blob: ce0e56560b4cf343b26774fe23314726b3b13371 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
6#define V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
7
8#include "src/allocation.h"
Ben Murdochc5610432016-08-08 18:44:38 +01009#include "src/base/compiler-specific.h"
Ben Murdochda12d292016-06-02 14:46:10 +010010#include "src/crankshaft/compilation-phase.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000011#include "src/crankshaft/lithium.h"
12#include "src/zone.h"
13
14namespace v8 {
15namespace internal {
16
17// Forward declarations.
18class HBasicBlock;
19class HGraph;
20class HPhi;
21class HTracer;
22class HValue;
23class BitVector;
24class StringStream;
25
26class LPlatformChunk;
27class LOperand;
28class LUnallocated;
29class LGap;
30class LParallelMove;
31class LPointerMap;
32
33
34// This class represents a single point of a LOperand's lifetime.
35// For each lithium instruction there are exactly two lifetime positions:
36// the beginning and the end of the instruction. Lifetime positions for
37// different lithium instructions are disjoint.
38class LifetimePosition {
39 public:
40 // Return the lifetime position that corresponds to the beginning of
41 // the instruction with the given index.
42 static LifetimePosition FromInstructionIndex(int index) {
43 return LifetimePosition(index * kStep);
44 }
45
46 // Returns a numeric representation of this lifetime position.
47 int Value() const {
48 return value_;
49 }
50
51 // Returns the index of the instruction to which this lifetime position
52 // corresponds.
53 int InstructionIndex() const {
54 DCHECK(IsValid());
55 return value_ / kStep;
56 }
57
58 // Returns true if this lifetime position corresponds to the instruction
59 // start.
60 bool IsInstructionStart() const {
61 return (value_ & (kStep - 1)) == 0;
62 }
63
64 // Returns the lifetime position for the start of the instruction which
65 // corresponds to this lifetime position.
66 LifetimePosition InstructionStart() const {
67 DCHECK(IsValid());
68 return LifetimePosition(value_ & ~(kStep - 1));
69 }
70
71 // Returns the lifetime position for the end of the instruction which
72 // corresponds to this lifetime position.
73 LifetimePosition InstructionEnd() const {
74 DCHECK(IsValid());
75 return LifetimePosition(InstructionStart().Value() + kStep/2);
76 }
77
78 // Returns the lifetime position for the beginning of the next instruction.
79 LifetimePosition NextInstruction() const {
80 DCHECK(IsValid());
81 return LifetimePosition(InstructionStart().Value() + kStep);
82 }
83
84 // Returns the lifetime position for the beginning of the previous
85 // instruction.
86 LifetimePosition PrevInstruction() const {
87 DCHECK(IsValid());
88 DCHECK(value_ > 1);
89 return LifetimePosition(InstructionStart().Value() - kStep);
90 }
91
92 // Constructs the lifetime position which does not correspond to any
93 // instruction.
94 LifetimePosition() : value_(-1) {}
95
96 // Returns true if this lifetime positions corrensponds to some
97 // instruction.
98 bool IsValid() const { return value_ != -1; }
99
100 static inline LifetimePosition Invalid() { return LifetimePosition(); }
101
102 static inline LifetimePosition MaxPosition() {
103 // We have to use this kind of getter instead of static member due to
104 // crash bug in GDB.
105 return LifetimePosition(kMaxInt);
106 }
107
108 private:
109 static const int kStep = 2;
110
111 // Code relies on kStep being a power of two.
112 STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
113
114 explicit LifetimePosition(int value) : value_(value) { }
115
116 int value_;
117};
118
119
120// Representation of the non-empty interval [start,end[.
121class UseInterval: public ZoneObject {
122 public:
123 UseInterval(LifetimePosition start, LifetimePosition end)
124 : start_(start), end_(end), next_(NULL) {
125 DCHECK(start.Value() < end.Value());
126 }
127
128 LifetimePosition start() const { return start_; }
129 LifetimePosition end() const { return end_; }
130 UseInterval* next() const { return next_; }
131
132 // Split this interval at the given position without effecting the
133 // live range that owns it. The interval must contain the position.
134 void SplitAt(LifetimePosition pos, Zone* zone);
135
136 // If this interval intersects with other return smallest position
137 // that belongs to both of them.
138 LifetimePosition Intersect(const UseInterval* other) const {
139 if (other->start().Value() < start_.Value()) return other->Intersect(this);
140 if (other->start().Value() < end_.Value()) return other->start();
141 return LifetimePosition::Invalid();
142 }
143
144 bool Contains(LifetimePosition point) const {
145 return start_.Value() <= point.Value() && point.Value() < end_.Value();
146 }
147
148 private:
149 void set_start(LifetimePosition start) { start_ = start; }
150 void set_next(UseInterval* next) { next_ = next; }
151
152 LifetimePosition start_;
153 LifetimePosition end_;
154 UseInterval* next_;
155
156 friend class LiveRange; // Assigns to start_.
157};
158
159// Representation of a use position.
160class UsePosition: public ZoneObject {
161 public:
162 UsePosition(LifetimePosition pos, LOperand* operand, LOperand* hint);
163
164 LOperand* operand() const { return operand_; }
165 bool HasOperand() const { return operand_ != NULL; }
166
167 LOperand* hint() const { return hint_; }
168 bool HasHint() const;
169 bool RequiresRegister() const;
170 bool RegisterIsBeneficial() const;
171
172 LifetimePosition pos() const { return pos_; }
173 UsePosition* next() const { return next_; }
174
175 private:
176 void set_next(UsePosition* next) { next_ = next; }
177
178 LOperand* const operand_;
179 LOperand* const hint_;
180 LifetimePosition const pos_;
181 UsePosition* next_;
182 bool requires_reg_;
183 bool register_beneficial_;
184
185 friend class LiveRange;
186};
187
188// Representation of SSA values' live ranges as a collection of (continuous)
189// intervals over the instruction ordering.
190class LiveRange: public ZoneObject {
191 public:
192 static const int kInvalidAssignment = 0x7fffffff;
193
194 LiveRange(int id, Zone* zone);
195
196 UseInterval* first_interval() const { return first_interval_; }
197 UsePosition* first_pos() const { return first_pos_; }
198 LiveRange* parent() const { return parent_; }
199 LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
200 LiveRange* next() const { return next_; }
201 bool IsChild() const { return parent() != NULL; }
202 int id() const { return id_; }
203 bool IsFixed() const { return id_ < 0; }
204 bool IsEmpty() const { return first_interval() == NULL; }
205 LOperand* CreateAssignedOperand(Zone* zone);
206 int assigned_register() const { return assigned_register_; }
207 int spill_start_index() const { return spill_start_index_; }
208 void set_assigned_register(int reg, Zone* zone);
209 void MakeSpilled(Zone* zone);
210
211 // Returns use position in this live range that follows both start
212 // and last processed use position.
213 // Modifies internal state of live range!
214 UsePosition* NextUsePosition(LifetimePosition start);
215
216 // Returns use position for which register is required in this live
217 // range and which follows both start and last processed use position
218 // Modifies internal state of live range!
219 UsePosition* NextRegisterPosition(LifetimePosition start);
220
221 // Returns use position for which register is beneficial in this live
222 // range and which follows both start and last processed use position
223 // Modifies internal state of live range!
224 UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
225
226 // Returns use position for which register is beneficial in this live
227 // range and which precedes start.
228 UsePosition* PreviousUsePositionRegisterIsBeneficial(LifetimePosition start);
229
230 // Can this live range be spilled at this position.
231 bool CanBeSpilled(LifetimePosition pos);
232
233 // Split this live range at the given position which must follow the start of
234 // the range.
235 // All uses following the given position will be moved from this
236 // live range to the result live range.
237 void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
238
239 RegisterKind Kind() const { return kind_; }
240 bool HasRegisterAssigned() const {
241 return assigned_register_ != kInvalidAssignment;
242 }
243 bool IsSpilled() const { return spilled_; }
244
245 LOperand* current_hint_operand() const {
246 DCHECK(current_hint_operand_ == FirstHint());
247 return current_hint_operand_;
248 }
249 LOperand* FirstHint() const {
250 UsePosition* pos = first_pos_;
251 while (pos != NULL && !pos->HasHint()) pos = pos->next();
252 if (pos != NULL) return pos->hint();
253 return NULL;
254 }
255
256 LifetimePosition Start() const {
257 DCHECK(!IsEmpty());
258 return first_interval()->start();
259 }
260
261 LifetimePosition End() const {
262 DCHECK(!IsEmpty());
263 return last_interval_->end();
264 }
265
266 bool HasAllocatedSpillOperand() const;
267 LOperand* GetSpillOperand() const { return spill_operand_; }
268 void SetSpillOperand(LOperand* operand);
269
270 void SetSpillStartIndex(int start) {
271 spill_start_index_ = Min(start, spill_start_index_);
272 }
273
274 bool ShouldBeAllocatedBefore(const LiveRange* other) const;
275 bool CanCover(LifetimePosition position) const;
276 bool Covers(LifetimePosition position);
277 LifetimePosition FirstIntersection(LiveRange* other);
278
279 // Add a new interval or a new use position to this live range.
280 void EnsureInterval(LifetimePosition start,
281 LifetimePosition end,
282 Zone* zone);
283 void AddUseInterval(LifetimePosition start,
284 LifetimePosition end,
285 Zone* zone);
286 void AddUsePosition(LifetimePosition pos,
287 LOperand* operand,
288 LOperand* hint,
289 Zone* zone);
290
291 // Shorten the most recently added interval by setting a new start.
292 void ShortenTo(LifetimePosition start);
293
294#ifdef DEBUG
295 // True if target overlaps an existing interval.
296 bool HasOverlap(UseInterval* target) const;
297 void Verify() const;
298#endif
299
300 private:
301 void ConvertOperands(Zone* zone);
302 UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
303 void AdvanceLastProcessedMarker(UseInterval* to_start_of,
304 LifetimePosition but_not_past) const;
305
306 int id_;
307 bool spilled_;
308 RegisterKind kind_;
309 int assigned_register_;
310 UseInterval* last_interval_;
311 UseInterval* first_interval_;
312 UsePosition* first_pos_;
313 LiveRange* parent_;
314 LiveRange* next_;
315 // This is used as a cache, it doesn't affect correctness.
316 mutable UseInterval* current_interval_;
317 UsePosition* last_processed_use_;
318 // This is used as a cache, it's invalid outside of BuildLiveRanges.
319 LOperand* current_hint_operand_;
320 LOperand* spill_operand_;
321 int spill_start_index_;
322
323 friend class LAllocator; // Assigns to kind_.
324};
325
326
327class LAllocator BASE_EMBEDDED {
328 public:
329 LAllocator(int first_virtual_register, HGraph* graph);
330
Ben Murdochc5610432016-08-08 18:44:38 +0100331 static PRINTF_FORMAT(1, 2) void TraceAlloc(const char* msg, ...);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000332
333 // Checks whether the value of a given virtual register is tagged.
334 bool HasTaggedValue(int virtual_register) const;
335
336 // Returns the register kind required by the given virtual register.
337 RegisterKind RequiredRegisterKind(int virtual_register) const;
338
339 bool Allocate(LChunk* chunk);
340
341 const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
342 const Vector<LiveRange*>* fixed_live_ranges() const {
343 return &fixed_live_ranges_;
344 }
345 const Vector<LiveRange*>* fixed_double_live_ranges() const {
346 return &fixed_double_live_ranges_;
347 }
348
349 LPlatformChunk* chunk() const { return chunk_; }
350 HGraph* graph() const { return graph_; }
351 Isolate* isolate() const { return graph_->isolate(); }
352 Zone* zone() { return &zone_; }
353
354 int GetVirtualRegister() {
355 if (next_virtual_register_ >= LUnallocated::kMaxVirtualRegisters) {
356 allocation_ok_ = false;
357 // Maintain the invariant that we return something below the maximum.
358 return 0;
359 }
360 return next_virtual_register_++;
361 }
362
363 bool AllocationOk() { return allocation_ok_; }
364
365 void MarkAsOsrEntry() {
366 // There can be only one.
367 DCHECK(!has_osr_entry_);
368 // Simply set a flag to find and process instruction later.
369 has_osr_entry_ = true;
370 }
371
372#ifdef DEBUG
373 void Verify() const;
374#endif
375
376 BitVector* assigned_registers() {
377 return assigned_registers_;
378 }
379 BitVector* assigned_double_registers() {
380 return assigned_double_registers_;
381 }
382
383 private:
384 void MeetRegisterConstraints();
385 void ResolvePhis();
386 void BuildLiveRanges();
387 void AllocateGeneralRegisters();
388 void AllocateDoubleRegisters();
389 void ConnectRanges();
390 void ResolveControlFlow();
391 void PopulatePointerMaps();
392 void AllocateRegisters();
393 bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
394 inline bool SafePointsAreInOrder() const;
395
396 // Liveness analysis support.
397 void InitializeLivenessAnalysis();
398 BitVector* ComputeLiveOut(HBasicBlock* block);
399 void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
400 void ProcessInstructions(HBasicBlock* block, BitVector* live);
401 void MeetRegisterConstraints(HBasicBlock* block);
402 void MeetConstraintsBetween(LInstruction* first,
403 LInstruction* second,
404 int gap_index);
405 void ResolvePhis(HBasicBlock* block);
406
407 // Helper methods for building intervals.
408 LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
409 LiveRange* LiveRangeFor(LOperand* operand);
410 void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
411 void Use(LifetimePosition block_start,
412 LifetimePosition position,
413 LOperand* operand,
414 LOperand* hint);
415 void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
416
417 // Helper methods for updating the life range lists.
418 void AddToActive(LiveRange* range);
419 void AddToInactive(LiveRange* range);
420 void AddToUnhandledSorted(LiveRange* range);
421 void AddToUnhandledUnsorted(LiveRange* range);
422 void SortUnhandled();
423 bool UnhandledIsSorted();
424 void ActiveToHandled(LiveRange* range);
425 void ActiveToInactive(LiveRange* range);
426 void InactiveToHandled(LiveRange* range);
427 void InactiveToActive(LiveRange* range);
428 void FreeSpillSlot(LiveRange* range);
429 LOperand* TryReuseSpillSlot(LiveRange* range);
430
431 // Helper methods for allocating registers.
432 bool TryAllocateFreeReg(LiveRange* range);
433 void AllocateBlockedReg(LiveRange* range);
434
435 // Live range splitting helpers.
436
437 // Split the given range at the given position.
438 // If range starts at or after the given position then the
439 // original range is returned.
440 // Otherwise returns the live range that starts at pos and contains
441 // all uses from the original range that follow pos. Uses at pos will
442 // still be owned by the original range after splitting.
443 LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
444
445 // Split the given range in a position from the interval [start, end].
446 LiveRange* SplitBetween(LiveRange* range,
447 LifetimePosition start,
448 LifetimePosition end);
449
450 // Find a lifetime position in the interval [start, end] which
451 // is optimal for splitting: it is either header of the outermost
452 // loop covered by this interval or the latest possible position.
453 LifetimePosition FindOptimalSplitPos(LifetimePosition start,
454 LifetimePosition end);
455
456 // Spill the given life range after position pos.
457 void SpillAfter(LiveRange* range, LifetimePosition pos);
458
459 // Spill the given life range after position [start] and up to position [end].
460 void SpillBetween(LiveRange* range,
461 LifetimePosition start,
462 LifetimePosition end);
463
464 // Spill the given life range after position [start] and up to position [end].
465 // Range is guaranteed to be spilled at least until position [until].
466 void SpillBetweenUntil(LiveRange* range,
467 LifetimePosition start,
468 LifetimePosition until,
469 LifetimePosition end);
470
471 void SplitAndSpillIntersecting(LiveRange* range);
472
473 // If we are trying to spill a range inside the loop try to
474 // hoist spill position out to the point just before the loop.
475 LifetimePosition FindOptimalSpillingPos(LiveRange* range,
476 LifetimePosition pos);
477
478 void Spill(LiveRange* range);
479 bool IsBlockBoundary(LifetimePosition pos);
480
481 // Helper methods for resolving control flow.
482 void ResolveControlFlow(LiveRange* range,
483 HBasicBlock* block,
484 HBasicBlock* pred);
485
486 inline void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
487
488 // Return parallel move that should be used to connect ranges split at the
489 // given position.
490 LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
491
492 // Return the block which contains give lifetime position.
493 HBasicBlock* GetBlock(LifetimePosition pos);
494
495 // Helper methods for the fixed registers.
496 int RegisterCount() const;
497 static int FixedLiveRangeID(int index) { return -index - 1; }
498 static int FixedDoubleLiveRangeID(int index);
499 LiveRange* FixedLiveRangeFor(int index);
500 LiveRange* FixedDoubleLiveRangeFor(int index);
501 LiveRange* LiveRangeFor(int index);
502 HPhi* LookupPhi(LOperand* operand) const;
503 LGap* GetLastGap(HBasicBlock* block);
504
505 const char* RegisterName(int allocation_index);
506
507 inline bool IsGapAt(int index);
508
509 inline LInstruction* InstructionAt(int index);
510
511 inline LGap* GapAt(int index);
512
513 Zone zone_;
514
515 LPlatformChunk* chunk_;
516
517 // During liveness analysis keep a mapping from block id to live_in sets
518 // for blocks already analyzed.
519 ZoneList<BitVector*> live_in_sets_;
520
521 // Liveness analysis results.
522 ZoneList<LiveRange*> live_ranges_;
523
524 // Lists of live ranges
525 EmbeddedVector<LiveRange*, Register::kNumRegisters> fixed_live_ranges_;
526 EmbeddedVector<LiveRange*, DoubleRegister::kMaxNumRegisters>
527 fixed_double_live_ranges_;
528 ZoneList<LiveRange*> unhandled_live_ranges_;
529 ZoneList<LiveRange*> active_live_ranges_;
530 ZoneList<LiveRange*> inactive_live_ranges_;
531 ZoneList<LiveRange*> reusable_slots_;
532
533 // Next virtual register number to be assigned to temporaries.
534 int next_virtual_register_;
535 int first_artificial_register_;
536 GrowableBitVector double_artificial_registers_;
537
538 RegisterKind mode_;
539 int num_registers_;
540 const int* allocatable_register_codes_;
541
542 BitVector* assigned_registers_;
543 BitVector* assigned_double_registers_;
544
545 HGraph* graph_;
546
547 bool has_osr_entry_;
548
549 // Indicates success or failure during register allocation.
550 bool allocation_ok_;
551
552#ifdef DEBUG
553 LifetimePosition allocation_finger_;
554#endif
555
556 DISALLOW_COPY_AND_ASSIGN(LAllocator);
557};
558
559
560class LAllocatorPhase : public CompilationPhase {
561 public:
562 LAllocatorPhase(const char* name, LAllocator* allocator);
563 ~LAllocatorPhase();
564
565 private:
566 LAllocator* allocator_;
567 size_t allocator_zone_start_allocation_size_;
568
569 DISALLOW_COPY_AND_ASSIGN(LAllocatorPhase);
570};
571
572
573} // namespace internal
574} // namespace v8
575
576#endif // V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_