blob: 60263b524c2c77f61fbd43dc1f0dbe28e31e2331 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_MIPS64
8
9#include "src/bootstrapper.h"
10#include "src/code-stubs.h"
11#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
14#include "src/isolate.h"
15#include "src/jsregexp.h"
16#include "src/regexp-macro-assembler.h"
17#include "src/runtime.h"
18
19namespace v8 {
20namespace internal {
21
22
23static void InitializeArrayConstructorDescriptor(
24 Isolate* isolate, CodeStubDescriptor* descriptor,
25 int constant_stack_parameter_count) {
26 Address deopt_handler = Runtime::FunctionForId(
27 Runtime::kArrayConstructor)->entry;
28
29 if (constant_stack_parameter_count == 0) {
30 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
31 JS_FUNCTION_STUB_MODE);
32 } else {
33 descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
34 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
35 }
36}
37
38
39static void InitializeInternalArrayConstructorDescriptor(
40 Isolate* isolate, CodeStubDescriptor* descriptor,
41 int constant_stack_parameter_count) {
42 Address deopt_handler = Runtime::FunctionForId(
43 Runtime::kInternalArrayConstructor)->entry;
44
45 if (constant_stack_parameter_count == 0) {
46 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47 JS_FUNCTION_STUB_MODE);
48 } else {
49 descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count,
50 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
51 }
52}
53
54
55void ArrayNoArgumentConstructorStub::InitializeDescriptor(
56 CodeStubDescriptor* descriptor) {
57 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
58}
59
60
61void ArraySingleArgumentConstructorStub::InitializeDescriptor(
62 CodeStubDescriptor* descriptor) {
63 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
64}
65
66
67void ArrayNArgumentsConstructorStub::InitializeDescriptor(
68 CodeStubDescriptor* descriptor) {
69 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
70}
71
72
73void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
74 CodeStubDescriptor* descriptor) {
75 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
76}
77
78
79void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
80 CodeStubDescriptor* descriptor) {
81 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
82}
83
84
85void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
86 CodeStubDescriptor* descriptor) {
87 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
88}
89
90
91#define __ ACCESS_MASM(masm)
92
93
94static void EmitIdenticalObjectComparison(MacroAssembler* masm,
95 Label* slow,
96 Condition cc);
97static void EmitSmiNonsmiComparison(MacroAssembler* masm,
98 Register lhs,
99 Register rhs,
100 Label* rhs_not_nan,
101 Label* slow,
102 bool strict);
103static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
104 Register lhs,
105 Register rhs);
106
107
108void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
109 ExternalReference miss) {
110 // Update the static counter each time a new code stub is generated.
111 isolate()->counters()->code_stubs()->Increment();
112
113 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
114 int param_count = descriptor.GetEnvironmentParameterCount();
115 {
116 // Call the runtime system in a fresh internal frame.
117 FrameScope scope(masm, StackFrame::INTERNAL);
118 DCHECK((param_count == 0) ||
119 a0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
120 // Push arguments, adjust sp.
121 __ Dsubu(sp, sp, Operand(param_count * kPointerSize));
122 for (int i = 0; i < param_count; ++i) {
123 // Store argument to stack.
124 __ sd(descriptor.GetEnvironmentParameterRegister(i),
125 MemOperand(sp, (param_count - 1 - i) * kPointerSize));
126 }
127 __ CallExternalReference(miss, param_count);
128 }
129
130 __ Ret();
131}
132
133
134void DoubleToIStub::Generate(MacroAssembler* masm) {
135 Label out_of_range, only_low, negate, done;
136 Register input_reg = source();
137 Register result_reg = destination();
138
139 int double_offset = offset();
140 // Account for saved regs if input is sp.
141 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
142
143 Register scratch =
144 GetRegisterThatIsNotOneOf(input_reg, result_reg);
145 Register scratch2 =
146 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
147 Register scratch3 =
148 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2);
149 DoubleRegister double_scratch = kLithiumScratchDouble;
150
151 __ Push(scratch, scratch2, scratch3);
152 if (!skip_fastpath()) {
153 // Load double input.
154 __ ldc1(double_scratch, MemOperand(input_reg, double_offset));
155
156 // Clear cumulative exception flags and save the FCSR.
157 __ cfc1(scratch2, FCSR);
158 __ ctc1(zero_reg, FCSR);
159
160 // Try a conversion to a signed integer.
161 __ Trunc_w_d(double_scratch, double_scratch);
162 // Move the converted value into the result register.
163 __ mfc1(scratch3, double_scratch);
164
165 // Retrieve and restore the FCSR.
166 __ cfc1(scratch, FCSR);
167 __ ctc1(scratch2, FCSR);
168
169 // Check for overflow and NaNs.
170 __ And(
171 scratch, scratch,
172 kFCSROverflowFlagMask | kFCSRUnderflowFlagMask
173 | kFCSRInvalidOpFlagMask);
174 // If we had no exceptions then set result_reg and we are done.
175 Label error;
176 __ Branch(&error, ne, scratch, Operand(zero_reg));
177 __ Move(result_reg, scratch3);
178 __ Branch(&done);
179 __ bind(&error);
180 }
181
182 // Load the double value and perform a manual truncation.
183 Register input_high = scratch2;
184 Register input_low = scratch3;
185
186 __ lw(input_low, MemOperand(input_reg, double_offset));
187 __ lw(input_high, MemOperand(input_reg, double_offset + kIntSize));
188
189 Label normal_exponent, restore_sign;
190 // Extract the biased exponent in result.
191 __ Ext(result_reg,
192 input_high,
193 HeapNumber::kExponentShift,
194 HeapNumber::kExponentBits);
195
196 // Check for Infinity and NaNs, which should return 0.
197 __ Subu(scratch, result_reg, HeapNumber::kExponentMask);
198 __ Movz(result_reg, zero_reg, scratch);
199 __ Branch(&done, eq, scratch, Operand(zero_reg));
200
201 // Express exponent as delta to (number of mantissa bits + 31).
202 __ Subu(result_reg,
203 result_reg,
204 Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
205
206 // If the delta is strictly positive, all bits would be shifted away,
207 // which means that we can return 0.
208 __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
209 __ mov(result_reg, zero_reg);
210 __ Branch(&done);
211
212 __ bind(&normal_exponent);
213 const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
214 // Calculate shift.
215 __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
216
217 // Save the sign.
218 Register sign = result_reg;
219 result_reg = no_reg;
220 __ And(sign, input_high, Operand(HeapNumber::kSignMask));
221
222 // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
223 // to check for this specific case.
224 Label high_shift_needed, high_shift_done;
225 __ Branch(&high_shift_needed, lt, scratch, Operand(32));
226 __ mov(input_high, zero_reg);
227 __ Branch(&high_shift_done);
228 __ bind(&high_shift_needed);
229
230 // Set the implicit 1 before the mantissa part in input_high.
231 __ Or(input_high,
232 input_high,
233 Operand(1 << HeapNumber::kMantissaBitsInTopWord));
234 // Shift the mantissa bits to the correct position.
235 // We don't need to clear non-mantissa bits as they will be shifted away.
236 // If they weren't, it would mean that the answer is in the 32bit range.
237 __ sllv(input_high, input_high, scratch);
238
239 __ bind(&high_shift_done);
240
241 // Replace the shifted bits with bits from the lower mantissa word.
242 Label pos_shift, shift_done;
243 __ li(at, 32);
244 __ subu(scratch, at, scratch);
245 __ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
246
247 // Negate scratch.
248 __ Subu(scratch, zero_reg, scratch);
249 __ sllv(input_low, input_low, scratch);
250 __ Branch(&shift_done);
251
252 __ bind(&pos_shift);
253 __ srlv(input_low, input_low, scratch);
254
255 __ bind(&shift_done);
256 __ Or(input_high, input_high, Operand(input_low));
257 // Restore sign if necessary.
258 __ mov(scratch, sign);
259 result_reg = sign;
260 sign = no_reg;
261 __ Subu(result_reg, zero_reg, input_high);
262 __ Movz(result_reg, input_high, scratch);
263
264 __ bind(&done);
265
266 __ Pop(scratch, scratch2, scratch3);
267 __ Ret();
268}
269
270
271void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
272 Isolate* isolate) {
273 WriteInt32ToHeapNumberStub stub1(isolate, a1, v0, a2, a3);
274 WriteInt32ToHeapNumberStub stub2(isolate, a2, v0, a3, a0);
275 stub1.GetCode();
276 stub2.GetCode();
277}
278
279
280// See comment for class, this does NOT work for int32's that are in Smi range.
281void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
282 Label max_negative_int;
283 // the_int_ has the answer which is a signed int32 but not a Smi.
284 // We test for the special value that has a different exponent.
285 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
286 // Test sign, and save for later conditionals.
287 __ And(sign(), the_int(), Operand(0x80000000u));
288 __ Branch(&max_negative_int, eq, the_int(), Operand(0x80000000u));
289
290 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
291 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
292 uint32_t non_smi_exponent =
293 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
294 __ li(scratch(), Operand(non_smi_exponent));
295 // Set the sign bit in scratch_ if the value was negative.
296 __ or_(scratch(), scratch(), sign());
297 // Subtract from 0 if the value was negative.
298 __ subu(at, zero_reg, the_int());
299 __ Movn(the_int(), at, sign());
300 // We should be masking the implict first digit of the mantissa away here,
301 // but it just ends up combining harmlessly with the last digit of the
302 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
303 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
304 DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
305 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
306 __ srl(at, the_int(), shift_distance);
307 __ or_(scratch(), scratch(), at);
308 __ sw(scratch(), FieldMemOperand(the_heap_number(),
309 HeapNumber::kExponentOffset));
310 __ sll(scratch(), the_int(), 32 - shift_distance);
311 __ Ret(USE_DELAY_SLOT);
312 __ sw(scratch(), FieldMemOperand(the_heap_number(),
313 HeapNumber::kMantissaOffset));
314
315 __ bind(&max_negative_int);
316 // The max negative int32 is stored as a positive number in the mantissa of
317 // a double because it uses a sign bit instead of using two's complement.
318 // The actual mantissa bits stored are all 0 because the implicit most
319 // significant 1 bit is not stored.
320 non_smi_exponent += 1 << HeapNumber::kExponentShift;
321 __ li(scratch(), Operand(HeapNumber::kSignMask | non_smi_exponent));
322 __ sw(scratch(),
323 FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
324 __ mov(scratch(), zero_reg);
325 __ Ret(USE_DELAY_SLOT);
326 __ sw(scratch(),
327 FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
328}
329
330
331// Handle the case where the lhs and rhs are the same object.
332// Equality is almost reflexive (everything but NaN), so this is a test
333// for "identity and not NaN".
334static void EmitIdenticalObjectComparison(MacroAssembler* masm,
335 Label* slow,
336 Condition cc) {
337 Label not_identical;
338 Label heap_number, return_equal;
339 Register exp_mask_reg = t1;
340
341 __ Branch(&not_identical, ne, a0, Operand(a1));
342
343 __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
344
345 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
346 // so we do the second best thing - test it ourselves.
347 // They are both equal and they are not both Smis so both of them are not
348 // Smis. If it's not a heap number, then return equal.
349 if (cc == less || cc == greater) {
350 __ GetObjectType(a0, t0, t0);
351 __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
352 } else {
353 __ GetObjectType(a0, t0, t0);
354 __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE));
355 // Comparing JS objects with <=, >= is complicated.
356 if (cc != eq) {
357 __ Branch(slow, greater, t0, Operand(FIRST_SPEC_OBJECT_TYPE));
358 // Normally here we fall through to return_equal, but undefined is
359 // special: (undefined == undefined) == true, but
360 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
361 if (cc == less_equal || cc == greater_equal) {
362 __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE));
363 __ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
364 __ Branch(&return_equal, ne, a0, Operand(a6));
365 DCHECK(is_int16(GREATER) && is_int16(LESS));
366 __ Ret(USE_DELAY_SLOT);
367 if (cc == le) {
368 // undefined <= undefined should fail.
369 __ li(v0, Operand(GREATER));
370 } else {
371 // undefined >= undefined should fail.
372 __ li(v0, Operand(LESS));
373 }
374 }
375 }
376 }
377
378 __ bind(&return_equal);
379 DCHECK(is_int16(GREATER) && is_int16(LESS));
380 __ Ret(USE_DELAY_SLOT);
381 if (cc == less) {
382 __ li(v0, Operand(GREATER)); // Things aren't less than themselves.
383 } else if (cc == greater) {
384 __ li(v0, Operand(LESS)); // Things aren't greater than themselves.
385 } else {
386 __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
387 }
388 // For less and greater we don't have to check for NaN since the result of
389 // x < x is false regardless. For the others here is some code to check
390 // for NaN.
391 if (cc != lt && cc != gt) {
392 __ bind(&heap_number);
393 // It is a heap number, so return non-equal if it's NaN and equal if it's
394 // not NaN.
395
396 // The representation of NaN values has all exponent bits (52..62) set,
397 // and not all mantissa bits (0..51) clear.
398 // Read top bits of double representation (second word of value).
399 __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset));
400 // Test that exponent bits are all set.
401 __ And(a7, a6, Operand(exp_mask_reg));
402 // If all bits not set (ne cond), then not a NaN, objects are equal.
403 __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg));
404
405 // Shift out flag and all exponent bits, retaining only mantissa.
406 __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord);
407 // Or with all low-bits of mantissa.
408 __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
409 __ Or(v0, a7, Operand(a6));
410 // For equal we already have the right value in v0: Return zero (equal)
411 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
412 // not (it's a NaN). For <= and >= we need to load v0 with the failing
413 // value if it's a NaN.
414 if (cc != eq) {
415 // All-zero means Infinity means equal.
416 __ Ret(eq, v0, Operand(zero_reg));
417 DCHECK(is_int16(GREATER) && is_int16(LESS));
418 __ Ret(USE_DELAY_SLOT);
419 if (cc == le) {
420 __ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
421 } else {
422 __ li(v0, Operand(LESS)); // NaN >= NaN should fail.
423 }
424 }
425 }
426 // No fall through here.
427
428 __ bind(&not_identical);
429}
430
431
432static void EmitSmiNonsmiComparison(MacroAssembler* masm,
433 Register lhs,
434 Register rhs,
435 Label* both_loaded_as_doubles,
436 Label* slow,
437 bool strict) {
438 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
439 (lhs.is(a1) && rhs.is(a0)));
440
441 Label lhs_is_smi;
442 __ JumpIfSmi(lhs, &lhs_is_smi);
443 // Rhs is a Smi.
444 // Check whether the non-smi is a heap number.
445 __ GetObjectType(lhs, t0, t0);
446 if (strict) {
447 // If lhs was not a number and rhs was a Smi then strict equality cannot
448 // succeed. Return non-equal (lhs is already not zero).
449 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
450 __ mov(v0, lhs);
451 } else {
452 // Smi compared non-strictly with a non-Smi non-heap-number. Call
453 // the runtime.
454 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
455 }
456 // Rhs is a smi, lhs is a number.
457 // Convert smi rhs to double.
458 __ SmiUntag(at, rhs);
459 __ mtc1(at, f14);
460 __ cvt_d_w(f14, f14);
461 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
462
463 // We now have both loaded as doubles.
464 __ jmp(both_loaded_as_doubles);
465
466 __ bind(&lhs_is_smi);
467 // Lhs is a Smi. Check whether the non-smi is a heap number.
468 __ GetObjectType(rhs, t0, t0);
469 if (strict) {
470 // If lhs was not a number and rhs was a Smi then strict equality cannot
471 // succeed. Return non-equal.
472 __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE));
473 __ li(v0, Operand(1));
474 } else {
475 // Smi compared non-strictly with a non-Smi non-heap-number. Call
476 // the runtime.
477 __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE));
478 }
479
480 // Lhs is a smi, rhs is a number.
481 // Convert smi lhs to double.
482 __ SmiUntag(at, lhs);
483 __ mtc1(at, f12);
484 __ cvt_d_w(f12, f12);
485 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
486 // Fall through to both_loaded_as_doubles.
487}
488
489
490static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
491 Register lhs,
492 Register rhs) {
493 // If either operand is a JS object or an oddball value, then they are
494 // not equal since their pointers are different.
495 // There is no test for undetectability in strict equality.
496 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
497 Label first_non_object;
498 // Get the type of the first operand into a2 and compare it with
499 // FIRST_SPEC_OBJECT_TYPE.
500 __ GetObjectType(lhs, a2, a2);
501 __ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
502
503 // Return non-zero.
504 Label return_not_equal;
505 __ bind(&return_not_equal);
506 __ Ret(USE_DELAY_SLOT);
507 __ li(v0, Operand(1));
508
509 __ bind(&first_non_object);
510 // Check for oddballs: true, false, null, undefined.
511 __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
512
513 __ GetObjectType(rhs, a3, a3);
514 __ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
515
516 // Check for oddballs: true, false, null, undefined.
517 __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
518
519 // Now that we have the types we might as well check for
520 // internalized-internalized.
521 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
522 __ Or(a2, a2, Operand(a3));
523 __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
524 __ Branch(&return_not_equal, eq, at, Operand(zero_reg));
525}
526
527
528static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
529 Register lhs,
530 Register rhs,
531 Label* both_loaded_as_doubles,
532 Label* not_heap_numbers,
533 Label* slow) {
534 __ GetObjectType(lhs, a3, a2);
535 __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
536 __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
537 // If first was a heap number & second wasn't, go to slow case.
538 __ Branch(slow, ne, a3, Operand(a2));
539
540 // Both are heap numbers. Load them up then jump to the code we have
541 // for that.
542 __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
543 __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
544
545 __ jmp(both_loaded_as_doubles);
546}
547
548
549// Fast negative check for internalized-to-internalized equality.
550static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
551 Register lhs,
552 Register rhs,
553 Label* possible_strings,
554 Label* not_both_strings) {
555 DCHECK((lhs.is(a0) && rhs.is(a1)) ||
556 (lhs.is(a1) && rhs.is(a0)));
557
558 // a2 is object type of rhs.
559 Label object_test;
560 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
561 __ And(at, a2, Operand(kIsNotStringMask));
562 __ Branch(&object_test, ne, at, Operand(zero_reg));
563 __ And(at, a2, Operand(kIsNotInternalizedMask));
564 __ Branch(possible_strings, ne, at, Operand(zero_reg));
565 __ GetObjectType(rhs, a3, a3);
566 __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
567 __ And(at, a3, Operand(kIsNotInternalizedMask));
568 __ Branch(possible_strings, ne, at, Operand(zero_reg));
569
570 // Both are internalized strings. We already checked they weren't the same
571 // pointer so they are not equal.
572 __ Ret(USE_DELAY_SLOT);
573 __ li(v0, Operand(1)); // Non-zero indicates not equal.
574
575 __ bind(&object_test);
576 __ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
577 __ GetObjectType(rhs, a2, a3);
578 __ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
579
580 // If both objects are undetectable, they are equal. Otherwise, they
581 // are not equal, since they are different objects and an object is not
582 // equal to undefined.
583 __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
584 __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
585 __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
586 __ and_(a0, a2, a3);
587 __ And(a0, a0, Operand(1 << Map::kIsUndetectable));
588 __ Ret(USE_DELAY_SLOT);
589 __ xori(v0, a0, 1 << Map::kIsUndetectable);
590}
591
592
593static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
594 Register scratch,
595 CompareICState::State expected,
596 Label* fail) {
597 Label ok;
598 if (expected == CompareICState::SMI) {
599 __ JumpIfNotSmi(input, fail);
600 } else if (expected == CompareICState::NUMBER) {
601 __ JumpIfSmi(input, &ok);
602 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
603 DONT_DO_SMI_CHECK);
604 }
605 // We could be strict about internalized/string here, but as long as
606 // hydrogen doesn't care, the stub doesn't have to care either.
607 __ bind(&ok);
608}
609
610
611// On entry a1 and a2 are the values to be compared.
612// On exit a0 is 0, positive or negative to indicate the result of
613// the comparison.
614void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
615 Register lhs = a1;
616 Register rhs = a0;
617 Condition cc = GetCondition();
618
619 Label miss;
620 CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss);
621 CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss);
622
623 Label slow; // Call builtin.
624 Label not_smis, both_loaded_as_doubles;
625
626 Label not_two_smis, smi_done;
627 __ Or(a2, a1, a0);
628 __ JumpIfNotSmi(a2, &not_two_smis);
629 __ SmiUntag(a1);
630 __ SmiUntag(a0);
631
632 __ Ret(USE_DELAY_SLOT);
633 __ dsubu(v0, a1, a0);
634 __ bind(&not_two_smis);
635
636 // NOTICE! This code is only reached after a smi-fast-case check, so
637 // it is certain that at least one operand isn't a smi.
638
639 // Handle the case where the objects are identical. Either returns the answer
640 // or goes to slow. Only falls through if the objects were not identical.
641 EmitIdenticalObjectComparison(masm, &slow, cc);
642
643 // If either is a Smi (we know that not both are), then they can only
644 // be strictly equal if the other is a HeapNumber.
645 STATIC_ASSERT(kSmiTag == 0);
646 DCHECK_EQ(0, Smi::FromInt(0));
647 __ And(a6, lhs, Operand(rhs));
648 __ JumpIfNotSmi(a6, &not_smis, a4);
649 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
650 // 1) Return the answer.
651 // 2) Go to slow.
652 // 3) Fall through to both_loaded_as_doubles.
653 // 4) Jump to rhs_not_nan.
654 // In cases 3 and 4 we have found out we were dealing with a number-number
655 // comparison and the numbers have been loaded into f12 and f14 as doubles,
656 // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
657 EmitSmiNonsmiComparison(masm, lhs, rhs,
658 &both_loaded_as_doubles, &slow, strict());
659
660 __ bind(&both_loaded_as_doubles);
661 // f12, f14 are the double representations of the left hand side
662 // and the right hand side if we have FPU. Otherwise a2, a3 represent
663 // left hand side and a0, a1 represent right hand side.
664
665 Label nan;
666 __ li(a4, Operand(LESS));
667 __ li(a5, Operand(GREATER));
668 __ li(a6, Operand(EQUAL));
669
670 // Check if either rhs or lhs is NaN.
671 __ BranchF(NULL, &nan, eq, f12, f14);
672
673 // Check if LESS condition is satisfied. If true, move conditionally
674 // result to v0.
675 if (kArchVariant != kMips64r6) {
676 __ c(OLT, D, f12, f14);
677 __ Movt(v0, a4);
678 // Use previous check to store conditionally to v0 oposite condition
679 // (GREATER). If rhs is equal to lhs, this will be corrected in next
680 // check.
681 __ Movf(v0, a5);
682 // Check if EQUAL condition is satisfied. If true, move conditionally
683 // result to v0.
684 __ c(EQ, D, f12, f14);
685 __ Movt(v0, a6);
686 } else {
687 Label skip;
688 __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14);
689 __ mov(v0, a4); // Return LESS as result.
690
691 __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14);
692 __ mov(v0, a6); // Return EQUAL as result.
693
694 __ mov(v0, a5); // Return GREATER as result.
695 __ bind(&skip);
696 }
697 __ Ret();
698
699 __ bind(&nan);
700 // NaN comparisons always fail.
701 // Load whatever we need in v0 to make the comparison fail.
702 DCHECK(is_int16(GREATER) && is_int16(LESS));
703 __ Ret(USE_DELAY_SLOT);
704 if (cc == lt || cc == le) {
705 __ li(v0, Operand(GREATER));
706 } else {
707 __ li(v0, Operand(LESS));
708 }
709
710
711 __ bind(&not_smis);
712 // At this point we know we are dealing with two different objects,
713 // and neither of them is a Smi. The objects are in lhs_ and rhs_.
714 if (strict()) {
715 // This returns non-equal for some object types, or falls through if it
716 // was not lucky.
717 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
718 }
719
720 Label check_for_internalized_strings;
721 Label flat_string_check;
722 // Check for heap-number-heap-number comparison. Can jump to slow case,
723 // or load both doubles and jump to the code that handles
724 // that case. If the inputs are not doubles then jumps to
725 // check_for_internalized_strings.
726 // In this case a2 will contain the type of lhs_.
727 EmitCheckForTwoHeapNumbers(masm,
728 lhs,
729 rhs,
730 &both_loaded_as_doubles,
731 &check_for_internalized_strings,
732 &flat_string_check);
733
734 __ bind(&check_for_internalized_strings);
735 if (cc == eq && !strict()) {
736 // Returns an answer for two internalized strings or two
737 // detectable objects.
738 // Otherwise jumps to string case or not both strings case.
739 // Assumes that a2 is the type of lhs_ on entry.
740 EmitCheckForInternalizedStringsOrObjects(
741 masm, lhs, rhs, &flat_string_check, &slow);
742 }
743
744 // Check for both being sequential one-byte strings,
745 // and inline if that is the case.
746 __ bind(&flat_string_check);
747
748 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow);
749
750 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2,
751 a3);
752 if (cc == eq) {
753 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4);
754 } else {
755 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4,
756 a5);
757 }
758 // Never falls through to here.
759
760 __ bind(&slow);
761 // Prepare for call to builtin. Push object pointers, a0 (lhs) first,
762 // a1 (rhs) second.
763 __ Push(lhs, rhs);
764 // Figure out which native to call and setup the arguments.
765 Builtins::JavaScript native;
766 if (cc == eq) {
767 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
768 } else {
769 native = Builtins::COMPARE;
770 int ncr; // NaN compare result.
771 if (cc == lt || cc == le) {
772 ncr = GREATER;
773 } else {
774 DCHECK(cc == gt || cc == ge); // Remaining cases.
775 ncr = LESS;
776 }
777 __ li(a0, Operand(Smi::FromInt(ncr)));
778 __ push(a0);
779 }
780
781 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
782 // tagged as a small integer.
783 __ InvokeBuiltin(native, JUMP_FUNCTION);
784
785 __ bind(&miss);
786 GenerateMiss(masm);
787}
788
789
790void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
791 __ mov(t9, ra);
792 __ pop(ra);
793 __ PushSafepointRegisters();
794 __ Jump(t9);
795}
796
797
798void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
799 __ mov(t9, ra);
800 __ pop(ra);
801 __ PopSafepointRegisters();
802 __ Jump(t9);
803}
804
805
806void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
807 // We don't allow a GC during a store buffer overflow so there is no need to
808 // store the registers in any particular way, but we do have to store and
809 // restore them.
810 __ MultiPush(kJSCallerSaved | ra.bit());
811 if (save_doubles()) {
812 __ MultiPushFPU(kCallerSavedFPU);
813 }
814 const int argument_count = 1;
815 const int fp_argument_count = 0;
816 const Register scratch = a1;
817
818 AllowExternalCallThatCantCauseGC scope(masm);
819 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
820 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
821 __ CallCFunction(
822 ExternalReference::store_buffer_overflow_function(isolate()),
823 argument_count);
824 if (save_doubles()) {
825 __ MultiPopFPU(kCallerSavedFPU);
826 }
827
828 __ MultiPop(kJSCallerSaved | ra.bit());
829 __ Ret();
830}
831
832
833void MathPowStub::Generate(MacroAssembler* masm) {
834 const Register base = a1;
835 const Register exponent = MathPowTaggedDescriptor::exponent();
836 DCHECK(exponent.is(a2));
837 const Register heapnumbermap = a5;
838 const Register heapnumber = v0;
839 const DoubleRegister double_base = f2;
840 const DoubleRegister double_exponent = f4;
841 const DoubleRegister double_result = f0;
842 const DoubleRegister double_scratch = f6;
843 const FPURegister single_scratch = f8;
844 const Register scratch = t1;
845 const Register scratch2 = a7;
846
847 Label call_runtime, done, int_exponent;
848 if (exponent_type() == ON_STACK) {
849 Label base_is_smi, unpack_exponent;
850 // The exponent and base are supplied as arguments on the stack.
851 // This can only happen if the stub is called from non-optimized code.
852 // Load input parameters from stack to double registers.
853 __ ld(base, MemOperand(sp, 1 * kPointerSize));
854 __ ld(exponent, MemOperand(sp, 0 * kPointerSize));
855
856 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
857
858 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
859 __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset));
860 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
861
862 __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
863 __ jmp(&unpack_exponent);
864
865 __ bind(&base_is_smi);
866 __ mtc1(scratch, single_scratch);
867 __ cvt_d_w(double_base, single_scratch);
868 __ bind(&unpack_exponent);
869
870 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
871
872 __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
873 __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
874 __ ldc1(double_exponent,
875 FieldMemOperand(exponent, HeapNumber::kValueOffset));
876 } else if (exponent_type() == TAGGED) {
877 // Base is already in double_base.
878 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
879
880 __ ldc1(double_exponent,
881 FieldMemOperand(exponent, HeapNumber::kValueOffset));
882 }
883
884 if (exponent_type() != INTEGER) {
885 Label int_exponent_convert;
886 // Detect integer exponents stored as double.
887 __ EmitFPUTruncate(kRoundToMinusInf,
888 scratch,
889 double_exponent,
890 at,
891 double_scratch,
892 scratch2,
893 kCheckForInexactConversion);
894 // scratch2 == 0 means there was no conversion error.
895 __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
896
897 if (exponent_type() == ON_STACK) {
898 // Detect square root case. Crankshaft detects constant +/-0.5 at
899 // compile time and uses DoMathPowHalf instead. We then skip this check
900 // for non-constant cases of +/-0.5 as these hardly occur.
901 Label not_plus_half;
902
903 // Test for 0.5.
904 __ Move(double_scratch, 0.5);
905 __ BranchF(USE_DELAY_SLOT,
906 &not_plus_half,
907 NULL,
908 ne,
909 double_exponent,
910 double_scratch);
911 // double_scratch can be overwritten in the delay slot.
912 // Calculates square root of base. Check for the special case of
913 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
914 __ Move(double_scratch, -V8_INFINITY);
915 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
916 __ neg_d(double_result, double_scratch);
917
918 // Add +0 to convert -0 to +0.
919 __ add_d(double_scratch, double_base, kDoubleRegZero);
920 __ sqrt_d(double_result, double_scratch);
921 __ jmp(&done);
922
923 __ bind(&not_plus_half);
924 __ Move(double_scratch, -0.5);
925 __ BranchF(USE_DELAY_SLOT,
926 &call_runtime,
927 NULL,
928 ne,
929 double_exponent,
930 double_scratch);
931 // double_scratch can be overwritten in the delay slot.
932 // Calculates square root of base. Check for the special case of
933 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
934 __ Move(double_scratch, -V8_INFINITY);
935 __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
936 __ Move(double_result, kDoubleRegZero);
937
938 // Add +0 to convert -0 to +0.
939 __ add_d(double_scratch, double_base, kDoubleRegZero);
940 __ Move(double_result, 1);
941 __ sqrt_d(double_scratch, double_scratch);
942 __ div_d(double_result, double_result, double_scratch);
943 __ jmp(&done);
944 }
945
946 __ push(ra);
947 {
948 AllowExternalCallThatCantCauseGC scope(masm);
949 __ PrepareCallCFunction(0, 2, scratch2);
950 __ MovToFloatParameters(double_base, double_exponent);
951 __ CallCFunction(
952 ExternalReference::power_double_double_function(isolate()),
953 0, 2);
954 }
955 __ pop(ra);
956 __ MovFromFloatResult(double_result);
957 __ jmp(&done);
958
959 __ bind(&int_exponent_convert);
960 }
961
962 // Calculate power with integer exponent.
963 __ bind(&int_exponent);
964
965 // Get two copies of exponent in the registers scratch and exponent.
966 if (exponent_type() == INTEGER) {
967 __ mov(scratch, exponent);
968 } else {
969 // Exponent has previously been stored into scratch as untagged integer.
970 __ mov(exponent, scratch);
971 }
972
973 __ mov_d(double_scratch, double_base); // Back up base.
974 __ Move(double_result, 1.0);
975
976 // Get absolute value of exponent.
977 Label positive_exponent;
978 __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
979 __ Dsubu(scratch, zero_reg, scratch);
980 __ bind(&positive_exponent);
981
982 Label while_true, no_carry, loop_end;
983 __ bind(&while_true);
984
985 __ And(scratch2, scratch, 1);
986
987 __ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
988 __ mul_d(double_result, double_result, double_scratch);
989 __ bind(&no_carry);
990
991 __ dsra(scratch, scratch, 1);
992
993 __ Branch(&loop_end, eq, scratch, Operand(zero_reg));
994 __ mul_d(double_scratch, double_scratch, double_scratch);
995
996 __ Branch(&while_true);
997
998 __ bind(&loop_end);
999
1000 __ Branch(&done, ge, exponent, Operand(zero_reg));
1001 __ Move(double_scratch, 1.0);
1002 __ div_d(double_result, double_scratch, double_result);
1003 // Test whether result is zero. Bail out to check for subnormal result.
1004 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
1005 __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
1006
1007 // double_exponent may not contain the exponent value if the input was a
1008 // smi. We set it with exponent value before bailing out.
1009 __ mtc1(exponent, single_scratch);
1010 __ cvt_d_w(double_exponent, single_scratch);
1011
1012 // Returning or bailing out.
1013 Counters* counters = isolate()->counters();
1014 if (exponent_type() == ON_STACK) {
1015 // The arguments are still on the stack.
1016 __ bind(&call_runtime);
1017 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
1018
1019 // The stub is called from non-optimized code, which expects the result
1020 // as heap number in exponent.
1021 __ bind(&done);
1022 __ AllocateHeapNumber(
1023 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
1024 __ sdc1(double_result,
1025 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
1026 DCHECK(heapnumber.is(v0));
1027 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1028 __ DropAndRet(2);
1029 } else {
1030 __ push(ra);
1031 {
1032 AllowExternalCallThatCantCauseGC scope(masm);
1033 __ PrepareCallCFunction(0, 2, scratch);
1034 __ MovToFloatParameters(double_base, double_exponent);
1035 __ CallCFunction(
1036 ExternalReference::power_double_double_function(isolate()),
1037 0, 2);
1038 }
1039 __ pop(ra);
1040 __ MovFromFloatResult(double_result);
1041
1042 __ bind(&done);
1043 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
1044 __ Ret();
1045 }
1046}
1047
1048
1049bool CEntryStub::NeedsImmovableCode() {
1050 return true;
1051}
1052
1053
1054void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
1055 CEntryStub::GenerateAheadOfTime(isolate);
1056 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
1057 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
1058 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
1059 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
1060 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
1061 BinaryOpICStub::GenerateAheadOfTime(isolate);
1062 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
1063 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
1064 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
1065}
1066
1067
1068void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1069 StoreRegistersStateStub stub(isolate);
1070 stub.GetCode();
1071}
1072
1073
1074void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
1075 RestoreRegistersStateStub stub(isolate);
1076 stub.GetCode();
1077}
1078
1079
1080void CodeStub::GenerateFPStubs(Isolate* isolate) {
1081 // Generate if not already in cache.
1082 SaveFPRegsMode mode = kSaveFPRegs;
1083 CEntryStub(isolate, 1, mode).GetCode();
1084 StoreBufferOverflowStub(isolate, mode).GetCode();
1085 isolate->set_fp_stubs_generated(true);
1086}
1087
1088
1089void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
1090 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
1091 stub.GetCode();
1092}
1093
1094
1095void CEntryStub::Generate(MacroAssembler* masm) {
1096 // Called from JavaScript; parameters are on stack as if calling JS function
1097 // s0: number of arguments including receiver
1098 // s1: size of arguments excluding receiver
1099 // s2: pointer to builtin function
1100 // fp: frame pointer (restored after C call)
1101 // sp: stack pointer (restored as callee's sp after C call)
1102 // cp: current context (C callee-saved)
1103
1104 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1105
1106 // NOTE: s0-s2 hold the arguments of this function instead of a0-a2.
1107 // The reason for this is that these arguments would need to be saved anyway
1108 // so it's faster to set them up directly.
1109 // See MacroAssembler::PrepareCEntryArgs and PrepareCEntryFunction.
1110
1111 // Compute the argv pointer in a callee-saved register.
1112 __ Daddu(s1, sp, s1);
1113
1114 // Enter the exit frame that transitions from JavaScript to C++.
1115 FrameScope scope(masm, StackFrame::MANUAL);
1116 __ EnterExitFrame(save_doubles());
1117
1118 // s0: number of arguments including receiver (C callee-saved)
1119 // s1: pointer to first argument (C callee-saved)
1120 // s2: pointer to builtin function (C callee-saved)
1121
1122 // Prepare arguments for C routine.
1123 // a0 = argc
1124 __ mov(a0, s0);
1125 // a1 = argv (set in the delay slot after find_ra below).
1126
1127 // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
1128 // also need to reserve the 4 argument slots on the stack.
1129
1130 __ AssertStackIsAligned();
1131
1132 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
1133
1134 // To let the GC traverse the return address of the exit frames, we need to
1135 // know where the return address is. The CEntryStub is unmovable, so
1136 // we can store the address on the stack to be able to find it again and
1137 // we never have to restore it, because it will not change.
1138 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1139 // This branch-and-link sequence is needed to find the current PC on mips,
1140 // saved to the ra register.
1141 // Use masm-> here instead of the double-underscore macro since extra
1142 // coverage code can interfere with the proper calculation of ra.
1143 Label find_ra;
1144 masm->bal(&find_ra); // bal exposes branch delay slot.
1145 masm->mov(a1, s1);
1146 masm->bind(&find_ra);
1147
1148 // Adjust the value in ra to point to the correct return location, 2nd
1149 // instruction past the real call into C code (the jalr(t9)), and push it.
1150 // This is the return address of the exit frame.
1151 const int kNumInstructionsToJump = 5;
1152 masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size);
1153 masm->sd(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
1154 // Stack space reservation moved to the branch delay slot below.
1155 // Stack is still aligned.
1156
1157 // Call the C routine.
1158 masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
1159 masm->jalr(t9);
1160 // Set up sp in the delay slot.
1161 masm->daddiu(sp, sp, -kCArgsSlotsSize);
1162 // Make sure the stored 'ra' points to this position.
1163 DCHECK_EQ(kNumInstructionsToJump,
1164 masm->InstructionsGeneratedSince(&find_ra));
1165 }
1166
1167 // Runtime functions should not return 'the hole'. Allowing it to escape may
1168 // lead to crashes in the IC code later.
1169 if (FLAG_debug_code) {
1170 Label okay;
1171 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1172 __ Branch(&okay, ne, v0, Operand(a4));
1173 __ stop("The hole escaped");
1174 __ bind(&okay);
1175 }
1176
1177 // Check result for exception sentinel.
1178 Label exception_returned;
1179 __ LoadRoot(a4, Heap::kExceptionRootIndex);
1180 __ Branch(&exception_returned, eq, a4, Operand(v0));
1181
1182 ExternalReference pending_exception_address(
1183 Isolate::kPendingExceptionAddress, isolate());
1184
1185 // Check that there is no pending exception, otherwise we
1186 // should have returned the exception sentinel.
1187 if (FLAG_debug_code) {
1188 Label okay;
1189 __ li(a2, Operand(pending_exception_address));
1190 __ ld(a2, MemOperand(a2));
1191 __ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
1192 // Cannot use check here as it attempts to generate call into runtime.
1193 __ Branch(&okay, eq, a4, Operand(a2));
1194 __ stop("Unexpected pending exception");
1195 __ bind(&okay);
1196 }
1197
1198 // Exit C frame and return.
1199 // v0:v1: result
1200 // sp: stack pointer
1201 // fp: frame pointer
1202 // s0: still holds argc (callee-saved).
1203 __ LeaveExitFrame(save_doubles(), s0, true, EMIT_RETURN);
1204
1205 // Handling of exception.
1206 __ bind(&exception_returned);
1207
1208 // Retrieve the pending exception.
1209 __ li(a2, Operand(pending_exception_address));
1210 __ ld(v0, MemOperand(a2));
1211
1212 // Clear the pending exception.
1213 __ li(a3, Operand(isolate()->factory()->the_hole_value()));
1214 __ sd(a3, MemOperand(a2));
1215
1216 // Special handling of termination exceptions which are uncatchable
1217 // by javascript code.
1218 Label throw_termination_exception;
1219 __ LoadRoot(a4, Heap::kTerminationExceptionRootIndex);
1220 __ Branch(&throw_termination_exception, eq, v0, Operand(a4));
1221
1222 // Handle normal exception.
1223 __ Throw(v0);
1224
1225 __ bind(&throw_termination_exception);
1226 __ ThrowUncatchable(v0);
1227}
1228
1229
1230void JSEntryStub::Generate(MacroAssembler* masm) {
1231 Label invoke, handler_entry, exit;
1232 Isolate* isolate = masm->isolate();
1233
1234 // TODO(plind): unify the ABI description here.
1235 // Registers:
1236 // a0: entry address
1237 // a1: function
1238 // a2: receiver
1239 // a3: argc
1240 // a4 (a4): on mips64
1241
1242 // Stack:
1243 // 0 arg slots on mips64 (4 args slots on mips)
1244 // args -- in a4/a4 on mips64, on stack on mips
1245
1246 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1247
1248 // Save callee saved registers on the stack.
1249 __ MultiPush(kCalleeSaved | ra.bit());
1250
1251 // Save callee-saved FPU registers.
1252 __ MultiPushFPU(kCalleeSavedFPU);
1253 // Set up the reserved register for 0.0.
1254 __ Move(kDoubleRegZero, 0.0);
1255
1256 // Load argv in s0 register.
1257 if (kMipsAbi == kN64) {
1258 __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register.
1259 } else { // Abi O32.
1260 // 5th parameter on stack for O32 abi.
1261 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1262 offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
1263 __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
1264 }
1265
1266 __ InitializeRootRegister();
1267
1268 // We build an EntryFrame.
1269 __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1270 int marker = type();
1271 __ li(a6, Operand(Smi::FromInt(marker)));
1272 __ li(a5, Operand(Smi::FromInt(marker)));
1273 ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate);
1274 __ li(a4, Operand(c_entry_fp));
1275 __ ld(a4, MemOperand(a4));
1276 __ Push(a7, a6, a5, a4);
1277 // Set up frame pointer for the frame to be pushed.
1278 __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
1279
1280 // Registers:
1281 // a0: entry_address
1282 // a1: function
1283 // a2: receiver_pointer
1284 // a3: argc
1285 // s0: argv
1286 //
1287 // Stack:
1288 // caller fp |
1289 // function slot | entry frame
1290 // context slot |
1291 // bad fp (0xff...f) |
1292 // callee saved registers + ra
1293 // [ O32: 4 args slots]
1294 // args
1295
1296 // If this is the outermost JS call, set js_entry_sp value.
1297 Label non_outermost_js;
1298 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
1299 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1300 __ ld(a6, MemOperand(a5));
1301 __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
1302 __ sd(fp, MemOperand(a5));
1303 __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1304 Label cont;
1305 __ b(&cont);
1306 __ nop(); // Branch delay slot nop.
1307 __ bind(&non_outermost_js);
1308 __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
1309 __ bind(&cont);
1310 __ push(a4);
1311
1312 // Jump to a faked try block that does the invoke, with a faked catch
1313 // block that sets the pending exception.
1314 __ jmp(&invoke);
1315 __ bind(&handler_entry);
1316 handler_offset_ = handler_entry.pos();
1317 // Caught exception: Store result (exception) in the pending exception
1318 // field in the JSEnv and return a failure sentinel. Coming in here the
1319 // fp will be invalid because the PushTryHandler below sets it to 0 to
1320 // signal the existence of the JSEntry frame.
1321 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1322 isolate)));
1323 __ sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0.
1324 __ LoadRoot(v0, Heap::kExceptionRootIndex);
1325 __ b(&exit); // b exposes branch delay slot.
1326 __ nop(); // Branch delay slot nop.
1327
1328 // Invoke: Link this frame into the handler chain. There's only one
1329 // handler block in this code object, so its index is 0.
1330 __ bind(&invoke);
1331 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1332 // If an exception not caught by another handler occurs, this handler
1333 // returns control to the code after the bal(&invoke) above, which
1334 // restores all kCalleeSaved registers (including cp and fp) to their
1335 // saved values before returning a failure to C.
1336
1337 // Clear any pending exceptions.
1338 __ LoadRoot(a5, Heap::kTheHoleValueRootIndex);
1339 __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1340 isolate)));
1341 __ sd(a5, MemOperand(a4));
1342
1343 // Invoke the function by calling through JS entry trampoline builtin.
1344 // Notice that we cannot store a reference to the trampoline code directly in
1345 // this stub, because runtime stubs are not traversed when doing GC.
1346
1347 // Registers:
1348 // a0: entry_address
1349 // a1: function
1350 // a2: receiver_pointer
1351 // a3: argc
1352 // s0: argv
1353 //
1354 // Stack:
1355 // handler frame
1356 // entry frame
1357 // callee saved registers + ra
1358 // [ O32: 4 args slots]
1359 // args
1360
1361 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1362 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1363 isolate);
1364 __ li(a4, Operand(construct_entry));
1365 } else {
1366 ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
1367 __ li(a4, Operand(entry));
1368 }
1369 __ ld(t9, MemOperand(a4)); // Deref address.
1370 // Call JSEntryTrampoline.
1371 __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
1372 __ Call(t9);
1373
1374 // Unlink this frame from the handler chain.
1375 __ PopTryHandler();
1376
1377 __ bind(&exit); // v0 holds result
1378 // Check if the current stack frame is marked as the outermost JS frame.
1379 Label non_outermost_js_2;
1380 __ pop(a5);
1381 __ Branch(&non_outermost_js_2,
1382 ne,
1383 a5,
1384 Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
1385 __ li(a5, Operand(ExternalReference(js_entry_sp)));
1386 __ sd(zero_reg, MemOperand(a5));
1387 __ bind(&non_outermost_js_2);
1388
1389 // Restore the top frame descriptors from the stack.
1390 __ pop(a5);
1391 __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress,
1392 isolate)));
1393 __ sd(a5, MemOperand(a4));
1394
1395 // Reset the stack to the callee saved registers.
1396 __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
1397
1398 // Restore callee-saved fpu registers.
1399 __ MultiPopFPU(kCalleeSavedFPU);
1400
1401 // Restore callee saved registers from the stack.
1402 __ MultiPop(kCalleeSaved | ra.bit());
1403 // Return.
1404 __ Jump(ra);
1405}
1406
1407
1408// Uses registers a0 to a4.
1409// Expected input (depending on whether args are in registers or on the stack):
1410// * object: a0 or at sp + 1 * kPointerSize.
1411// * function: a1 or at sp.
1412//
1413// An inlined call site may have been generated before calling this stub.
1414// In this case the offset to the inline site to patch is passed on the stack,
1415// in the safepoint slot for register a4.
1416void InstanceofStub::Generate(MacroAssembler* masm) {
1417 // Call site inlining and patching implies arguments in registers.
1418 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1419 // ReturnTrueFalse is only implemented for inlined call sites.
1420 DCHECK(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
1421
1422 // Fixed register usage throughout the stub:
1423 const Register object = a0; // Object (lhs).
1424 Register map = a3; // Map of the object.
1425 const Register function = a1; // Function (rhs).
1426 const Register prototype = a4; // Prototype of the function.
1427 const Register inline_site = t1;
1428 const Register scratch = a2;
1429
1430 const int32_t kDeltaToLoadBoolResult = 7 * Assembler::kInstrSize;
1431
1432 Label slow, loop, is_instance, is_not_instance, not_js_object;
1433
1434 if (!HasArgsInRegisters()) {
1435 __ ld(object, MemOperand(sp, 1 * kPointerSize));
1436 __ ld(function, MemOperand(sp, 0));
1437 }
1438
1439 // Check that the left hand is a JS object and load map.
1440 __ JumpIfSmi(object, &not_js_object);
1441 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
1442
1443 // If there is a call site cache don't look in the global cache, but do the
1444 // real lookup and update the call site cache.
1445 if (!HasCallSiteInlineCheck()) {
1446 Label miss;
1447 __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
1448 __ Branch(&miss, ne, function, Operand(at));
1449 __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
1450 __ Branch(&miss, ne, map, Operand(at));
1451 __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1452 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1453
1454 __ bind(&miss);
1455 }
1456
1457 // Get the prototype of the function.
1458 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1459
1460 // Check that the function prototype is a JS object.
1461 __ JumpIfSmi(prototype, &slow);
1462 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1463
1464 // Update the global instanceof or call site inlined cache with the current
1465 // map and function. The cached answer will be set when it is known below.
1466 if (!HasCallSiteInlineCheck()) {
1467 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1468 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1469 } else {
1470 DCHECK(HasArgsInRegisters());
1471 // Patch the (relocated) inlined map check.
1472
1473 // The offset was stored in a4 safepoint slot.
1474 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1475 __ LoadFromSafepointRegisterSlot(scratch, a4);
1476 __ Dsubu(inline_site, ra, scratch);
1477 // Get the map location in scratch and patch it.
1478 __ GetRelocatedValue(inline_site, scratch, v1); // v1 used as scratch.
1479 __ sd(map, FieldMemOperand(scratch, Cell::kValueOffset));
1480 }
1481
1482 // Register mapping: a3 is object map and a4 is function prototype.
1483 // Get prototype of object into a2.
1484 __ ld(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1485
1486 // We don't need map any more. Use it as a scratch register.
1487 Register scratch2 = map;
1488 map = no_reg;
1489
1490 // Loop through the prototype chain looking for the function prototype.
1491 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
1492 __ bind(&loop);
1493 __ Branch(&is_instance, eq, scratch, Operand(prototype));
1494 __ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
1495 __ ld(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1496 __ ld(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1497 __ Branch(&loop);
1498
1499 __ bind(&is_instance);
1500 DCHECK(Smi::FromInt(0) == 0);
1501 if (!HasCallSiteInlineCheck()) {
1502 __ mov(v0, zero_reg);
1503 __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1504 } else {
1505 // Patch the call site to return true.
1506 __ LoadRoot(v0, Heap::kTrueValueRootIndex);
1507 __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1508 // Get the boolean result location in scratch and patch it.
1509 __ PatchRelocatedValue(inline_site, scratch, v0);
1510
1511 if (!ReturnTrueFalseObject()) {
1512 DCHECK_EQ(Smi::FromInt(0), 0);
1513 __ mov(v0, zero_reg);
1514 }
1515 }
1516 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1517
1518 __ bind(&is_not_instance);
1519 if (!HasCallSiteInlineCheck()) {
1520 __ li(v0, Operand(Smi::FromInt(1)));
1521 __ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
1522 } else {
1523 // Patch the call site to return false.
1524 __ LoadRoot(v0, Heap::kFalseValueRootIndex);
1525 __ Daddu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1526 // Get the boolean result location in scratch and patch it.
1527 __ PatchRelocatedValue(inline_site, scratch, v0);
1528
1529 if (!ReturnTrueFalseObject()) {
1530 __ li(v0, Operand(Smi::FromInt(1)));
1531 }
1532 }
1533
1534 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1535
1536 Label object_not_null, object_not_null_or_smi;
1537 __ bind(&not_js_object);
1538 // Before null, smi and string value checks, check that the rhs is a function
1539 // as for a non-function rhs an exception needs to be thrown.
1540 __ JumpIfSmi(function, &slow);
1541 __ GetObjectType(function, scratch2, scratch);
1542 __ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
1543
1544 // Null is not instance of anything.
1545 __ Branch(&object_not_null,
1546 ne,
1547 scratch,
1548 Operand(isolate()->factory()->null_value()));
1549 __ li(v0, Operand(Smi::FromInt(1)));
1550 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1551
1552 __ bind(&object_not_null);
1553 // Smi values are not instances of anything.
1554 __ JumpIfNotSmi(object, &object_not_null_or_smi);
1555 __ li(v0, Operand(Smi::FromInt(1)));
1556 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1557
1558 __ bind(&object_not_null_or_smi);
1559 // String values are not instances of anything.
1560 __ IsObjectJSStringType(object, scratch, &slow);
1561 __ li(v0, Operand(Smi::FromInt(1)));
1562 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1563
1564 // Slow-case. Tail call builtin.
1565 __ bind(&slow);
1566 if (!ReturnTrueFalseObject()) {
1567 if (HasArgsInRegisters()) {
1568 __ Push(a0, a1);
1569 }
1570 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1571 } else {
1572 {
1573 FrameScope scope(masm, StackFrame::INTERNAL);
1574 __ Push(a0, a1);
1575 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1576 }
1577 __ mov(a0, v0);
1578 __ LoadRoot(v0, Heap::kTrueValueRootIndex);
1579 __ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
1580 __ LoadRoot(v0, Heap::kFalseValueRootIndex);
1581 __ DropAndRet(HasArgsInRegisters() ? 0 : 2);
1582 }
1583}
1584
1585
1586void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1587 Label miss;
1588 Register receiver = LoadDescriptor::ReceiverRegister();
1589 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a3,
1590 a4, &miss);
1591 __ bind(&miss);
1592 PropertyAccessCompiler::TailCallBuiltin(
1593 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1594}
1595
1596
1597void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1598 // The displacement is the offset of the last parameter (if any)
1599 // relative to the frame pointer.
1600 const int kDisplacement =
1601 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1602 DCHECK(a1.is(ArgumentsAccessReadDescriptor::index()));
1603 DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count()));
1604
1605 // Check that the key is a smiGenerateReadElement.
1606 Label slow;
1607 __ JumpIfNotSmi(a1, &slow);
1608
1609 // Check if the calling frame is an arguments adaptor frame.
1610 Label adaptor;
1611 __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1612 __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1613 __ Branch(&adaptor,
1614 eq,
1615 a3,
1616 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1617
1618 // Check index (a1) against formal parameters count limit passed in
1619 // through register a0. Use unsigned comparison to get negative
1620 // check for free.
1621 __ Branch(&slow, hs, a1, Operand(a0));
1622
1623 // Read the argument from the stack and return it.
1624 __ dsubu(a3, a0, a1);
1625 __ SmiScale(a7, a3, kPointerSizeLog2);
1626 __ Daddu(a3, fp, Operand(a7));
1627 __ Ret(USE_DELAY_SLOT);
1628 __ ld(v0, MemOperand(a3, kDisplacement));
1629
1630 // Arguments adaptor case: Check index (a1) against actual arguments
1631 // limit found in the arguments adaptor frame. Use unsigned
1632 // comparison to get negative check for free.
1633 __ bind(&adaptor);
1634 __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1635 __ Branch(&slow, Ugreater_equal, a1, Operand(a0));
1636
1637 // Read the argument from the adaptor frame and return it.
1638 __ dsubu(a3, a0, a1);
1639 __ SmiScale(a7, a3, kPointerSizeLog2);
1640 __ Daddu(a3, a2, Operand(a7));
1641 __ Ret(USE_DELAY_SLOT);
1642 __ ld(v0, MemOperand(a3, kDisplacement));
1643
1644 // Slow-case: Handle non-smi or out-of-bounds access to arguments
1645 // by calling the runtime system.
1646 __ bind(&slow);
1647 __ push(a1);
1648 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1649}
1650
1651
1652void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1653 // sp[0] : number of parameters
1654 // sp[4] : receiver displacement
1655 // sp[8] : function
1656 // Check if the calling frame is an arguments adaptor frame.
1657 Label runtime;
1658 __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1659 __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
1660 __ Branch(&runtime,
1661 ne,
1662 a2,
1663 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1664
1665 // Patch the arguments.length and the parameters pointer in the current frame.
1666 __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1667 __ sd(a2, MemOperand(sp, 0 * kPointerSize));
1668 __ SmiScale(a7, a2, kPointerSizeLog2);
1669 __ Daddu(a3, a3, Operand(a7));
1670 __ daddiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
1671 __ sd(a3, MemOperand(sp, 1 * kPointerSize));
1672
1673 __ bind(&runtime);
1674 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1675}
1676
1677
1678void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1679 // Stack layout:
1680 // sp[0] : number of parameters (tagged)
1681 // sp[4] : address of receiver argument
1682 // sp[8] : function
1683 // Registers used over whole function:
1684 // a6 : allocated object (tagged)
1685 // t1 : mapped parameter count (tagged)
1686
1687 __ ld(a1, MemOperand(sp, 0 * kPointerSize));
1688 // a1 = parameter count (tagged)
1689
1690 // Check if the calling frame is an arguments adaptor frame.
1691 Label runtime;
1692 Label adaptor_frame, try_allocate;
1693 __ ld(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1694 __ ld(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
1695 __ Branch(&adaptor_frame,
1696 eq,
1697 a2,
1698 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1699
1700 // No adaptor, parameter count = argument count.
1701 __ mov(a2, a1);
1702 __ Branch(&try_allocate);
1703
1704 // We have an adaptor frame. Patch the parameters pointer.
1705 __ bind(&adaptor_frame);
1706 __ ld(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
1707 __ SmiScale(t2, a2, kPointerSizeLog2);
1708 __ Daddu(a3, a3, Operand(t2));
1709 __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1710 __ sd(a3, MemOperand(sp, 1 * kPointerSize));
1711
1712 // a1 = parameter count (tagged)
1713 // a2 = argument count (tagged)
1714 // Compute the mapped parameter count = min(a1, a2) in a1.
1715 Label skip_min;
1716 __ Branch(&skip_min, lt, a1, Operand(a2));
1717 __ mov(a1, a2);
1718 __ bind(&skip_min);
1719
1720 __ bind(&try_allocate);
1721
1722 // Compute the sizes of backing store, parameter map, and arguments object.
1723 // 1. Parameter map, has 2 extra words containing context and backing store.
1724 const int kParameterMapHeaderSize =
1725 FixedArray::kHeaderSize + 2 * kPointerSize;
1726 // If there are no mapped parameters, we do not need the parameter_map.
1727 Label param_map_size;
1728 DCHECK_EQ(0, Smi::FromInt(0));
1729 __ Branch(USE_DELAY_SLOT, &param_map_size, eq, a1, Operand(zero_reg));
1730 __ mov(t1, zero_reg); // In delay slot: param map size = 0 when a1 == 0.
1731 __ SmiScale(t1, a1, kPointerSizeLog2);
1732 __ daddiu(t1, t1, kParameterMapHeaderSize);
1733 __ bind(&param_map_size);
1734
1735 // 2. Backing store.
1736 __ SmiScale(t2, a2, kPointerSizeLog2);
1737 __ Daddu(t1, t1, Operand(t2));
1738 __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize));
1739
1740 // 3. Arguments object.
1741 __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize));
1742
1743 // Do the allocation of all three objects in one go.
1744 __ Allocate(t1, v0, a3, a4, &runtime, TAG_OBJECT);
1745
1746 // v0 = address of new object(s) (tagged)
1747 // a2 = argument count (smi-tagged)
1748 // Get the arguments boilerplate from the current native context into a4.
1749 const int kNormalOffset =
1750 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1751 const int kAliasedOffset =
1752 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1753
1754 __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1755 __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
1756 Label skip2_ne, skip2_eq;
1757 __ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
1758 __ ld(a4, MemOperand(a4, kNormalOffset));
1759 __ bind(&skip2_ne);
1760
1761 __ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
1762 __ ld(a4, MemOperand(a4, kAliasedOffset));
1763 __ bind(&skip2_eq);
1764
1765 // v0 = address of new object (tagged)
1766 // a1 = mapped parameter count (tagged)
1767 // a2 = argument count (smi-tagged)
1768 // a4 = address of arguments map (tagged)
1769 __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
1770 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
1771 __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1772 __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
1773
1774 // Set up the callee in-object property.
1775 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1776 __ ld(a3, MemOperand(sp, 2 * kPointerSize));
1777 __ AssertNotSmi(a3);
1778 const int kCalleeOffset = JSObject::kHeaderSize +
1779 Heap::kArgumentsCalleeIndex * kPointerSize;
1780 __ sd(a3, FieldMemOperand(v0, kCalleeOffset));
1781
1782 // Use the length (smi tagged) and set that as an in-object property too.
1783 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1784 const int kLengthOffset = JSObject::kHeaderSize +
1785 Heap::kArgumentsLengthIndex * kPointerSize;
1786 __ sd(a2, FieldMemOperand(v0, kLengthOffset));
1787
1788 // Set up the elements pointer in the allocated arguments object.
1789 // If we allocated a parameter map, a4 will point there, otherwise
1790 // it will point to the backing store.
1791 __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize));
1792 __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1793
1794 // v0 = address of new object (tagged)
1795 // a1 = mapped parameter count (tagged)
1796 // a2 = argument count (tagged)
1797 // a4 = address of parameter map or backing store (tagged)
1798 // Initialize parameter map. If there are no mapped arguments, we're done.
1799 Label skip_parameter_map;
1800 Label skip3;
1801 __ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
1802 // Move backing store address to a3, because it is
1803 // expected there when filling in the unmapped arguments.
1804 __ mov(a3, a4);
1805 __ bind(&skip3);
1806
1807 __ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
1808
1809 __ LoadRoot(a6, Heap::kSloppyArgumentsElementsMapRootIndex);
1810 __ sd(a6, FieldMemOperand(a4, FixedArray::kMapOffset));
1811 __ Daddu(a6, a1, Operand(Smi::FromInt(2)));
1812 __ sd(a6, FieldMemOperand(a4, FixedArray::kLengthOffset));
1813 __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize));
1814 __ SmiScale(t2, a1, kPointerSizeLog2);
1815 __ Daddu(a6, a4, Operand(t2));
1816 __ Daddu(a6, a6, Operand(kParameterMapHeaderSize));
1817 __ sd(a6, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize));
1818
1819 // Copy the parameter slots and the holes in the arguments.
1820 // We need to fill in mapped_parameter_count slots. They index the context,
1821 // where parameters are stored in reverse order, at
1822 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1823 // The mapped parameter thus need to get indices
1824 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
1825 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1826 // We loop from right to left.
1827 Label parameters_loop, parameters_test;
1828 __ mov(a6, a1);
1829 __ ld(t1, MemOperand(sp, 0 * kPointerSize));
1830 __ Daddu(t1, t1, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
1831 __ Dsubu(t1, t1, Operand(a1));
1832 __ LoadRoot(a7, Heap::kTheHoleValueRootIndex);
1833 __ SmiScale(t2, a6, kPointerSizeLog2);
1834 __ Daddu(a3, a4, Operand(t2));
1835 __ Daddu(a3, a3, Operand(kParameterMapHeaderSize));
1836
1837 // a6 = loop variable (tagged)
1838 // a1 = mapping index (tagged)
1839 // a3 = address of backing store (tagged)
1840 // a4 = address of parameter map (tagged)
1841 // a5 = temporary scratch (a.o., for address calculation)
1842 // a7 = the hole value
1843 __ jmp(&parameters_test);
1844
1845 __ bind(&parameters_loop);
1846
1847 __ Dsubu(a6, a6, Operand(Smi::FromInt(1)));
1848 __ SmiScale(a5, a6, kPointerSizeLog2);
1849 __ Daddu(a5, a5, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1850 __ Daddu(t2, a4, a5);
1851 __ sd(t1, MemOperand(t2));
1852 __ Dsubu(a5, a5, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1853 __ Daddu(t2, a3, a5);
1854 __ sd(a7, MemOperand(t2));
1855 __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
1856 __ bind(&parameters_test);
1857 __ Branch(&parameters_loop, ne, a6, Operand(Smi::FromInt(0)));
1858
1859 __ bind(&skip_parameter_map);
1860 // a2 = argument count (tagged)
1861 // a3 = address of backing store (tagged)
1862 // a5 = scratch
1863 // Copy arguments header and remaining slots (if there are any).
1864 __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex);
1865 __ sd(a5, FieldMemOperand(a3, FixedArray::kMapOffset));
1866 __ sd(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
1867
1868 Label arguments_loop, arguments_test;
1869 __ mov(t1, a1);
1870 __ ld(a4, MemOperand(sp, 1 * kPointerSize));
1871 __ SmiScale(t2, t1, kPointerSizeLog2);
1872 __ Dsubu(a4, a4, Operand(t2));
1873 __ jmp(&arguments_test);
1874
1875 __ bind(&arguments_loop);
1876 __ Dsubu(a4, a4, Operand(kPointerSize));
1877 __ ld(a6, MemOperand(a4, 0));
1878 __ SmiScale(t2, t1, kPointerSizeLog2);
1879 __ Daddu(a5, a3, Operand(t2));
1880 __ sd(a6, FieldMemOperand(a5, FixedArray::kHeaderSize));
1881 __ Daddu(t1, t1, Operand(Smi::FromInt(1)));
1882
1883 __ bind(&arguments_test);
1884 __ Branch(&arguments_loop, lt, t1, Operand(a2));
1885
1886 // Return and remove the on-stack parameters.
1887 __ DropAndRet(3);
1888
1889 // Do the runtime call to allocate the arguments object.
1890 // a2 = argument count (tagged)
1891 __ bind(&runtime);
1892 __ sd(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
1893 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1894}
1895
1896
1897void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1898 // Return address is in ra.
1899 Label slow;
1900
1901 Register receiver = LoadDescriptor::ReceiverRegister();
1902 Register key = LoadDescriptor::NameRegister();
1903
1904 // Check that the key is an array index, that is Uint32.
1905 __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask));
1906 __ Branch(&slow, ne, t0, Operand(zero_reg));
1907
1908 // Everything is fine, call runtime.
1909 __ Push(receiver, key); // Receiver, key.
1910
1911 // Perform tail call to the entry.
1912 __ TailCallExternalReference(
1913 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1914 masm->isolate()),
1915 2, 1);
1916
1917 __ bind(&slow);
1918 PropertyAccessCompiler::TailCallBuiltin(
1919 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1920}
1921
1922
1923void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1924 // sp[0] : number of parameters
1925 // sp[4] : receiver displacement
1926 // sp[8] : function
1927 // Check if the calling frame is an arguments adaptor frame.
1928 Label adaptor_frame, try_allocate, runtime;
1929 __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1930 __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
1931 __ Branch(&adaptor_frame,
1932 eq,
1933 a3,
1934 Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1935
1936 // Get the length from the frame.
1937 __ ld(a1, MemOperand(sp, 0));
1938 __ Branch(&try_allocate);
1939
1940 // Patch the arguments.length and the parameters pointer.
1941 __ bind(&adaptor_frame);
1942 __ ld(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
1943 __ sd(a1, MemOperand(sp, 0));
1944 __ SmiScale(at, a1, kPointerSizeLog2);
1945
1946 __ Daddu(a3, a2, Operand(at));
1947
1948 __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
1949 __ sd(a3, MemOperand(sp, 1 * kPointerSize));
1950
1951 // Try the new space allocation. Start out with computing the size
1952 // of the arguments object and the elements array in words.
1953 Label add_arguments_object;
1954 __ bind(&try_allocate);
1955 __ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
1956 __ SmiUntag(a1);
1957
1958 __ Daddu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
1959 __ bind(&add_arguments_object);
1960 __ Daddu(a1, a1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1961
1962 // Do the allocation of both objects in one go.
1963 __ Allocate(a1, v0, a2, a3, &runtime,
1964 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1965
1966 // Get the arguments boilerplate from the current native context.
1967 __ ld(a4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1968 __ ld(a4, FieldMemOperand(a4, GlobalObject::kNativeContextOffset));
1969 __ ld(a4, MemOperand(a4, Context::SlotOffset(
1970 Context::STRICT_ARGUMENTS_MAP_INDEX)));
1971
1972 __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset));
1973 __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
1974 __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
1975 __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
1976
1977 // Get the length (smi tagged) and set that as an in-object property too.
1978 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1979 __ ld(a1, MemOperand(sp, 0 * kPointerSize));
1980 __ AssertSmi(a1);
1981 __ sd(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
1982 Heap::kArgumentsLengthIndex * kPointerSize));
1983
1984 Label done;
1985 __ Branch(&done, eq, a1, Operand(zero_reg));
1986
1987 // Get the parameters pointer from the stack.
1988 __ ld(a2, MemOperand(sp, 1 * kPointerSize));
1989
1990 // Set up the elements pointer in the allocated arguments object and
1991 // initialize the header in the elements fixed array.
1992 __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize));
1993 __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset));
1994 __ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
1995 __ sd(a3, FieldMemOperand(a4, FixedArray::kMapOffset));
1996 __ sd(a1, FieldMemOperand(a4, FixedArray::kLengthOffset));
1997 // Untag the length for the loop.
1998 __ SmiUntag(a1);
1999
2000
2001 // Copy the fixed array slots.
2002 Label loop;
2003 // Set up a4 to point to the first array slot.
2004 __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2005 __ bind(&loop);
2006 // Pre-decrement a2 with kPointerSize on each iteration.
2007 // Pre-decrement in order to skip receiver.
2008 __ Daddu(a2, a2, Operand(-kPointerSize));
2009 __ ld(a3, MemOperand(a2));
2010 // Post-increment a4 with kPointerSize on each iteration.
2011 __ sd(a3, MemOperand(a4));
2012 __ Daddu(a4, a4, Operand(kPointerSize));
2013 __ Dsubu(a1, a1, Operand(1));
2014 __ Branch(&loop, ne, a1, Operand(zero_reg));
2015
2016 // Return and remove the on-stack parameters.
2017 __ bind(&done);
2018 __ DropAndRet(3);
2019
2020 // Do the runtime call to allocate the arguments object.
2021 __ bind(&runtime);
2022 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
2023}
2024
2025
2026void RegExpExecStub::Generate(MacroAssembler* masm) {
2027 // Just jump directly to runtime if native RegExp is not selected at compile
2028 // time or if regexp entry in generated code is turned off runtime switch or
2029 // at compilation.
2030#ifdef V8_INTERPRETED_REGEXP
2031 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2032#else // V8_INTERPRETED_REGEXP
2033
2034 // Stack frame on entry.
2035 // sp[0]: last_match_info (expected JSArray)
2036 // sp[4]: previous index
2037 // sp[8]: subject string
2038 // sp[12]: JSRegExp object
2039
2040 const int kLastMatchInfoOffset = 0 * kPointerSize;
2041 const int kPreviousIndexOffset = 1 * kPointerSize;
2042 const int kSubjectOffset = 2 * kPointerSize;
2043 const int kJSRegExpOffset = 3 * kPointerSize;
2044
2045 Label runtime;
2046 // Allocation of registers for this function. These are in callee save
2047 // registers and will be preserved by the call to the native RegExp code, as
2048 // this code is called using the normal C calling convention. When calling
2049 // directly from generated code the native RegExp code will not do a GC and
2050 // therefore the content of these registers are safe to use after the call.
2051 // MIPS - using s0..s2, since we are not using CEntry Stub.
2052 Register subject = s0;
2053 Register regexp_data = s1;
2054 Register last_match_info_elements = s2;
2055
2056 // Ensure that a RegExp stack is allocated.
2057 ExternalReference address_of_regexp_stack_memory_address =
2058 ExternalReference::address_of_regexp_stack_memory_address(
2059 isolate());
2060 ExternalReference address_of_regexp_stack_memory_size =
2061 ExternalReference::address_of_regexp_stack_memory_size(isolate());
2062 __ li(a0, Operand(address_of_regexp_stack_memory_size));
2063 __ ld(a0, MemOperand(a0, 0));
2064 __ Branch(&runtime, eq, a0, Operand(zero_reg));
2065
2066 // Check that the first argument is a JSRegExp object.
2067 __ ld(a0, MemOperand(sp, kJSRegExpOffset));
2068 STATIC_ASSERT(kSmiTag == 0);
2069 __ JumpIfSmi(a0, &runtime);
2070 __ GetObjectType(a0, a1, a1);
2071 __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
2072
2073 // Check that the RegExp has been compiled (data contains a fixed array).
2074 __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
2075 if (FLAG_debug_code) {
2076 __ SmiTst(regexp_data, a4);
2077 __ Check(nz,
2078 kUnexpectedTypeForRegExpDataFixedArrayExpected,
2079 a4,
2080 Operand(zero_reg));
2081 __ GetObjectType(regexp_data, a0, a0);
2082 __ Check(eq,
2083 kUnexpectedTypeForRegExpDataFixedArrayExpected,
2084 a0,
2085 Operand(FIXED_ARRAY_TYPE));
2086 }
2087
2088 // regexp_data: RegExp data (FixedArray)
2089 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2090 __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
2091 __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
2092
2093 // regexp_data: RegExp data (FixedArray)
2094 // Check that the number of captures fit in the static offsets vector buffer.
2095 __ ld(a2,
2096 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2097 // Check (number_of_captures + 1) * 2 <= offsets vector size
2098 // Or number_of_captures * 2 <= offsets vector size - 2
2099 // Or number_of_captures <= offsets vector size / 2 - 1
2100 // Multiplying by 2 comes for free since a2 is smi-tagged.
2101 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
2102 int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
2103 __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
2104
2105 // Reset offset for possibly sliced string.
2106 __ mov(t0, zero_reg);
2107 __ ld(subject, MemOperand(sp, kSubjectOffset));
2108 __ JumpIfSmi(subject, &runtime);
2109 __ mov(a3, subject); // Make a copy of the original subject string.
2110 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2111 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2112 // subject: subject string
2113 // a3: subject string
2114 // a0: subject string instance type
2115 // regexp_data: RegExp data (FixedArray)
2116 // Handle subject string according to its encoding and representation:
2117 // (1) Sequential string? If yes, go to (5).
2118 // (2) Anything but sequential or cons? If yes, go to (6).
2119 // (3) Cons string. If the string is flat, replace subject with first string.
2120 // Otherwise bailout.
2121 // (4) Is subject external? If yes, go to (7).
2122 // (5) Sequential string. Load regexp code according to encoding.
2123 // (E) Carry on.
2124 /// [...]
2125
2126 // Deferred code at the end of the stub:
2127 // (6) Not a long external string? If yes, go to (8).
2128 // (7) External string. Make it, offset-wise, look like a sequential string.
2129 // Go to (5).
2130 // (8) Short external string or not a string? If yes, bail out to runtime.
2131 // (9) Sliced string. Replace subject with parent. Go to (4).
2132
2133 Label check_underlying; // (4)
2134 Label seq_string; // (5)
2135 Label not_seq_nor_cons; // (6)
2136 Label external_string; // (7)
2137 Label not_long_external; // (8)
2138
2139 // (1) Sequential string? If yes, go to (5).
2140 __ And(a1,
2141 a0,
2142 Operand(kIsNotStringMask |
2143 kStringRepresentationMask |
2144 kShortExternalStringMask));
2145 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
2146 __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (5).
2147
2148 // (2) Anything but sequential or cons? If yes, go to (6).
2149 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2150 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2151 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2152 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2153 // Go to (6).
2154 __ Branch(&not_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
2155
2156 // (3) Cons string. Check that it's flat.
2157 // Replace subject with first string and reload instance type.
2158 __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
2159 __ LoadRoot(a1, Heap::kempty_stringRootIndex);
2160 __ Branch(&runtime, ne, a0, Operand(a1));
2161 __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2162
2163 // (4) Is subject external? If yes, go to (7).
2164 __ bind(&check_underlying);
2165 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2166 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2167 STATIC_ASSERT(kSeqStringTag == 0);
2168 __ And(at, a0, Operand(kStringRepresentationMask));
2169 // The underlying external string is never a short external string.
2170 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2171 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2172 __ Branch(&external_string, ne, at, Operand(zero_reg)); // Go to (7).
2173
2174 // (5) Sequential string. Load regexp code according to encoding.
2175 __ bind(&seq_string);
2176 // subject: sequential subject string (or look-alike, external string)
2177 // a3: original subject string
2178 // Load previous index and check range before a3 is overwritten. We have to
2179 // use a3 instead of subject here because subject might have been only made
2180 // to look like a sequential string when it actually is an external string.
2181 __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
2182 __ JumpIfNotSmi(a1, &runtime);
2183 __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
2184 __ Branch(&runtime, ls, a3, Operand(a1));
2185 __ SmiUntag(a1);
2186
2187 STATIC_ASSERT(kStringEncodingMask == 4);
2188 STATIC_ASSERT(kOneByteStringTag == 4);
2189 STATIC_ASSERT(kTwoByteStringTag == 0);
2190 __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one_byte.
2191 __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2192 __ dsra(a3, a0, 2); // a3 is 1 for one_byte, 0 for UC16 (used below).
2193 __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2194 __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
2195
2196 // (E) Carry on. String handling is done.
2197 // t9: irregexp code
2198 // Check that the irregexp code has been generated for the actual string
2199 // encoding. If it has, the field contains a code object otherwise it contains
2200 // a smi (code flushing support).
2201 __ JumpIfSmi(t9, &runtime);
2202
2203 // a1: previous index
2204 // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
2205 // t9: code
2206 // subject: Subject string
2207 // regexp_data: RegExp data (FixedArray)
2208 // All checks done. Now push arguments for native regexp code.
2209 __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
2210 1, a0, a2);
2211
2212 // Isolates: note we add an additional parameter here (isolate pointer).
2213 const int kRegExpExecuteArguments = 9;
2214 const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4;
2215 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2216
2217 // Stack pointer now points to cell where return address is to be written.
2218 // Arguments are before that on the stack or in registers, meaning we
2219 // treat the return address as argument 5. Thus every argument after that
2220 // needs to be shifted back by 1. Since DirectCEntryStub will handle
2221 // allocating space for the c argument slots, we don't need to calculate
2222 // that into the argument positions on the stack. This is how the stack will
2223 // look (sp meaning the value of sp at this moment):
2224 // Abi n64:
2225 // [sp + 1] - Argument 9
2226 // [sp + 0] - saved ra
2227 // Abi O32:
2228 // [sp + 5] - Argument 9
2229 // [sp + 4] - Argument 8
2230 // [sp + 3] - Argument 7
2231 // [sp + 2] - Argument 6
2232 // [sp + 1] - Argument 5
2233 // [sp + 0] - saved ra
2234
2235 if (kMipsAbi == kN64) {
2236 // Argument 9: Pass current isolate address.
2237 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2238 __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2239
2240 // Argument 8: Indicate that this is a direct call from JavaScript.
2241 __ li(a7, Operand(1));
2242
2243 // Argument 7: Start (high end) of backtracking stack memory area.
2244 __ li(a0, Operand(address_of_regexp_stack_memory_address));
2245 __ ld(a0, MemOperand(a0, 0));
2246 __ li(a2, Operand(address_of_regexp_stack_memory_size));
2247 __ ld(a2, MemOperand(a2, 0));
2248 __ daddu(a6, a0, a2);
2249
2250 // Argument 6: Set the number of capture registers to zero to force global
2251 // regexps to behave as non-global. This does not affect non-global regexps.
2252 __ mov(a5, zero_reg);
2253
2254 // Argument 5: static offsets vector buffer.
2255 __ li(a4, Operand(
2256 ExternalReference::address_of_static_offsets_vector(isolate())));
2257 } else { // O32.
2258 DCHECK(kMipsAbi == kO32);
2259
2260 // Argument 9: Pass current isolate address.
2261 // CFunctionArgumentOperand handles MIPS stack argument slots.
2262 __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
2263 __ sd(a0, MemOperand(sp, 5 * kPointerSize));
2264
2265 // Argument 8: Indicate that this is a direct call from JavaScript.
2266 __ li(a0, Operand(1));
2267 __ sd(a0, MemOperand(sp, 4 * kPointerSize));
2268
2269 // Argument 7: Start (high end) of backtracking stack memory area.
2270 __ li(a0, Operand(address_of_regexp_stack_memory_address));
2271 __ ld(a0, MemOperand(a0, 0));
2272 __ li(a2, Operand(address_of_regexp_stack_memory_size));
2273 __ ld(a2, MemOperand(a2, 0));
2274 __ daddu(a0, a0, a2);
2275 __ sd(a0, MemOperand(sp, 3 * kPointerSize));
2276
2277 // Argument 6: Set the number of capture registers to zero to force global
2278 // regexps to behave as non-global. This does not affect non-global regexps.
2279 __ mov(a0, zero_reg);
2280 __ sd(a0, MemOperand(sp, 2 * kPointerSize));
2281
2282 // Argument 5: static offsets vector buffer.
2283 __ li(a0, Operand(
2284 ExternalReference::address_of_static_offsets_vector(isolate())));
2285 __ sd(a0, MemOperand(sp, 1 * kPointerSize));
2286 }
2287
2288 // For arguments 4 and 3 get string length, calculate start of string data
2289 // and calculate the shift of the index (0 for one_byte and 1 for two byte).
2290 __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2291 __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
2292 // Load the length from the original subject string from the previous stack
2293 // frame. Therefore we have to use fp, which points exactly to two pointer
2294 // sizes below the previous sp. (Because creating a new stack frame pushes
2295 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2296 __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2297 // If slice offset is not 0, load the length from the original sliced string.
2298 // Argument 4, a3: End of string data
2299 // Argument 3, a2: Start of string data
2300 // Prepare start and end index of the input.
2301 __ dsllv(t1, t0, a3);
2302 __ daddu(t0, t2, t1);
2303 __ dsllv(t1, a1, a3);
2304 __ daddu(a2, t0, t1);
2305
2306 __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
2307
2308 __ SmiUntag(t2);
2309 __ dsllv(t1, t2, a3);
2310 __ daddu(a3, t0, t1);
2311 // Argument 2 (a1): Previous index.
2312 // Already there
2313
2314 // Argument 1 (a0): Subject string.
2315 __ mov(a0, subject);
2316
2317 // Locate the code entry and call it.
2318 __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
2319 DirectCEntryStub stub(isolate());
2320 stub.GenerateCall(masm, t9);
2321
2322 __ LeaveExitFrame(false, no_reg, true);
2323
2324 // v0: result
2325 // subject: subject string (callee saved)
2326 // regexp_data: RegExp data (callee saved)
2327 // last_match_info_elements: Last match info elements (callee saved)
2328 // Check the result.
2329 Label success;
2330 __ Branch(&success, eq, v0, Operand(1));
2331 // We expect exactly one result since we force the called regexp to behave
2332 // as non-global.
2333 Label failure;
2334 __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
2335 // If not exception it can only be retry. Handle that in the runtime system.
2336 __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2337 // Result must now be exception. If there is no pending exception already a
2338 // stack overflow (on the backtrack stack) was detected in RegExp code but
2339 // haven't created the exception yet. Handle that in the runtime system.
2340 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2341 __ li(a1, Operand(isolate()->factory()->the_hole_value()));
2342 __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2343 isolate())));
2344 __ ld(v0, MemOperand(a2, 0));
2345 __ Branch(&runtime, eq, v0, Operand(a1));
2346
2347 __ sd(a1, MemOperand(a2, 0)); // Clear pending exception.
2348
2349 // Check if the exception is a termination. If so, throw as uncatchable.
2350 __ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
2351 Label termination_exception;
2352 __ Branch(&termination_exception, eq, v0, Operand(a0));
2353
2354 __ Throw(v0);
2355
2356 __ bind(&termination_exception);
2357 __ ThrowUncatchable(v0);
2358
2359 __ bind(&failure);
2360 // For failure and exception return null.
2361 __ li(v0, Operand(isolate()->factory()->null_value()));
2362 __ DropAndRet(4);
2363
2364 // Process the result from the native regexp code.
2365 __ bind(&success);
2366
2367 __ lw(a1, UntagSmiFieldMemOperand(
2368 regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2369 // Calculate number of capture registers (number_of_captures + 1) * 2.
2370 __ Daddu(a1, a1, Operand(1));
2371 __ dsll(a1, a1, 1); // Multiply by 2.
2372
2373 __ ld(a0, MemOperand(sp, kLastMatchInfoOffset));
2374 __ JumpIfSmi(a0, &runtime);
2375 __ GetObjectType(a0, a2, a2);
2376 __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE));
2377 // Check that the JSArray is in fast case.
2378 __ ld(last_match_info_elements,
2379 FieldMemOperand(a0, JSArray::kElementsOffset));
2380 __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2381 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2382 __ Branch(&runtime, ne, a0, Operand(at));
2383 // Check that the last match info has space for the capture registers and the
2384 // additional information.
2385 __ ld(a0,
2386 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2387 __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead));
2388
2389 __ SmiUntag(at, a0);
2390 __ Branch(&runtime, gt, a2, Operand(at));
2391
2392 // a1: number of capture registers
2393 // subject: subject string
2394 // Store the capture count.
2395 __ SmiTag(a2, a1); // To smi.
2396 __ sd(a2, FieldMemOperand(last_match_info_elements,
2397 RegExpImpl::kLastCaptureCountOffset));
2398 // Store last subject and last input.
2399 __ sd(subject,
2400 FieldMemOperand(last_match_info_elements,
2401 RegExpImpl::kLastSubjectOffset));
2402 __ mov(a2, subject);
2403 __ RecordWriteField(last_match_info_elements,
2404 RegExpImpl::kLastSubjectOffset,
2405 subject,
2406 a7,
2407 kRAHasNotBeenSaved,
2408 kDontSaveFPRegs);
2409 __ mov(subject, a2);
2410 __ sd(subject,
2411 FieldMemOperand(last_match_info_elements,
2412 RegExpImpl::kLastInputOffset));
2413 __ RecordWriteField(last_match_info_elements,
2414 RegExpImpl::kLastInputOffset,
2415 subject,
2416 a7,
2417 kRAHasNotBeenSaved,
2418 kDontSaveFPRegs);
2419
2420 // Get the static offsets vector filled by the native regexp code.
2421 ExternalReference address_of_static_offsets_vector =
2422 ExternalReference::address_of_static_offsets_vector(isolate());
2423 __ li(a2, Operand(address_of_static_offsets_vector));
2424
2425 // a1: number of capture registers
2426 // a2: offsets vector
2427 Label next_capture, done;
2428 // Capture register counter starts from number of capture registers and
2429 // counts down until wrapping after zero.
2430 __ Daddu(a0,
2431 last_match_info_elements,
2432 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
2433 __ bind(&next_capture);
2434 __ Dsubu(a1, a1, Operand(1));
2435 __ Branch(&done, lt, a1, Operand(zero_reg));
2436 // Read the value from the static offsets vector buffer.
2437 __ lw(a3, MemOperand(a2, 0));
2438 __ daddiu(a2, a2, kIntSize);
2439 // Store the smi value in the last match info.
2440 __ SmiTag(a3);
2441 __ sd(a3, MemOperand(a0, 0));
2442 __ Branch(&next_capture, USE_DELAY_SLOT);
2443 __ daddiu(a0, a0, kPointerSize); // In branch delay slot.
2444
2445 __ bind(&done);
2446
2447 // Return last match info.
2448 __ ld(v0, MemOperand(sp, kLastMatchInfoOffset));
2449 __ DropAndRet(4);
2450
2451 // Do the runtime call to execute the regexp.
2452 __ bind(&runtime);
2453 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2454
2455 // Deferred code for string handling.
2456 // (6) Not a long external string? If yes, go to (8).
2457 __ bind(&not_seq_nor_cons);
2458 // Go to (8).
2459 __ Branch(&not_long_external, gt, a1, Operand(kExternalStringTag));
2460
2461 // (7) External string. Make it, offset-wise, look like a sequential string.
2462 __ bind(&external_string);
2463 __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
2464 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
2465 if (FLAG_debug_code) {
2466 // Assert that we do not have a cons or slice (indirect strings) here.
2467 // Sequential strings have already been ruled out.
2468 __ And(at, a0, Operand(kIsIndirectStringMask));
2469 __ Assert(eq,
2470 kExternalStringExpectedButNotFound,
2471 at,
2472 Operand(zero_reg));
2473 }
2474 __ ld(subject,
2475 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2476 // Move the pointer so that offset-wise, it looks like a sequential string.
2477 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2478 __ Dsubu(subject,
2479 subject,
2480 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
2481 __ jmp(&seq_string); // Go to (5).
2482
2483 // (8) Short external string or not a string? If yes, bail out to runtime.
2484 __ bind(&not_long_external);
2485 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
2486 __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
2487 __ Branch(&runtime, ne, at, Operand(zero_reg));
2488
2489 // (9) Sliced string. Replace subject with parent. Go to (4).
2490 // Load offset into t0 and replace subject string with parent.
2491 __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2492 __ SmiUntag(t0);
2493 __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2494 __ jmp(&check_underlying); // Go to (4).
2495#endif // V8_INTERPRETED_REGEXP
2496}
2497
2498
2499static void GenerateRecordCallTarget(MacroAssembler* masm) {
2500 // Cache the called function in a feedback vector slot. Cache states
2501 // are uninitialized, monomorphic (indicated by a JSFunction), and
2502 // megamorphic.
2503 // a0 : number of arguments to the construct function
2504 // a1 : the function to call
2505 // a2 : Feedback vector
2506 // a3 : slot in feedback vector (Smi)
2507 Label initialize, done, miss, megamorphic, not_array_function;
2508
2509 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2510 masm->isolate()->heap()->megamorphic_symbol());
2511 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2512 masm->isolate()->heap()->uninitialized_symbol());
2513
2514 // Load the cache state into a4.
2515 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2516 __ Daddu(a4, a2, Operand(a4));
2517 __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
2518
2519 // A monomorphic cache hit or an already megamorphic state: invoke the
2520 // function without changing the state.
2521 __ Branch(&done, eq, a4, Operand(a1));
2522
2523 if (!FLAG_pretenuring_call_new) {
2524 // If we came here, we need to see if we are the array function.
2525 // If we didn't have a matching function, and we didn't find the megamorph
2526 // sentinel, then we have in the slot either some other function or an
2527 // AllocationSite. Do a map check on the object in a3.
2528 __ ld(a5, FieldMemOperand(a4, 0));
2529 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2530 __ Branch(&miss, ne, a5, Operand(at));
2531
2532 // Make sure the function is the Array() function
2533 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
2534 __ Branch(&megamorphic, ne, a1, Operand(a4));
2535 __ jmp(&done);
2536 }
2537
2538 __ bind(&miss);
2539
2540 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2541 // megamorphic.
2542 __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
2543 __ Branch(&initialize, eq, a4, Operand(at));
2544 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2545 // write-barrier is needed.
2546 __ bind(&megamorphic);
2547 __ dsrl(a4, a3, 32- kPointerSizeLog2);
2548 __ Daddu(a4, a2, Operand(a4));
2549 __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2550 __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
2551 __ jmp(&done);
2552
2553 // An uninitialized cache is patched with the function.
2554 __ bind(&initialize);
2555 if (!FLAG_pretenuring_call_new) {
2556 // Make sure the function is the Array() function.
2557 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, a4);
2558 __ Branch(&not_array_function, ne, a1, Operand(a4));
2559
2560 // The target function is the Array constructor,
2561 // Create an AllocationSite if we don't already have it, store it in the
2562 // slot.
2563 {
2564 FrameScope scope(masm, StackFrame::INTERNAL);
2565 const RegList kSavedRegs =
2566 1 << 4 | // a0
2567 1 << 5 | // a1
2568 1 << 6 | // a2
2569 1 << 7; // a3
2570
2571 // Arguments register must be smi-tagged to call out.
2572 __ SmiTag(a0);
2573 __ MultiPush(kSavedRegs);
2574
2575 CreateAllocationSiteStub create_stub(masm->isolate());
2576 __ CallStub(&create_stub);
2577
2578 __ MultiPop(kSavedRegs);
2579 __ SmiUntag(a0);
2580 }
2581 __ Branch(&done);
2582
2583 __ bind(&not_array_function);
2584 }
2585
2586 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2587 __ Daddu(a4, a2, Operand(a4));
2588 __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2589 __ sd(a1, MemOperand(a4, 0));
2590
2591 __ Push(a4, a2, a1);
2592 __ RecordWrite(a2, a4, a1, kRAHasNotBeenSaved, kDontSaveFPRegs,
2593 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2594 __ Pop(a4, a2, a1);
2595
2596 __ bind(&done);
2597}
2598
2599
2600static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2601 __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2602
2603 // Do not transform the receiver for strict mode functions.
2604 int32_t strict_mode_function_mask =
2605 1 << SharedFunctionInfo::kStrictModeBitWithinByte ;
2606 // Do not transform the receiver for native (Compilerhints already in a3).
2607 int32_t native_mask = 1 << SharedFunctionInfo::kNativeBitWithinByte;
2608
2609 __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kStrictModeByteOffset));
2610 __ And(at, a4, Operand(strict_mode_function_mask));
2611 __ Branch(cont, ne, at, Operand(zero_reg));
2612 __ lbu(a4, FieldMemOperand(a3, SharedFunctionInfo::kNativeByteOffset));
2613 __ And(at, a4, Operand(native_mask));
2614 __ Branch(cont, ne, at, Operand(zero_reg));
2615}
2616
2617
2618static void EmitSlowCase(MacroAssembler* masm,
2619 int argc,
2620 Label* non_function) {
2621 // Check for function proxy.
2622 __ Branch(non_function, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
2623 __ push(a1); // put proxy as additional argument
2624 __ li(a0, Operand(argc + 1, RelocInfo::NONE32));
2625 __ mov(a2, zero_reg);
2626 __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
2627 {
2628 Handle<Code> adaptor =
2629 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2630 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2631 }
2632
2633 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2634 // of the original receiver from the call site).
2635 __ bind(non_function);
2636 __ sd(a1, MemOperand(sp, argc * kPointerSize));
2637 __ li(a0, Operand(argc)); // Set up the number of arguments.
2638 __ mov(a2, zero_reg);
2639 __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
2640 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2641 RelocInfo::CODE_TARGET);
2642}
2643
2644
2645static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2646 // Wrap the receiver and patch it back onto the stack.
2647 { FrameScope frame_scope(masm, StackFrame::INTERNAL);
2648 __ Push(a1, a3);
2649 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2650 __ pop(a1);
2651 }
2652 __ Branch(USE_DELAY_SLOT, cont);
2653 __ sd(v0, MemOperand(sp, argc * kPointerSize));
2654}
2655
2656
2657static void CallFunctionNoFeedback(MacroAssembler* masm,
2658 int argc, bool needs_checks,
2659 bool call_as_method) {
2660 // a1 : the function to call
2661 Label slow, non_function, wrap, cont;
2662
2663 if (needs_checks) {
2664 // Check that the function is really a JavaScript function.
2665 // a1: pushed function (to be verified)
2666 __ JumpIfSmi(a1, &non_function);
2667
2668 // Goto slow case if we do not have a function.
2669 __ GetObjectType(a1, a4, a4);
2670 __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
2671 }
2672
2673 // Fast-case: Invoke the function now.
2674 // a1: pushed function
2675 ParameterCount actual(argc);
2676
2677 if (call_as_method) {
2678 if (needs_checks) {
2679 EmitContinueIfStrictOrNative(masm, &cont);
2680 }
2681
2682 // Compute the receiver in sloppy mode.
2683 __ ld(a3, MemOperand(sp, argc * kPointerSize));
2684
2685 if (needs_checks) {
2686 __ JumpIfSmi(a3, &wrap);
2687 __ GetObjectType(a3, a4, a4);
2688 __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
2689 } else {
2690 __ jmp(&wrap);
2691 }
2692
2693 __ bind(&cont);
2694 }
2695 __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
2696
2697 if (needs_checks) {
2698 // Slow-case: Non-function called.
2699 __ bind(&slow);
2700 EmitSlowCase(masm, argc, &non_function);
2701 }
2702
2703 if (call_as_method) {
2704 __ bind(&wrap);
2705 // Wrap the receiver and patch it back onto the stack.
2706 EmitWrapCase(masm, argc, &cont);
2707 }
2708}
2709
2710
2711void CallFunctionStub::Generate(MacroAssembler* masm) {
2712 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2713}
2714
2715
2716void CallConstructStub::Generate(MacroAssembler* masm) {
2717 // a0 : number of arguments
2718 // a1 : the function to call
2719 // a2 : feedback vector
2720 // a3 : (only if a2 is not undefined) slot in feedback vector (Smi)
2721 Label slow, non_function_call;
2722 // Check that the function is not a smi.
2723 __ JumpIfSmi(a1, &non_function_call);
2724 // Check that the function is a JSFunction.
2725 __ GetObjectType(a1, a4, a4);
2726 __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
2727
2728 if (RecordCallTarget()) {
2729 GenerateRecordCallTarget(masm);
2730
2731 __ dsrl(at, a3, 32 - kPointerSizeLog2);
2732 __ Daddu(a5, a2, at);
2733 if (FLAG_pretenuring_call_new) {
2734 // Put the AllocationSite from the feedback vector into a2.
2735 // By adding kPointerSize we encode that we know the AllocationSite
2736 // entry is at the feedback vector slot given by a3 + 1.
2737 __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize + kPointerSize));
2738 } else {
2739 Label feedback_register_initialized;
2740 // Put the AllocationSite from the feedback vector into a2, or undefined.
2741 __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize));
2742 __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset));
2743 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2744 __ Branch(&feedback_register_initialized, eq, a5, Operand(at));
2745 __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
2746 __ bind(&feedback_register_initialized);
2747 }
2748
2749 __ AssertUndefinedOrAllocationSite(a2, a5);
2750 }
2751
2752 // Jump to the function-specific construct stub.
2753 Register jmp_reg = a4;
2754 __ ld(jmp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2755 __ ld(jmp_reg, FieldMemOperand(jmp_reg,
2756 SharedFunctionInfo::kConstructStubOffset));
2757 __ Daddu(at, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2758 __ Jump(at);
2759
2760 // a0: number of arguments
2761 // a1: called object
2762 // a4: object type
2763 Label do_call;
2764 __ bind(&slow);
2765 __ Branch(&non_function_call, ne, a4, Operand(JS_FUNCTION_PROXY_TYPE));
2766 __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2767 __ jmp(&do_call);
2768
2769 __ bind(&non_function_call);
2770 __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2771 __ bind(&do_call);
2772 // Set expected number of arguments to zero (not changing r0).
2773 __ li(a2, Operand(0, RelocInfo::NONE32));
2774 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2775 RelocInfo::CODE_TARGET);
2776}
2777
2778
2779// StringCharCodeAtGenerator.
2780void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2781 DCHECK(!a4.is(index_));
2782 DCHECK(!a4.is(result_));
2783 DCHECK(!a4.is(object_));
2784
2785 // If the receiver is a smi trigger the non-string case.
2786 __ JumpIfSmi(object_, receiver_not_string_);
2787
2788 // Fetch the instance type of the receiver into result register.
2789 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2790 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2791 // If the receiver is not a string trigger the non-string case.
2792 __ And(a4, result_, Operand(kIsNotStringMask));
2793 __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg));
2794
2795 // If the index is non-smi trigger the non-smi case.
2796 __ JumpIfNotSmi(index_, &index_not_smi_);
2797
2798 __ bind(&got_smi_index_);
2799
2800 // Check for index out of range.
2801 __ ld(a4, FieldMemOperand(object_, String::kLengthOffset));
2802 __ Branch(index_out_of_range_, ls, a4, Operand(index_));
2803
2804 __ SmiUntag(index_);
2805
2806 StringCharLoadGenerator::Generate(masm,
2807 object_,
2808 index_,
2809 result_,
2810 &call_runtime_);
2811
2812 __ SmiTag(result_);
2813 __ bind(&exit_);
2814}
2815
2816
2817static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2818 __ ld(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2819 __ ld(vector, FieldMemOperand(vector,
2820 JSFunction::kSharedFunctionInfoOffset));
2821 __ ld(vector, FieldMemOperand(vector,
2822 SharedFunctionInfo::kFeedbackVectorOffset));
2823}
2824
2825
2826void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2827 // a1 - function
2828 // a3 - slot id
2829 Label miss;
2830
2831 EmitLoadTypeFeedbackVector(masm, a2);
2832
2833 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, at);
2834 __ Branch(&miss, ne, a1, Operand(at));
2835
2836 __ li(a0, Operand(arg_count()));
2837 __ dsrl(at, a3, 32 - kPointerSizeLog2);
2838 __ Daddu(at, a2, Operand(at));
2839 __ ld(a4, FieldMemOperand(at, FixedArray::kHeaderSize));
2840
2841 // Verify that a4 contains an AllocationSite
2842 __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset));
2843 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
2844 __ Branch(&miss, ne, a5, Operand(at));
2845
2846 __ mov(a2, a4);
2847 ArrayConstructorStub stub(masm->isolate(), arg_count());
2848 __ TailCallStub(&stub);
2849
2850 __ bind(&miss);
2851 GenerateMiss(masm);
2852
2853 // The slow case, we need this no matter what to complete a call after a miss.
2854 CallFunctionNoFeedback(masm,
2855 arg_count(),
2856 true,
2857 CallAsMethod());
2858
2859 // Unreachable.
2860 __ stop("Unexpected code address");
2861}
2862
2863
2864void CallICStub::Generate(MacroAssembler* masm) {
2865 // a1 - function
2866 // a3 - slot id (Smi)
2867 Label extra_checks_or_miss, slow_start;
2868 Label slow, non_function, wrap, cont;
2869 Label have_js_function;
2870 int argc = arg_count();
2871 ParameterCount actual(argc);
2872
2873 EmitLoadTypeFeedbackVector(masm, a2);
2874
2875 // The checks. First, does r1 match the recorded monomorphic target?
2876 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2877 __ Daddu(a4, a2, Operand(a4));
2878 __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize));
2879 __ Branch(&extra_checks_or_miss, ne, a1, Operand(a4));
2880
2881 __ bind(&have_js_function);
2882 if (CallAsMethod()) {
2883 EmitContinueIfStrictOrNative(masm, &cont);
2884 // Compute the receiver in sloppy mode.
2885 __ ld(a3, MemOperand(sp, argc * kPointerSize));
2886
2887 __ JumpIfSmi(a3, &wrap);
2888 __ GetObjectType(a3, a4, a4);
2889 __ Branch(&wrap, lt, a4, Operand(FIRST_SPEC_OBJECT_TYPE));
2890
2891 __ bind(&cont);
2892 }
2893
2894 __ InvokeFunction(a1, actual, JUMP_FUNCTION, NullCallWrapper());
2895
2896 __ bind(&slow);
2897 EmitSlowCase(masm, argc, &non_function);
2898
2899 if (CallAsMethod()) {
2900 __ bind(&wrap);
2901 EmitWrapCase(masm, argc, &cont);
2902 }
2903
2904 __ bind(&extra_checks_or_miss);
2905 Label miss;
2906
2907 __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2908 __ Branch(&slow_start, eq, a4, Operand(at));
2909 __ LoadRoot(at, Heap::kUninitializedSymbolRootIndex);
2910 __ Branch(&miss, eq, a4, Operand(at));
2911
2912 if (!FLAG_trace_ic) {
2913 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2914 // to handle it here. More complex cases are dealt with in the runtime.
2915 __ AssertNotSmi(a4);
2916 __ GetObjectType(a4, a5, a5);
2917 __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE));
2918 __ dsrl(a4, a3, 32 - kPointerSizeLog2);
2919 __ Daddu(a4, a2, Operand(a4));
2920 __ LoadRoot(at, Heap::kMegamorphicSymbolRootIndex);
2921 __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize));
2922 __ Branch(&slow_start);
2923 }
2924
2925 // We are here because tracing is on or we are going monomorphic.
2926 __ bind(&miss);
2927 GenerateMiss(masm);
2928
2929 // the slow case
2930 __ bind(&slow_start);
2931 // Check that the function is really a JavaScript function.
2932 // r1: pushed function (to be verified)
2933 __ JumpIfSmi(a1, &non_function);
2934
2935 // Goto slow case if we do not have a function.
2936 __ GetObjectType(a1, a4, a4);
2937 __ Branch(&slow, ne, a4, Operand(JS_FUNCTION_TYPE));
2938 __ Branch(&have_js_function);
2939}
2940
2941
2942void CallICStub::GenerateMiss(MacroAssembler* masm) {
2943 // Get the receiver of the function from the stack; 1 ~ return address.
2944 __ ld(a4, MemOperand(sp, (arg_count() + 1) * kPointerSize));
2945
2946 {
2947 FrameScope scope(masm, StackFrame::INTERNAL);
2948
2949 // Push the receiver and the function and feedback info.
2950 __ Push(a4, a1, a2, a3);
2951
2952 // Call the entry.
2953 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2954 : IC::kCallIC_Customization_Miss;
2955
2956 ExternalReference miss = ExternalReference(IC_Utility(id),
2957 masm->isolate());
2958 __ CallExternalReference(miss, 4);
2959
2960 // Move result to a1 and exit the internal frame.
2961 __ mov(a1, v0);
2962 }
2963}
2964
2965
2966void StringCharCodeAtGenerator::GenerateSlow(
2967 MacroAssembler* masm,
2968 const RuntimeCallHelper& call_helper) {
2969 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2970
2971 // Index is not a smi.
2972 __ bind(&index_not_smi_);
2973 // If index is a heap number, try converting it to an integer.
2974 __ CheckMap(index_,
2975 result_,
2976 Heap::kHeapNumberMapRootIndex,
2977 index_not_number_,
2978 DONT_DO_SMI_CHECK);
2979 call_helper.BeforeCall(masm);
2980 // Consumed by runtime conversion function:
2981 __ Push(object_, index_);
2982 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2983 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2984 } else {
2985 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2986 // NumberToSmi discards numbers that are not exact integers.
2987 __ CallRuntime(Runtime::kNumberToSmi, 1);
2988 }
2989
2990 // Save the conversion result before the pop instructions below
2991 // have a chance to overwrite it.
2992
2993 __ Move(index_, v0);
2994 __ pop(object_);
2995 // Reload the instance type.
2996 __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2997 __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2998 call_helper.AfterCall(masm);
2999 // If index is still not a smi, it must be out of range.
3000 __ JumpIfNotSmi(index_, index_out_of_range_);
3001 // Otherwise, return to the fast path.
3002 __ Branch(&got_smi_index_);
3003
3004 // Call runtime. We get here when the receiver is a string and the
3005 // index is a number, but the code of getting the actual character
3006 // is too complex (e.g., when the string needs to be flattened).
3007 __ bind(&call_runtime_);
3008 call_helper.BeforeCall(masm);
3009 __ SmiTag(index_);
3010 __ Push(object_, index_);
3011 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
3012
3013 __ Move(result_, v0);
3014
3015 call_helper.AfterCall(masm);
3016 __ jmp(&exit_);
3017
3018 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
3019}
3020
3021
3022// -------------------------------------------------------------------------
3023// StringCharFromCodeGenerator
3024
3025void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
3026 // Fast case of Heap::LookupSingleCharacterStringFromCode.
3027
3028 DCHECK(!a4.is(result_));
3029 DCHECK(!a4.is(code_));
3030
3031 STATIC_ASSERT(kSmiTag == 0);
3032 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
3033 __ And(a4,
3034 code_,
3035 Operand(kSmiTagMask |
3036 ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
3037 __ Branch(&slow_case_, ne, a4, Operand(zero_reg));
3038
3039
3040 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
3041 // At this point code register contains smi tagged one_byte char code.
3042 STATIC_ASSERT(kSmiTag == 0);
3043 __ SmiScale(a4, code_, kPointerSizeLog2);
3044 __ Daddu(result_, result_, a4);
3045 __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
3046 __ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
3047 __ Branch(&slow_case_, eq, result_, Operand(a4));
3048 __ bind(&exit_);
3049}
3050
3051
3052void StringCharFromCodeGenerator::GenerateSlow(
3053 MacroAssembler* masm,
3054 const RuntimeCallHelper& call_helper) {
3055 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
3056
3057 __ bind(&slow_case_);
3058 call_helper.BeforeCall(masm);
3059 __ push(code_);
3060 __ CallRuntime(Runtime::kCharFromCode, 1);
3061 __ Move(result_, v0);
3062
3063 call_helper.AfterCall(masm);
3064 __ Branch(&exit_);
3065
3066 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
3067}
3068
3069
3070enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
3071
3072
3073void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
3074 Register dest,
3075 Register src,
3076 Register count,
3077 Register scratch,
3078 String::Encoding encoding) {
3079 if (FLAG_debug_code) {
3080 // Check that destination is word aligned.
3081 __ And(scratch, dest, Operand(kPointerAlignmentMask));
3082 __ Check(eq,
3083 kDestinationOfCopyNotAligned,
3084 scratch,
3085 Operand(zero_reg));
3086 }
3087
3088 // Assumes word reads and writes are little endian.
3089 // Nothing to do for zero characters.
3090 Label done;
3091
3092 if (encoding == String::TWO_BYTE_ENCODING) {
3093 __ Daddu(count, count, count);
3094 }
3095
3096 Register limit = count; // Read until dest equals this.
3097 __ Daddu(limit, dest, Operand(count));
3098
3099 Label loop_entry, loop;
3100 // Copy bytes from src to dest until dest hits limit.
3101 __ Branch(&loop_entry);
3102 __ bind(&loop);
3103 __ lbu(scratch, MemOperand(src));
3104 __ daddiu(src, src, 1);
3105 __ sb(scratch, MemOperand(dest));
3106 __ daddiu(dest, dest, 1);
3107 __ bind(&loop_entry);
3108 __ Branch(&loop, lt, dest, Operand(limit));
3109
3110 __ bind(&done);
3111}
3112
3113
3114void SubStringStub::Generate(MacroAssembler* masm) {
3115 Label runtime;
3116 // Stack frame on entry.
3117 // ra: return address
3118 // sp[0]: to
3119 // sp[4]: from
3120 // sp[8]: string
3121
3122 // This stub is called from the native-call %_SubString(...), so
3123 // nothing can be assumed about the arguments. It is tested that:
3124 // "string" is a sequential string,
3125 // both "from" and "to" are smis, and
3126 // 0 <= from <= to <= string.length.
3127 // If any of these assumptions fail, we call the runtime system.
3128
3129 const int kToOffset = 0 * kPointerSize;
3130 const int kFromOffset = 1 * kPointerSize;
3131 const int kStringOffset = 2 * kPointerSize;
3132
3133 __ ld(a2, MemOperand(sp, kToOffset));
3134 __ ld(a3, MemOperand(sp, kFromOffset));
3135// Does not needed?
3136// STATIC_ASSERT(kFromOffset == kToOffset + 4);
3137 STATIC_ASSERT(kSmiTag == 0);
3138// Does not needed?
3139// STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3140
3141 // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
3142 // safe in this case.
3143 __ JumpIfNotSmi(a2, &runtime);
3144 __ JumpIfNotSmi(a3, &runtime);
3145 // Both a2 and a3 are untagged integers.
3146
3147 __ SmiUntag(a2, a2);
3148 __ SmiUntag(a3, a3);
3149 __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
3150
3151 __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to.
3152 __ Dsubu(a2, a2, a3);
3153
3154 // Make sure first argument is a string.
3155 __ ld(v0, MemOperand(sp, kStringOffset));
3156 __ JumpIfSmi(v0, &runtime);
3157 __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
3158 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3159 __ And(a4, a1, Operand(kIsNotStringMask));
3160
3161 __ Branch(&runtime, ne, a4, Operand(zero_reg));
3162
3163 Label single_char;
3164 __ Branch(&single_char, eq, a2, Operand(1));
3165
3166 // Short-cut for the case of trivial substring.
3167 Label return_v0;
3168 // v0: original string
3169 // a2: result string length
3170 __ ld(a4, FieldMemOperand(v0, String::kLengthOffset));
3171 __ SmiUntag(a4);
3172 // Return original string.
3173 __ Branch(&return_v0, eq, a2, Operand(a4));
3174 // Longer than original string's length or negative: unsafe arguments.
3175 __ Branch(&runtime, hi, a2, Operand(a4));
3176 // Shorter than original string's length: an actual substring.
3177
3178 // Deal with different string types: update the index if necessary
3179 // and put the underlying string into a5.
3180 // v0: original string
3181 // a1: instance type
3182 // a2: length
3183 // a3: from index (untagged)
3184 Label underlying_unpacked, sliced_string, seq_or_external_string;
3185 // If the string is not indirect, it can only be sequential or external.
3186 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
3187 STATIC_ASSERT(kIsIndirectStringMask != 0);
3188 __ And(a4, a1, Operand(kIsIndirectStringMask));
3189 __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg));
3190 // a4 is used as a scratch register and can be overwritten in either case.
3191 __ And(a4, a1, Operand(kSlicedNotConsMask));
3192 __ Branch(&sliced_string, ne, a4, Operand(zero_reg));
3193 // Cons string. Check whether it is flat, then fetch first part.
3194 __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset));
3195 __ LoadRoot(a4, Heap::kempty_stringRootIndex);
3196 __ Branch(&runtime, ne, a5, Operand(a4));
3197 __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset));
3198 // Update instance type.
3199 __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3200 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3201 __ jmp(&underlying_unpacked);
3202
3203 __ bind(&sliced_string);
3204 // Sliced string. Fetch parent and correct start index by offset.
3205 __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3206 __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3207 __ SmiUntag(a4); // Add offset to index.
3208 __ Daddu(a3, a3, a4);
3209 // Update instance type.
3210 __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset));
3211 __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
3212 __ jmp(&underlying_unpacked);
3213
3214 __ bind(&seq_or_external_string);
3215 // Sequential or external string. Just move string to the expected register.
3216 __ mov(a5, v0);
3217
3218 __ bind(&underlying_unpacked);
3219
3220 if (FLAG_string_slices) {
3221 Label copy_routine;
3222 // a5: underlying subject string
3223 // a1: instance type of underlying subject string
3224 // a2: length
3225 // a3: adjusted start index (untagged)
3226 // Short slice. Copy instead of slicing.
3227 __ Branch(&copy_routine, lt, a2, Operand(SlicedString::kMinLength));
3228 // Allocate new sliced string. At this point we do not reload the instance
3229 // type including the string encoding because we simply rely on the info
3230 // provided by the original string. It does not matter if the original
3231 // string's encoding is wrong because we always have to recheck encoding of
3232 // the newly created string's parent anyways due to externalized strings.
3233 Label two_byte_slice, set_slice_header;
3234 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3235 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3236 __ And(a4, a1, Operand(kStringEncodingMask));
3237 __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg));
3238 __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime);
3239 __ jmp(&set_slice_header);
3240 __ bind(&two_byte_slice);
3241 __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime);
3242 __ bind(&set_slice_header);
3243 __ SmiTag(a3);
3244 __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset));
3245 __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
3246 __ jmp(&return_v0);
3247
3248 __ bind(&copy_routine);
3249 }
3250
3251 // a5: underlying subject string
3252 // a1: instance type of underlying subject string
3253 // a2: length
3254 // a3: adjusted start index (untagged)
3255 Label two_byte_sequential, sequential_string, allocate_result;
3256 STATIC_ASSERT(kExternalStringTag != 0);
3257 STATIC_ASSERT(kSeqStringTag == 0);
3258 __ And(a4, a1, Operand(kExternalStringTag));
3259 __ Branch(&sequential_string, eq, a4, Operand(zero_reg));
3260
3261 // Handle external string.
3262 // Rule out short external strings.
3263 STATIC_ASSERT(kShortExternalStringTag != 0);
3264 __ And(a4, a1, Operand(kShortExternalStringTag));
3265 __ Branch(&runtime, ne, a4, Operand(zero_reg));
3266 __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset));
3267 // a5 already points to the first character of underlying string.
3268 __ jmp(&allocate_result);
3269
3270 __ bind(&sequential_string);
3271 // Locate first character of underlying subject string.
3272 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3273 __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3274
3275 __ bind(&allocate_result);
3276 // Sequential acii string. Allocate the result.
3277 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3278 __ And(a4, a1, Operand(kStringEncodingMask));
3279 __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg));
3280
3281 // Allocate and copy the resulting one_byte string.
3282 __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime);
3283
3284 // Locate first character of substring to copy.
3285 __ Daddu(a5, a5, a3);
3286
3287 // Locate first character of result.
3288 __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3289
3290 // v0: result string
3291 // a1: first character of result string
3292 // a2: result string length
3293 // a5: first character of substring to copy
3294 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3295 StringHelper::GenerateCopyCharacters(
3296 masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING);
3297 __ jmp(&return_v0);
3298
3299 // Allocate and copy the resulting two-byte string.
3300 __ bind(&two_byte_sequential);
3301 __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime);
3302
3303 // Locate first character of substring to copy.
3304 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3305 __ dsll(a4, a3, 1);
3306 __ Daddu(a5, a5, a4);
3307 // Locate first character of result.
3308 __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3309
3310 // v0: result string.
3311 // a1: first character of result.
3312 // a2: result length.
3313 // a5: first character of substring to copy.
3314 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3315 StringHelper::GenerateCopyCharacters(
3316 masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING);
3317
3318 __ bind(&return_v0);
3319 Counters* counters = isolate()->counters();
3320 __ IncrementCounter(counters->sub_string_native(), 1, a3, a4);
3321 __ DropAndRet(3);
3322
3323 // Just jump to runtime to create the sub string.
3324 __ bind(&runtime);
3325 __ TailCallRuntime(Runtime::kSubString, 3, 1);
3326
3327 __ bind(&single_char);
3328 // v0: original string
3329 // a1: instance type
3330 // a2: length
3331 // a3: from index (untagged)
3332 StringCharAtGenerator generator(
3333 v0, a3, a2, v0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
3334 generator.GenerateFast(masm);
3335 __ DropAndRet(3);
3336 generator.SkipSlow(masm, &runtime);
3337}
3338
3339
3340void StringHelper::GenerateFlatOneByteStringEquals(
3341 MacroAssembler* masm, Register left, Register right, Register scratch1,
3342 Register scratch2, Register scratch3) {
3343 Register length = scratch1;
3344
3345 // Compare lengths.
3346 Label strings_not_equal, check_zero_length;
3347 __ ld(length, FieldMemOperand(left, String::kLengthOffset));
3348 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3349 __ Branch(&check_zero_length, eq, length, Operand(scratch2));
3350 __ bind(&strings_not_equal);
3351 // Can not put li in delayslot, it has multi instructions.
3352 __ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
3353 __ Ret();
3354
3355 // Check if the length is zero.
3356 Label compare_chars;
3357 __ bind(&check_zero_length);
3358 STATIC_ASSERT(kSmiTag == 0);
3359 __ Branch(&compare_chars, ne, length, Operand(zero_reg));
3360 DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL)));
3361 __ Ret(USE_DELAY_SLOT);
3362 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3363
3364 // Compare characters.
3365 __ bind(&compare_chars);
3366
3367 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3,
3368 v0, &strings_not_equal);
3369
3370 // Characters are equal.
3371 __ Ret(USE_DELAY_SLOT);
3372 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3373}
3374
3375
3376void StringHelper::GenerateCompareFlatOneByteStrings(
3377 MacroAssembler* masm, Register left, Register right, Register scratch1,
3378 Register scratch2, Register scratch3, Register scratch4) {
3379 Label result_not_equal, compare_lengths;
3380 // Find minimum length and length difference.
3381 __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset));
3382 __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset));
3383 __ Dsubu(scratch3, scratch1, Operand(scratch2));
3384 Register length_delta = scratch3;
3385 __ slt(scratch4, scratch2, scratch1);
3386 __ Movn(scratch1, scratch2, scratch4);
3387 Register min_length = scratch1;
3388 STATIC_ASSERT(kSmiTag == 0);
3389 __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
3390
3391 // Compare loop.
3392 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3393 scratch4, v0, &result_not_equal);
3394
3395 // Compare lengths - strings up to min-length are equal.
3396 __ bind(&compare_lengths);
3397 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3398 // Use length_delta as result if it's zero.
3399 __ mov(scratch2, length_delta);
3400 __ mov(scratch4, zero_reg);
3401 __ mov(v0, zero_reg);
3402
3403 __ bind(&result_not_equal);
3404 // Conditionally update the result based either on length_delta or
3405 // the last comparion performed in the loop above.
3406 Label ret;
3407 __ Branch(&ret, eq, scratch2, Operand(scratch4));
3408 __ li(v0, Operand(Smi::FromInt(GREATER)));
3409 __ Branch(&ret, gt, scratch2, Operand(scratch4));
3410 __ li(v0, Operand(Smi::FromInt(LESS)));
3411 __ bind(&ret);
3412 __ Ret();
3413}
3414
3415
3416void StringHelper::GenerateOneByteCharsCompareLoop(
3417 MacroAssembler* masm, Register left, Register right, Register length,
3418 Register scratch1, Register scratch2, Register scratch3,
3419 Label* chars_not_equal) {
3420 // Change index to run from -length to -1 by adding length to string
3421 // start. This means that loop ends when index reaches zero, which
3422 // doesn't need an additional compare.
3423 __ SmiUntag(length);
3424 __ Daddu(scratch1, length,
3425 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3426 __ Daddu(left, left, Operand(scratch1));
3427 __ Daddu(right, right, Operand(scratch1));
3428 __ Dsubu(length, zero_reg, length);
3429 Register index = length; // index = -length;
3430
3431
3432 // Compare loop.
3433 Label loop;
3434 __ bind(&loop);
3435 __ Daddu(scratch3, left, index);
3436 __ lbu(scratch1, MemOperand(scratch3));
3437 __ Daddu(scratch3, right, index);
3438 __ lbu(scratch2, MemOperand(scratch3));
3439 __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
3440 __ Daddu(index, index, 1);
3441 __ Branch(&loop, ne, index, Operand(zero_reg));
3442}
3443
3444
3445void StringCompareStub::Generate(MacroAssembler* masm) {
3446 Label runtime;
3447
3448 Counters* counters = isolate()->counters();
3449
3450 // Stack frame on entry.
3451 // sp[0]: right string
3452 // sp[4]: left string
3453 __ ld(a1, MemOperand(sp, 1 * kPointerSize)); // Left.
3454 __ ld(a0, MemOperand(sp, 0 * kPointerSize)); // Right.
3455
3456 Label not_same;
3457 __ Branch(&not_same, ne, a0, Operand(a1));
3458 STATIC_ASSERT(EQUAL == 0);
3459 STATIC_ASSERT(kSmiTag == 0);
3460 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3461 __ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
3462 __ DropAndRet(2);
3463
3464 __ bind(&not_same);
3465
3466 // Check that both objects are sequential one_byte strings.
3467 __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime);
3468
3469 // Compare flat one_byte strings natively. Remove arguments from stack first.
3470 __ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
3471 __ Daddu(sp, sp, Operand(2 * kPointerSize));
3472 StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, a4, a5);
3473
3474 __ bind(&runtime);
3475 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3476}
3477
3478
3479void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3480 // ----------- S t a t e -------------
3481 // -- a1 : left
3482 // -- a0 : right
3483 // -- ra : return address
3484 // -----------------------------------
3485
3486 // Load a2 with the allocation site. We stick an undefined dummy value here
3487 // and replace it with the real allocation site later when we instantiate this
3488 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3489 __ li(a2, handle(isolate()->heap()->undefined_value()));
3490
3491 // Make sure that we actually patched the allocation site.
3492 if (FLAG_debug_code) {
3493 __ And(at, a2, Operand(kSmiTagMask));
3494 __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg));
3495 __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset));
3496 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
3497 __ Assert(eq, kExpectedAllocationSite, a4, Operand(at));
3498 }
3499
3500 // Tail call into the stub that handles binary operations with allocation
3501 // sites.
3502 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3503 __ TailCallStub(&stub);
3504}
3505
3506
3507void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3508 DCHECK(state() == CompareICState::SMI);
3509 Label miss;
3510 __ Or(a2, a1, a0);
3511 __ JumpIfNotSmi(a2, &miss);
3512
3513 if (GetCondition() == eq) {
3514 // For equality we do not care about the sign of the result.
3515 __ Ret(USE_DELAY_SLOT);
3516 __ Dsubu(v0, a0, a1);
3517 } else {
3518 // Untag before subtracting to avoid handling overflow.
3519 __ SmiUntag(a1);
3520 __ SmiUntag(a0);
3521 __ Ret(USE_DELAY_SLOT);
3522 __ Dsubu(v0, a1, a0);
3523 }
3524
3525 __ bind(&miss);
3526 GenerateMiss(masm);
3527}
3528
3529
3530void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3531 DCHECK(state() == CompareICState::NUMBER);
3532
3533 Label generic_stub;
3534 Label unordered, maybe_undefined1, maybe_undefined2;
3535 Label miss;
3536
3537 if (left() == CompareICState::SMI) {
3538 __ JumpIfNotSmi(a1, &miss);
3539 }
3540 if (right() == CompareICState::SMI) {
3541 __ JumpIfNotSmi(a0, &miss);
3542 }
3543
3544 // Inlining the double comparison and falling back to the general compare
3545 // stub if NaN is involved.
3546 // Load left and right operand.
3547 Label done, left, left_smi, right_smi;
3548 __ JumpIfSmi(a0, &right_smi);
3549 __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3550 DONT_DO_SMI_CHECK);
3551 __ Dsubu(a2, a0, Operand(kHeapObjectTag));
3552 __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
3553 __ Branch(&left);
3554 __ bind(&right_smi);
3555 __ SmiUntag(a2, a0); // Can't clobber a0 yet.
3556 FPURegister single_scratch = f6;
3557 __ mtc1(a2, single_scratch);
3558 __ cvt_d_w(f2, single_scratch);
3559
3560 __ bind(&left);
3561 __ JumpIfSmi(a1, &left_smi);
3562 __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3563 DONT_DO_SMI_CHECK);
3564 __ Dsubu(a2, a1, Operand(kHeapObjectTag));
3565 __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
3566 __ Branch(&done);
3567 __ bind(&left_smi);
3568 __ SmiUntag(a2, a1); // Can't clobber a1 yet.
3569 single_scratch = f8;
3570 __ mtc1(a2, single_scratch);
3571 __ cvt_d_w(f0, single_scratch);
3572
3573 __ bind(&done);
3574
3575 // Return a result of -1, 0, or 1, or use CompareStub for NaNs.
3576 Label fpu_eq, fpu_lt;
3577 // Test if equal, and also handle the unordered/NaN case.
3578 __ BranchF(&fpu_eq, &unordered, eq, f0, f2);
3579
3580 // Test if less (unordered case is already handled).
3581 __ BranchF(&fpu_lt, NULL, lt, f0, f2);
3582
3583 // Otherwise it's greater, so just fall thru, and return.
3584 DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS));
3585 __ Ret(USE_DELAY_SLOT);
3586 __ li(v0, Operand(GREATER));
3587
3588 __ bind(&fpu_eq);
3589 __ Ret(USE_DELAY_SLOT);
3590 __ li(v0, Operand(EQUAL));
3591
3592 __ bind(&fpu_lt);
3593 __ Ret(USE_DELAY_SLOT);
3594 __ li(v0, Operand(LESS));
3595
3596 __ bind(&unordered);
3597 __ bind(&generic_stub);
3598 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3599 CompareICState::GENERIC, CompareICState::GENERIC);
3600 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3601
3602 __ bind(&maybe_undefined1);
3603 if (Token::IsOrderedRelationalCompareOp(op())) {
3604 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3605 __ Branch(&miss, ne, a0, Operand(at));
3606 __ JumpIfSmi(a1, &unordered);
3607 __ GetObjectType(a1, a2, a2);
3608 __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE));
3609 __ jmp(&unordered);
3610 }
3611
3612 __ bind(&maybe_undefined2);
3613 if (Token::IsOrderedRelationalCompareOp(op())) {
3614 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
3615 __ Branch(&unordered, eq, a1, Operand(at));
3616 }
3617
3618 __ bind(&miss);
3619 GenerateMiss(masm);
3620}
3621
3622
3623void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3624 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3625 Label miss;
3626
3627 // Registers containing left and right operands respectively.
3628 Register left = a1;
3629 Register right = a0;
3630 Register tmp1 = a2;
3631 Register tmp2 = a3;
3632
3633 // Check that both operands are heap objects.
3634 __ JumpIfEitherSmi(left, right, &miss);
3635
3636 // Check that both operands are internalized strings.
3637 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3638 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3639 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3640 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3641 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3642 __ Or(tmp1, tmp1, Operand(tmp2));
3643 __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3644 __ Branch(&miss, ne, at, Operand(zero_reg));
3645
3646 // Make sure a0 is non-zero. At this point input operands are
3647 // guaranteed to be non-zero.
3648 DCHECK(right.is(a0));
3649 STATIC_ASSERT(EQUAL == 0);
3650 STATIC_ASSERT(kSmiTag == 0);
3651 __ mov(v0, right);
3652 // Internalized strings are compared by identity.
3653 __ Ret(ne, left, Operand(right));
3654 DCHECK(is_int16(EQUAL));
3655 __ Ret(USE_DELAY_SLOT);
3656 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3657
3658 __ bind(&miss);
3659 GenerateMiss(masm);
3660}
3661
3662
3663void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3664 DCHECK(state() == CompareICState::UNIQUE_NAME);
3665 DCHECK(GetCondition() == eq);
3666 Label miss;
3667
3668 // Registers containing left and right operands respectively.
3669 Register left = a1;
3670 Register right = a0;
3671 Register tmp1 = a2;
3672 Register tmp2 = a3;
3673
3674 // Check that both operands are heap objects.
3675 __ JumpIfEitherSmi(left, right, &miss);
3676
3677 // Check that both operands are unique names. This leaves the instance
3678 // types loaded in tmp1 and tmp2.
3679 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3680 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3681 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3682 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3683
3684 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3685 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3686
3687 // Use a0 as result
3688 __ mov(v0, a0);
3689
3690 // Unique names are compared by identity.
3691 Label done;
3692 __ Branch(&done, ne, left, Operand(right));
3693 // Make sure a0 is non-zero. At this point input operands are
3694 // guaranteed to be non-zero.
3695 DCHECK(right.is(a0));
3696 STATIC_ASSERT(EQUAL == 0);
3697 STATIC_ASSERT(kSmiTag == 0);
3698 __ li(v0, Operand(Smi::FromInt(EQUAL)));
3699 __ bind(&done);
3700 __ Ret();
3701
3702 __ bind(&miss);
3703 GenerateMiss(masm);
3704}
3705
3706
3707void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3708 DCHECK(state() == CompareICState::STRING);
3709 Label miss;
3710
3711 bool equality = Token::IsEqualityOp(op());
3712
3713 // Registers containing left and right operands respectively.
3714 Register left = a1;
3715 Register right = a0;
3716 Register tmp1 = a2;
3717 Register tmp2 = a3;
3718 Register tmp3 = a4;
3719 Register tmp4 = a5;
3720 Register tmp5 = a6;
3721
3722 // Check that both operands are heap objects.
3723 __ JumpIfEitherSmi(left, right, &miss);
3724
3725 // Check that both operands are strings. This leaves the instance
3726 // types loaded in tmp1 and tmp2.
3727 __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3728 __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3729 __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3730 __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3731 STATIC_ASSERT(kNotStringTag != 0);
3732 __ Or(tmp3, tmp1, tmp2);
3733 __ And(tmp5, tmp3, Operand(kIsNotStringMask));
3734 __ Branch(&miss, ne, tmp5, Operand(zero_reg));
3735
3736 // Fast check for identical strings.
3737 Label left_ne_right;
3738 STATIC_ASSERT(EQUAL == 0);
3739 STATIC_ASSERT(kSmiTag == 0);
3740 __ Branch(&left_ne_right, ne, left, Operand(right));
3741 __ Ret(USE_DELAY_SLOT);
3742 __ mov(v0, zero_reg); // In the delay slot.
3743 __ bind(&left_ne_right);
3744
3745 // Handle not identical strings.
3746
3747 // Check that both strings are internalized strings. If they are, we're done
3748 // because we already know they are not identical. We know they are both
3749 // strings.
3750 if (equality) {
3751 DCHECK(GetCondition() == eq);
3752 STATIC_ASSERT(kInternalizedTag == 0);
3753 __ Or(tmp3, tmp1, Operand(tmp2));
3754 __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask));
3755 Label is_symbol;
3756 __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg));
3757 // Make sure a0 is non-zero. At this point input operands are
3758 // guaranteed to be non-zero.
3759 DCHECK(right.is(a0));
3760 __ Ret(USE_DELAY_SLOT);
3761 __ mov(v0, a0); // In the delay slot.
3762 __ bind(&is_symbol);
3763 }
3764
3765 // Check that both strings are sequential one_byte.
3766 Label runtime;
3767 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3768 &runtime);
3769
3770 // Compare flat one_byte strings. Returns when done.
3771 if (equality) {
3772 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2,
3773 tmp3);
3774 } else {
3775 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3776 tmp2, tmp3, tmp4);
3777 }
3778
3779 // Handle more complex cases in runtime.
3780 __ bind(&runtime);
3781 __ Push(left, right);
3782 if (equality) {
3783 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3784 } else {
3785 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3786 }
3787
3788 __ bind(&miss);
3789 GenerateMiss(masm);
3790}
3791
3792
3793void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3794 DCHECK(state() == CompareICState::OBJECT);
3795 Label miss;
3796 __ And(a2, a1, Operand(a0));
3797 __ JumpIfSmi(a2, &miss);
3798
3799 __ GetObjectType(a0, a2, a2);
3800 __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
3801 __ GetObjectType(a1, a2, a2);
3802 __ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
3803
3804 DCHECK(GetCondition() == eq);
3805 __ Ret(USE_DELAY_SLOT);
3806 __ dsubu(v0, a0, a1);
3807
3808 __ bind(&miss);
3809 GenerateMiss(masm);
3810}
3811
3812
3813void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3814 Label miss;
3815 __ And(a2, a1, a0);
3816 __ JumpIfSmi(a2, &miss);
3817 __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
3818 __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
3819 __ Branch(&miss, ne, a2, Operand(known_map_));
3820 __ Branch(&miss, ne, a3, Operand(known_map_));
3821
3822 __ Ret(USE_DELAY_SLOT);
3823 __ dsubu(v0, a0, a1);
3824
3825 __ bind(&miss);
3826 GenerateMiss(masm);
3827}
3828
3829
3830void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3831 {
3832 // Call the runtime system in a fresh internal frame.
3833 ExternalReference miss =
3834 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3835 FrameScope scope(masm, StackFrame::INTERNAL);
3836 __ Push(a1, a0);
3837 __ Push(ra, a1, a0);
3838 __ li(a4, Operand(Smi::FromInt(op())));
3839 __ daddiu(sp, sp, -kPointerSize);
3840 __ CallExternalReference(miss, 3, USE_DELAY_SLOT);
3841 __ sd(a4, MemOperand(sp)); // In the delay slot.
3842 // Compute the entry point of the rewritten stub.
3843 __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
3844 // Restore registers.
3845 __ Pop(a1, a0, ra);
3846 }
3847 __ Jump(a2);
3848}
3849
3850
3851void DirectCEntryStub::Generate(MacroAssembler* masm) {
3852 // Make place for arguments to fit C calling convention. Most of the callers
3853 // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
3854 // so they handle stack restoring and we don't have to do that here.
3855 // Any caller of DirectCEntryStub::GenerateCall must take care of dropping
3856 // kCArgsSlotsSize stack space after the call.
3857 __ daddiu(sp, sp, -kCArgsSlotsSize);
3858 // Place the return address on the stack, making the call
3859 // GC safe. The RegExp backend also relies on this.
3860 __ sd(ra, MemOperand(sp, kCArgsSlotsSize));
3861 __ Call(t9); // Call the C++ function.
3862 __ ld(t9, MemOperand(sp, kCArgsSlotsSize));
3863
3864 if (FLAG_debug_code && FLAG_enable_slow_asserts) {
3865 // In case of an error the return address may point to a memory area
3866 // filled with kZapValue by the GC.
3867 // Dereference the address and check for this.
3868 __ Uld(a4, MemOperand(t9));
3869 __ Assert(ne, kReceivedInvalidReturnAddress, a4,
3870 Operand(reinterpret_cast<uint64_t>(kZapValue)));
3871 }
3872 __ Jump(t9);
3873}
3874
3875
3876void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
3877 Register target) {
3878 intptr_t loc =
3879 reinterpret_cast<intptr_t>(GetCode().location());
3880 __ Move(t9, target);
3881 __ li(ra, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
3882 __ Call(ra);
3883}
3884
3885
3886void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
3887 Label* miss,
3888 Label* done,
3889 Register receiver,
3890 Register properties,
3891 Handle<Name> name,
3892 Register scratch0) {
3893 DCHECK(name->IsUniqueName());
3894 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3895 // not equal to the name and kProbes-th slot is not used (its name is the
3896 // undefined value), it guarantees the hash table doesn't contain the
3897 // property. It's true even if some slots represent deleted properties
3898 // (their names are the hole value).
3899 for (int i = 0; i < kInlinedProbes; i++) {
3900 // scratch0 points to properties hash.
3901 // Compute the masked index: (hash + i + i * i) & mask.
3902 Register index = scratch0;
3903 // Capacity is smi 2^n.
3904 __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset));
3905 __ Dsubu(index, index, Operand(1));
3906 __ And(index, index,
3907 Operand(name->Hash() + NameDictionary::GetProbeOffset(i)));
3908
3909 // Scale the index by multiplying by the entry size.
3910 DCHECK(NameDictionary::kEntrySize == 3);
3911 __ dsll(at, index, 1);
3912 __ Daddu(index, index, at); // index *= 3.
3913
3914 Register entity_name = scratch0;
3915 // Having undefined at this place means the name is not contained.
3916 DCHECK_EQ(kSmiTagSize, 1);
3917 Register tmp = properties;
3918
3919 __ dsll(scratch0, index, kPointerSizeLog2);
3920 __ Daddu(tmp, properties, scratch0);
3921 __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3922
3923 DCHECK(!tmp.is(entity_name));
3924 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3925 __ Branch(done, eq, entity_name, Operand(tmp));
3926
3927 // Load the hole ready for use below:
3928 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3929
3930 // Stop if found the property.
3931 __ Branch(miss, eq, entity_name, Operand(Handle<Name>(name)));
3932
3933 Label good;
3934 __ Branch(&good, eq, entity_name, Operand(tmp));
3935
3936 // Check if the entry name is not a unique name.
3937 __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3938 __ lbu(entity_name,
3939 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3940 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3941 __ bind(&good);
3942
3943 // Restore the properties.
3944 __ ld(properties,
3945 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3946 }
3947
3948 const int spill_mask =
3949 (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() |
3950 a2.bit() | a1.bit() | a0.bit() | v0.bit());
3951
3952 __ MultiPush(spill_mask);
3953 __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3954 __ li(a1, Operand(Handle<Name>(name)));
3955 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3956 __ CallStub(&stub);
3957 __ mov(at, v0);
3958 __ MultiPop(spill_mask);
3959
3960 __ Branch(done, eq, at, Operand(zero_reg));
3961 __ Branch(miss, ne, at, Operand(zero_reg));
3962}
3963
3964
3965// Probe the name dictionary in the |elements| register. Jump to the
3966// |done| label if a property with the given name is found. Jump to
3967// the |miss| label otherwise.
3968// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3969void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
3970 Label* miss,
3971 Label* done,
3972 Register elements,
3973 Register name,
3974 Register scratch1,
3975 Register scratch2) {
3976 DCHECK(!elements.is(scratch1));
3977 DCHECK(!elements.is(scratch2));
3978 DCHECK(!name.is(scratch1));
3979 DCHECK(!name.is(scratch2));
3980
3981 __ AssertName(name);
3982
3983 // Compute the capacity mask.
3984 __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset));
3985 __ SmiUntag(scratch1);
3986 __ Dsubu(scratch1, scratch1, Operand(1));
3987
3988 // Generate an unrolled loop that performs a few probes before
3989 // giving up. Measurements done on Gmail indicate that 2 probes
3990 // cover ~93% of loads from dictionaries.
3991 for (int i = 0; i < kInlinedProbes; i++) {
3992 // Compute the masked index: (hash + i + i * i) & mask.
3993 __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3994 if (i > 0) {
3995 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3996 // the hash in a separate instruction. The value hash + i + i * i is right
3997 // shifted in the following and instruction.
3998 DCHECK(NameDictionary::GetProbeOffset(i) <
3999 1 << (32 - Name::kHashFieldOffset));
4000 __ Daddu(scratch2, scratch2, Operand(
4001 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4002 }
4003 __ dsrl(scratch2, scratch2, Name::kHashShift);
4004 __ And(scratch2, scratch1, scratch2);
4005
4006 // Scale the index by multiplying by the element size.
4007 DCHECK(NameDictionary::kEntrySize == 3);
4008 // scratch2 = scratch2 * 3.
4009
4010 __ dsll(at, scratch2, 1);
4011 __ Daddu(scratch2, scratch2, at);
4012
4013 // Check if the key is identical to the name.
4014 __ dsll(at, scratch2, kPointerSizeLog2);
4015 __ Daddu(scratch2, elements, at);
4016 __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset));
4017 __ Branch(done, eq, name, Operand(at));
4018 }
4019
4020 const int spill_mask =
4021 (ra.bit() | a6.bit() | a5.bit() | a4.bit() |
4022 a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
4023 ~(scratch1.bit() | scratch2.bit());
4024
4025 __ MultiPush(spill_mask);
4026 if (name.is(a0)) {
4027 DCHECK(!elements.is(a1));
4028 __ Move(a1, name);
4029 __ Move(a0, elements);
4030 } else {
4031 __ Move(a0, elements);
4032 __ Move(a1, name);
4033 }
4034 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
4035 __ CallStub(&stub);
4036 __ mov(scratch2, a2);
4037 __ mov(at, v0);
4038 __ MultiPop(spill_mask);
4039
4040 __ Branch(done, ne, at, Operand(zero_reg));
4041 __ Branch(miss, eq, at, Operand(zero_reg));
4042}
4043
4044
4045void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
4046 // This stub overrides SometimesSetsUpAFrame() to return false. That means
4047 // we cannot call anything that could cause a GC from this stub.
4048 // Registers:
4049 // result: NameDictionary to probe
4050 // a1: key
4051 // dictionary: NameDictionary to probe.
4052 // index: will hold an index of entry if lookup is successful.
4053 // might alias with result_.
4054 // Returns:
4055 // result_ is zero if lookup failed, non zero otherwise.
4056
4057 Register result = v0;
4058 Register dictionary = a0;
4059 Register key = a1;
4060 Register index = a2;
4061 Register mask = a3;
4062 Register hash = a4;
4063 Register undefined = a5;
4064 Register entry_key = a6;
4065
4066 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
4067
4068 __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset));
4069 __ SmiUntag(mask);
4070 __ Dsubu(mask, mask, Operand(1));
4071
4072 __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
4073
4074 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
4075
4076 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
4077 // Compute the masked index: (hash + i + i * i) & mask.
4078 // Capacity is smi 2^n.
4079 if (i > 0) {
4080 // Add the probe offset (i + i * i) left shifted to avoid right shifting
4081 // the hash in a separate instruction. The value hash + i + i * i is right
4082 // shifted in the following and instruction.
4083 DCHECK(NameDictionary::GetProbeOffset(i) <
4084 1 << (32 - Name::kHashFieldOffset));
4085 __ Daddu(index, hash, Operand(
4086 NameDictionary::GetProbeOffset(i) << Name::kHashShift));
4087 } else {
4088 __ mov(index, hash);
4089 }
4090 __ dsrl(index, index, Name::kHashShift);
4091 __ And(index, mask, index);
4092
4093 // Scale the index by multiplying by the entry size.
4094 DCHECK(NameDictionary::kEntrySize == 3);
4095 // index *= 3.
4096 __ mov(at, index);
4097 __ dsll(index, index, 1);
4098 __ Daddu(index, index, at);
4099
4100
4101 DCHECK_EQ(kSmiTagSize, 1);
4102 __ dsll(index, index, kPointerSizeLog2);
4103 __ Daddu(index, index, dictionary);
4104 __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset));
4105
4106 // Having undefined at this place means the name is not contained.
4107 __ Branch(&not_in_dictionary, eq, entry_key, Operand(undefined));
4108
4109 // Stop if found the property.
4110 __ Branch(&in_dictionary, eq, entry_key, Operand(key));
4111
4112 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
4113 // Check if the entry name is not a unique name.
4114 __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
4115 __ lbu(entry_key,
4116 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
4117 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
4118 }
4119 }
4120
4121 __ bind(&maybe_in_dictionary);
4122 // If we are doing negative lookup then probing failure should be
4123 // treated as a lookup success. For positive lookup probing failure
4124 // should be treated as lookup failure.
4125 if (mode() == POSITIVE_LOOKUP) {
4126 __ Ret(USE_DELAY_SLOT);
4127 __ mov(result, zero_reg);
4128 }
4129
4130 __ bind(&in_dictionary);
4131 __ Ret(USE_DELAY_SLOT);
4132 __ li(result, 1);
4133
4134 __ bind(&not_in_dictionary);
4135 __ Ret(USE_DELAY_SLOT);
4136 __ mov(result, zero_reg);
4137}
4138
4139
4140void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
4141 Isolate* isolate) {
4142 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
4143 stub1.GetCode();
4144 // Hydrogen code stubs need stub2 at snapshot time.
4145 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
4146 stub2.GetCode();
4147}
4148
4149
4150// Takes the input in 3 registers: address_ value_ and object_. A pointer to
4151// the value has just been written into the object, now this stub makes sure
4152// we keep the GC informed. The word in the object where the value has been
4153// written is in the address register.
4154void RecordWriteStub::Generate(MacroAssembler* masm) {
4155 Label skip_to_incremental_noncompacting;
4156 Label skip_to_incremental_compacting;
4157
4158 // The first two branch+nop instructions are generated with labels so as to
4159 // get the offset fixed up correctly by the bind(Label*) call. We patch it
4160 // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
4161 // position) and the "beq zero_reg, zero_reg, ..." when we start and stop
4162 // incremental heap marking.
4163 // See RecordWriteStub::Patch for details.
4164 __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
4165 __ nop();
4166 __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
4167 __ nop();
4168
4169 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4170 __ RememberedSetHelper(object(),
4171 address(),
4172 value(),
4173 save_fp_regs_mode(),
4174 MacroAssembler::kReturnAtEnd);
4175 }
4176 __ Ret();
4177
4178 __ bind(&skip_to_incremental_noncompacting);
4179 GenerateIncremental(masm, INCREMENTAL);
4180
4181 __ bind(&skip_to_incremental_compacting);
4182 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
4183
4184 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
4185 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
4186
4187 PatchBranchIntoNop(masm, 0);
4188 PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
4189}
4190
4191
4192void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
4193 regs_.Save(masm);
4194
4195 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
4196 Label dont_need_remembered_set;
4197
4198 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4199 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
4200 regs_.scratch0(),
4201 &dont_need_remembered_set);
4202
4203 __ CheckPageFlag(regs_.object(),
4204 regs_.scratch0(),
4205 1 << MemoryChunk::SCAN_ON_SCAVENGE,
4206 ne,
4207 &dont_need_remembered_set);
4208
4209 // First notify the incremental marker if necessary, then update the
4210 // remembered set.
4211 CheckNeedsToInformIncrementalMarker(
4212 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
4213 InformIncrementalMarker(masm);
4214 regs_.Restore(masm);
4215 __ RememberedSetHelper(object(),
4216 address(),
4217 value(),
4218 save_fp_regs_mode(),
4219 MacroAssembler::kReturnAtEnd);
4220
4221 __ bind(&dont_need_remembered_set);
4222 }
4223
4224 CheckNeedsToInformIncrementalMarker(
4225 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
4226 InformIncrementalMarker(masm);
4227 regs_.Restore(masm);
4228 __ Ret();
4229}
4230
4231
4232void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
4233 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
4234 int argument_count = 3;
4235 __ PrepareCallCFunction(argument_count, regs_.scratch0());
4236 Register address =
4237 a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
4238 DCHECK(!address.is(regs_.object()));
4239 DCHECK(!address.is(a0));
4240 __ Move(address, regs_.address());
4241 __ Move(a0, regs_.object());
4242 __ Move(a1, address);
4243 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4244
4245 AllowExternalCallThatCantCauseGC scope(masm);
4246 __ CallCFunction(
4247 ExternalReference::incremental_marking_record_write_function(isolate()),
4248 argument_count);
4249 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
4250}
4251
4252
4253void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
4254 MacroAssembler* masm,
4255 OnNoNeedToInformIncrementalMarker on_no_need,
4256 Mode mode) {
4257 Label on_black;
4258 Label need_incremental;
4259 Label need_incremental_pop_scratch;
4260
4261 __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
4262 __ ld(regs_.scratch1(),
4263 MemOperand(regs_.scratch0(),
4264 MemoryChunk::kWriteBarrierCounterOffset));
4265 __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1));
4266 __ sd(regs_.scratch1(),
4267 MemOperand(regs_.scratch0(),
4268 MemoryChunk::kWriteBarrierCounterOffset));
4269 __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg));
4270
4271 // Let's look at the color of the object: If it is not black we don't have
4272 // to inform the incremental marker.
4273 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
4274
4275 regs_.Restore(masm);
4276 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4277 __ RememberedSetHelper(object(),
4278 address(),
4279 value(),
4280 save_fp_regs_mode(),
4281 MacroAssembler::kReturnAtEnd);
4282 } else {
4283 __ Ret();
4284 }
4285
4286 __ bind(&on_black);
4287
4288 // Get the value from the slot.
4289 __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0));
4290
4291 if (mode == INCREMENTAL_COMPACTION) {
4292 Label ensure_not_white;
4293
4294 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4295 regs_.scratch1(), // Scratch.
4296 MemoryChunk::kEvacuationCandidateMask,
4297 eq,
4298 &ensure_not_white);
4299
4300 __ CheckPageFlag(regs_.object(),
4301 regs_.scratch1(), // Scratch.
4302 MemoryChunk::kSkipEvacuationSlotsRecordingMask,
4303 eq,
4304 &need_incremental);
4305
4306 __ bind(&ensure_not_white);
4307 }
4308
4309 // We need extra registers for this, so we push the object and the address
4310 // register temporarily.
4311 __ Push(regs_.object(), regs_.address());
4312 __ EnsureNotWhite(regs_.scratch0(), // The value.
4313 regs_.scratch1(), // Scratch.
4314 regs_.object(), // Scratch.
4315 regs_.address(), // Scratch.
4316 &need_incremental_pop_scratch);
4317 __ Pop(regs_.object(), regs_.address());
4318
4319 regs_.Restore(masm);
4320 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4321 __ RememberedSetHelper(object(),
4322 address(),
4323 value(),
4324 save_fp_regs_mode(),
4325 MacroAssembler::kReturnAtEnd);
4326 } else {
4327 __ Ret();
4328 }
4329
4330 __ bind(&need_incremental_pop_scratch);
4331 __ Pop(regs_.object(), regs_.address());
4332
4333 __ bind(&need_incremental);
4334
4335 // Fall through when we need to inform the incremental marker.
4336}
4337
4338
4339void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4340 // ----------- S t a t e -------------
4341 // -- a0 : element value to store
4342 // -- a3 : element index as smi
4343 // -- sp[0] : array literal index in function as smi
4344 // -- sp[4] : array literal
4345 // clobbers a1, a2, a4
4346 // -----------------------------------
4347
4348 Label element_done;
4349 Label double_elements;
4350 Label smi_element;
4351 Label slow_elements;
4352 Label fast_elements;
4353
4354 // Get array literal index, array literal and its map.
4355 __ ld(a4, MemOperand(sp, 0 * kPointerSize));
4356 __ ld(a1, MemOperand(sp, 1 * kPointerSize));
4357 __ ld(a2, FieldMemOperand(a1, JSObject::kMapOffset));
4358
4359 __ CheckFastElements(a2, a5, &double_elements);
4360 // Check for FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS elements
4361 __ JumpIfSmi(a0, &smi_element);
4362 __ CheckFastSmiElements(a2, a5, &fast_elements);
4363
4364 // Store into the array literal requires a elements transition. Call into
4365 // the runtime.
4366 __ bind(&slow_elements);
4367 // call.
4368 __ Push(a1, a3, a0);
4369 __ ld(a5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4370 __ ld(a5, FieldMemOperand(a5, JSFunction::kLiteralsOffset));
4371 __ Push(a5, a4);
4372 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4373
4374 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4375 __ bind(&fast_elements);
4376 __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
4377 __ SmiScale(a6, a3, kPointerSizeLog2);
4378 __ Daddu(a6, a5, a6);
4379 __ Daddu(a6, a6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4380 __ sd(a0, MemOperand(a6, 0));
4381 // Update the write barrier for the array store.
4382 __ RecordWrite(a5, a6, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
4383 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4384 __ Ret(USE_DELAY_SLOT);
4385 __ mov(v0, a0);
4386
4387 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4388 // and value is Smi.
4389 __ bind(&smi_element);
4390 __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
4391 __ SmiScale(a6, a3, kPointerSizeLog2);
4392 __ Daddu(a6, a5, a6);
4393 __ sd(a0, FieldMemOperand(a6, FixedArray::kHeaderSize));
4394 __ Ret(USE_DELAY_SLOT);
4395 __ mov(v0, a0);
4396
4397 // Array literal has ElementsKind of FAST_*_DOUBLE_ELEMENTS.
4398 __ bind(&double_elements);
4399 __ ld(a5, FieldMemOperand(a1, JSObject::kElementsOffset));
4400 __ StoreNumberToDoubleElements(a0, a3, a5, a7, t1, a2, &slow_elements);
4401 __ Ret(USE_DELAY_SLOT);
4402 __ mov(v0, a0);
4403}
4404
4405
4406void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4407 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4408 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4409 int parameter_count_offset =
4410 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4411 __ ld(a1, MemOperand(fp, parameter_count_offset));
4412 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4413 __ Daddu(a1, a1, Operand(1));
4414 }
4415 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4416 __ dsll(a1, a1, kPointerSizeLog2);
4417 __ Ret(USE_DELAY_SLOT);
4418 __ Daddu(sp, sp, a1);
4419}
4420
4421
4422void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4423 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4424 VectorLoadStub stub(isolate(), state());
4425 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4426}
4427
4428
4429void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4430 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4431 VectorKeyedLoadStub stub(isolate());
4432 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4433}
4434
4435
4436void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4437 if (masm->isolate()->function_entry_hook() != NULL) {
4438 ProfileEntryHookStub stub(masm->isolate());
4439 __ push(ra);
4440 __ CallStub(&stub);
4441 __ pop(ra);
4442 }
4443}
4444
4445
4446void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4447 // The entry hook is a "push ra" instruction, followed by a call.
4448 // Note: on MIPS "push" is 2 instruction
4449 const int32_t kReturnAddressDistanceFromFunctionStart =
4450 Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
4451
4452 // This should contain all kJSCallerSaved registers.
4453 const RegList kSavedRegs =
4454 kJSCallerSaved | // Caller saved registers.
4455 s5.bit(); // Saved stack pointer.
4456
4457 // We also save ra, so the count here is one higher than the mask indicates.
4458 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4459
4460 // Save all caller-save registers as this may be called from anywhere.
4461 __ MultiPush(kSavedRegs | ra.bit());
4462
4463 // Compute the function's address for the first argument.
4464 __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
4465
4466 // The caller's return address is above the saved temporaries.
4467 // Grab that for the second argument to the hook.
4468 __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
4469
4470 // Align the stack if necessary.
4471 int frame_alignment = masm->ActivationFrameAlignment();
4472 if (frame_alignment > kPointerSize) {
4473 __ mov(s5, sp);
4474 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4475 __ And(sp, sp, Operand(-frame_alignment));
4476 }
4477
4478 __ Dsubu(sp, sp, kCArgsSlotsSize);
4479#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
4480 int64_t entry_hook =
4481 reinterpret_cast<int64_t>(isolate()->function_entry_hook());
4482 __ li(t9, Operand(entry_hook));
4483#else
4484 // Under the simulator we need to indirect the entry hook through a
4485 // trampoline function at a known address.
4486 // It additionally takes an isolate as a third parameter.
4487 __ li(a2, Operand(ExternalReference::isolate_address(isolate())));
4488
4489 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4490 __ li(t9, Operand(ExternalReference(&dispatcher,
4491 ExternalReference::BUILTIN_CALL,
4492 isolate())));
4493#endif
4494 // Call C function through t9 to conform ABI for PIC.
4495 __ Call(t9);
4496
4497 // Restore the stack pointer if needed.
4498 if (frame_alignment > kPointerSize) {
4499 __ mov(sp, s5);
4500 } else {
4501 __ Daddu(sp, sp, kCArgsSlotsSize);
4502 }
4503
4504 // Also pop ra to get Ret(0).
4505 __ MultiPop(kSavedRegs | ra.bit());
4506 __ Ret();
4507}
4508
4509
4510template<class T>
4511static void CreateArrayDispatch(MacroAssembler* masm,
4512 AllocationSiteOverrideMode mode) {
4513 if (mode == DISABLE_ALLOCATION_SITES) {
4514 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4515 __ TailCallStub(&stub);
4516 } else if (mode == DONT_OVERRIDE) {
4517 int last_index = GetSequenceIndexFromFastElementsKind(
4518 TERMINAL_FAST_ELEMENTS_KIND);
4519 for (int i = 0; i <= last_index; ++i) {
4520 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4521 T stub(masm->isolate(), kind);
4522 __ TailCallStub(&stub, eq, a3, Operand(kind));
4523 }
4524
4525 // If we reached this point there is a problem.
4526 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4527 } else {
4528 UNREACHABLE();
4529 }
4530}
4531
4532
4533static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4534 AllocationSiteOverrideMode mode) {
4535 // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4536 // a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
4537 // a0 - number of arguments
4538 // a1 - constructor?
4539 // sp[0] - last argument
4540 Label normal_sequence;
4541 if (mode == DONT_OVERRIDE) {
4542 DCHECK(FAST_SMI_ELEMENTS == 0);
4543 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4544 DCHECK(FAST_ELEMENTS == 2);
4545 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4546 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4547 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4548
4549 // is the low bit set? If so, we are holey and that is good.
4550 __ And(at, a3, Operand(1));
4551 __ Branch(&normal_sequence, ne, at, Operand(zero_reg));
4552 }
4553 // look at the first argument
4554 __ ld(a5, MemOperand(sp, 0));
4555 __ Branch(&normal_sequence, eq, a5, Operand(zero_reg));
4556
4557 if (mode == DISABLE_ALLOCATION_SITES) {
4558 ElementsKind initial = GetInitialFastElementsKind();
4559 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4560
4561 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
4562 holey_initial,
4563 DISABLE_ALLOCATION_SITES);
4564 __ TailCallStub(&stub_holey);
4565
4566 __ bind(&normal_sequence);
4567 ArraySingleArgumentConstructorStub stub(masm->isolate(),
4568 initial,
4569 DISABLE_ALLOCATION_SITES);
4570 __ TailCallStub(&stub);
4571 } else if (mode == DONT_OVERRIDE) {
4572 // We are going to create a holey array, but our kind is non-holey.
4573 // Fix kind and retry (only if we have an allocation site in the slot).
4574 __ Daddu(a3, a3, Operand(1));
4575
4576 if (FLAG_debug_code) {
4577 __ ld(a5, FieldMemOperand(a2, 0));
4578 __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
4579 __ Assert(eq, kExpectedAllocationSite, a5, Operand(at));
4580 }
4581
4582 // Save the resulting elements kind in type info. We can't just store a3
4583 // in the AllocationSite::transition_info field because elements kind is
4584 // restricted to a portion of the field...upper bits need to be left alone.
4585 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4586 __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4587 __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
4588 __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4589
4590
4591 __ bind(&normal_sequence);
4592 int last_index = GetSequenceIndexFromFastElementsKind(
4593 TERMINAL_FAST_ELEMENTS_KIND);
4594 for (int i = 0; i <= last_index; ++i) {
4595 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4596 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4597 __ TailCallStub(&stub, eq, a3, Operand(kind));
4598 }
4599
4600 // If we reached this point there is a problem.
4601 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4602 } else {
4603 UNREACHABLE();
4604 }
4605}
4606
4607
4608template<class T>
4609static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4610 int to_index = GetSequenceIndexFromFastElementsKind(
4611 TERMINAL_FAST_ELEMENTS_KIND);
4612 for (int i = 0; i <= to_index; ++i) {
4613 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4614 T stub(isolate, kind);
4615 stub.GetCode();
4616 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4617 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4618 stub1.GetCode();
4619 }
4620 }
4621}
4622
4623
4624void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4625 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4626 isolate);
4627 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4628 isolate);
4629 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4630 isolate);
4631}
4632
4633
4634void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4635 Isolate* isolate) {
4636 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
4637 for (int i = 0; i < 2; i++) {
4638 // For internal arrays we only need a few things.
4639 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4640 stubh1.GetCode();
4641 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4642 stubh2.GetCode();
4643 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4644 stubh3.GetCode();
4645 }
4646}
4647
4648
4649void ArrayConstructorStub::GenerateDispatchToArrayStub(
4650 MacroAssembler* masm,
4651 AllocationSiteOverrideMode mode) {
4652 if (argument_count() == ANY) {
4653 Label not_zero_case, not_one_case;
4654 __ And(at, a0, a0);
4655 __ Branch(&not_zero_case, ne, at, Operand(zero_reg));
4656 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4657
4658 __ bind(&not_zero_case);
4659 __ Branch(&not_one_case, gt, a0, Operand(1));
4660 CreateArrayDispatchOneArgument(masm, mode);
4661
4662 __ bind(&not_one_case);
4663 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4664 } else if (argument_count() == NONE) {
4665 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4666 } else if (argument_count() == ONE) {
4667 CreateArrayDispatchOneArgument(masm, mode);
4668 } else if (argument_count() == MORE_THAN_ONE) {
4669 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4670 } else {
4671 UNREACHABLE();
4672 }
4673}
4674
4675
4676void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4677 // ----------- S t a t e -------------
4678 // -- a0 : argc (only if argument_count() == ANY)
4679 // -- a1 : constructor
4680 // -- a2 : AllocationSite or undefined
4681 // -- sp[0] : return address
4682 // -- sp[4] : last argument
4683 // -----------------------------------
4684
4685 if (FLAG_debug_code) {
4686 // The array construct code is only set for the global and natives
4687 // builtin Array functions which always have maps.
4688
4689 // Initial map for the builtin Array function should be a map.
4690 __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4691 // Will both indicate a NULL and a Smi.
4692 __ SmiTst(a4, at);
4693 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4694 at, Operand(zero_reg));
4695 __ GetObjectType(a4, a4, a5);
4696 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4697 a5, Operand(MAP_TYPE));
4698
4699 // We should either have undefined in a2 or a valid AllocationSite
4700 __ AssertUndefinedOrAllocationSite(a2, a4);
4701 }
4702
4703 Label no_info;
4704 // Get the elements kind and case on that.
4705 __ LoadRoot(at, Heap::kUndefinedValueRootIndex);
4706 __ Branch(&no_info, eq, a2, Operand(at));
4707
4708 __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset));
4709 __ SmiUntag(a3);
4710 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4711 __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
4712 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4713
4714 __ bind(&no_info);
4715 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4716}
4717
4718
4719void InternalArrayConstructorStub::GenerateCase(
4720 MacroAssembler* masm, ElementsKind kind) {
4721
4722 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4723 __ TailCallStub(&stub0, lo, a0, Operand(1));
4724
4725 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4726 __ TailCallStub(&stubN, hi, a0, Operand(1));
4727
4728 if (IsFastPackedElementsKind(kind)) {
4729 // We might need to create a holey array
4730 // look at the first argument.
4731 __ ld(at, MemOperand(sp, 0));
4732
4733 InternalArraySingleArgumentConstructorStub
4734 stub1_holey(isolate(), GetHoleyElementsKind(kind));
4735 __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
4736 }
4737
4738 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4739 __ TailCallStub(&stub1);
4740}
4741
4742
4743void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4744 // ----------- S t a t e -------------
4745 // -- a0 : argc
4746 // -- a1 : constructor
4747 // -- sp[0] : return address
4748 // -- sp[4] : last argument
4749 // -----------------------------------
4750
4751 if (FLAG_debug_code) {
4752 // The array construct code is only set for the global and natives
4753 // builtin Array functions which always have maps.
4754
4755 // Initial map for the builtin Array function should be a map.
4756 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4757 // Will both indicate a NULL and a Smi.
4758 __ SmiTst(a3, at);
4759 __ Assert(ne, kUnexpectedInitialMapForArrayFunction,
4760 at, Operand(zero_reg));
4761 __ GetObjectType(a3, a3, a4);
4762 __ Assert(eq, kUnexpectedInitialMapForArrayFunction,
4763 a4, Operand(MAP_TYPE));
4764 }
4765
4766 // Figure out the right elements kind.
4767 __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
4768
4769 // Load the map's "bit field 2" into a3. We only need the first byte,
4770 // but the following bit field extraction takes care of that anyway.
4771 __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
4772 // Retrieve elements_kind from bit field 2.
4773 __ DecodeField<Map::ElementsKindBits>(a3);
4774
4775 if (FLAG_debug_code) {
4776 Label done;
4777 __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS));
4778 __ Assert(
4779 eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray,
4780 a3, Operand(FAST_HOLEY_ELEMENTS));
4781 __ bind(&done);
4782 }
4783
4784 Label fast_elements_case;
4785 __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS));
4786 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4787
4788 __ bind(&fast_elements_case);
4789 GenerateCase(masm, FAST_ELEMENTS);
4790}
4791
4792
4793void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4794 // ----------- S t a t e -------------
4795 // -- a0 : callee
4796 // -- a4 : call_data
4797 // -- a2 : holder
4798 // -- a1 : api_function_address
4799 // -- cp : context
4800 // --
4801 // -- sp[0] : last argument
4802 // -- ...
4803 // -- sp[(argc - 1)* 4] : first argument
4804 // -- sp[argc * 4] : receiver
4805 // -----------------------------------
4806
4807 Register callee = a0;
4808 Register call_data = a4;
4809 Register holder = a2;
4810 Register api_function_address = a1;
4811 Register context = cp;
4812
4813 int argc = this->argc();
4814 bool is_store = this->is_store();
4815 bool call_data_undefined = this->call_data_undefined();
4816
4817 typedef FunctionCallbackArguments FCA;
4818
4819 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4820 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4821 STATIC_ASSERT(FCA::kDataIndex == 4);
4822 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4823 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4824 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4825 STATIC_ASSERT(FCA::kHolderIndex == 0);
4826 STATIC_ASSERT(FCA::kArgsLength == 7);
4827
4828 // Save context, callee and call data.
4829 __ Push(context, callee, call_data);
4830 // Load context from callee.
4831 __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4832
4833 Register scratch = call_data;
4834 if (!call_data_undefined) {
4835 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4836 }
4837 // Push return value and default return value.
4838 __ Push(scratch, scratch);
4839 __ li(scratch,
4840 Operand(ExternalReference::isolate_address(isolate())));
4841 // Push isolate and holder.
4842 __ Push(scratch, holder);
4843
4844 // Prepare arguments.
4845 __ mov(scratch, sp);
4846
4847 // Allocate the v8::Arguments structure in the arguments' space since
4848 // it's not controlled by GC.
4849 const int kApiStackSpace = 4;
4850
4851 FrameScope frame_scope(masm, StackFrame::MANUAL);
4852 __ EnterExitFrame(false, kApiStackSpace);
4853
4854 DCHECK(!api_function_address.is(a0) && !scratch.is(a0));
4855 // a0 = FunctionCallbackInfo&
4856 // Arguments is after the return address.
4857 __ Daddu(a0, sp, Operand(1 * kPointerSize));
4858 // FunctionCallbackInfo::implicit_args_
4859 __ sd(scratch, MemOperand(a0, 0 * kPointerSize));
4860 // FunctionCallbackInfo::values_
4861 __ Daddu(at, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4862 __ sd(at, MemOperand(a0, 1 * kPointerSize));
4863 // FunctionCallbackInfo::length_ = argc
4864 __ li(at, Operand(argc));
4865 __ sd(at, MemOperand(a0, 2 * kPointerSize));
4866 // FunctionCallbackInfo::is_construct_call = 0
4867 __ sd(zero_reg, MemOperand(a0, 3 * kPointerSize));
4868
4869 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4870 ExternalReference thunk_ref =
4871 ExternalReference::invoke_function_callback(isolate());
4872
4873 AllowExternalCallThatCantCauseGC scope(masm);
4874 MemOperand context_restore_operand(
4875 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4876 // Stores return the first js argument.
4877 int return_value_offset = 0;
4878 if (is_store) {
4879 return_value_offset = 2 + FCA::kArgsLength;
4880 } else {
4881 return_value_offset = 2 + FCA::kReturnValueOffset;
4882 }
4883 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4884
4885 __ CallApiFunctionAndReturn(api_function_address,
4886 thunk_ref,
4887 kStackUnwindSpace,
4888 return_value_operand,
4889 &context_restore_operand);
4890}
4891
4892
4893void CallApiGetterStub::Generate(MacroAssembler* masm) {
4894 // ----------- S t a t e -------------
4895 // -- sp[0] : name
4896 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
4897 // -- ...
4898 // -- a2 : api_function_address
4899 // -----------------------------------
4900
4901 Register api_function_address = ApiGetterDescriptor::function_address();
4902 DCHECK(api_function_address.is(a2));
4903
4904 __ mov(a0, sp); // a0 = Handle<Name>
4905 __ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = PCA
4906
4907 const int kApiStackSpace = 1;
4908 FrameScope frame_scope(masm, StackFrame::MANUAL);
4909 __ EnterExitFrame(false, kApiStackSpace);
4910
4911 // Create PropertyAccessorInfo instance on the stack above the exit frame with
4912 // a1 (internal::Object** args_) as the data.
4913 __ sd(a1, MemOperand(sp, 1 * kPointerSize));
4914 __ Daddu(a1, sp, Operand(1 * kPointerSize)); // a1 = AccessorInfo&
4915
4916 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4917
4918 ExternalReference thunk_ref =
4919 ExternalReference::invoke_accessor_getter_callback(isolate());
4920 __ CallApiFunctionAndReturn(api_function_address,
4921 thunk_ref,
4922 kStackUnwindSpace,
4923 MemOperand(fp, 6 * kPointerSize),
4924 NULL);
4925}
4926
4927
4928#undef __
4929
4930} } // namespace v8::internal
4931
4932#endif // V8_TARGET_ARCH_MIPS64