blob: 5408061c3c9c1172459b5e78dbaac32bf18848c0 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <stdlib.h>
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000029#include <iostream> // NOLINT(readability/streams)
Ben Murdochb8a8cc12014-11-26 15:28:44 +000030
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000031#include "src/base/utils/random-number-generator.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000032#include "src/macro-assembler.h"
33#include "src/mips/macro-assembler-mips.h"
34#include "src/mips/simulator-mips.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000035#include "src/v8.h"
36#include "test/cctest/cctest.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000037
38
39using namespace v8::internal;
40
41typedef void* (*F)(int x, int y, int p2, int p3, int p4);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000042typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
Ben Murdochda12d292016-06-02 14:46:10 +010043typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000044
45#define __ masm->
46
47
48static byte to_non_zero(int n) {
49 return static_cast<unsigned>(n) % 255 + 1;
50}
51
52
53static bool all_zeroes(const byte* beg, const byte* end) {
54 CHECK(beg);
55 CHECK(beg <= end);
56 while (beg < end) {
57 if (*beg++ != 0)
58 return false;
59 }
60 return true;
61}
62
63
64TEST(CopyBytes) {
65 CcTest::InitializeVM();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000066 Isolate* isolate = CcTest::i_isolate();
Ben Murdochb8a8cc12014-11-26 15:28:44 +000067 HandleScope handles(isolate);
68
69 const int data_size = 1 * KB;
70 size_t act_size;
71
72 // Allocate two blocks to copy data between.
73 byte* src_buffer =
74 static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
75 CHECK(src_buffer);
76 CHECK(act_size >= static_cast<size_t>(data_size));
77 byte* dest_buffer =
78 static_cast<byte*>(v8::base::OS::Allocate(data_size, &act_size, 0));
79 CHECK(dest_buffer);
80 CHECK(act_size >= static_cast<size_t>(data_size));
81
82 // Storage for a0 and a1.
83 byte* a0_;
84 byte* a1_;
85
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000086 MacroAssembler assembler(isolate, NULL, 0,
87 v8::internal::CodeObjectRequired::kYes);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000088 MacroAssembler* masm = &assembler;
89
90 // Code to be generated: The stuff in CopyBytes followed by a store of a0 and
91 // a1, respectively.
92 __ CopyBytes(a0, a1, a2, a3);
93 __ li(a2, Operand(reinterpret_cast<int>(&a0_)));
94 __ li(a3, Operand(reinterpret_cast<int>(&a1_)));
95 __ sw(a0, MemOperand(a2));
96 __ jr(ra);
97 __ sw(a1, MemOperand(a3));
98
99 CodeDesc desc;
100 masm->GetCode(&desc);
101 Handle<Code> code = isolate->factory()->NewCode(
102 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
103
104 ::F f = FUNCTION_CAST< ::F>(code->entry());
105
106 // Initialise source data with non-zero bytes.
107 for (int i = 0; i < data_size; i++) {
108 src_buffer[i] = to_non_zero(i);
109 }
110
111 const int fuzz = 11;
112
113 for (int size = 0; size < 600; size++) {
114 for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) {
115 for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) {
116 memset(dest_buffer, 0, data_size);
117 CHECK(dest + size < dest_buffer + data_size);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000118 (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast<int>(src),
119 reinterpret_cast<int>(dest), size, 0, 0);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000120 // a0 and a1 should point at the first byte after the copied data.
121 CHECK_EQ(src + size, a0_);
122 CHECK_EQ(dest + size, a1_);
123 // Check that we haven't written outside the target area.
124 CHECK(all_zeroes(dest_buffer, dest));
125 CHECK(all_zeroes(dest + size, dest_buffer + data_size));
126 // Check the target area.
127 CHECK_EQ(0, memcmp(src, dest, size));
128 }
129 }
130 }
131
132 // Check that the source data hasn't been clobbered.
133 for (int i = 0; i < data_size; i++) {
134 CHECK(src_buffer[i] == to_non_zero(i));
135 }
136}
137
138
139static void TestNaN(const char *code) {
140 // NaN value is different on MIPS and x86 architectures, and TEST(NaNx)
141 // tests checks the case where a x86 NaN value is serialized into the
142 // snapshot on the simulator during cross compilation.
143 v8::HandleScope scope(CcTest::isolate());
144 v8::Local<v8::Context> context = CcTest::NewContext(PRINT_EXTENSION);
145 v8::Context::Scope context_scope(context);
146
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000147 v8::Local<v8::Script> script =
148 v8::Script::Compile(context, v8_str(code)).ToLocalChecked();
149 v8::Local<v8::Object> result =
150 v8::Local<v8::Object>::Cast(script->Run(context).ToLocalChecked());
151 i::Handle<i::JSReceiver> o = v8::Utils::OpenHandle(*result);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000152 i::Handle<i::JSArray> array1(reinterpret_cast<i::JSArray*>(*o));
153 i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements());
154 double value = a->get_scalar(0);
155 CHECK(std::isnan(value) &&
156 bit_cast<uint64_t>(value) ==
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000157 bit_cast<uint64_t>(std::numeric_limits<double>::quiet_NaN()));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000158}
159
160
161TEST(NaN0) {
162 TestNaN(
163 "var result;"
164 "for (var i = 0; i < 2; i++) {"
165 " result = new Array(Number.NaN, Number.POSITIVE_INFINITY);"
166 "}"
167 "result;");
168}
169
170
171TEST(NaN1) {
172 TestNaN(
173 "var result;"
174 "for (var i = 0; i < 2; i++) {"
175 " result = [NaN];"
176 "}"
177 "result;");
178}
179
180
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000181TEST(jump_tables4) {
182 // Similar to test-assembler-mips jump_tables1, with extra test for branch
183 // trampoline required before emission of the dd table (where trampolines are
184 // blocked), and proper transition to long-branch mode.
185 // Regression test for v8:4294.
186 CcTest::InitializeVM();
187 Isolate* isolate = CcTest::i_isolate();
188 HandleScope scope(isolate);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100189 MacroAssembler assembler(isolate, nullptr, 0,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000190 v8::internal::CodeObjectRequired::kYes);
191 MacroAssembler* masm = &assembler;
192
193 const int kNumCases = 512;
194 int values[kNumCases];
195 isolate->random_number_generator()->NextBytes(values, sizeof(values));
196 Label labels[kNumCases];
Ben Murdoch097c5b22016-05-18 11:27:45 +0100197 Label near_start, end, done;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000198
Ben Murdoch097c5b22016-05-18 11:27:45 +0100199 __ Push(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000200 __ mov(v0, zero_reg);
201
202 __ Branch(&end);
203 __ bind(&near_start);
204
205 // Generate slightly less than 32K instructions, which will soon require
206 // trampoline for branch distance fixup.
207 for (int i = 0; i < 32768 - 256; ++i) {
208 __ addiu(v0, v0, 1);
209 }
210
Ben Murdoch097c5b22016-05-18 11:27:45 +0100211 __ GenerateSwitchTable(a0, kNumCases,
212 [&labels](size_t i) { return labels + i; });
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000213
214 for (int i = 0; i < kNumCases; ++i) {
215 __ bind(&labels[i]);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100216 __ li(v0, values[i]);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000217 __ Branch(&done);
218 }
219
220 __ bind(&done);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100221 __ Pop(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000222 __ jr(ra);
223 __ nop();
224
225 __ bind(&end);
226 __ Branch(&near_start);
227
228 CodeDesc desc;
229 masm->GetCode(&desc);
230 Handle<Code> code = isolate->factory()->NewCode(
231 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
232#ifdef OBJECT_PRINT
233 code->Print(std::cout);
234#endif
235 F1 f = FUNCTION_CAST<F1>(code->entry());
236 for (int i = 0; i < kNumCases; ++i) {
237 int res =
238 reinterpret_cast<int>(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
239 ::printf("f(%d) = %d\n", i, res);
240 CHECK_EQ(values[i], res);
241 }
242}
243
244
245TEST(jump_tables5) {
246 if (!IsMipsArchVariant(kMips32r6)) return;
247
248 // Similar to test-assembler-mips jump_tables1, with extra test for emitting a
249 // compact branch instruction before emission of the dd table.
250 CcTest::InitializeVM();
251 Isolate* isolate = CcTest::i_isolate();
252 HandleScope scope(isolate);
253 MacroAssembler assembler(isolate, nullptr, 0,
254 v8::internal::CodeObjectRequired::kYes);
255 MacroAssembler* masm = &assembler;
256
257 const int kNumCases = 512;
258 int values[kNumCases];
259 isolate->random_number_generator()->NextBytes(values, sizeof(values));
260 Label labels[kNumCases];
261 Label done;
262
Ben Murdoch097c5b22016-05-18 11:27:45 +0100263 __ Push(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000264
265 {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100266 __ BlockTrampolinePoolFor(kNumCases + 6 + 1);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000267 PredictableCodeSizeScope predictable(
Ben Murdoch097c5b22016-05-18 11:27:45 +0100268 masm, kNumCases * kPointerSize + ((6 + 1) * Assembler::kInstrSize));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000269
Ben Murdoch097c5b22016-05-18 11:27:45 +0100270 __ addiupc(at, 6 + 1);
Ben Murdochda12d292016-06-02 14:46:10 +0100271 __ Lsa(at, at, a0, 2);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100272 __ lw(at, MemOperand(at));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000273 __ jalr(at);
274 __ nop(); // Branch delay slot nop.
275 __ bc(&done);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100276 // A nop instruction must be generated by the forbidden slot guard
277 // (Assembler::dd(Label*)).
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000278 for (int i = 0; i < kNumCases; ++i) {
279 __ dd(&labels[i]);
280 }
281 }
282
283 for (int i = 0; i < kNumCases; ++i) {
284 __ bind(&labels[i]);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100285 __ li(v0, values[i]);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000286 __ jr(ra);
287 __ nop();
288 }
289
290 __ bind(&done);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100291 __ Pop(ra);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000292 __ jr(ra);
293 __ nop();
294
295 CodeDesc desc;
296 masm->GetCode(&desc);
297 Handle<Code> code = isolate->factory()->NewCode(
298 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
299#ifdef OBJECT_PRINT
300 code->Print(std::cout);
301#endif
302 F1 f = FUNCTION_CAST<F1>(code->entry());
303 for (int i = 0; i < kNumCases; ++i) {
304 int32_t res = reinterpret_cast<int32_t>(
305 CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0));
306 ::printf("f(%d) = %d\n", i, res);
307 CHECK_EQ(values[i], res);
308 }
309}
310
311
312static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) {
313 Isolate* isolate = CcTest::i_isolate();
314 HandleScope scope(isolate);
315 MacroAssembler assembler(isolate, nullptr, 0,
316 v8::internal::CodeObjectRequired::kYes);
317 MacroAssembler* masm = &assembler;
318
319 __ Lsa(v0, a0, a1, sa);
320 __ jr(ra);
321 __ nop();
322
323 CodeDesc desc;
324 assembler.GetCode(&desc);
325 Handle<Code> code = isolate->factory()->NewCode(
326 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
327
328 F1 f = FUNCTION_CAST<F1>(code->entry());
329
330 uint32_t res = reinterpret_cast<uint32_t>(
331 CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0));
332
333 return res;
334}
335
336
337TEST(Lsa) {
338 CcTest::InitializeVM();
339 struct TestCaseLsa {
340 int32_t rt;
341 int32_t rs;
342 uint8_t sa;
343 uint32_t expected_res;
344 };
345
346 struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res
347 {0x4, 0x1, 1, 0x6},
348 {0x4, 0x1, 2, 0x8},
349 {0x4, 0x1, 3, 0xc},
350 {0x4, 0x1, 4, 0x14},
351 {0x4, 0x1, 5, 0x24},
352 {0x0, 0x1, 1, 0x2},
353 {0x0, 0x1, 2, 0x4},
354 {0x0, 0x1, 3, 0x8},
355 {0x0, 0x1, 4, 0x10},
356 {0x0, 0x1, 5, 0x20},
357 {0x4, 0x0, 1, 0x4},
358 {0x4, 0x0, 2, 0x4},
359 {0x4, 0x0, 3, 0x4},
360 {0x4, 0x0, 4, 0x4},
361 {0x4, 0x0, 5, 0x4},
362
363 // Shift overflow.
364 {0x4, INT32_MAX, 1, 0x2},
365 {0x4, INT32_MAX >> 1, 2, 0x0},
366 {0x4, INT32_MAX >> 2, 3, 0xfffffffc},
367 {0x4, INT32_MAX >> 3, 4, 0xfffffff4},
368 {0x4, INT32_MAX >> 4, 5, 0xffffffe4},
369
370 // Signed addition overflow.
371 {INT32_MAX - 1, 0x1, 1, 0x80000000},
372 {INT32_MAX - 3, 0x1, 2, 0x80000000},
373 {INT32_MAX - 7, 0x1, 3, 0x80000000},
374 {INT32_MAX - 15, 0x1, 4, 0x80000000},
375 {INT32_MAX - 31, 0x1, 5, 0x80000000},
376
377 // Addition overflow.
378 {-2, 0x1, 1, 0x0},
379 {-4, 0x1, 2, 0x0},
380 {-8, 0x1, 3, 0x0},
381 {-16, 0x1, 4, 0x0},
382 {-32, 0x1, 5, 0x0}};
383
384 size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa);
385 for (size_t i = 0; i < nr_test_cases; ++i) {
386 uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa);
387 PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res,
388 tc[i].rt, tc[i].rs, tc[i].sa);
389 CHECK_EQ(tc[i].expected_res, res);
390 }
391}
392
Ben Murdochc5610432016-08-08 18:44:38 +0100393static const std::vector<uint32_t> cvt_trunc_uint32_test_values() {
Ben Murdochda12d292016-06-02 14:46:10 +0100394 static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00,
395 0x7fffffff, 0x80000000, 0x80000001,
396 0x80ffff00, 0x8fffffff, 0xffffffff};
397 return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
398}
399
Ben Murdochc5610432016-08-08 18:44:38 +0100400static const std::vector<int32_t> cvt_trunc_int32_test_values() {
Ben Murdochda12d292016-06-02 14:46:10 +0100401 static const int32_t kValues[] = {
402 static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
403 static_cast<int32_t>(0x00ffff00), static_cast<int32_t>(0x7fffffff),
404 static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
405 static_cast<int32_t>(0x80ffff00), static_cast<int32_t>(0x8fffffff),
406 static_cast<int32_t>(0xffffffff)};
407 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
408}
409
410// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
Ben Murdochc5610432016-08-08 18:44:38 +0100411#define FOR_INPUTS(ctype, itype, var, test_vector) \
412 std::vector<ctype> var##_vec = test_vector(); \
Ben Murdochda12d292016-06-02 14:46:10 +0100413 for (std::vector<ctype>::iterator var = var##_vec.begin(); \
414 var != var##_vec.end(); ++var)
415
Ben Murdochc5610432016-08-08 18:44:38 +0100416#define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \
417 std::vector<ctype> var##_vec = test_vector(); \
418 std::vector<ctype>::iterator var; \
419 std::vector<ctype>::reverse_iterator var2; \
420 for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
421 var != var##_vec.end(); ++var, ++var2)
422
423#define FOR_ENUM_INPUTS(var, type, test_vector) \
424 FOR_INPUTS(enum type, type, var, test_vector)
425#define FOR_STRUCT_INPUTS(var, type, test_vector) \
426 FOR_INPUTS(struct type, type, var, test_vector)
427#define FOR_UINT32_INPUTS(var, test_vector) \
428 FOR_INPUTS(uint32_t, uint32, var, test_vector)
429#define FOR_INT32_INPUTS(var, test_vector) \
430 FOR_INPUTS(int32_t, int32, var, test_vector)
431#define FOR_INT32_INPUTS2(var, var2, test_vector) \
432 FOR_INPUTS2(int32_t, int32, var, var2, test_vector)
433
434#define FOR_UINT64_INPUTS(var, test_vector) \
435 FOR_INPUTS(uint64_t, uint32, var, test_vector)
Ben Murdochda12d292016-06-02 14:46:10 +0100436
437template <typename RET_TYPE, typename IN_TYPE, typename Func>
438RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) {
439 typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4);
440
441 Isolate* isolate = CcTest::i_isolate();
442 HandleScope scope(isolate);
443 MacroAssembler assm(isolate, nullptr, 0,
444 v8::internal::CodeObjectRequired::kYes);
445 MacroAssembler* masm = &assm;
446
447 __ mtc1(a0, f4);
448 GenerateConvertInstructionFunc(masm);
449 __ mfc1(v0, f2);
450 __ jr(ra);
451 __ nop();
452
453 CodeDesc desc;
454 assm.GetCode(&desc);
455 Handle<Code> code = isolate->factory()->NewCode(
456 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
457
458 F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
459
460 return reinterpret_cast<RET_TYPE>(
461 CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0));
462}
463
464TEST(cvt_s_w_Trunc_uw_s) {
465 CcTest::InitializeVM();
Ben Murdochc5610432016-08-08 18:44:38 +0100466 FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) {
Ben Murdochda12d292016-06-02 14:46:10 +0100467 uint32_t input = *i;
468 CHECK_EQ(static_cast<float>(input),
469 run_Cvt<uint32_t>(input, [](MacroAssembler* masm) {
470 __ cvt_s_w(f0, f4);
471 __ Trunc_uw_s(f2, f0, f1);
472 }));
473 }
474}
475
476TEST(cvt_d_w_Trunc_w_d) {
477 CcTest::InitializeVM();
Ben Murdochc5610432016-08-08 18:44:38 +0100478 FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) {
Ben Murdochda12d292016-06-02 14:46:10 +0100479 int32_t input = *i;
480 CHECK_EQ(static_cast<double>(input),
481 run_Cvt<int32_t>(input, [](MacroAssembler* masm) {
482 __ cvt_d_w(f0, f4);
483 __ Trunc_w_d(f2, f0);
484 }));
485 }
486}
487
Ben Murdochc5610432016-08-08 18:44:38 +0100488static const std::vector<int32_t> overflow_int32_test_values() {
489 static const int32_t kValues[] = {
490 static_cast<int32_t>(0xf0000000), static_cast<int32_t>(0x00000001),
491 static_cast<int32_t>(0xff000000), static_cast<int32_t>(0x0000f000),
492 static_cast<int32_t>(0x0f000000), static_cast<int32_t>(0x991234ab),
493 static_cast<int32_t>(0xb0ffff01), static_cast<int32_t>(0x00006fff),
494 static_cast<int32_t>(0xffffffff)};
495 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
496}
497
498enum OverflowBranchType {
499 kAddBranchOverflow,
500 kSubBranchOverflow,
501};
502
503struct OverflowRegisterCombination {
504 Register dst;
505 Register left;
506 Register right;
507 Register scratch;
508};
509
510static const std::vector<enum OverflowBranchType> overflow_branch_type() {
511 static const enum OverflowBranchType kValues[] = {kAddBranchOverflow,
512 kSubBranchOverflow};
513 return std::vector<enum OverflowBranchType>(&kValues[0],
514 &kValues[arraysize(kValues)]);
515}
516
517static const std::vector<struct OverflowRegisterCombination>
518overflow_register_combination() {
519 static const struct OverflowRegisterCombination kValues[] = {
520 {t0, t1, t2, t3}, {t0, t0, t2, t3}, {t0, t1, t0, t3}, {t0, t1, t1, t3}};
521 return std::vector<struct OverflowRegisterCombination>(
522 &kValues[0], &kValues[arraysize(kValues)]);
523}
524
525template <typename T>
526static bool IsAddOverflow(T x, T y) {
527 DCHECK(std::numeric_limits<T>::is_integer);
528 T max = std::numeric_limits<T>::max();
529 T min = std::numeric_limits<T>::min();
530
531 return (x > 0 && y > (max - x)) || (x < 0 && y < (min - x));
532}
533
534template <typename T>
535static bool IsSubOverflow(T x, T y) {
536 DCHECK(std::numeric_limits<T>::is_integer);
537 T max = std::numeric_limits<T>::max();
538 T min = std::numeric_limits<T>::min();
539
540 return (y > 0 && x < (min + y)) || (y < 0 && x > (max + y));
541}
542
543template <typename IN_TYPE, typename Func>
544static bool runOverflow(IN_TYPE valLeft, IN_TYPE valRight,
545 Func GenerateOverflowInstructions) {
546 typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4);
547
548 Isolate* isolate = CcTest::i_isolate();
549 HandleScope scope(isolate);
550 MacroAssembler assm(isolate, nullptr, 0,
551 v8::internal::CodeObjectRequired::kYes);
552 MacroAssembler* masm = &assm;
553
554 GenerateOverflowInstructions(masm, valLeft, valRight);
555 __ jr(ra);
556 __ nop();
557
558 CodeDesc desc;
559 assm.GetCode(&desc);
560 Handle<Code> code = isolate->factory()->NewCode(
561 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
562
563 F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
564
565 int32_t r =
566 reinterpret_cast<int32_t>(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0));
567
568 DCHECK(r == 0 || r == 1);
569 return r;
570}
571
572TEST(BranchOverflowInt32BothLabels) {
573 FOR_INT32_INPUTS(i, overflow_int32_test_values) {
574 FOR_INT32_INPUTS(j, overflow_int32_test_values) {
575 FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) {
576 FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination,
577 overflow_register_combination) {
578 int32_t ii = *i;
579 int32_t jj = *j;
580 enum OverflowBranchType branchType = *br;
581 struct OverflowRegisterCombination rc = *regComb;
582
583 // If left and right register are same then left and right
584 // test values must also be same, otherwise we skip the test
585 if (rc.left.code() == rc.right.code()) {
586 if (ii != jj) {
587 continue;
588 }
589 }
590
591 bool res1 = runOverflow<int32_t>(
592 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
593 int32_t valRight) {
594 Label overflow, no_overflow, end;
595 __ li(rc.left, valLeft);
596 __ li(rc.right, valRight);
597 switch (branchType) {
598 case kAddBranchOverflow:
599 __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow,
600 &no_overflow, rc.scratch);
601 break;
602 case kSubBranchOverflow:
603 __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow,
604 &no_overflow, rc.scratch);
605 break;
606 }
607 __ li(v0, 2);
608 __ Branch(&end);
609 __ bind(&overflow);
610 __ li(v0, 1);
611 __ Branch(&end);
612 __ bind(&no_overflow);
613 __ li(v0, 0);
614 __ bind(&end);
615 });
616
617 bool res2 = runOverflow<int32_t>(
618 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
619 int32_t valRight) {
620 Label overflow, no_overflow, end;
621 __ li(rc.left, valLeft);
622 switch (branchType) {
623 case kAddBranchOverflow:
624 __ AddBranchOvf(rc.dst, rc.left, Operand(valRight),
625 &overflow, &no_overflow, rc.scratch);
626 break;
627 case kSubBranchOverflow:
628 __ SubBranchOvf(rc.dst, rc.left, Operand(valRight),
629 &overflow, &no_overflow, rc.scratch);
630 break;
631 }
632 __ li(v0, 2);
633 __ Branch(&end);
634 __ bind(&overflow);
635 __ li(v0, 1);
636 __ Branch(&end);
637 __ bind(&no_overflow);
638 __ li(v0, 0);
639 __ bind(&end);
640 });
641
642 switch (branchType) {
643 case kAddBranchOverflow:
644 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1);
645 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2);
646 break;
647 case kSubBranchOverflow:
648 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1);
649 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2);
650 break;
651 default:
652 UNREACHABLE();
653 }
654 }
655 }
656 }
657 }
658}
659
660TEST(BranchOverflowInt32LeftLabel) {
661 FOR_INT32_INPUTS(i, overflow_int32_test_values) {
662 FOR_INT32_INPUTS(j, overflow_int32_test_values) {
663 FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) {
664 FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination,
665 overflow_register_combination) {
666 int32_t ii = *i;
667 int32_t jj = *j;
668 enum OverflowBranchType branchType = *br;
669 struct OverflowRegisterCombination rc = *regComb;
670
671 // If left and right register are same then left and right
672 // test values must also be same, otherwise we skip the test
673 if (rc.left.code() == rc.right.code()) {
674 if (ii != jj) {
675 continue;
676 }
677 }
678
679 bool res1 = runOverflow<int32_t>(
680 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
681 int32_t valRight) {
682 Label overflow, end;
683 __ li(rc.left, valLeft);
684 __ li(rc.right, valRight);
685 switch (branchType) {
686 case kAddBranchOverflow:
687 __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL,
688 rc.scratch);
689 break;
690 case kSubBranchOverflow:
691 __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL,
692 rc.scratch);
693 break;
694 }
695 __ li(v0, 0);
696 __ Branch(&end);
697 __ bind(&overflow);
698 __ li(v0, 1);
699 __ bind(&end);
700 });
701
702 bool res2 = runOverflow<int32_t>(
703 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
704 int32_t valRight) {
705 Label overflow, end;
706 __ li(rc.left, valLeft);
707 switch (branchType) {
708 case kAddBranchOverflow:
709 __ AddBranchOvf(rc.dst, rc.left, Operand(valRight),
710 &overflow, NULL, rc.scratch);
711 break;
712 case kSubBranchOverflow:
713 __ SubBranchOvf(rc.dst, rc.left, Operand(valRight),
714 &overflow, NULL, rc.scratch);
715 break;
716 }
717 __ li(v0, 0);
718 __ Branch(&end);
719 __ bind(&overflow);
720 __ li(v0, 1);
721 __ bind(&end);
722 });
723
724 switch (branchType) {
725 case kAddBranchOverflow:
726 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1);
727 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2);
728 break;
729 case kSubBranchOverflow:
730 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1);
731 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2);
732 break;
733 default:
734 UNREACHABLE();
735 }
736 }
737 }
738 }
739 }
740}
741
742TEST(BranchOverflowInt32RightLabel) {
743 FOR_INT32_INPUTS(i, overflow_int32_test_values) {
744 FOR_INT32_INPUTS(j, overflow_int32_test_values) {
745 FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) {
746 FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination,
747 overflow_register_combination) {
748 int32_t ii = *i;
749 int32_t jj = *j;
750 enum OverflowBranchType branchType = *br;
751 struct OverflowRegisterCombination rc = *regComb;
752
753 // If left and right register are same then left and right
754 // test values must also be same, otherwise we skip the test
755 if (rc.left.code() == rc.right.code()) {
756 if (ii != jj) {
757 continue;
758 }
759 }
760
761 bool res1 = runOverflow<int32_t>(
762 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
763 int32_t valRight) {
764 Label no_overflow, end;
765 __ li(rc.left, valLeft);
766 __ li(rc.right, valRight);
767 switch (branchType) {
768 case kAddBranchOverflow:
769 __ AddBranchOvf(rc.dst, rc.left, rc.right, NULL,
770 &no_overflow, rc.scratch);
771 break;
772 case kSubBranchOverflow:
773 __ SubBranchOvf(rc.dst, rc.left, rc.right, NULL,
774 &no_overflow, rc.scratch);
775 break;
776 }
777 __ li(v0, 1);
778 __ Branch(&end);
779 __ bind(&no_overflow);
780 __ li(v0, 0);
781 __ bind(&end);
782 });
783
784 bool res2 = runOverflow<int32_t>(
785 ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft,
786 int32_t valRight) {
787 Label no_overflow, end;
788 __ li(rc.left, valLeft);
789 switch (branchType) {
790 case kAddBranchOverflow:
791 __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), NULL,
792 &no_overflow, rc.scratch);
793 break;
794 case kSubBranchOverflow:
795 __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), NULL,
796 &no_overflow, rc.scratch);
797 break;
798 }
799 __ li(v0, 1);
800 __ Branch(&end);
801 __ bind(&no_overflow);
802 __ li(v0, 0);
803 __ bind(&end);
804 });
805
806 switch (branchType) {
807 case kAddBranchOverflow:
808 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res1);
809 CHECK_EQ(IsAddOverflow<int32_t>(ii, jj), res2);
810 break;
811 case kSubBranchOverflow:
812 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res1);
813 CHECK_EQ(IsSubOverflow<int32_t>(ii, jj), res2);
814 break;
815 default:
816 UNREACHABLE();
817 }
818 }
819 }
820 }
821 }
822}
823
Ben Murdochda12d292016-06-02 14:46:10 +0100824TEST(min_max_nan) {
825 CcTest::InitializeVM();
826 Isolate* isolate = CcTest::i_isolate();
827 HandleScope scope(isolate);
828 MacroAssembler assembler(isolate, nullptr, 0,
829 v8::internal::CodeObjectRequired::kYes);
830 MacroAssembler* masm = &assembler;
831
832 struct TestFloat {
833 double a;
834 double b;
835 double c;
836 double d;
837 float e;
838 float f;
839 float g;
840 float h;
841 };
842
843 TestFloat test;
844 const double dnan = std::numeric_limits<double>::quiet_NaN();
845 const double dinf = std::numeric_limits<double>::infinity();
846 const double dminf = -std::numeric_limits<double>::infinity();
847 const float fnan = std::numeric_limits<float>::quiet_NaN();
848 const float finf = std::numeric_limits<float>::infinity();
849 const float fminf = std::numeric_limits<float>::infinity();
850 const int kTableLength = 13;
851
852 double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, dinf, dminf,
853 dinf, dnan, 3.0, dinf, dnan, dnan};
854 double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, dinf, 42.0, dinf,
855 dminf, 3.0, dnan, dnan, dinf, dnan};
856 double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0,
857 42.0, dminf, dminf, dnan, dnan,
858 dnan, dnan, dnan};
859 double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf,
860 dinf, dnan, dnan, dnan, dnan, dnan};
861
862 float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf,
863 finf, fnan, 3.0, finf, fnan, fnan};
864 float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf,
865 fminf, 3.0, fnan, fnan, finf, fnan};
866 float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf,
867 fminf, fnan, fnan, fnan, fnan, fnan};
868 float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf,
869 finf, fnan, fnan, fnan, fnan, fnan};
870
871 auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
872 __ bind(nan);
873 __ LoadRoot(at, Heap::kNanValueRootIndex);
874 __ ldc1(dst, FieldMemOperand(at, HeapNumber::kValueOffset));
875 __ Branch(back);
876 };
877
878 auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
879 __ bind(nan);
880 __ Move(dst, fnan);
881 __ Branch(back);
882 };
883
884 Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
885 Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;
886
887 __ push(s6);
888 __ InitializeRootRegister();
889 __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)));
890 __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b)));
891 __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e)));
892 __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f)));
893 __ MinNaNCheck_d(f10, f4, f8, &handle_mind_nan);
894 __ bind(&back_mind_nan);
895 __ MaxNaNCheck_d(f12, f4, f8, &handle_maxd_nan);
896 __ bind(&back_maxd_nan);
897 __ MinNaNCheck_s(f14, f2, f6, &handle_mins_nan);
898 __ bind(&back_mins_nan);
899 __ MaxNaNCheck_s(f16, f2, f6, &handle_maxs_nan);
900 __ bind(&back_maxs_nan);
901 __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c)));
902 __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d)));
903 __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g)));
904 __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h)));
905 __ pop(s6);
906 __ jr(ra);
907 __ nop();
908
909 handle_dnan(f10, &handle_mind_nan, &back_mind_nan);
910 handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan);
911 handle_snan(f14, &handle_mins_nan, &back_mins_nan);
912 handle_snan(f16, &handle_maxs_nan, &back_maxs_nan);
913
914 CodeDesc desc;
915 masm->GetCode(&desc);
916 Handle<Code> code = isolate->factory()->NewCode(
917 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
918 ::F3 f = FUNCTION_CAST<::F3>(code->entry());
919 for (int i = 0; i < kTableLength; i++) {
920 test.a = inputsa[i];
921 test.b = inputsb[i];
922 test.e = inputse[i];
923 test.f = inputsf[i];
924
925 CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0);
926
927 CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
928 CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
929 CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
930 CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
931 }
932}
933
Ben Murdochc5610432016-08-08 18:44:38 +0100934template <typename IN_TYPE, typename Func>
935bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
936 IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
937 typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4);
938
939 Isolate* isolate = CcTest::i_isolate();
940 HandleScope scope(isolate);
941 MacroAssembler assm(isolate, nullptr, 0,
942 v8::internal::CodeObjectRequired::kYes);
943 MacroAssembler* masm = &assm;
944 IN_TYPE res;
945
946 GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
947 __ jr(ra);
948 __ nop();
949
950 CodeDesc desc;
951 assm.GetCode(&desc);
952 Handle<Code> code = isolate->factory()->NewCode(
953 desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
954
955 F_CVT f = FUNCTION_CAST<F_CVT>(code->entry());
956
957 MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
958 CALL_GENERATED_CODE(isolate, f, memory_buffer, 0, 0, 0, 0);
959 MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));
960
961 return res == value;
962}
963
964static const std::vector<uint64_t> unsigned_test_values() {
965 static const uint64_t kValues[] = {
966 0x2180f18a06384414, 0x000a714532102277, 0xbc1acccf180649f0,
967 0x8000000080008000, 0x0000000000000001, 0xffffffffffffffff,
968 };
969 return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
970}
971
972static const std::vector<int32_t> unsigned_test_offset() {
973 static const int32_t kValues[] = {// value, offset
974 -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
975 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
976}
977
978static const std::vector<int32_t> unsigned_test_offset_increment() {
979 static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
980 return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
981}
982
983TEST(Ulh) {
984 CcTest::InitializeVM();
985
986 static const int kBufferSize = 300 * KB;
987 char memory_buffer[kBufferSize];
988 char* buffer_middle = memory_buffer + (kBufferSize / 2);
989
990 FOR_UINT64_INPUTS(i, unsigned_test_values) {
991 FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
992 FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
993 uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
994 int32_t in_offset = *j1 + *k1;
995 int32_t out_offset = *j2 + *k2;
996
997 CHECK_EQ(true, run_Unaligned<uint16_t>(
998 buffer_middle, in_offset, out_offset, value,
999 [](MacroAssembler* masm, int32_t in_offset,
1000 int32_t out_offset) {
1001 __ Ulh(v0, MemOperand(a0, in_offset));
1002 __ Ush(v0, MemOperand(a0, out_offset), v0);
1003 }));
1004 CHECK_EQ(true, run_Unaligned<uint16_t>(
1005 buffer_middle, in_offset, out_offset, value,
1006 [](MacroAssembler* masm, int32_t in_offset,
1007 int32_t out_offset) {
1008 __ mov(t0, a0);
1009 __ Ulh(a0, MemOperand(a0, in_offset));
1010 __ Ush(a0, MemOperand(t0, out_offset), v0);
1011 }));
1012 CHECK_EQ(true, run_Unaligned<uint16_t>(
1013 buffer_middle, in_offset, out_offset, value,
1014 [](MacroAssembler* masm, int32_t in_offset,
1015 int32_t out_offset) {
1016 __ mov(t0, a0);
1017 __ Ulhu(a0, MemOperand(a0, in_offset));
1018 __ Ush(a0, MemOperand(t0, out_offset), t1);
1019 }));
1020 CHECK_EQ(true, run_Unaligned<uint16_t>(
1021 buffer_middle, in_offset, out_offset, value,
1022 [](MacroAssembler* masm, int32_t in_offset,
1023 int32_t out_offset) {
1024 __ Ulhu(v0, MemOperand(a0, in_offset));
1025 __ Ush(v0, MemOperand(a0, out_offset), t1);
1026 }));
1027 }
1028 }
1029 }
1030}
1031
1032TEST(Ulh_bitextension) {
1033 CcTest::InitializeVM();
1034
1035 static const int kBufferSize = 300 * KB;
1036 char memory_buffer[kBufferSize];
1037 char* buffer_middle = memory_buffer + (kBufferSize / 2);
1038
1039 FOR_UINT64_INPUTS(i, unsigned_test_values) {
1040 FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
1041 FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
1042 uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
1043 int32_t in_offset = *j1 + *k1;
1044 int32_t out_offset = *j2 + *k2;
1045
1046 CHECK_EQ(true, run_Unaligned<uint16_t>(
1047 buffer_middle, in_offset, out_offset, value,
1048 [](MacroAssembler* masm, int32_t in_offset,
1049 int32_t out_offset) {
1050 Label success, fail, end, different;
1051 __ Ulh(t0, MemOperand(a0, in_offset));
1052 __ Ulhu(t1, MemOperand(a0, in_offset));
1053 __ Branch(&different, ne, t0, Operand(t1));
1054
1055 // If signed and unsigned values are same, check
1056 // the upper bits to see if they are zero
1057 __ sra(t0, t0, 15);
1058 __ Branch(&success, eq, t0, Operand(zero_reg));
1059 __ Branch(&fail);
1060
1061 // If signed and unsigned values are different,
1062 // check that the upper bits are complementary
1063 __ bind(&different);
1064 __ sra(t1, t1, 15);
1065 __ Branch(&fail, ne, t1, Operand(1));
1066 __ sra(t0, t0, 15);
1067 __ addiu(t0, t0, 1);
1068 __ Branch(&fail, ne, t0, Operand(zero_reg));
1069 // Fall through to success
1070
1071 __ bind(&success);
1072 __ Ulh(t0, MemOperand(a0, in_offset));
1073 __ Ush(t0, MemOperand(a0, out_offset), v0);
1074 __ Branch(&end);
1075 __ bind(&fail);
1076 __ Ush(zero_reg, MemOperand(a0, out_offset), v0);
1077 __ bind(&end);
1078 }));
1079 }
1080 }
1081 }
1082}
1083
1084TEST(Ulw) {
1085 CcTest::InitializeVM();
1086
1087 static const int kBufferSize = 300 * KB;
1088 char memory_buffer[kBufferSize];
1089 char* buffer_middle = memory_buffer + (kBufferSize / 2);
1090
1091 FOR_UINT64_INPUTS(i, unsigned_test_values) {
1092 FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
1093 FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
1094 uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
1095 int32_t in_offset = *j1 + *k1;
1096 int32_t out_offset = *j2 + *k2;
1097
1098 CHECK_EQ(true, run_Unaligned<uint32_t>(
1099 buffer_middle, in_offset, out_offset, value,
1100 [](MacroAssembler* masm, int32_t in_offset,
1101 int32_t out_offset) {
1102 __ Ulw(v0, MemOperand(a0, in_offset));
1103 __ Usw(v0, MemOperand(a0, out_offset));
1104 }));
1105 CHECK_EQ(true,
1106 run_Unaligned<uint32_t>(
1107 buffer_middle, in_offset, out_offset, (uint32_t)value,
1108 [](MacroAssembler* masm, int32_t in_offset,
1109 int32_t out_offset) {
1110 __ mov(t0, a0);
1111 __ Ulw(a0, MemOperand(a0, in_offset));
1112 __ Usw(a0, MemOperand(t0, out_offset));
1113 }));
1114 }
1115 }
1116 }
1117}
1118
1119TEST(Ulwc1) {
1120 CcTest::InitializeVM();
1121
1122 static const int kBufferSize = 300 * KB;
1123 char memory_buffer[kBufferSize];
1124 char* buffer_middle = memory_buffer + (kBufferSize / 2);
1125
1126 FOR_UINT64_INPUTS(i, unsigned_test_values) {
1127 FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
1128 FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
1129 float value = static_cast<float>(*i & 0xFFFFFFFF);
1130 int32_t in_offset = *j1 + *k1;
1131 int32_t out_offset = *j2 + *k2;
1132
1133 CHECK_EQ(true, run_Unaligned<float>(
1134 buffer_middle, in_offset, out_offset, value,
1135 [](MacroAssembler* masm, int32_t in_offset,
1136 int32_t out_offset) {
1137 __ Ulwc1(f0, MemOperand(a0, in_offset), t0);
1138 __ Uswc1(f0, MemOperand(a0, out_offset), t0);
1139 }));
1140 }
1141 }
1142 }
1143}
1144
1145TEST(Uldc1) {
1146 CcTest::InitializeVM();
1147
1148 static const int kBufferSize = 300 * KB;
1149 char memory_buffer[kBufferSize];
1150 char* buffer_middle = memory_buffer + (kBufferSize / 2);
1151
1152 FOR_UINT64_INPUTS(i, unsigned_test_values) {
1153 FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
1154 FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
1155 double value = static_cast<double>(*i);
1156 int32_t in_offset = *j1 + *k1;
1157 int32_t out_offset = *j2 + *k2;
1158
1159 CHECK_EQ(true, run_Unaligned<double>(
1160 buffer_middle, in_offset, out_offset, value,
1161 [](MacroAssembler* masm, int32_t in_offset,
1162 int32_t out_offset) {
1163 __ Uldc1(f0, MemOperand(a0, in_offset), t0);
1164 __ Usdc1(f0, MemOperand(a0, out_offset), t0);
1165 }));
1166 }
1167 }
1168 }
1169}
1170
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001171#undef __