blob: e7815ed316f29d420096619aaccdfb2cdf19c9f1 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_TYPES_H_
6#define V8_TYPES_H_
7
8#include "src/conversions.h"
9#include "src/factory.h"
10#include "src/handles.h"
11#include "src/ostreams.h"
12
13namespace v8 {
14namespace internal {
15
16// SUMMARY
17//
18// A simple type system for compiler-internal use. It is based entirely on
19// union types, and all subtyping hence amounts to set inclusion. Besides the
20// obvious primitive types and some predefined unions, the type language also
21// can express class types (a.k.a. specific maps) and singleton types (i.e.,
22// concrete constants).
23//
24// Types consist of two dimensions: semantic (value range) and representation.
25// Both are related through subtyping.
26//
27//
28// SEMANTIC DIMENSION
29//
30// The following equations and inequations hold for the semantic axis:
31//
32// None <= T
33// T <= Any
34//
35// Number = Signed32 \/ Unsigned32 \/ Double
36// Smi <= Signed32
37// Name = String \/ Symbol
38// UniqueName = InternalizedString \/ Symbol
39// InternalizedString < String
40//
41// Receiver = Object \/ Proxy
42// Array < Object
43// Function < Object
44// RegExp < Object
45// Undetectable < Object
46// Detectable = Receiver \/ Number \/ Name - Undetectable
47//
48// Class(map) < T iff instance_type(map) < T
49// Constant(x) < T iff instance_type(map(x)) < T
50// Array(T) < Array
51// Function(R, S, T0, T1, ...) < Function
52// Context(T) < Internal
53//
54// Both structural Array and Function types are invariant in all parameters;
55// relaxing this would make Union and Intersect operations more involved.
56// There is no subtyping relation between Array, Function, or Context types
57// and respective Constant types, since these types cannot be reconstructed
58// for arbitrary heap values.
59// Note also that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
60// change! (Its instance type cannot, however.)
61// TODO(rossberg): the latter is not currently true for proxies, because of fix,
62// but will hold once we implement direct proxies.
63// However, we also define a 'temporal' variant of the subtyping relation that
64// considers the _current_ state only, i.e., Constant(x) <_now Class(map(x)).
65//
66//
67// REPRESENTATIONAL DIMENSION
68//
69// For the representation axis, the following holds:
70//
71// None <= R
72// R <= Any
73//
74// UntaggedInt = UntaggedInt1 \/ UntaggedInt8 \/
75// UntaggedInt16 \/ UntaggedInt32
76// UntaggedFloat = UntaggedFloat32 \/ UntaggedFloat64
77// UntaggedNumber = UntaggedInt \/ UntaggedFloat
78// Untagged = UntaggedNumber \/ UntaggedPtr
79// Tagged = TaggedInt \/ TaggedPtr
80//
81// Subtyping relates the two dimensions, for example:
82//
83// Number <= Tagged \/ UntaggedNumber
84// Object <= TaggedPtr \/ UntaggedPtr
85//
86// That holds because the semantic type constructors defined by the API create
87// types that allow for all possible representations, and dually, the ones for
88// representation types initially include all semantic ranges. Representations
89// can then e.g. be narrowed for a given semantic type using intersection:
90//
91// SignedSmall /\ TaggedInt (a 'smi')
92// Number /\ TaggedPtr (a heap number)
93//
94//
95// RANGE TYPES
96//
97// A range type represents a continuous integer interval by its minimum and
98// maximum value. Either value might be an infinity.
99//
100// Constant(v) is considered a subtype of Range(x..y) if v happens to be an
101// integer between x and y.
102//
103//
104// PREDICATES
105//
106// There are two main functions for testing types:
107//
108// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
109// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
110//
111// Typically, the former is to be used to select representations (e.g., via
112// T->Is(SignedSmall())), and the latter to check whether a specific case needs
113// handling (e.g., via T->Maybe(Number())).
114//
115// There is no functionality to discover whether a type is a leaf in the
116// lattice. That is intentional. It should always be possible to refine the
117// lattice (e.g., splitting up number types further) without invalidating any
118// existing assumptions or tests.
119// Consequently, do not normally use Equals for type tests, always use Is!
120//
121// The NowIs operator implements state-sensitive subtying, as described above.
122// Any compilation decision based on such temporary properties requires runtime
123// guarding!
124//
125//
126// PROPERTIES
127//
128// Various formal properties hold for constructors, operators, and predicates
129// over types. For example, constructors are injective and subtyping is a
130// complete partial order.
131//
132// See test/cctest/test-types.cc for a comprehensive executable specification,
133// especially with respect to the properties of the more exotic 'temporal'
134// constructors and predicates (those prefixed 'Now').
135//
136//
137// IMPLEMENTATION
138//
139// Internally, all 'primitive' types, and their unions, are represented as
140// bitsets. Bit 0 is reserved for tagging. Class is a heap pointer to the
141// respective map. Only structured types require allocation.
142// Note that the bitset representation is closed under both Union and Intersect.
143//
144// There are two type representations, using different allocation:
145//
146// - class Type (zone-allocated, for compiler and concurrent compilation)
147// - class HeapType (heap-allocated, for persistent types)
148//
149// Both provide the same API, and the Convert method can be used to interconvert
150// them. For zone types, no query method touches the heap, only constructors do.
151
152
153// -----------------------------------------------------------------------------
154// Values for bitset types
155
156#define MASK_BITSET_TYPE_LIST(V) \
157 V(Representation, 0xff800000u) \
158 V(Semantic, 0x007ffffeu)
159
160#define REPRESENTATION(k) ((k) & BitsetType::kRepresentation)
161#define SEMANTIC(k) ((k) & BitsetType::kSemantic)
162
163#define REPRESENTATION_BITSET_TYPE_LIST(V) \
164 V(None, 0) \
165 V(UntaggedInt1, 1u << 23 | kSemantic) \
166 V(UntaggedInt8, 1u << 24 | kSemantic) \
167 V(UntaggedInt16, 1u << 25 | kSemantic) \
168 V(UntaggedInt32, 1u << 26 | kSemantic) \
169 V(UntaggedFloat32, 1u << 27 | kSemantic) \
170 V(UntaggedFloat64, 1u << 28 | kSemantic) \
171 V(UntaggedPtr, 1u << 29 | kSemantic) \
172 V(TaggedInt, 1u << 30 | kSemantic) \
173 V(TaggedPtr, 1u << 31 | kSemantic) \
174 \
175 V(UntaggedInt, kUntaggedInt1 | kUntaggedInt8 | \
176 kUntaggedInt16 | kUntaggedInt32) \
177 V(UntaggedFloat, kUntaggedFloat32 | kUntaggedFloat64) \
178 V(UntaggedNumber, kUntaggedInt | kUntaggedFloat) \
179 V(Untagged, kUntaggedNumber | kUntaggedPtr) \
180 V(Tagged, kTaggedInt | kTaggedPtr)
181
182#define SEMANTIC_BITSET_TYPE_LIST(V) \
183 V(Null, 1u << 1 | REPRESENTATION(kTaggedPtr)) \
184 V(Undefined, 1u << 2 | REPRESENTATION(kTaggedPtr)) \
185 V(Boolean, 1u << 3 | REPRESENTATION(kTaggedPtr)) \
186 V(UnsignedSmall, 1u << 4 | REPRESENTATION(kTagged | kUntaggedNumber)) \
187 V(OtherSignedSmall, 1u << 5 | REPRESENTATION(kTagged | kUntaggedNumber)) \
188 V(OtherUnsigned31, 1u << 6 | REPRESENTATION(kTagged | kUntaggedNumber)) \
189 V(OtherUnsigned32, 1u << 7 | REPRESENTATION(kTagged | kUntaggedNumber)) \
190 V(OtherSigned32, 1u << 8 | REPRESENTATION(kTagged | kUntaggedNumber)) \
191 V(MinusZero, 1u << 9 | REPRESENTATION(kTagged | kUntaggedNumber)) \
192 V(NaN, 1u << 10 | REPRESENTATION(kTagged | kUntaggedNumber)) \
193 V(OtherNumber, 1u << 11 | REPRESENTATION(kTagged | kUntaggedNumber)) \
194 V(Symbol, 1u << 12 | REPRESENTATION(kTaggedPtr)) \
195 V(InternalizedString, 1u << 13 | REPRESENTATION(kTaggedPtr)) \
196 V(OtherString, 1u << 14 | REPRESENTATION(kTaggedPtr)) \
197 V(Undetectable, 1u << 15 | REPRESENTATION(kTaggedPtr)) \
198 V(Array, 1u << 16 | REPRESENTATION(kTaggedPtr)) \
199 V(Buffer, 1u << 17 | REPRESENTATION(kTaggedPtr)) \
200 V(Function, 1u << 18 | REPRESENTATION(kTaggedPtr)) \
201 V(RegExp, 1u << 19 | REPRESENTATION(kTaggedPtr)) \
202 V(OtherObject, 1u << 20 | REPRESENTATION(kTaggedPtr)) \
203 V(Proxy, 1u << 21 | REPRESENTATION(kTaggedPtr)) \
204 V(Internal, 1u << 22 | REPRESENTATION(kTagged | kUntagged)) \
205 \
206 V(SignedSmall, kUnsignedSmall | kOtherSignedSmall) \
207 V(Signed32, kSignedSmall | kOtherUnsigned31 | kOtherSigned32) \
208 V(Unsigned32, kUnsignedSmall | kOtherUnsigned31 | kOtherUnsigned32) \
209 V(Integral32, kSigned32 | kUnsigned32) \
210 V(OrderedNumber, kIntegral32 | kMinusZero | kOtherNumber) \
211 V(Number, kOrderedNumber | kNaN) \
212 V(String, kInternalizedString | kOtherString) \
213 V(UniqueName, kSymbol | kInternalizedString) \
214 V(Name, kSymbol | kString) \
215 V(NumberOrString, kNumber | kString) \
216 V(Primitive, kNumber | kName | kBoolean | kNull | kUndefined) \
217 V(DetectableObject, kArray | kFunction | kRegExp | kOtherObject) \
218 V(DetectableReceiver, kDetectableObject | kProxy) \
219 V(Detectable, kDetectableReceiver | kNumber | kName) \
220 V(Object, kDetectableObject | kUndetectable) \
221 V(Receiver, kObject | kProxy) \
222 V(NonNumber, kBoolean | kName | kNull | kReceiver | \
223 kUndefined | kInternal) \
224 V(Any, 0xfffffffeu)
225
226/*
227 * The following diagrams show how integers (in the mathematical sense) are
228 * divided among the different atomic numerical types.
229 *
230 * If SmiValuesAre31Bits():
231 *
232 * ON OS32 OSS US OU31 OU32 ON
233 * ______[_______[_______[_______[_______[_______[_______
234 * -2^31 -2^30 0 2^30 2^31 2^32
235 *
236 * Otherwise:
237 *
238 * ON OSS US OU32 ON
239 * ______[_______________[_______________[_______[_______
240 * -2^31 0 2^31 2^32
241 *
242 *
243 * E.g., OtherUnsigned32 (OU32) covers all integers from 2^31 to 2^32-1.
244 *
245 */
246
247#define PROPER_BITSET_TYPE_LIST(V) \
248 REPRESENTATION_BITSET_TYPE_LIST(V) \
249 SEMANTIC_BITSET_TYPE_LIST(V)
250
251#define BITSET_TYPE_LIST(V) \
252 MASK_BITSET_TYPE_LIST(V) \
253 PROPER_BITSET_TYPE_LIST(V)
254
255
256// -----------------------------------------------------------------------------
257// The abstract Type class, parameterized over the low-level representation.
258
259// struct Config {
260// typedef TypeImpl<Config> Type;
261// typedef Base;
262// typedef Struct;
263// typedef Region;
264// template<class> struct Handle { typedef type; } // No template typedefs...
265// template<class T> static Handle<T>::type handle(T* t); // !is_bitset(t)
266// template<class T> static Handle<T>::type cast(Handle<Type>::type);
267// static bool is_bitset(Type*);
268// static bool is_class(Type*);
269// static bool is_struct(Type*, int tag);
270// static bitset as_bitset(Type*);
271// static i::Handle<i::Map> as_class(Type*);
272// static Handle<Struct>::type as_struct(Type*);
273// static Type* from_bitset(bitset);
274// static Handle<Type>::type from_bitset(bitset, Region*);
275// static Handle<Type>::type from_class(i::Handle<Map>, Region*);
276// static Handle<Type>::type from_struct(Handle<Struct>::type, int tag);
277// static Handle<Struct>::type struct_create(int tag, int length, Region*);
278// static void struct_shrink(Handle<Struct>::type, int length);
279// static int struct_tag(Handle<Struct>::type);
280// static int struct_length(Handle<Struct>::type);
281// static Handle<Type>::type struct_get(Handle<Struct>::type, int);
282// static void struct_set(Handle<Struct>::type, int, Handle<Type>::type);
283// template<class V>
284// static i::Handle<V> struct_get_value(Handle<Struct>::type, int);
285// template<class V>
286// static void struct_set_value(Handle<Struct>::type, int, i::Handle<V>);
287// }
288template<class Config>
289class TypeImpl : public Config::Base {
290 public:
291 // Auxiliary types.
292
293 typedef uint32_t bitset; // Internal
294 class BitsetType; // Internal
295 class StructuralType; // Internal
296 class UnionType; // Internal
297
298 class ClassType;
299 class ConstantType;
300 class RangeType;
301 class ContextType;
302 class ArrayType;
303 class FunctionType;
304
305 typedef typename Config::template Handle<TypeImpl>::type TypeHandle;
306 typedef typename Config::template Handle<ClassType>::type ClassHandle;
307 typedef typename Config::template Handle<ConstantType>::type ConstantHandle;
308 typedef typename Config::template Handle<RangeType>::type RangeHandle;
309 typedef typename Config::template Handle<ContextType>::type ContextHandle;
310 typedef typename Config::template Handle<ArrayType>::type ArrayHandle;
311 typedef typename Config::template Handle<FunctionType>::type FunctionHandle;
312 typedef typename Config::template Handle<UnionType>::type UnionHandle;
313 typedef typename Config::Region Region;
314
315 // Constructors.
316
317 #define DEFINE_TYPE_CONSTRUCTOR(type, value) \
318 static TypeImpl* type() { \
319 return BitsetType::New(BitsetType::k##type); \
320 } \
321 static TypeHandle type(Region* region) { \
322 return BitsetType::New(BitsetType::k##type, region); \
323 }
324 PROPER_BITSET_TYPE_LIST(DEFINE_TYPE_CONSTRUCTOR)
325 #undef DEFINE_TYPE_CONSTRUCTOR
326
327 static TypeHandle Class(i::Handle<i::Map> map, Region* region) {
328 return ClassType::New(map, region);
329 }
330 static TypeHandle Constant(i::Handle<i::Object> value, Region* region) {
331 return ConstantType::New(value, region);
332 }
333 static TypeHandle Range(
334 i::Handle<i::Object> min, i::Handle<i::Object> max, Region* region) {
335 return RangeType::New(min, max, region);
336 }
337 static TypeHandle Context(TypeHandle outer, Region* region) {
338 return ContextType::New(outer, region);
339 }
340 static TypeHandle Array(TypeHandle element, Region* region) {
341 return ArrayType::New(element, region);
342 }
343 static FunctionHandle Function(
344 TypeHandle result, TypeHandle receiver, int arity, Region* region) {
345 return FunctionType::New(result, receiver, arity, region);
346 }
347 static TypeHandle Function(TypeHandle result, Region* region) {
348 return Function(result, Any(region), 0, region);
349 }
350 static TypeHandle Function(
351 TypeHandle result, TypeHandle param0, Region* region) {
352 FunctionHandle function = Function(result, Any(region), 1, region);
353 function->InitParameter(0, param0);
354 return function;
355 }
356 static TypeHandle Function(
357 TypeHandle result, TypeHandle param0, TypeHandle param1, Region* region) {
358 FunctionHandle function = Function(result, Any(region), 2, region);
359 function->InitParameter(0, param0);
360 function->InitParameter(1, param1);
361 return function;
362 }
363 static TypeHandle Function(
364 TypeHandle result, TypeHandle param0, TypeHandle param1,
365 TypeHandle param2, Region* region) {
366 FunctionHandle function = Function(result, Any(region), 3, region);
367 function->InitParameter(0, param0);
368 function->InitParameter(1, param1);
369 function->InitParameter(2, param2);
370 return function;
371 }
372
373 static TypeHandle Union(TypeHandle type1, TypeHandle type2, Region* reg);
374 static TypeHandle Intersect(TypeHandle type1, TypeHandle type2, Region* reg);
375
376 static TypeHandle Of(double value, Region* region) {
377 return Config::from_bitset(BitsetType::Lub(value), region);
378 }
379 static TypeHandle Of(i::Object* value, Region* region) {
380 return Config::from_bitset(BitsetType::Lub(value), region);
381 }
382 static TypeHandle Of(i::Handle<i::Object> value, Region* region) {
383 return Of(*value, region);
384 }
385
386 // Predicates.
387
388 bool IsInhabited() { return BitsetType::IsInhabited(this->BitsetLub()); }
389
390 bool Is(TypeImpl* that) { return this == that || this->SlowIs(that); }
391 template<class TypeHandle>
392 bool Is(TypeHandle that) { return this->Is(*that); }
393
394 bool Maybe(TypeImpl* that);
395 template<class TypeHandle>
396 bool Maybe(TypeHandle that) { return this->Maybe(*that); }
397
398 bool Equals(TypeImpl* that) { return this->Is(that) && that->Is(this); }
399 template<class TypeHandle>
400 bool Equals(TypeHandle that) { return this->Equals(*that); }
401
402 // Equivalent to Constant(val)->Is(this), but avoiding allocation.
403 bool Contains(i::Object* val);
404 bool Contains(i::Handle<i::Object> val) { return this->Contains(*val); }
405
406 // State-dependent versions of the above that consider subtyping between
407 // a constant and its map class.
408 inline static TypeHandle NowOf(i::Object* value, Region* region);
409 static TypeHandle NowOf(i::Handle<i::Object> value, Region* region) {
410 return NowOf(*value, region);
411 }
412 bool NowIs(TypeImpl* that);
413 template<class TypeHandle>
414 bool NowIs(TypeHandle that) { return this->NowIs(*that); }
415 inline bool NowContains(i::Object* val);
416 bool NowContains(i::Handle<i::Object> val) { return this->NowContains(*val); }
417
418 bool NowStable();
419
420 // Inspection.
421
422 bool IsClass() {
423 return Config::is_class(this)
424 || Config::is_struct(this, StructuralType::kClassTag);
425 }
426 bool IsConstant() {
427 return Config::is_struct(this, StructuralType::kConstantTag);
428 }
429 bool IsRange() {
430 return Config::is_struct(this, StructuralType::kRangeTag);
431 }
432 bool IsContext() {
433 return Config::is_struct(this, StructuralType::kContextTag);
434 }
435 bool IsArray() {
436 return Config::is_struct(this, StructuralType::kArrayTag);
437 }
438 bool IsFunction() {
439 return Config::is_struct(this, StructuralType::kFunctionTag);
440 }
441
442 ClassType* AsClass() { return ClassType::cast(this); }
443 ConstantType* AsConstant() { return ConstantType::cast(this); }
444 RangeType* AsRange() { return RangeType::cast(this); }
445 ContextType* AsContext() { return ContextType::cast(this); }
446 ArrayType* AsArray() { return ArrayType::cast(this); }
447 FunctionType* AsFunction() { return FunctionType::cast(this); }
448
449 // Minimum and maximum of a numeric type.
450 // These functions do not distinguish between -0 and +0. If the type equals
451 // kNaN, they return NaN; otherwise kNaN is ignored. Only call these
452 // functions on subtypes of Number.
453 double Min();
454 double Max();
455
456 int NumClasses();
457 int NumConstants();
458
459 template<class T> class Iterator;
460 Iterator<i::Map> Classes() {
461 if (this->IsBitset()) return Iterator<i::Map>();
462 return Iterator<i::Map>(Config::handle(this));
463 }
464 Iterator<i::Object> Constants() {
465 if (this->IsBitset()) return Iterator<i::Object>();
466 return Iterator<i::Object>(Config::handle(this));
467 }
468
469 // Casting and conversion.
470
471 static inline TypeImpl* cast(typename Config::Base* object);
472
473 template<class OtherTypeImpl>
474 static TypeHandle Convert(
475 typename OtherTypeImpl::TypeHandle type, Region* region);
476
477 // Printing.
478
479 enum PrintDimension { BOTH_DIMS, SEMANTIC_DIM, REPRESENTATION_DIM };
480
481 void PrintTo(OStream& os, PrintDimension dim = BOTH_DIMS); // NOLINT
482
483#ifdef DEBUG
484 void Print();
485#endif
486
487 protected:
488 // Friends.
489
490 template<class> friend class Iterator;
491 template<class> friend class TypeImpl;
492
493 // Handle conversion.
494
495 template<class T>
496 static typename Config::template Handle<T>::type handle(T* type) {
497 return Config::handle(type);
498 }
499 TypeImpl* unhandle() { return this; }
500
501 // Internal inspection.
502
503 bool IsNone() { return this == None(); }
504 bool IsAny() { return this == Any(); }
505 bool IsBitset() { return Config::is_bitset(this); }
506 bool IsUnion() { return Config::is_struct(this, StructuralType::kUnionTag); }
507
508 bitset AsBitset() {
509 DCHECK(this->IsBitset());
510 return static_cast<BitsetType*>(this)->Bitset();
511 }
512 UnionType* AsUnion() { return UnionType::cast(this); }
513
514 // Auxiliary functions.
515
516 bitset BitsetGlb() { return BitsetType::Glb(this); }
517 bitset BitsetLub() { return BitsetType::Lub(this); }
518
519 bool SlowIs(TypeImpl* that);
520
521 static bool IsInteger(double x) {
522 return nearbyint(x) == x && !i::IsMinusZero(x); // Allows for infinities.
523 }
524 static bool IsInteger(i::Object* x) {
525 return x->IsNumber() && IsInteger(x->Number());
526 }
527
528 struct Limits {
529 i::Handle<i::Object> min;
530 i::Handle<i::Object> max;
531 Limits(i::Handle<i::Object> min, i::Handle<i::Object> max) :
532 min(min), max(max) {}
533 explicit Limits(RangeType* range) :
534 min(range->Min()), max(range->Max()) {}
535 };
536
537 static Limits Intersect(Limits lhs, Limits rhs);
538 static Limits Union(Limits lhs, Limits rhs);
539 static bool Overlap(RangeType* lhs, RangeType* rhs);
540 static bool Contains(RangeType* lhs, RangeType* rhs);
541 static bool Contains(RangeType* range, i::Object* val);
542
543 RangeType* GetRange();
544 static int UpdateRange(
545 RangeHandle type, UnionHandle result, int size, Region* region);
546
547 bool SimplyEquals(TypeImpl* that);
548 template<class TypeHandle>
549 bool SimplyEquals(TypeHandle that) { return this->SimplyEquals(*that); }
550
551 static int AddToUnion(
552 TypeHandle type, UnionHandle result, int size, Region* region);
553 static int IntersectAux(
554 TypeHandle type, TypeHandle other,
555 UnionHandle result, int size, Region* region);
556 static TypeHandle NormalizeUnion(UnionHandle unioned, int size);
557};
558
559
560// -----------------------------------------------------------------------------
561// Bitset types (internal).
562
563template<class Config>
564class TypeImpl<Config>::BitsetType : public TypeImpl<Config> {
565 protected:
566 friend class TypeImpl<Config>;
567
568 enum {
569 #define DECLARE_TYPE(type, value) k##type = (value),
570 BITSET_TYPE_LIST(DECLARE_TYPE)
571 #undef DECLARE_TYPE
572 kUnusedEOL = 0
573 };
574
575 bitset Bitset() { return Config::as_bitset(this); }
576
577 static TypeImpl* New(bitset bits) {
578 DCHECK(bits == kNone || IsInhabited(bits));
579 return Config::from_bitset(bits);
580 }
581 static TypeHandle New(bitset bits, Region* region) {
582 DCHECK(bits == kNone || IsInhabited(bits));
583 return Config::from_bitset(bits, region);
584 }
585 // TODO(neis): Eventually allow again for types with empty semantics
586 // part and modify intersection and possibly subtyping accordingly.
587
588 static bool IsInhabited(bitset bits) {
589 return bits & kSemantic;
590 }
591
592 static bool Is(bitset bits1, bitset bits2) {
593 return (bits1 | bits2) == bits2;
594 }
595
596 static double Min(bitset);
597 static double Max(bitset);
598
599 static bitset Glb(TypeImpl* type); // greatest lower bound that's a bitset
600 static bitset Lub(TypeImpl* type); // least upper bound that's a bitset
601 static bitset Lub(i::Object* value);
602 static bitset Lub(double value);
603 static bitset Lub(int32_t value);
604 static bitset Lub(uint32_t value);
605 static bitset Lub(i::Map* map);
606 static bitset Lub(Limits lim);
607
608 static const char* Name(bitset);
609 static void Print(OStream& os, bitset); // NOLINT
610#ifdef DEBUG
611 static void Print(bitset);
612#endif
613
614 private:
615 struct BitsetMin{
616 bitset bits;
617 double min;
618 };
619 static const BitsetMin BitsetMins31[];
620 static const BitsetMin BitsetMins32[];
621 static const BitsetMin* BitsetMins() {
622 return i::SmiValuesAre31Bits() ? BitsetMins31 : BitsetMins32;
623 }
624 static size_t BitsetMinsSize() {
625 return i::SmiValuesAre31Bits() ? 7 : 5;
626 /* arraysize(BitsetMins31) : arraysize(BitsetMins32); */
627 // Using arraysize here doesn't compile on Windows.
628 }
629};
630
631
632// -----------------------------------------------------------------------------
633// Superclass for non-bitset types (internal).
634// Contains a tag and a variable number of type or value fields.
635
636template<class Config>
637class TypeImpl<Config>::StructuralType : public TypeImpl<Config> {
638 protected:
639 template<class> friend class TypeImpl;
640 friend struct ZoneTypeConfig; // For tags.
641 friend struct HeapTypeConfig;
642
643 enum Tag {
644 kClassTag,
645 kConstantTag,
646 kRangeTag,
647 kContextTag,
648 kArrayTag,
649 kFunctionTag,
650 kUnionTag
651 };
652
653 int Length() {
654 return Config::struct_length(Config::as_struct(this));
655 }
656 TypeHandle Get(int i) {
657 DCHECK(0 <= i && i < this->Length());
658 return Config::struct_get(Config::as_struct(this), i);
659 }
660 void Set(int i, TypeHandle type) {
661 DCHECK(0 <= i && i < this->Length());
662 Config::struct_set(Config::as_struct(this), i, type);
663 }
664 void Shrink(int length) {
665 DCHECK(2 <= length && length <= this->Length());
666 Config::struct_shrink(Config::as_struct(this), length);
667 }
668 template<class V> i::Handle<V> GetValue(int i) {
669 DCHECK(0 <= i && i < this->Length());
670 return Config::template struct_get_value<V>(Config::as_struct(this), i);
671 }
672 template<class V> void SetValue(int i, i::Handle<V> x) {
673 DCHECK(0 <= i && i < this->Length());
674 Config::struct_set_value(Config::as_struct(this), i, x);
675 }
676
677 static TypeHandle New(Tag tag, int length, Region* region) {
678 DCHECK(1 <= length);
679 return Config::from_struct(Config::struct_create(tag, length, region));
680 }
681};
682
683
684// -----------------------------------------------------------------------------
685// Union types (internal).
686// A union is a structured type with the following invariants:
687// - its length is at least 2
688// - at most one field is a bitset, and it must go into index 0
689// - no field is a union
690// - no field is a subtype of any other field
691template<class Config>
692class TypeImpl<Config>::UnionType : public StructuralType {
693 public:
694 static UnionHandle New(int length, Region* region) {
695 return Config::template cast<UnionType>(
696 StructuralType::New(StructuralType::kUnionTag, length, region));
697 }
698
699 static UnionType* cast(TypeImpl* type) {
700 DCHECK(type->IsUnion());
701 return static_cast<UnionType*>(type);
702 }
703
704 bool Wellformed();
705};
706
707
708// -----------------------------------------------------------------------------
709// Class types.
710
711template<class Config>
712class TypeImpl<Config>::ClassType : public StructuralType {
713 public:
714 TypeHandle Bound(Region* region) {
715 return Config::is_class(this) ?
716 BitsetType::New(BitsetType::Lub(*Config::as_class(this)), region) :
717 this->Get(0);
718 }
719 i::Handle<i::Map> Map() {
720 return Config::is_class(this) ? Config::as_class(this) :
721 this->template GetValue<i::Map>(1);
722 }
723
724 static ClassHandle New(i::Handle<i::Map> map, Region* region) {
725 ClassHandle type =
726 Config::template cast<ClassType>(Config::from_class(map, region));
727 if (!type->IsClass()) {
728 type = Config::template cast<ClassType>(
729 StructuralType::New(StructuralType::kClassTag, 2, region));
730 type->Set(0, BitsetType::New(BitsetType::Lub(*map), region));
731 type->SetValue(1, map);
732 }
733 return type;
734 }
735
736 static ClassType* cast(TypeImpl* type) {
737 DCHECK(type->IsClass());
738 return static_cast<ClassType*>(type);
739 }
740};
741
742
743// -----------------------------------------------------------------------------
744// Constant types.
745
746template<class Config>
747class TypeImpl<Config>::ConstantType : public StructuralType {
748 public:
749 TypeHandle Bound() { return this->Get(0); }
750 i::Handle<i::Object> Value() { return this->template GetValue<i::Object>(1); }
751
752 static ConstantHandle New(i::Handle<i::Object> value, Region* region) {
753 ConstantHandle type = Config::template cast<ConstantType>(
754 StructuralType::New(StructuralType::kConstantTag, 2, region));
755 type->Set(0, BitsetType::New(BitsetType::Lub(*value), region));
756 type->SetValue(1, value);
757 return type;
758 }
759
760 static ConstantType* cast(TypeImpl* type) {
761 DCHECK(type->IsConstant());
762 return static_cast<ConstantType*>(type);
763 }
764};
765// TODO(neis): Also cache value if numerical.
766// TODO(neis): Allow restricting the representation.
767
768
769// -----------------------------------------------------------------------------
770// Range types.
771
772template<class Config>
773class TypeImpl<Config>::RangeType : public StructuralType {
774 public:
775 int BitsetLub() { return this->Get(0)->AsBitset(); }
776 i::Handle<i::Object> Min() { return this->template GetValue<i::Object>(1); }
777 i::Handle<i::Object> Max() { return this->template GetValue<i::Object>(2); }
778
779 static RangeHandle New(
780 i::Handle<i::Object> min, i::Handle<i::Object> max, Region* region) {
781 DCHECK(min->Number() <= max->Number());
782 RangeHandle type = Config::template cast<RangeType>(
783 StructuralType::New(StructuralType::kRangeTag, 3, region));
784 type->Set(0, BitsetType::New(BitsetType::Lub(Limits(min, max)), region));
785 type->SetValue(1, min);
786 type->SetValue(2, max);
787 return type;
788 }
789
790 static RangeHandle New(Limits lim, Region* region) {
791 return New(lim.min, lim.max, region);
792 }
793
794 static RangeType* cast(TypeImpl* type) {
795 DCHECK(type->IsRange());
796 return static_cast<RangeType*>(type);
797 }
798};
799// TODO(neis): Also cache min and max values.
800// TODO(neis): Allow restricting the representation.
801
802
803// -----------------------------------------------------------------------------
804// Context types.
805
806template<class Config>
807class TypeImpl<Config>::ContextType : public StructuralType {
808 public:
809 TypeHandle Outer() { return this->Get(0); }
810
811 static ContextHandle New(TypeHandle outer, Region* region) {
812 ContextHandle type = Config::template cast<ContextType>(
813 StructuralType::New(StructuralType::kContextTag, 1, region));
814 type->Set(0, outer);
815 return type;
816 }
817
818 static ContextType* cast(TypeImpl* type) {
819 DCHECK(type->IsContext());
820 return static_cast<ContextType*>(type);
821 }
822};
823
824
825// -----------------------------------------------------------------------------
826// Array types.
827
828template<class Config>
829class TypeImpl<Config>::ArrayType : public StructuralType {
830 public:
831 TypeHandle Element() { return this->Get(0); }
832
833 static ArrayHandle New(TypeHandle element, Region* region) {
834 ArrayHandle type = Config::template cast<ArrayType>(
835 StructuralType::New(StructuralType::kArrayTag, 1, region));
836 type->Set(0, element);
837 return type;
838 }
839
840 static ArrayType* cast(TypeImpl* type) {
841 DCHECK(type->IsArray());
842 return static_cast<ArrayType*>(type);
843 }
844};
845
846
847// -----------------------------------------------------------------------------
848// Function types.
849
850template<class Config>
851class TypeImpl<Config>::FunctionType : public StructuralType {
852 public:
853 int Arity() { return this->Length() - 2; }
854 TypeHandle Result() { return this->Get(0); }
855 TypeHandle Receiver() { return this->Get(1); }
856 TypeHandle Parameter(int i) { return this->Get(2 + i); }
857
858 void InitParameter(int i, TypeHandle type) { this->Set(2 + i, type); }
859
860 static FunctionHandle New(
861 TypeHandle result, TypeHandle receiver, int arity, Region* region) {
862 FunctionHandle type = Config::template cast<FunctionType>(
863 StructuralType::New(StructuralType::kFunctionTag, 2 + arity, region));
864 type->Set(0, result);
865 type->Set(1, receiver);
866 return type;
867 }
868
869 static FunctionType* cast(TypeImpl* type) {
870 DCHECK(type->IsFunction());
871 return static_cast<FunctionType*>(type);
872 }
873};
874
875
876// -----------------------------------------------------------------------------
877// Type iterators.
878
879template<class Config> template<class T>
880class TypeImpl<Config>::Iterator {
881 public:
882 bool Done() const { return index_ < 0; }
883 i::Handle<T> Current();
884 void Advance();
885
886 private:
887 template<class> friend class TypeImpl;
888
889 Iterator() : index_(-1) {}
890 explicit Iterator(TypeHandle type) : type_(type), index_(-1) {
891 Advance();
892 }
893
894 inline bool matches(TypeHandle type);
895 inline TypeHandle get_type();
896
897 TypeHandle type_;
898 int index_;
899};
900
901
902// -----------------------------------------------------------------------------
903// Zone-allocated types; they are either (odd) integers to represent bitsets, or
904// (even) pointers to structures for everything else.
905
906struct ZoneTypeConfig {
907 typedef TypeImpl<ZoneTypeConfig> Type;
908 class Base {};
909 typedef void* Struct;
910 typedef i::Zone Region;
911 template<class T> struct Handle { typedef T* type; };
912
913 template<class T> static inline T* handle(T* type);
914 template<class T> static inline T* cast(Type* type);
915
916 static inline bool is_bitset(Type* type);
917 static inline bool is_class(Type* type);
918 static inline bool is_struct(Type* type, int tag);
919
920 static inline Type::bitset as_bitset(Type* type);
921 static inline i::Handle<i::Map> as_class(Type* type);
922 static inline Struct* as_struct(Type* type);
923
924 static inline Type* from_bitset(Type::bitset);
925 static inline Type* from_bitset(Type::bitset, Zone* zone);
926 static inline Type* from_class(i::Handle<i::Map> map, Zone* zone);
927 static inline Type* from_struct(Struct* structured);
928
929 static inline Struct* struct_create(int tag, int length, Zone* zone);
930 static inline void struct_shrink(Struct* structure, int length);
931 static inline int struct_tag(Struct* structure);
932 static inline int struct_length(Struct* structure);
933 static inline Type* struct_get(Struct* structure, int i);
934 static inline void struct_set(Struct* structure, int i, Type* type);
935 template<class V>
936 static inline i::Handle<V> struct_get_value(Struct* structure, int i);
937 template<class V> static inline void struct_set_value(
938 Struct* structure, int i, i::Handle<V> x);
939};
940
941typedef TypeImpl<ZoneTypeConfig> Type;
942
943
944// -----------------------------------------------------------------------------
945// Heap-allocated types; either smis for bitsets, maps for classes, boxes for
946// constants, or fixed arrays for unions.
947
948struct HeapTypeConfig {
949 typedef TypeImpl<HeapTypeConfig> Type;
950 typedef i::Object Base;
951 typedef i::FixedArray Struct;
952 typedef i::Isolate Region;
953 template<class T> struct Handle { typedef i::Handle<T> type; };
954
955 template<class T> static inline i::Handle<T> handle(T* type);
956 template<class T> static inline i::Handle<T> cast(i::Handle<Type> type);
957
958 static inline bool is_bitset(Type* type);
959 static inline bool is_class(Type* type);
960 static inline bool is_struct(Type* type, int tag);
961
962 static inline Type::bitset as_bitset(Type* type);
963 static inline i::Handle<i::Map> as_class(Type* type);
964 static inline i::Handle<Struct> as_struct(Type* type);
965
966 static inline Type* from_bitset(Type::bitset);
967 static inline i::Handle<Type> from_bitset(Type::bitset, Isolate* isolate);
968 static inline i::Handle<Type> from_class(
969 i::Handle<i::Map> map, Isolate* isolate);
970 static inline i::Handle<Type> from_struct(i::Handle<Struct> structure);
971
972 static inline i::Handle<Struct> struct_create(
973 int tag, int length, Isolate* isolate);
974 static inline void struct_shrink(i::Handle<Struct> structure, int length);
975 static inline int struct_tag(i::Handle<Struct> structure);
976 static inline int struct_length(i::Handle<Struct> structure);
977 static inline i::Handle<Type> struct_get(i::Handle<Struct> structure, int i);
978 static inline void struct_set(
979 i::Handle<Struct> structure, int i, i::Handle<Type> type);
980 template<class V>
981 static inline i::Handle<V> struct_get_value(
982 i::Handle<Struct> structure, int i);
983 template<class V>
984 static inline void struct_set_value(
985 i::Handle<Struct> structure, int i, i::Handle<V> x);
986};
987
988typedef TypeImpl<HeapTypeConfig> HeapType;
989
990
991// -----------------------------------------------------------------------------
992// Type bounds. A simple struct to represent a pair of lower/upper types.
993
994template<class Config>
995struct BoundsImpl {
996 typedef TypeImpl<Config> Type;
997 typedef typename Type::TypeHandle TypeHandle;
998 typedef typename Type::Region Region;
999
1000 TypeHandle lower;
1001 TypeHandle upper;
1002
1003 BoundsImpl() {}
1004 explicit BoundsImpl(TypeHandle t) : lower(t), upper(t) {}
1005 BoundsImpl(TypeHandle l, TypeHandle u) : lower(l), upper(u) {
1006 DCHECK(lower->Is(upper));
1007 }
1008
1009 // Unrestricted bounds.
1010 static BoundsImpl Unbounded(Region* region) {
1011 return BoundsImpl(Type::None(region), Type::Any(region));
1012 }
1013
1014 // Meet: both b1 and b2 are known to hold.
1015 static BoundsImpl Both(BoundsImpl b1, BoundsImpl b2, Region* region) {
1016 TypeHandle lower = Type::Union(b1.lower, b2.lower, region);
1017 TypeHandle upper = Type::Intersect(b1.upper, b2.upper, region);
1018 // Lower bounds are considered approximate, correct as necessary.
1019 lower = Type::Intersect(lower, upper, region);
1020 return BoundsImpl(lower, upper);
1021 }
1022
1023 // Join: either b1 or b2 is known to hold.
1024 static BoundsImpl Either(BoundsImpl b1, BoundsImpl b2, Region* region) {
1025 TypeHandle lower = Type::Intersect(b1.lower, b2.lower, region);
1026 TypeHandle upper = Type::Union(b1.upper, b2.upper, region);
1027 return BoundsImpl(lower, upper);
1028 }
1029
1030 static BoundsImpl NarrowLower(BoundsImpl b, TypeHandle t, Region* region) {
1031 // Lower bounds are considered approximate, correct as necessary.
1032 t = Type::Intersect(t, b.upper, region);
1033 TypeHandle lower = Type::Union(b.lower, t, region);
1034 return BoundsImpl(lower, b.upper);
1035 }
1036 static BoundsImpl NarrowUpper(BoundsImpl b, TypeHandle t, Region* region) {
1037 TypeHandle lower = Type::Intersect(b.lower, t, region);
1038 TypeHandle upper = Type::Intersect(b.upper, t, region);
1039 return BoundsImpl(lower, upper);
1040 }
1041
1042 bool Narrows(BoundsImpl that) {
1043 return that.lower->Is(this->lower) && this->upper->Is(that.upper);
1044 }
1045};
1046
1047typedef BoundsImpl<ZoneTypeConfig> Bounds;
1048
1049} } // namespace v8::internal
1050
1051#endif // V8_TYPES_H_