
| 893 | DCHECK(links < static_cast<int>(2 * order->size())); // cycle? |
| 894 | } |
| 895 | DCHECK(links > 0); |
| 896 | DCHECK(links == (header->loop_end_ - header->rpo_number_)); |
| 897 | DCHECK(end_found); |
| 898 | |
| 899 | // Check the contiguousness of loops. |
| 900 | int count = 0; |
| 901 | for (int j = 0; j < static_cast<int>(order->size()); j++) { |
| 902 | BasicBlock* block = order->at(j); |
| 903 | DCHECK(block->rpo_number_ == j); |
| 904 | if (j < header->rpo_number_ || j >= header->loop_end_) { |
| 905 | DCHECK(!loop->members->Contains(block->id())); |
| 906 | } else { |
| 907 | if (block == header) { |
| 908 | DCHECK(!loop->members->Contains(block->id())); |
| 909 | } else { |
| 910 | DCHECK(loop->members->Contains(block->id())); |
| 911 | } |
| 912 | count++; |
| 913 | } |
| 914 | } |
| 915 | DCHECK(links == count); |
| 916 | } |
| 917 | } |
| 918 | #endif // DEBUG |
| 919 | |
| 920 | |
| 921 | // Compute the special reverse-post-order block ordering, which is essentially |
| 922 | // a RPO of the graph where loop bodies are contiguous. Properties: |
| 923 | // 1. If block A is a predecessor of B, then A appears before B in the order, |
| 924 | // unless B is a loop header and A is in the loop headed at B |
| 925 | // (i.e. A -> B is a backedge). |
| 926 | // => If block A dominates block B, then A appears before B in the order. |
| 927 | // => If block A is a loop header, A appears before all blocks in the loop |
| 928 | // headed at A. |
| 929 | // 2. All loops are contiguous in the order (i.e. no intervening blocks that |
| 930 | // do not belong to the loop.) |
| 931 | // Note a simple RPO traversal satisfies (1) but not (3). |
| 932 | BasicBlockVector* Scheduler::ComputeSpecialRPO(Schedule* schedule) { |
| 933 | Zone tmp_zone(schedule->zone()->isolate()); |
| 934 | Zone* zone = &tmp_zone; |
| 935 | Trace("------------- COMPUTING SPECIAL RPO ---------------\n"); |
| 936 | // RPO should not have been computed for this schedule yet. |
| 937 | CHECK_EQ(kBlockUnvisited1, schedule->start()->rpo_number_); |
| 938 | CHECK_EQ(0, static_cast<int>(schedule->rpo_order_.size())); |
| 939 | |
| 940 | // Perform an iterative RPO traversal using an explicit stack, |
| 941 | // recording backedges that form cycles. O(|B|). |
| 942 | ZoneList<std::pair<BasicBlock*, int> > backedges(1, zone); |
| 943 | SpecialRPOStackFrame* stack = |
| 944 | zone->NewArray<SpecialRPOStackFrame>(schedule->BasicBlockCount()); |
| 945 | BasicBlock* entry = schedule->start(); |
| 946 | BlockList* order = NULL; |
| 947 | int stack_depth = Push(stack, 0, entry, kBlockUnvisited1); |
| 948 | int num_loops = 0; |
| 949 | |
| 950 | while (stack_depth > 0) { |
| 951 | int current = stack_depth - 1; |
| 952 | SpecialRPOStackFrame* frame = stack + current; |
| 953 | |
| 954 | if (frame->index < frame->block->SuccessorCount()) { |
| 955 | // Process the next successor. |
| 956 | BasicBlock* succ = frame->block->SuccessorAt(frame->index++); |
| 957 | if (succ->rpo_number_ == kBlockVisited1) continue; |
| 958 | if (succ->rpo_number_ == kBlockOnStack) { |
| 959 | // The successor is on the stack, so this is a backedge (cycle). |
| 960 | backedges.Add( |
| 961 | std::pair<BasicBlock*, int>(frame->block, frame->index - 1), zone); |
| 962 | if (succ->loop_end_ < 0) { |
| 963 | // Assign a new loop number to the header if it doesn't have one. |
| 964 | succ->loop_end_ = num_loops++; |
| 965 | } |
| 966 | } else { |
| 967 | // Push the successor onto the stack. |
| 968 | DCHECK(succ->rpo_number_ == kBlockUnvisited1); |
| 969 | stack_depth = Push(stack, stack_depth, succ, kBlockUnvisited1); |
| 970 | } |
| 971 | } else { |
| 972 | // Finished with all successors; pop the stack and add the block. |
| 973 | order = order->Add(zone, frame->block); |
| 974 | frame->block->rpo_number_ = kBlockVisited1; |
| 975 | stack_depth--; |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | // If no loops were encountered, then the order we computed was correct. |
| 980 | LoopInfo* loops = NULL; |
| 981 | if (num_loops != 0) { |
| 982 | // Otherwise, compute the loop information from the backedges in order |
| 983 | // to perform a traversal that groups loop bodies together. |
| 984 | loops = ComputeLoopInfo(zone, stack, num_loops, schedule->BasicBlockCount(), |
| 985 | &backedges); |
| 986 | |
| 987 | // Initialize the "loop stack". Note the entry could be a loop header. |
| 988 | LoopInfo* loop = entry->IsLoopHeader() ? &loops[entry->loop_end_] : NULL; |
| 989 | order = NULL; |
| 990 | |
| 991 | // Perform an iterative post-order traversal, visiting loop bodies before |
| 992 | // edges that lead out of loops. Visits each block once, but linking loop |
| 993 | // sections together is linear in the loop size, so overall is |
| 994 | // O(|B| + max(loop_depth) * max(|loop|)) |
| 995 | stack_depth = Push(stack, 0, entry, kBlockUnvisited2); |
| 996 | while (stack_depth > 0) { |
| 997 | SpecialRPOStackFrame* frame = stack + (stack_depth - 1); |
| 998 | BasicBlock* block = frame->block; |
| 999 | BasicBlock* succ = NULL; |
| 1000 | |
| 1001 | if (frame->index < block->SuccessorCount()) { |
| 1002 | // Process the next normal successor. |
| 1003 | succ = block->SuccessorAt(frame->index++); |
| 1004 | } else if (block->IsLoopHeader()) { |
| 1005 | // Process additional outgoing edges from the loop header. |
| 1006 | if (block->rpo_number_ == kBlockOnStack) { |
| 1007 | // Finish the loop body the first time the header is left on the |
| 1008 | // stack. |
| 1009 | DCHECK(loop != NULL && loop->header == block); |
| 1010 | loop->start = order->Add(zone, block); |
| 1011 | order = loop->end; |
| 1012 | block->rpo_number_ = kBlockVisited2; |
| 1013 | // Pop the loop stack and continue visiting outgoing edges within the |
| 1014 | // the context of the outer loop, if any. |
| 1015 | loop = loop->prev; |
| 1016 | // We leave the loop header on the stack; the rest of this iteration |
| 1017 | // and later iterations will go through its outgoing edges list. |
| 1018 | } |
| 1019 | |
| 1020 | // Use the next outgoing edge if there are any. |
| 1021 | int outgoing_index = frame->index - block->SuccessorCount(); |
| 1022 | LoopInfo* info = &loops[block->loop_end_]; |
| 1023 | DCHECK(loop != info); |
| 1024 | if (info->outgoing != NULL && |
| 1025 | outgoing_index < info->outgoing->length()) { |
| 1026 | succ = info->outgoing->at(outgoing_index); |
| 1027 | frame->index++; |
| 1028 | } |
| 1029 | } |
| 1030 | |
| 1031 | if (succ != NULL) { |
| 1032 | // Process the next successor. |
| 1033 | if (succ->rpo_number_ == kBlockOnStack) continue; |
| 1034 | if (succ->rpo_number_ == kBlockVisited2) continue; |
| 1035 | DCHECK(succ->rpo_number_ == kBlockUnvisited2); |
| 1036 | if (loop != NULL && !loop->members->Contains(succ->id())) { |
| 1037 | // The successor is not in the current loop or any nested loop. |
| 1038 | // Add it to the outgoing edges of this loop and visit it later. |
| 1039 | loop->AddOutgoing(zone, succ); |
| 1040 | } else { |
| 1041 | // Push the successor onto the stack. |
| 1042 | stack_depth = Push(stack, stack_depth, succ, kBlockUnvisited2); |
| 1043 | if (succ->IsLoopHeader()) { |
| 1044 | // Push the inner loop onto the loop stack. |
| 1045 | DCHECK(succ->loop_end_ >= 0 && succ->loop_end_ < num_loops); |
| 1046 | LoopInfo* next = &loops[succ->loop_end_]; |
| 1047 | next->end = order; |
| 1048 | next->prev = loop; |
| 1049 | loop = next; |
| 1050 | } |
| 1051 | } |
| 1052 | } else { |
| 1053 | // Finished with all successors of the current block. |
| 1054 | if (block->IsLoopHeader()) { |
| 1055 | // If we are going to pop a loop header, then add its entire body. |
| 1056 | LoopInfo* info = &loops[block->loop_end_]; |
| 1057 | for (BlockList* l = info->start; true; l = l->next) { |
| 1058 | if (l->next == info->end) { |
| 1059 | l->next = order; |
| 1060 | info->end = order; |
| 1061 | break; |
| 1062 | } |
| 1063 | } |
| 1064 | order = info->start; |
| 1065 | } else { |
| 1066 | // Pop a single node off the stack and add it to the order. |
| 1067 | order = order->Add(zone, block); |
| 1068 | block->rpo_number_ = kBlockVisited2; |
| 1069 | } |
| 1070 | stack_depth--; |
| 1071 | } |
| 1072 | } |
| 1073 | } |
| 1074 | |
| 1075 | // Construct the final order from the list. |
| 1076 | BasicBlockVector* final_order = &schedule->rpo_order_; |
| 1077 | order->Serialize(final_order); |
| 1078 | |
| 1079 | // Compute the correct loop header for every block and set the correct loop |
| 1080 | // ends. |
| 1081 | LoopInfo* current_loop = NULL; |
| 1082 | BasicBlock* current_header = NULL; |
| 1083 | int loop_depth = 0; |
| 1084 | for (BasicBlockVectorIter i = final_order->begin(); i != final_order->end(); |
| 1085 | ++i) { |
| 1086 | BasicBlock* current = *i; |
| 1087 | current->loop_header_ = current_header; |
| 1088 | if (current->IsLoopHeader()) { |
| 1089 | loop_depth++; |
| 1090 | current_loop = &loops[current->loop_end_]; |
| 1091 | BlockList* end = current_loop->end; |
| 1092 | current->loop_end_ = end == NULL ? static_cast<int>(final_order->size()) |
| 1093 | : end->block->rpo_number_; |
| 1094 | current_header = current_loop->header; |
| 1095 | Trace("B%d is a loop header, increment loop depth to %d\n", current->id(), |
| 1096 | loop_depth); |
| 1097 | } else { |
| 1098 | while (current_header != NULL && |
| 1099 | current->rpo_number_ >= current_header->loop_end_) { |
| 1100 | DCHECK(current_header->IsLoopHeader()); |
| 1101 | DCHECK(current_loop != NULL); |
| 1102 | current_loop = current_loop->prev; |
| 1103 | current_header = current_loop == NULL ? NULL : current_loop->header; |
| 1104 | --loop_depth; |
| 1105 | } |
| 1106 | } |
| 1107 | current->loop_depth_ = loop_depth; |
| 1108 | if (current->loop_header_ == NULL) { |
| 1109 | Trace("B%d is not in a loop (depth == %d)\n", current->id(), |
| 1110 | current->loop_depth_); |
| 1111 | } else { |
| 1112 | Trace("B%d has loop header B%d, (depth == %d)\n", current->id(), |
| 1113 | current->loop_header_->id(), current->loop_depth_); |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | #if DEBUG |
| 1118 | if (FLAG_trace_turbo_scheduler) PrintRPO(num_loops, loops, final_order); |
| 1119 | VerifySpecialRPO(num_loops, loops, final_order); |
| 1120 | #endif |
| 1121 | return final_order; |
| 1122 | } |
| 1123 | } |
| 1124 | } |
| 1125 | } // namespace v8::internal::compiler |