blob: 0b3d72945f59c81024075b9829eed4e5be86128b [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <assert.h> // For assert
6#include <limits.h> // For LONG_MIN, LONG_MAX.
7
8#include "src/v8.h"
9
10#if V8_TARGET_ARCH_PPC
11
12#include "src/base/bits.h"
13#include "src/base/division-by-constant.h"
14#include "src/bootstrapper.h"
15#include "src/codegen.h"
16#include "src/cpu-profiler.h"
17#include "src/debug.h"
18#include "src/isolate-inl.h"
19#include "src/runtime/runtime.h"
20
21namespace v8 {
22namespace internal {
23
24MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
25 : Assembler(arg_isolate, buffer, size),
26 generating_stub_(false),
27 has_frame_(false) {
28 if (isolate() != NULL) {
29 code_object_ =
30 Handle<Object>(isolate()->heap()->undefined_value(), isolate());
31 }
32}
33
34
35void MacroAssembler::Jump(Register target) {
36 mtctr(target);
37 bctr();
38}
39
40
41void MacroAssembler::JumpToJSEntry(Register target) {
42 Move(ip, target);
43 Jump(ip);
44}
45
46
47void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
48 Condition cond, CRegister cr) {
49 Label skip;
50
51 if (cond != al) b(NegateCondition(cond), &skip, cr);
52
53 DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY);
54
55 mov(ip, Operand(target, rmode));
56 mtctr(ip);
57 bctr();
58
59 bind(&skip);
60}
61
62
63void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
64 CRegister cr) {
65 DCHECK(!RelocInfo::IsCodeTarget(rmode));
66 Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr);
67}
68
69
70void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
71 Condition cond) {
72 DCHECK(RelocInfo::IsCodeTarget(rmode));
73 // 'code' is always generated ppc code, never THUMB code
74 AllowDeferredHandleDereference embedding_raw_address;
75 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
76}
77
78
79int MacroAssembler::CallSize(Register target) { return 2 * kInstrSize; }
80
81
82void MacroAssembler::Call(Register target) {
83 BlockTrampolinePoolScope block_trampoline_pool(this);
84 Label start;
85 bind(&start);
86
87 // Statement positions are expected to be recorded when the target
88 // address is loaded.
89 positions_recorder()->WriteRecordedPositions();
90
91 // branch via link register and set LK bit for return point
92 mtctr(target);
93 bctrl();
94
95 DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start));
96}
97
98
99void MacroAssembler::CallJSEntry(Register target) {
100 DCHECK(target.is(ip));
101 Call(target);
102}
103
104
105int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode,
106 Condition cond) {
107 Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
108 return (2 + instructions_required_for_mov(mov_operand)) * kInstrSize;
109}
110
111
112int MacroAssembler::CallSizeNotPredictableCodeSize(Address target,
113 RelocInfo::Mode rmode,
114 Condition cond) {
115 return (2 + kMovInstructionsNoConstantPool) * kInstrSize;
116}
117
118
119void MacroAssembler::Call(Address target, RelocInfo::Mode rmode,
120 Condition cond) {
121 BlockTrampolinePoolScope block_trampoline_pool(this);
122 DCHECK(cond == al);
123
124#ifdef DEBUG
125 // Check the expected size before generating code to ensure we assume the same
126 // constant pool availability (e.g., whether constant pool is full or not).
127 int expected_size = CallSize(target, rmode, cond);
128 Label start;
129 bind(&start);
130#endif
131
132 // Statement positions are expected to be recorded when the target
133 // address is loaded.
134 positions_recorder()->WriteRecordedPositions();
135
136 // This can likely be optimized to make use of bc() with 24bit relative
137 //
138 // RecordRelocInfo(x.rmode_, x.imm_);
139 // bc( BA, .... offset, LKset);
140 //
141
142 mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode));
143 mtctr(ip);
144 bctrl();
145
146 DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
147}
148
149
150int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode,
151 TypeFeedbackId ast_id, Condition cond) {
152 AllowDeferredHandleDereference using_raw_address;
153 return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
154}
155
156
157void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
158 TypeFeedbackId ast_id, Condition cond) {
159 BlockTrampolinePoolScope block_trampoline_pool(this);
160 DCHECK(RelocInfo::IsCodeTarget(rmode));
161
162#ifdef DEBUG
163 // Check the expected size before generating code to ensure we assume the same
164 // constant pool availability (e.g., whether constant pool is full or not).
165 int expected_size = CallSize(code, rmode, ast_id, cond);
166 Label start;
167 bind(&start);
168#endif
169
170 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
171 SetRecordedAstId(ast_id);
172 rmode = RelocInfo::CODE_TARGET_WITH_ID;
173 }
174 AllowDeferredHandleDereference using_raw_address;
175 Call(reinterpret_cast<Address>(code.location()), rmode, cond);
176 DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
177}
178
179
180void MacroAssembler::Ret(Condition cond) {
181 DCHECK(cond == al);
182 blr();
183}
184
185
186void MacroAssembler::Drop(int count, Condition cond) {
187 DCHECK(cond == al);
188 if (count > 0) {
189 Add(sp, sp, count * kPointerSize, r0);
190 }
191}
192
193
194void MacroAssembler::Ret(int drop, Condition cond) {
195 Drop(drop, cond);
196 Ret(cond);
197}
198
199
200void MacroAssembler::Call(Label* target) { b(target, SetLK); }
201
202
203void MacroAssembler::Push(Handle<Object> handle) {
204 mov(r0, Operand(handle));
205 push(r0);
206}
207
208
209void MacroAssembler::Move(Register dst, Handle<Object> value) {
210 AllowDeferredHandleDereference smi_check;
211 if (value->IsSmi()) {
212 LoadSmiLiteral(dst, reinterpret_cast<Smi*>(*value));
213 } else {
214 DCHECK(value->IsHeapObject());
215 if (isolate()->heap()->InNewSpace(*value)) {
216 Handle<Cell> cell = isolate()->factory()->NewCell(value);
217 mov(dst, Operand(cell));
218 LoadP(dst, FieldMemOperand(dst, Cell::kValueOffset));
219 } else {
220 mov(dst, Operand(value));
221 }
222 }
223}
224
225
226void MacroAssembler::Move(Register dst, Register src, Condition cond) {
227 DCHECK(cond == al);
228 if (!dst.is(src)) {
229 mr(dst, src);
230 }
231}
232
233
234void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
235 if (!dst.is(src)) {
236 fmr(dst, src);
237 }
238}
239
240
241void MacroAssembler::MultiPush(RegList regs) {
242 int16_t num_to_push = NumberOfBitsSet(regs);
243 int16_t stack_offset = num_to_push * kPointerSize;
244
245 subi(sp, sp, Operand(stack_offset));
246 for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
247 if ((regs & (1 << i)) != 0) {
248 stack_offset -= kPointerSize;
249 StoreP(ToRegister(i), MemOperand(sp, stack_offset));
250 }
251 }
252}
253
254
255void MacroAssembler::MultiPop(RegList regs) {
256 int16_t stack_offset = 0;
257
258 for (int16_t i = 0; i < kNumRegisters; i++) {
259 if ((regs & (1 << i)) != 0) {
260 LoadP(ToRegister(i), MemOperand(sp, stack_offset));
261 stack_offset += kPointerSize;
262 }
263 }
264 addi(sp, sp, Operand(stack_offset));
265}
266
267
268void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
269 Condition cond) {
270 DCHECK(cond == al);
271 LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
272}
273
274
275void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index,
276 Condition cond) {
277 DCHECK(cond == al);
278 StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
279}
280
281
282void MacroAssembler::InNewSpace(Register object, Register scratch,
283 Condition cond, Label* branch) {
284 // N.B. scratch may be same register as object
285 DCHECK(cond == eq || cond == ne);
286 mov(r0, Operand(ExternalReference::new_space_mask(isolate())));
287 and_(scratch, object, r0);
288 mov(r0, Operand(ExternalReference::new_space_start(isolate())));
289 cmp(scratch, r0);
290 b(cond, branch);
291}
292
293
294void MacroAssembler::RecordWriteField(
295 Register object, int offset, Register value, Register dst,
296 LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
297 RememberedSetAction remembered_set_action, SmiCheck smi_check,
298 PointersToHereCheck pointers_to_here_check_for_value) {
299 // First, check if a write barrier is even needed. The tests below
300 // catch stores of Smis.
301 Label done;
302
303 // Skip barrier if writing a smi.
304 if (smi_check == INLINE_SMI_CHECK) {
305 JumpIfSmi(value, &done);
306 }
307
308 // Although the object register is tagged, the offset is relative to the start
309 // of the object, so so offset must be a multiple of kPointerSize.
310 DCHECK(IsAligned(offset, kPointerSize));
311
312 Add(dst, object, offset - kHeapObjectTag, r0);
313 if (emit_debug_code()) {
314 Label ok;
315 andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
316 beq(&ok, cr0);
317 stop("Unaligned cell in write barrier");
318 bind(&ok);
319 }
320
321 RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action,
322 OMIT_SMI_CHECK, pointers_to_here_check_for_value);
323
324 bind(&done);
325
326 // Clobber clobbered input registers when running with the debug-code flag
327 // turned on to provoke errors.
328 if (emit_debug_code()) {
329 mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4)));
330 mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8)));
331 }
332}
333
334
335// Will clobber 4 registers: object, map, dst, ip. The
336// register 'object' contains a heap object pointer.
337void MacroAssembler::RecordWriteForMap(Register object, Register map,
338 Register dst,
339 LinkRegisterStatus lr_status,
340 SaveFPRegsMode fp_mode) {
341 if (emit_debug_code()) {
342 LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset));
343 Cmpi(dst, Operand(isolate()->factory()->meta_map()), r0);
344 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
345 }
346
347 if (!FLAG_incremental_marking) {
348 return;
349 }
350
351 if (emit_debug_code()) {
352 LoadP(ip, FieldMemOperand(object, HeapObject::kMapOffset));
353 cmp(ip, map);
354 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
355 }
356
357 Label done;
358
359 // A single check of the map's pages interesting flag suffices, since it is
360 // only set during incremental collection, and then it's also guaranteed that
361 // the from object's page's interesting flag is also set. This optimization
362 // relies on the fact that maps can never be in new space.
363 CheckPageFlag(map,
364 map, // Used as scratch.
365 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
366
367 addi(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
368 if (emit_debug_code()) {
369 Label ok;
370 andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
371 beq(&ok, cr0);
372 stop("Unaligned cell in write barrier");
373 bind(&ok);
374 }
375
376 // Record the actual write.
377 if (lr_status == kLRHasNotBeenSaved) {
378 mflr(r0);
379 push(r0);
380 }
381 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
382 fp_mode);
383 CallStub(&stub);
384 if (lr_status == kLRHasNotBeenSaved) {
385 pop(r0);
386 mtlr(r0);
387 }
388
389 bind(&done);
390
391 // Count number of write barriers in generated code.
392 isolate()->counters()->write_barriers_static()->Increment();
393 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst);
394
395 // Clobber clobbered registers when running with the debug-code flag
396 // turned on to provoke errors.
397 if (emit_debug_code()) {
398 mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12)));
399 mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16)));
400 }
401}
402
403
404// Will clobber 4 registers: object, address, scratch, ip. The
405// register 'object' contains a heap object pointer. The heap object
406// tag is shifted away.
407void MacroAssembler::RecordWrite(
408 Register object, Register address, Register value,
409 LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode,
410 RememberedSetAction remembered_set_action, SmiCheck smi_check,
411 PointersToHereCheck pointers_to_here_check_for_value) {
412 DCHECK(!object.is(value));
413 if (emit_debug_code()) {
414 LoadP(r0, MemOperand(address));
415 cmp(r0, value);
416 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
417 }
418
419 if (remembered_set_action == OMIT_REMEMBERED_SET &&
420 !FLAG_incremental_marking) {
421 return;
422 }
423
424 // First, check if a write barrier is even needed. The tests below
425 // catch stores of smis and stores into the young generation.
426 Label done;
427
428 if (smi_check == INLINE_SMI_CHECK) {
429 JumpIfSmi(value, &done);
430 }
431
432 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
433 CheckPageFlag(value,
434 value, // Used as scratch.
435 MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
436 }
437 CheckPageFlag(object,
438 value, // Used as scratch.
439 MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
440
441 // Record the actual write.
442 if (lr_status == kLRHasNotBeenSaved) {
443 mflr(r0);
444 push(r0);
445 }
446 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
447 fp_mode);
448 CallStub(&stub);
449 if (lr_status == kLRHasNotBeenSaved) {
450 pop(r0);
451 mtlr(r0);
452 }
453
454 bind(&done);
455
456 // Count number of write barriers in generated code.
457 isolate()->counters()->write_barriers_static()->Increment();
458 IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip,
459 value);
460
461 // Clobber clobbered registers when running with the debug-code flag
462 // turned on to provoke errors.
463 if (emit_debug_code()) {
464 mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12)));
465 mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16)));
466 }
467}
468
469
470void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
471 Register address, Register scratch,
472 SaveFPRegsMode fp_mode,
473 RememberedSetFinalAction and_then) {
474 Label done;
475 if (emit_debug_code()) {
476 Label ok;
477 JumpIfNotInNewSpace(object, scratch, &ok);
478 stop("Remembered set pointer is in new space");
479 bind(&ok);
480 }
481 // Load store buffer top.
482 ExternalReference store_buffer =
483 ExternalReference::store_buffer_top(isolate());
484 mov(ip, Operand(store_buffer));
485 LoadP(scratch, MemOperand(ip));
486 // Store pointer to buffer and increment buffer top.
487 StoreP(address, MemOperand(scratch));
488 addi(scratch, scratch, Operand(kPointerSize));
489 // Write back new top of buffer.
490 StoreP(scratch, MemOperand(ip));
491 // Call stub on end of buffer.
492 // Check for end of buffer.
493 mov(r0, Operand(StoreBuffer::kStoreBufferOverflowBit));
494 and_(r0, scratch, r0, SetRC);
495
496 if (and_then == kFallThroughAtEnd) {
497 beq(&done, cr0);
498 } else {
499 DCHECK(and_then == kReturnAtEnd);
500 beq(&done, cr0);
501 }
502 mflr(r0);
503 push(r0);
504 StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
505 CallStub(&store_buffer_overflow);
506 pop(r0);
507 mtlr(r0);
508 bind(&done);
509 if (and_then == kReturnAtEnd) {
510 Ret();
511 }
512}
513
514
515void MacroAssembler::PushFixedFrame(Register marker_reg) {
516 mflr(r0);
517#if V8_OOL_CONSTANT_POOL
518 if (marker_reg.is_valid()) {
519 Push(r0, fp, kConstantPoolRegister, cp, marker_reg);
520 } else {
521 Push(r0, fp, kConstantPoolRegister, cp);
522 }
523#else
524 if (marker_reg.is_valid()) {
525 Push(r0, fp, cp, marker_reg);
526 } else {
527 Push(r0, fp, cp);
528 }
529#endif
530}
531
532
533void MacroAssembler::PopFixedFrame(Register marker_reg) {
534#if V8_OOL_CONSTANT_POOL
535 if (marker_reg.is_valid()) {
536 Pop(r0, fp, kConstantPoolRegister, cp, marker_reg);
537 } else {
538 Pop(r0, fp, kConstantPoolRegister, cp);
539 }
540#else
541 if (marker_reg.is_valid()) {
542 Pop(r0, fp, cp, marker_reg);
543 } else {
544 Pop(r0, fp, cp);
545 }
546#endif
547 mtlr(r0);
548}
549
550
551// Push and pop all registers that can hold pointers.
552void MacroAssembler::PushSafepointRegisters() {
553 // Safepoints expect a block of kNumSafepointRegisters values on the
554 // stack, so adjust the stack for unsaved registers.
555 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
556 DCHECK(num_unsaved >= 0);
557 if (num_unsaved > 0) {
558 subi(sp, sp, Operand(num_unsaved * kPointerSize));
559 }
560 MultiPush(kSafepointSavedRegisters);
561}
562
563
564void MacroAssembler::PopSafepointRegisters() {
565 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
566 MultiPop(kSafepointSavedRegisters);
567 if (num_unsaved > 0) {
568 addi(sp, sp, Operand(num_unsaved * kPointerSize));
569 }
570}
571
572
573void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
574 StoreP(src, SafepointRegisterSlot(dst));
575}
576
577
578void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
579 LoadP(dst, SafepointRegisterSlot(src));
580}
581
582
583int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
584 // The registers are pushed starting with the highest encoding,
585 // which means that lowest encodings are closest to the stack pointer.
586 RegList regs = kSafepointSavedRegisters;
587 int index = 0;
588
589 DCHECK(reg_code >= 0 && reg_code < kNumRegisters);
590
591 for (int16_t i = 0; i < reg_code; i++) {
592 if ((regs & (1 << i)) != 0) {
593 index++;
594 }
595 }
596
597 return index;
598}
599
600
601MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
602 return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
603}
604
605
606MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
607 // General purpose registers are pushed last on the stack.
608 int doubles_size = DoubleRegister::NumAllocatableRegisters() * kDoubleSize;
609 int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
610 return MemOperand(sp, doubles_size + register_offset);
611}
612
613
614void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst,
615 const DoubleRegister src) {
616 Label done;
617
618 // Test for NaN
619 fcmpu(src, src);
620
621 if (dst.is(src)) {
622 bordered(&done);
623 } else {
624 Label is_nan;
625 bunordered(&is_nan);
626 fmr(dst, src);
627 b(&done);
628 bind(&is_nan);
629 }
630
631 // Replace with canonical NaN.
632 double nan_value = FixedDoubleArray::canonical_not_the_hole_nan_as_double();
633 LoadDoubleLiteral(dst, nan_value, r0);
634
635 bind(&done);
636}
637
638
639void MacroAssembler::ConvertIntToDouble(Register src,
640 DoubleRegister double_dst) {
641 MovIntToDouble(double_dst, src, r0);
642 fcfid(double_dst, double_dst);
643}
644
645
646void MacroAssembler::ConvertUnsignedIntToDouble(Register src,
647 DoubleRegister double_dst) {
648 MovUnsignedIntToDouble(double_dst, src, r0);
649 fcfid(double_dst, double_dst);
650}
651
652
653void MacroAssembler::ConvertIntToFloat(const DoubleRegister dst,
654 const Register src,
655 const Register int_scratch) {
656 MovIntToDouble(dst, src, int_scratch);
657 fcfid(dst, dst);
658 frsp(dst, dst);
659}
660
661
662void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input,
663#if !V8_TARGET_ARCH_PPC64
664 const Register dst_hi,
665#endif
666 const Register dst,
667 const DoubleRegister double_dst,
668 FPRoundingMode rounding_mode) {
669 if (rounding_mode == kRoundToZero) {
670 fctidz(double_dst, double_input);
671 } else {
672 SetRoundingMode(rounding_mode);
673 fctid(double_dst, double_input);
674 ResetRoundingMode();
675 }
676
677 MovDoubleToInt64(
678#if !V8_TARGET_ARCH_PPC64
679 dst_hi,
680#endif
681 dst, double_dst);
682}
683
684
685#if V8_OOL_CONSTANT_POOL
686void MacroAssembler::LoadConstantPoolPointerRegister(
687 CodeObjectAccessMethod access_method, int ip_code_entry_delta) {
688 Register base;
689 int constant_pool_offset = Code::kConstantPoolOffset - Code::kHeaderSize;
690 if (access_method == CAN_USE_IP) {
691 base = ip;
692 constant_pool_offset += ip_code_entry_delta;
693 } else {
694 DCHECK(access_method == CONSTRUCT_INTERNAL_REFERENCE);
695 base = kConstantPoolRegister;
696 ConstantPoolUnavailableScope constant_pool_unavailable(this);
697
698 // CheckBuffer() is called too frequently. This will pre-grow
699 // the buffer if needed to avoid spliting the relocation and instructions
700 EnsureSpaceFor(kMovInstructionsNoConstantPool * kInstrSize);
701
702 uintptr_t code_start = reinterpret_cast<uintptr_t>(pc_) - pc_offset();
703 mov(base, Operand(code_start, RelocInfo::INTERNAL_REFERENCE));
704 }
705 LoadP(kConstantPoolRegister, MemOperand(base, constant_pool_offset));
706}
707#endif
708
709
710void MacroAssembler::StubPrologue(int prologue_offset) {
711 LoadSmiLiteral(r11, Smi::FromInt(StackFrame::STUB));
712 PushFixedFrame(r11);
713 // Adjust FP to point to saved FP.
714 addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
715#if V8_OOL_CONSTANT_POOL
716 // ip contains prologue address
717 LoadConstantPoolPointerRegister(CAN_USE_IP, -prologue_offset);
718 set_ool_constant_pool_available(true);
719#endif
720}
721
722
723void MacroAssembler::Prologue(bool code_pre_aging, int prologue_offset) {
724 {
725 PredictableCodeSizeScope predictible_code_size_scope(
726 this, kNoCodeAgeSequenceLength);
727 Assembler::BlockTrampolinePoolScope block_trampoline_pool(this);
728 // The following instructions must remain together and unmodified
729 // for code aging to work properly.
730 if (code_pre_aging) {
731 // Pre-age the code.
732 // This matches the code found in PatchPlatformCodeAge()
733 Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
734 intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
735 // Don't use Call -- we need to preserve ip and lr
736 nop(); // marker to detect sequence (see IsOld)
737 mov(r3, Operand(target));
738 Jump(r3);
739 for (int i = 0; i < kCodeAgingSequenceNops; i++) {
740 nop();
741 }
742 } else {
743 // This matches the code found in GetNoCodeAgeSequence()
744 PushFixedFrame(r4);
745 // Adjust fp to point to saved fp.
746 addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
747 for (int i = 0; i < kNoCodeAgeSequenceNops; i++) {
748 nop();
749 }
750 }
751 }
752#if V8_OOL_CONSTANT_POOL
753 // ip contains prologue address
754 LoadConstantPoolPointerRegister(CAN_USE_IP, -prologue_offset);
755 set_ool_constant_pool_available(true);
756#endif
757}
758
759
760void MacroAssembler::EnterFrame(StackFrame::Type type,
761 bool load_constant_pool_pointer_reg) {
762 if (FLAG_enable_ool_constant_pool && load_constant_pool_pointer_reg) {
763 PushFixedFrame();
764#if V8_OOL_CONSTANT_POOL
765 // This path should not rely on ip containing code entry.
766 LoadConstantPoolPointerRegister(CONSTRUCT_INTERNAL_REFERENCE);
767#endif
768 LoadSmiLiteral(ip, Smi::FromInt(type));
769 push(ip);
770 } else {
771 LoadSmiLiteral(ip, Smi::FromInt(type));
772 PushFixedFrame(ip);
773 }
774 // Adjust FP to point to saved FP.
775 addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
776
777 mov(r0, Operand(CodeObject()));
778 push(r0);
779}
780
781
782int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) {
783#if V8_OOL_CONSTANT_POOL
784 ConstantPoolUnavailableScope constant_pool_unavailable(this);
785#endif
786 // r3: preserved
787 // r4: preserved
788 // r5: preserved
789
790 // Drop the execution stack down to the frame pointer and restore
791 // the caller frame pointer, return address and constant pool pointer.
792 int frame_ends;
793 LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
794 LoadP(ip, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
795#if V8_OOL_CONSTANT_POOL
796 const int exitOffset = ExitFrameConstants::kConstantPoolOffset;
797 const int standardOffset = StandardFrameConstants::kConstantPoolOffset;
798 const int offset = ((type == StackFrame::EXIT) ? exitOffset : standardOffset);
799 LoadP(kConstantPoolRegister, MemOperand(fp, offset));
800#endif
801 mtlr(r0);
802 frame_ends = pc_offset();
803 Add(sp, fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment, r0);
804 mr(fp, ip);
805 return frame_ends;
806}
807
808
809// ExitFrame layout (probably wrongish.. needs updating)
810//
811// SP -> previousSP
812// LK reserved
813// code
814// sp_on_exit (for debug?)
815// oldSP->prev SP
816// LK
817// <parameters on stack>
818
819// Prior to calling EnterExitFrame, we've got a bunch of parameters
820// on the stack that we need to wrap a real frame around.. so first
821// we reserve a slot for LK and push the previous SP which is captured
822// in the fp register (r31)
823// Then - we buy a new frame
824
825void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
826 // Set up the frame structure on the stack.
827 DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
828 DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
829 DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
830 DCHECK(stack_space > 0);
831
832 // This is an opportunity to build a frame to wrap
833 // all of the pushes that have happened inside of V8
834 // since we were called from C code
835
836 // replicate ARM frame - TODO make this more closely follow PPC ABI
837 mflr(r0);
838 Push(r0, fp);
839 mr(fp, sp);
840 // Reserve room for saved entry sp and code object.
841 subi(sp, sp, Operand(ExitFrameConstants::kFrameSize));
842
843 if (emit_debug_code()) {
844 li(r8, Operand::Zero());
845 StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset));
846 }
847#if V8_OOL_CONSTANT_POOL
848 StoreP(kConstantPoolRegister,
849 MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
850#endif
851 mov(r8, Operand(CodeObject()));
852 StoreP(r8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
853
854 // Save the frame pointer and the context in top.
855 mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
856 StoreP(fp, MemOperand(r8));
857 mov(r8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
858 StoreP(cp, MemOperand(r8));
859
860 // Optionally save all volatile double registers.
861 if (save_doubles) {
862 SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
863 // Note that d0 will be accessible at
864 // fp - ExitFrameConstants::kFrameSize -
865 // kNumVolatileRegisters * kDoubleSize,
866 // since the sp slot and code slot were pushed after the fp.
867 }
868
869 addi(sp, sp, Operand(-stack_space * kPointerSize));
870
871 // Allocate and align the frame preparing for calling the runtime
872 // function.
873 const int frame_alignment = ActivationFrameAlignment();
874 if (frame_alignment > kPointerSize) {
875 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
876 ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
877 }
878 li(r0, Operand::Zero());
879 StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
880
881 // Set the exit frame sp value to point just before the return address
882 // location.
883 addi(r8, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
884 StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset));
885}
886
887
888void MacroAssembler::InitializeNewString(Register string, Register length,
889 Heap::RootListIndex map_index,
890 Register scratch1, Register scratch2) {
891 SmiTag(scratch1, length);
892 LoadRoot(scratch2, map_index);
893 StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset), r0);
894 li(scratch1, Operand(String::kEmptyHashField));
895 StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset), r0);
896 StoreP(scratch1, FieldMemOperand(string, String::kHashFieldSlot), r0);
897}
898
899
900int MacroAssembler::ActivationFrameAlignment() {
901#if !defined(USE_SIMULATOR)
902 // Running on the real platform. Use the alignment as mandated by the local
903 // environment.
904 // Note: This will break if we ever start generating snapshots on one PPC
905 // platform for another PPC platform with a different alignment.
906 return base::OS::ActivationFrameAlignment();
907#else // Simulated
908 // If we are using the simulator then we should always align to the expected
909 // alignment. As the simulator is used to generate snapshots we do not know
910 // if the target platform will need alignment, so this is controlled from a
911 // flag.
912 return FLAG_sim_stack_alignment;
913#endif
914}
915
916
917void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
918 bool restore_context) {
919#if V8_OOL_CONSTANT_POOL
920 ConstantPoolUnavailableScope constant_pool_unavailable(this);
921#endif
922 // Optionally restore all double registers.
923 if (save_doubles) {
924 // Calculate the stack location of the saved doubles and restore them.
925 const int kNumRegs = DoubleRegister::kNumVolatileRegisters;
926 const int offset =
927 (ExitFrameConstants::kFrameSize + kNumRegs * kDoubleSize);
928 addi(r6, fp, Operand(-offset));
929 RestoreFPRegs(r6, 0, kNumRegs);
930 }
931
932 // Clear top frame.
933 li(r6, Operand::Zero());
934 mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
935 StoreP(r6, MemOperand(ip));
936
937 // Restore current context from top and clear it in debug mode.
938 if (restore_context) {
939 mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
940 LoadP(cp, MemOperand(ip));
941 }
942#ifdef DEBUG
943 mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
944 StoreP(r6, MemOperand(ip));
945#endif
946
947 // Tear down the exit frame, pop the arguments, and return.
948 LeaveFrame(StackFrame::EXIT);
949
950 if (argument_count.is_valid()) {
951 ShiftLeftImm(argument_count, argument_count, Operand(kPointerSizeLog2));
952 add(sp, sp, argument_count);
953 }
954}
955
956
957void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
958 Move(dst, d1);
959}
960
961
962void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
963 Move(dst, d1);
964}
965
966
967void MacroAssembler::InvokePrologue(const ParameterCount& expected,
968 const ParameterCount& actual,
969 Handle<Code> code_constant,
970 Register code_reg, Label* done,
971 bool* definitely_mismatches,
972 InvokeFlag flag,
973 const CallWrapper& call_wrapper) {
974 bool definitely_matches = false;
975 *definitely_mismatches = false;
976 Label regular_invoke;
977
978 // Check whether the expected and actual arguments count match. If not,
979 // setup registers according to contract with ArgumentsAdaptorTrampoline:
980 // r3: actual arguments count
981 // r4: function (passed through to callee)
982 // r5: expected arguments count
983
984 // The code below is made a lot easier because the calling code already sets
985 // up actual and expected registers according to the contract if values are
986 // passed in registers.
987
988 // ARM has some sanity checks as per below, considering add them for PPC
989 // DCHECK(actual.is_immediate() || actual.reg().is(r3));
990 // DCHECK(expected.is_immediate() || expected.reg().is(r5));
991 // DCHECK((!code_constant.is_null() && code_reg.is(no_reg))
992 // || code_reg.is(r6));
993
994 if (expected.is_immediate()) {
995 DCHECK(actual.is_immediate());
996 if (expected.immediate() == actual.immediate()) {
997 definitely_matches = true;
998 } else {
999 mov(r3, Operand(actual.immediate()));
1000 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1001 if (expected.immediate() == sentinel) {
1002 // Don't worry about adapting arguments for builtins that
1003 // don't want that done. Skip adaption code by making it look
1004 // like we have a match between expected and actual number of
1005 // arguments.
1006 definitely_matches = true;
1007 } else {
1008 *definitely_mismatches = true;
1009 mov(r5, Operand(expected.immediate()));
1010 }
1011 }
1012 } else {
1013 if (actual.is_immediate()) {
1014 cmpi(expected.reg(), Operand(actual.immediate()));
1015 beq(&regular_invoke);
1016 mov(r3, Operand(actual.immediate()));
1017 } else {
1018 cmp(expected.reg(), actual.reg());
1019 beq(&regular_invoke);
1020 }
1021 }
1022
1023 if (!definitely_matches) {
1024 if (!code_constant.is_null()) {
1025 mov(r6, Operand(code_constant));
1026 addi(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
1027 }
1028
1029 Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
1030 if (flag == CALL_FUNCTION) {
1031 call_wrapper.BeforeCall(CallSize(adaptor));
1032 Call(adaptor);
1033 call_wrapper.AfterCall();
1034 if (!*definitely_mismatches) {
1035 b(done);
1036 }
1037 } else {
1038 Jump(adaptor, RelocInfo::CODE_TARGET);
1039 }
1040 bind(&regular_invoke);
1041 }
1042}
1043
1044
1045void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected,
1046 const ParameterCount& actual, InvokeFlag flag,
1047 const CallWrapper& call_wrapper) {
1048 // You can't call a function without a valid frame.
1049 DCHECK(flag == JUMP_FUNCTION || has_frame());
1050
1051 Label done;
1052 bool definitely_mismatches = false;
1053 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done,
1054 &definitely_mismatches, flag, call_wrapper);
1055 if (!definitely_mismatches) {
1056 if (flag == CALL_FUNCTION) {
1057 call_wrapper.BeforeCall(CallSize(code));
1058 CallJSEntry(code);
1059 call_wrapper.AfterCall();
1060 } else {
1061 DCHECK(flag == JUMP_FUNCTION);
1062 JumpToJSEntry(code);
1063 }
1064
1065 // Continue here if InvokePrologue does handle the invocation due to
1066 // mismatched parameter counts.
1067 bind(&done);
1068 }
1069}
1070
1071
1072void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual,
1073 InvokeFlag flag,
1074 const CallWrapper& call_wrapper) {
1075 // You can't call a function without a valid frame.
1076 DCHECK(flag == JUMP_FUNCTION || has_frame());
1077
1078 // Contract with called JS functions requires that function is passed in r4.
1079 DCHECK(fun.is(r4));
1080
1081 Register expected_reg = r5;
1082 Register code_reg = ip;
1083
1084 LoadP(code_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
1085 LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
1086 LoadWordArith(expected_reg,
1087 FieldMemOperand(
1088 code_reg, SharedFunctionInfo::kFormalParameterCountOffset));
1089#if !defined(V8_TARGET_ARCH_PPC64)
1090 SmiUntag(expected_reg);
1091#endif
1092 LoadP(code_reg, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
1093
1094 ParameterCount expected(expected_reg);
1095 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
1096}
1097
1098
1099void MacroAssembler::InvokeFunction(Register function,
1100 const ParameterCount& expected,
1101 const ParameterCount& actual,
1102 InvokeFlag flag,
1103 const CallWrapper& call_wrapper) {
1104 // You can't call a function without a valid frame.
1105 DCHECK(flag == JUMP_FUNCTION || has_frame());
1106
1107 // Contract with called JS functions requires that function is passed in r4.
1108 DCHECK(function.is(r4));
1109
1110 // Get the function and setup the context.
1111 LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
1112
1113 // We call indirectly through the code field in the function to
1114 // allow recompilation to take effect without changing any of the
1115 // call sites.
1116 LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
1117 InvokeCode(ip, expected, actual, flag, call_wrapper);
1118}
1119
1120
1121void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
1122 const ParameterCount& expected,
1123 const ParameterCount& actual,
1124 InvokeFlag flag,
1125 const CallWrapper& call_wrapper) {
1126 Move(r4, function);
1127 InvokeFunction(r4, expected, actual, flag, call_wrapper);
1128}
1129
1130
1131void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map,
1132 Register scratch, Label* fail) {
1133 LoadP(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
1134 IsInstanceJSObjectType(map, scratch, fail);
1135}
1136
1137
1138void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch,
1139 Label* fail) {
1140 lbz(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
1141 cmpi(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
1142 blt(fail);
1143 cmpi(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
1144 bgt(fail);
1145}
1146
1147
1148void MacroAssembler::IsObjectJSStringType(Register object, Register scratch,
1149 Label* fail) {
1150 DCHECK(kNotStringTag != 0);
1151
1152 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1153 lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1154 andi(r0, scratch, Operand(kIsNotStringMask));
1155 bne(fail, cr0);
1156}
1157
1158
1159void MacroAssembler::IsObjectNameType(Register object, Register scratch,
1160 Label* fail) {
1161 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1162 lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1163 cmpi(scratch, Operand(LAST_NAME_TYPE));
1164 bgt(fail);
1165}
1166
1167
1168void MacroAssembler::DebugBreak() {
1169 li(r3, Operand::Zero());
1170 mov(r4, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
1171 CEntryStub ces(isolate(), 1);
1172 DCHECK(AllowThisStubCall(&ces));
1173 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
1174}
1175
1176
1177void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1178 int handler_index) {
1179 // Adjust this code if not the case.
1180 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1181 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1182 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1183 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1184 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1185 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1186
1187 // For the JSEntry handler, we must preserve r1-r7, r0,r8-r15 are available.
1188 // We want the stack to look like
1189 // sp -> NextOffset
1190 // CodeObject
1191 // state
1192 // context
1193 // frame pointer
1194
1195 // Link the current handler as the next handler.
1196 mov(r8, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1197 LoadP(r0, MemOperand(r8));
1198 StorePU(r0, MemOperand(sp, -StackHandlerConstants::kSize));
1199 // Set this new handler as the current one.
1200 StoreP(sp, MemOperand(r8));
1201
1202 if (kind == StackHandler::JS_ENTRY) {
1203 li(r8, Operand::Zero()); // NULL frame pointer.
1204 StoreP(r8, MemOperand(sp, StackHandlerConstants::kFPOffset));
1205 LoadSmiLiteral(r8, Smi::FromInt(0)); // Indicates no context.
1206 StoreP(r8, MemOperand(sp, StackHandlerConstants::kContextOffset));
1207 } else {
1208 // still not sure if fp is right
1209 StoreP(fp, MemOperand(sp, StackHandlerConstants::kFPOffset));
1210 StoreP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
1211 }
1212 unsigned state = StackHandler::IndexField::encode(handler_index) |
1213 StackHandler::KindField::encode(kind);
1214 LoadIntLiteral(r8, state);
1215 StoreP(r8, MemOperand(sp, StackHandlerConstants::kStateOffset));
1216 mov(r8, Operand(CodeObject()));
1217 StoreP(r8, MemOperand(sp, StackHandlerConstants::kCodeOffset));
1218}
1219
1220
1221void MacroAssembler::PopTryHandler() {
1222 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1223 pop(r4);
1224 mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1225 addi(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
1226 StoreP(r4, MemOperand(ip));
1227}
1228
1229
1230// PPC - make use of ip as a temporary register
1231void MacroAssembler::JumpToHandlerEntry() {
1232// Compute the handler entry address and jump to it. The handler table is
1233// a fixed array of (smi-tagged) code offsets.
1234// r3 = exception, r4 = code object, r5 = state.
1235#if V8_OOL_CONSTANT_POOL
1236 ConstantPoolUnavailableScope constant_pool_unavailable(this);
1237 LoadP(kConstantPoolRegister, FieldMemOperand(r4, Code::kConstantPoolOffset));
1238#endif
1239 LoadP(r6, FieldMemOperand(r4, Code::kHandlerTableOffset)); // Handler table.
1240 addi(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1241 srwi(r5, r5, Operand(StackHandler::kKindWidth)); // Handler index.
1242 slwi(ip, r5, Operand(kPointerSizeLog2));
1243 add(ip, r6, ip);
1244 LoadP(r5, MemOperand(ip)); // Smi-tagged offset.
1245 addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
1246 SmiUntag(ip, r5);
1247 add(r0, r4, ip);
1248 mtctr(r0);
1249 bctr();
1250}
1251
1252
1253void MacroAssembler::Throw(Register value) {
1254 // Adjust this code if not the case.
1255 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1256 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1257 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1258 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1259 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1260 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1261 Label skip;
1262
1263 // The exception is expected in r3.
1264 if (!value.is(r3)) {
1265 mr(r3, value);
1266 }
1267 // Drop the stack pointer to the top of the top handler.
1268 mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1269 LoadP(sp, MemOperand(r6));
1270 // Restore the next handler.
1271 pop(r5);
1272 StoreP(r5, MemOperand(r6));
1273
1274 // Get the code object (r4) and state (r5). Restore the context and frame
1275 // pointer.
1276 pop(r4);
1277 pop(r5);
1278 pop(cp);
1279 pop(fp);
1280
1281 // If the handler is a JS frame, restore the context to the frame.
1282 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1283 // or cp.
1284 cmpi(cp, Operand::Zero());
1285 beq(&skip);
1286 StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1287 bind(&skip);
1288
1289 JumpToHandlerEntry();
1290}
1291
1292
1293void MacroAssembler::ThrowUncatchable(Register value) {
1294 // Adjust this code if not the case.
1295 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1296 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1297 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1298 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1299 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1300 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1301
1302 // The exception is expected in r3.
1303 if (!value.is(r3)) {
1304 mr(r3, value);
1305 }
1306 // Drop the stack pointer to the top of the top stack handler.
1307 mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
1308 LoadP(sp, MemOperand(r6));
1309
1310 // Unwind the handlers until the ENTRY handler is found.
1311 Label fetch_next, check_kind;
1312 b(&check_kind);
1313 bind(&fetch_next);
1314 LoadP(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
1315
1316 bind(&check_kind);
1317 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1318 LoadP(r5, MemOperand(sp, StackHandlerConstants::kStateOffset));
1319 andi(r0, r5, Operand(StackHandler::KindField::kMask));
1320 bne(&fetch_next, cr0);
1321
1322 // Set the top handler address to next handler past the top ENTRY handler.
1323 pop(r5);
1324 StoreP(r5, MemOperand(r6));
1325 // Get the code object (r4) and state (r5). Clear the context and frame
1326 // pointer (0 was saved in the handler).
1327 pop(r4);
1328 pop(r5);
1329 pop(cp);
1330 pop(fp);
1331
1332 JumpToHandlerEntry();
1333}
1334
1335
1336void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1337 Register scratch, Label* miss) {
1338 Label same_contexts;
1339
1340 DCHECK(!holder_reg.is(scratch));
1341 DCHECK(!holder_reg.is(ip));
1342 DCHECK(!scratch.is(ip));
1343
1344 // Load current lexical context from the stack frame.
1345 LoadP(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
1346// In debug mode, make sure the lexical context is set.
1347#ifdef DEBUG
1348 cmpi(scratch, Operand::Zero());
1349 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
1350#endif
1351
1352 // Load the native context of the current context.
1353 int offset =
1354 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1355 LoadP(scratch, FieldMemOperand(scratch, offset));
1356 LoadP(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
1357
1358 // Check the context is a native context.
1359 if (emit_debug_code()) {
1360 // Cannot use ip as a temporary in this verification code. Due to the fact
1361 // that ip is clobbered as part of cmp with an object Operand.
1362 push(holder_reg); // Temporarily save holder on the stack.
1363 // Read the first word and compare to the native_context_map.
1364 LoadP(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
1365 LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1366 cmp(holder_reg, ip);
1367 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
1368 pop(holder_reg); // Restore holder.
1369 }
1370
1371 // Check if both contexts are the same.
1372 LoadP(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1373 cmp(scratch, ip);
1374 beq(&same_contexts);
1375
1376 // Check the context is a native context.
1377 if (emit_debug_code()) {
1378 // Cannot use ip as a temporary in this verification code. Due to the fact
1379 // that ip is clobbered as part of cmp with an object Operand.
1380 push(holder_reg); // Temporarily save holder on the stack.
1381 mr(holder_reg, ip); // Move ip to its holding place.
1382 LoadRoot(ip, Heap::kNullValueRootIndex);
1383 cmp(holder_reg, ip);
1384 Check(ne, kJSGlobalProxyContextShouldNotBeNull);
1385
1386 LoadP(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
1387 LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1388 cmp(holder_reg, ip);
1389 Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
1390 // Restore ip is not needed. ip is reloaded below.
1391 pop(holder_reg); // Restore holder.
1392 // Restore ip to holder's context.
1393 LoadP(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1394 }
1395
1396 // Check that the security token in the calling global object is
1397 // compatible with the security token in the receiving global
1398 // object.
1399 int token_offset =
1400 Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
1401
1402 LoadP(scratch, FieldMemOperand(scratch, token_offset));
1403 LoadP(ip, FieldMemOperand(ip, token_offset));
1404 cmp(scratch, ip);
1405 bne(miss);
1406
1407 bind(&same_contexts);
1408}
1409
1410
1411// Compute the hash code from the untagged key. This must be kept in sync with
1412// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
1413// code-stub-hydrogen.cc
1414void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
1415 // First of all we assign the hash seed to scratch.
1416 LoadRoot(scratch, Heap::kHashSeedRootIndex);
1417 SmiUntag(scratch);
1418
1419 // Xor original key with a seed.
1420 xor_(t0, t0, scratch);
1421
1422 // Compute the hash code from the untagged key. This must be kept in sync
1423 // with ComputeIntegerHash in utils.h.
1424 //
1425 // hash = ~hash + (hash << 15);
1426 notx(scratch, t0);
1427 slwi(t0, t0, Operand(15));
1428 add(t0, scratch, t0);
1429 // hash = hash ^ (hash >> 12);
1430 srwi(scratch, t0, Operand(12));
1431 xor_(t0, t0, scratch);
1432 // hash = hash + (hash << 2);
1433 slwi(scratch, t0, Operand(2));
1434 add(t0, t0, scratch);
1435 // hash = hash ^ (hash >> 4);
1436 srwi(scratch, t0, Operand(4));
1437 xor_(t0, t0, scratch);
1438 // hash = hash * 2057;
1439 mr(r0, t0);
1440 slwi(scratch, t0, Operand(3));
1441 add(t0, t0, scratch);
1442 slwi(scratch, r0, Operand(11));
1443 add(t0, t0, scratch);
1444 // hash = hash ^ (hash >> 16);
1445 srwi(scratch, t0, Operand(16));
1446 xor_(t0, t0, scratch);
1447}
1448
1449
1450void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements,
1451 Register key, Register result,
1452 Register t0, Register t1,
1453 Register t2) {
1454 // Register use:
1455 //
1456 // elements - holds the slow-case elements of the receiver on entry.
1457 // Unchanged unless 'result' is the same register.
1458 //
1459 // key - holds the smi key on entry.
1460 // Unchanged unless 'result' is the same register.
1461 //
1462 // result - holds the result on exit if the load succeeded.
1463 // Allowed to be the same as 'key' or 'result'.
1464 // Unchanged on bailout so 'key' or 'result' can be used
1465 // in further computation.
1466 //
1467 // Scratch registers:
1468 //
1469 // t0 - holds the untagged key on entry and holds the hash once computed.
1470 //
1471 // t1 - used to hold the capacity mask of the dictionary
1472 //
1473 // t2 - used for the index into the dictionary.
1474 Label done;
1475
1476 GetNumberHash(t0, t1);
1477
1478 // Compute the capacity mask.
1479 LoadP(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
1480 SmiUntag(t1);
1481 subi(t1, t1, Operand(1));
1482
1483 // Generate an unrolled loop that performs a few probes before giving up.
1484 for (int i = 0; i < kNumberDictionaryProbes; i++) {
1485 // Use t2 for index calculations and keep the hash intact in t0.
1486 mr(t2, t0);
1487 // Compute the masked index: (hash + i + i * i) & mask.
1488 if (i > 0) {
1489 addi(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
1490 }
1491 and_(t2, t2, t1);
1492
1493 // Scale the index by multiplying by the element size.
1494 DCHECK(SeededNumberDictionary::kEntrySize == 3);
1495 slwi(ip, t2, Operand(1));
1496 add(t2, t2, ip); // t2 = t2 * 3
1497
1498 // Check if the key is identical to the name.
1499 slwi(t2, t2, Operand(kPointerSizeLog2));
1500 add(t2, elements, t2);
1501 LoadP(ip,
1502 FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
1503 cmp(key, ip);
1504 if (i != kNumberDictionaryProbes - 1) {
1505 beq(&done);
1506 } else {
1507 bne(miss);
1508 }
1509 }
1510
1511 bind(&done);
1512 // Check that the value is a field property.
1513 // t2: elements + (index * kPointerSize)
1514 const int kDetailsOffset =
1515 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1516 LoadP(t1, FieldMemOperand(t2, kDetailsOffset));
1517 LoadSmiLiteral(ip, Smi::FromInt(PropertyDetails::TypeField::kMask));
1518 DCHECK_EQ(FIELD, 0);
1519 and_(r0, t1, ip, SetRC);
1520 bne(miss, cr0);
1521
1522 // Get the value at the masked, scaled index and return.
1523 const int kValueOffset =
1524 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1525 LoadP(result, FieldMemOperand(t2, kValueOffset));
1526}
1527
1528
1529void MacroAssembler::Allocate(int object_size, Register result,
1530 Register scratch1, Register scratch2,
1531 Label* gc_required, AllocationFlags flags) {
1532 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
1533 if (!FLAG_inline_new) {
1534 if (emit_debug_code()) {
1535 // Trash the registers to simulate an allocation failure.
1536 li(result, Operand(0x7091));
1537 li(scratch1, Operand(0x7191));
1538 li(scratch2, Operand(0x7291));
1539 }
1540 b(gc_required);
1541 return;
1542 }
1543
1544 DCHECK(!result.is(scratch1));
1545 DCHECK(!result.is(scratch2));
1546 DCHECK(!scratch1.is(scratch2));
1547 DCHECK(!scratch1.is(ip));
1548 DCHECK(!scratch2.is(ip));
1549
1550 // Make object size into bytes.
1551 if ((flags & SIZE_IN_WORDS) != 0) {
1552 object_size *= kPointerSize;
1553 }
1554 DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask));
1555
1556 // Check relative positions of allocation top and limit addresses.
1557 ExternalReference allocation_top =
1558 AllocationUtils::GetAllocationTopReference(isolate(), flags);
1559 ExternalReference allocation_limit =
1560 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1561
1562 intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
1563 intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
1564 DCHECK((limit - top) == kPointerSize);
1565
1566 // Set up allocation top address register.
1567 Register topaddr = scratch1;
1568 mov(topaddr, Operand(allocation_top));
1569
1570 // This code stores a temporary value in ip. This is OK, as the code below
1571 // does not need ip for implicit literal generation.
1572 if ((flags & RESULT_CONTAINS_TOP) == 0) {
1573 // Load allocation top into result and allocation limit into ip.
1574 LoadP(result, MemOperand(topaddr));
1575 LoadP(ip, MemOperand(topaddr, kPointerSize));
1576 } else {
1577 if (emit_debug_code()) {
1578 // Assert that result actually contains top on entry. ip is used
1579 // immediately below so this use of ip does not cause difference with
1580 // respect to register content between debug and release mode.
1581 LoadP(ip, MemOperand(topaddr));
1582 cmp(result, ip);
1583 Check(eq, kUnexpectedAllocationTop);
1584 }
1585 // Load allocation limit into ip. Result already contains allocation top.
1586 LoadP(ip, MemOperand(topaddr, limit - top), r0);
1587 }
1588
1589 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1590 // Align the next allocation. Storing the filler map without checking top is
1591 // safe in new-space because the limit of the heap is aligned there.
1592 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1593#if V8_TARGET_ARCH_PPC64
1594 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
1595#else
1596 STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1597 andi(scratch2, result, Operand(kDoubleAlignmentMask));
1598 Label aligned;
1599 beq(&aligned, cr0);
1600 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1601 cmpl(result, ip);
1602 bge(gc_required);
1603 }
1604 mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
1605 stw(scratch2, MemOperand(result));
1606 addi(result, result, Operand(kDoubleSize / 2));
1607 bind(&aligned);
1608#endif
1609 }
1610
1611 // Calculate new top and bail out if new space is exhausted. Use result
1612 // to calculate the new top.
1613 sub(r0, ip, result);
1614 if (is_int16(object_size)) {
1615 cmpi(r0, Operand(object_size));
1616 blt(gc_required);
1617 addi(scratch2, result, Operand(object_size));
1618 } else {
1619 Cmpi(r0, Operand(object_size), scratch2);
1620 blt(gc_required);
1621 add(scratch2, result, scratch2);
1622 }
1623 StoreP(scratch2, MemOperand(topaddr));
1624
1625 // Tag object if requested.
1626 if ((flags & TAG_OBJECT) != 0) {
1627 addi(result, result, Operand(kHeapObjectTag));
1628 }
1629}
1630
1631
1632void MacroAssembler::Allocate(Register object_size, Register result,
1633 Register scratch1, Register scratch2,
1634 Label* gc_required, AllocationFlags flags) {
1635 if (!FLAG_inline_new) {
1636 if (emit_debug_code()) {
1637 // Trash the registers to simulate an allocation failure.
1638 li(result, Operand(0x7091));
1639 li(scratch1, Operand(0x7191));
1640 li(scratch2, Operand(0x7291));
1641 }
1642 b(gc_required);
1643 return;
1644 }
1645
1646 // Assert that the register arguments are different and that none of
1647 // them are ip. ip is used explicitly in the code generated below.
1648 DCHECK(!result.is(scratch1));
1649 DCHECK(!result.is(scratch2));
1650 DCHECK(!scratch1.is(scratch2));
1651 DCHECK(!object_size.is(ip));
1652 DCHECK(!result.is(ip));
1653 DCHECK(!scratch1.is(ip));
1654 DCHECK(!scratch2.is(ip));
1655
1656 // Check relative positions of allocation top and limit addresses.
1657 ExternalReference allocation_top =
1658 AllocationUtils::GetAllocationTopReference(isolate(), flags);
1659 ExternalReference allocation_limit =
1660 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1661 intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
1662 intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
1663 DCHECK((limit - top) == kPointerSize);
1664
1665 // Set up allocation top address.
1666 Register topaddr = scratch1;
1667 mov(topaddr, Operand(allocation_top));
1668
1669 // This code stores a temporary value in ip. This is OK, as the code below
1670 // does not need ip for implicit literal generation.
1671 if ((flags & RESULT_CONTAINS_TOP) == 0) {
1672 // Load allocation top into result and allocation limit into ip.
1673 LoadP(result, MemOperand(topaddr));
1674 LoadP(ip, MemOperand(topaddr, kPointerSize));
1675 } else {
1676 if (emit_debug_code()) {
1677 // Assert that result actually contains top on entry. ip is used
1678 // immediately below so this use of ip does not cause difference with
1679 // respect to register content between debug and release mode.
1680 LoadP(ip, MemOperand(topaddr));
1681 cmp(result, ip);
1682 Check(eq, kUnexpectedAllocationTop);
1683 }
1684 // Load allocation limit into ip. Result already contains allocation top.
1685 LoadP(ip, MemOperand(topaddr, limit - top));
1686 }
1687
1688 if ((flags & DOUBLE_ALIGNMENT) != 0) {
1689 // Align the next allocation. Storing the filler map without checking top is
1690 // safe in new-space because the limit of the heap is aligned there.
1691 DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1692#if V8_TARGET_ARCH_PPC64
1693 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
1694#else
1695 STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1696 andi(scratch2, result, Operand(kDoubleAlignmentMask));
1697 Label aligned;
1698 beq(&aligned, cr0);
1699 if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1700 cmpl(result, ip);
1701 bge(gc_required);
1702 }
1703 mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
1704 stw(scratch2, MemOperand(result));
1705 addi(result, result, Operand(kDoubleSize / 2));
1706 bind(&aligned);
1707#endif
1708 }
1709
1710 // Calculate new top and bail out if new space is exhausted. Use result
1711 // to calculate the new top. Object size may be in words so a shift is
1712 // required to get the number of bytes.
1713 sub(r0, ip, result);
1714 if ((flags & SIZE_IN_WORDS) != 0) {
1715 ShiftLeftImm(scratch2, object_size, Operand(kPointerSizeLog2));
1716 cmp(r0, scratch2);
1717 blt(gc_required);
1718 add(scratch2, result, scratch2);
1719 } else {
1720 cmp(r0, object_size);
1721 blt(gc_required);
1722 add(scratch2, result, object_size);
1723 }
1724
1725 // Update allocation top. result temporarily holds the new top.
1726 if (emit_debug_code()) {
1727 andi(r0, scratch2, Operand(kObjectAlignmentMask));
1728 Check(eq, kUnalignedAllocationInNewSpace, cr0);
1729 }
1730 StoreP(scratch2, MemOperand(topaddr));
1731
1732 // Tag object if requested.
1733 if ((flags & TAG_OBJECT) != 0) {
1734 addi(result, result, Operand(kHeapObjectTag));
1735 }
1736}
1737
1738
1739void MacroAssembler::UndoAllocationInNewSpace(Register object,
1740 Register scratch) {
1741 ExternalReference new_space_allocation_top =
1742 ExternalReference::new_space_allocation_top_address(isolate());
1743
1744 // Make sure the object has no tag before resetting top.
1745 mov(r0, Operand(~kHeapObjectTagMask));
1746 and_(object, object, r0);
1747// was.. and_(object, object, Operand(~kHeapObjectTagMask));
1748#ifdef DEBUG
1749 // Check that the object un-allocated is below the current top.
1750 mov(scratch, Operand(new_space_allocation_top));
1751 LoadP(scratch, MemOperand(scratch));
1752 cmp(object, scratch);
1753 Check(lt, kUndoAllocationOfNonAllocatedMemory);
1754#endif
1755 // Write the address of the object to un-allocate as the current top.
1756 mov(scratch, Operand(new_space_allocation_top));
1757 StoreP(object, MemOperand(scratch));
1758}
1759
1760
1761void MacroAssembler::AllocateTwoByteString(Register result, Register length,
1762 Register scratch1, Register scratch2,
1763 Register scratch3,
1764 Label* gc_required) {
1765 // Calculate the number of bytes needed for the characters in the string while
1766 // observing object alignment.
1767 DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1768 slwi(scratch1, length, Operand(1)); // Length in bytes, not chars.
1769 addi(scratch1, scratch1,
1770 Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
1771 mov(r0, Operand(~kObjectAlignmentMask));
1772 and_(scratch1, scratch1, r0);
1773
1774 // Allocate two-byte string in new space.
1775 Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT);
1776
1777 // Set the map, length and hash field.
1778 InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1,
1779 scratch2);
1780}
1781
1782
1783void MacroAssembler::AllocateOneByteString(Register result, Register length,
1784 Register scratch1, Register scratch2,
1785 Register scratch3,
1786 Label* gc_required) {
1787 // Calculate the number of bytes needed for the characters in the string while
1788 // observing object alignment.
1789 DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1790 DCHECK(kCharSize == 1);
1791 addi(scratch1, length,
1792 Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
1793 li(r0, Operand(~kObjectAlignmentMask));
1794 and_(scratch1, scratch1, r0);
1795
1796 // Allocate one-byte string in new space.
1797 Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT);
1798
1799 // Set the map, length and hash field.
1800 InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
1801 scratch1, scratch2);
1802}
1803
1804
1805void MacroAssembler::AllocateTwoByteConsString(Register result, Register length,
1806 Register scratch1,
1807 Register scratch2,
1808 Label* gc_required) {
1809 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1810 TAG_OBJECT);
1811
1812 InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1,
1813 scratch2);
1814}
1815
1816
1817void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
1818 Register scratch1,
1819 Register scratch2,
1820 Label* gc_required) {
1821 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1822 TAG_OBJECT);
1823
1824 InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
1825 scratch1, scratch2);
1826}
1827
1828
1829void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1830 Register length,
1831 Register scratch1,
1832 Register scratch2,
1833 Label* gc_required) {
1834 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1835 TAG_OBJECT);
1836
1837 InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1,
1838 scratch2);
1839}
1840
1841
1842void MacroAssembler::AllocateOneByteSlicedString(Register result,
1843 Register length,
1844 Register scratch1,
1845 Register scratch2,
1846 Label* gc_required) {
1847 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1848 TAG_OBJECT);
1849
1850 InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
1851 scratch1, scratch2);
1852}
1853
1854
1855void MacroAssembler::CompareObjectType(Register object, Register map,
1856 Register type_reg, InstanceType type) {
1857 const Register temp = type_reg.is(no_reg) ? r0 : type_reg;
1858
1859 LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
1860 CompareInstanceType(map, temp, type);
1861}
1862
1863
1864void MacroAssembler::CheckObjectTypeRange(Register object, Register map,
1865 InstanceType min_type,
1866 InstanceType max_type,
1867 Label* false_label) {
1868 STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
1869 STATIC_ASSERT(LAST_TYPE < 256);
1870 LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
1871 lbz(ip, FieldMemOperand(map, Map::kInstanceTypeOffset));
1872 subi(ip, ip, Operand(min_type));
1873 cmpli(ip, Operand(max_type - min_type));
1874 bgt(false_label);
1875}
1876
1877
1878void MacroAssembler::CompareInstanceType(Register map, Register type_reg,
1879 InstanceType type) {
1880 STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
1881 STATIC_ASSERT(LAST_TYPE < 256);
1882 lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
1883 cmpi(type_reg, Operand(type));
1884}
1885
1886
1887void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) {
1888 DCHECK(!obj.is(r0));
1889 LoadRoot(r0, index);
1890 cmp(obj, r0);
1891}
1892
1893
1894void MacroAssembler::CheckFastElements(Register map, Register scratch,
1895 Label* fail) {
1896 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
1897 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
1898 STATIC_ASSERT(FAST_ELEMENTS == 2);
1899 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
1900 lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
1901 STATIC_ASSERT(Map::kMaximumBitField2FastHoleyElementValue < 0x8000);
1902 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
1903 bgt(fail);
1904}
1905
1906
1907void MacroAssembler::CheckFastObjectElements(Register map, Register scratch,
1908 Label* fail) {
1909 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
1910 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
1911 STATIC_ASSERT(FAST_ELEMENTS == 2);
1912 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
1913 lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
1914 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
1915 ble(fail);
1916 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
1917 bgt(fail);
1918}
1919
1920
1921void MacroAssembler::CheckFastSmiElements(Register map, Register scratch,
1922 Label* fail) {
1923 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
1924 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
1925 lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
1926 cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
1927 bgt(fail);
1928}
1929
1930
1931void MacroAssembler::StoreNumberToDoubleElements(
1932 Register value_reg, Register key_reg, Register elements_reg,
1933 Register scratch1, DoubleRegister double_scratch, Label* fail,
1934 int elements_offset) {
1935 Label smi_value, store;
1936
1937 // Handle smi values specially.
1938 JumpIfSmi(value_reg, &smi_value);
1939
1940 // Ensure that the object is a heap number
1941 CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail,
1942 DONT_DO_SMI_CHECK);
1943
1944 lfd(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
1945 // Force a canonical NaN.
1946 CanonicalizeNaN(double_scratch);
1947 b(&store);
1948
1949 bind(&smi_value);
1950 SmiToDouble(double_scratch, value_reg);
1951
1952 bind(&store);
1953 SmiToDoubleArrayOffset(scratch1, key_reg);
1954 add(scratch1, elements_reg, scratch1);
1955 stfd(double_scratch, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize -
1956 elements_offset));
1957}
1958
1959
1960void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left,
1961 Register right,
1962 Register overflow_dst,
1963 Register scratch) {
1964 DCHECK(!dst.is(overflow_dst));
1965 DCHECK(!dst.is(scratch));
1966 DCHECK(!overflow_dst.is(scratch));
1967 DCHECK(!overflow_dst.is(left));
1968 DCHECK(!overflow_dst.is(right));
1969
1970 // C = A+B; C overflows if A/B have same sign and C has diff sign than A
1971 if (dst.is(left)) {
1972 mr(scratch, left); // Preserve left.
1973 add(dst, left, right); // Left is overwritten.
1974 xor_(scratch, dst, scratch); // Original left.
1975 xor_(overflow_dst, dst, right);
1976 } else if (dst.is(right)) {
1977 mr(scratch, right); // Preserve right.
1978 add(dst, left, right); // Right is overwritten.
1979 xor_(scratch, dst, scratch); // Original right.
1980 xor_(overflow_dst, dst, left);
1981 } else {
1982 add(dst, left, right);
1983 xor_(overflow_dst, dst, left);
1984 xor_(scratch, dst, right);
1985 }
1986 and_(overflow_dst, scratch, overflow_dst, SetRC);
1987}
1988
1989
1990void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left,
1991 intptr_t right,
1992 Register overflow_dst,
1993 Register scratch) {
1994 Register original_left = left;
1995 DCHECK(!dst.is(overflow_dst));
1996 DCHECK(!dst.is(scratch));
1997 DCHECK(!overflow_dst.is(scratch));
1998 DCHECK(!overflow_dst.is(left));
1999
2000 // C = A+B; C overflows if A/B have same sign and C has diff sign than A
2001 if (dst.is(left)) {
2002 // Preserve left.
2003 original_left = overflow_dst;
2004 mr(original_left, left);
2005 }
2006 Add(dst, left, right, scratch);
2007 xor_(overflow_dst, dst, original_left);
2008 if (right >= 0) {
2009 and_(overflow_dst, overflow_dst, dst, SetRC);
2010 } else {
2011 andc(overflow_dst, overflow_dst, dst, SetRC);
2012 }
2013}
2014
2015
2016void MacroAssembler::SubAndCheckForOverflow(Register dst, Register left,
2017 Register right,
2018 Register overflow_dst,
2019 Register scratch) {
2020 DCHECK(!dst.is(overflow_dst));
2021 DCHECK(!dst.is(scratch));
2022 DCHECK(!overflow_dst.is(scratch));
2023 DCHECK(!overflow_dst.is(left));
2024 DCHECK(!overflow_dst.is(right));
2025
2026 // C = A-B; C overflows if A/B have diff signs and C has diff sign than A
2027 if (dst.is(left)) {
2028 mr(scratch, left); // Preserve left.
2029 sub(dst, left, right); // Left is overwritten.
2030 xor_(overflow_dst, dst, scratch);
2031 xor_(scratch, scratch, right);
2032 and_(overflow_dst, overflow_dst, scratch, SetRC);
2033 } else if (dst.is(right)) {
2034 mr(scratch, right); // Preserve right.
2035 sub(dst, left, right); // Right is overwritten.
2036 xor_(overflow_dst, dst, left);
2037 xor_(scratch, left, scratch);
2038 and_(overflow_dst, overflow_dst, scratch, SetRC);
2039 } else {
2040 sub(dst, left, right);
2041 xor_(overflow_dst, dst, left);
2042 xor_(scratch, left, right);
2043 and_(overflow_dst, scratch, overflow_dst, SetRC);
2044 }
2045}
2046
2047
2048void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map,
2049 Label* early_success) {
2050 LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2051 CompareMap(scratch, map, early_success);
2052}
2053
2054
2055void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map,
2056 Label* early_success) {
2057 mov(r0, Operand(map));
2058 cmp(obj_map, r0);
2059}
2060
2061
2062void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map,
2063 Label* fail, SmiCheckType smi_check_type) {
2064 if (smi_check_type == DO_SMI_CHECK) {
2065 JumpIfSmi(obj, fail);
2066 }
2067
2068 Label success;
2069 CompareMap(obj, scratch, map, &success);
2070 bne(fail);
2071 bind(&success);
2072}
2073
2074
2075void MacroAssembler::CheckMap(Register obj, Register scratch,
2076 Heap::RootListIndex index, Label* fail,
2077 SmiCheckType smi_check_type) {
2078 if (smi_check_type == DO_SMI_CHECK) {
2079 JumpIfSmi(obj, fail);
2080 }
2081 LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2082 LoadRoot(r0, index);
2083 cmp(scratch, r0);
2084 bne(fail);
2085}
2086
2087
2088void MacroAssembler::DispatchMap(Register obj, Register scratch,
2089 Handle<Map> map, Handle<Code> success,
2090 SmiCheckType smi_check_type) {
2091 Label fail;
2092 if (smi_check_type == DO_SMI_CHECK) {
2093 JumpIfSmi(obj, &fail);
2094 }
2095 LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2096 mov(r0, Operand(map));
2097 cmp(scratch, r0);
2098 bne(&fail);
2099 Jump(success, RelocInfo::CODE_TARGET, al);
2100 bind(&fail);
2101}
2102
2103
2104void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
2105 Register scratch, Label* miss,
2106 bool miss_on_bound_function) {
2107 Label non_instance;
2108 if (miss_on_bound_function) {
2109 // Check that the receiver isn't a smi.
2110 JumpIfSmi(function, miss);
2111
2112 // Check that the function really is a function. Load map into result reg.
2113 CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
2114 bne(miss);
2115
2116 LoadP(scratch,
2117 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
2118 lwz(scratch,
2119 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
2120 TestBit(scratch,
2121#if V8_TARGET_ARCH_PPC64
2122 SharedFunctionInfo::kBoundFunction,
2123#else
2124 SharedFunctionInfo::kBoundFunction + kSmiTagSize,
2125#endif
2126 r0);
2127 bne(miss, cr0);
2128
2129 // Make sure that the function has an instance prototype.
2130 lbz(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
2131 andi(r0, scratch, Operand(1 << Map::kHasNonInstancePrototype));
2132 bne(&non_instance, cr0);
2133 }
2134
2135 // Get the prototype or initial map from the function.
2136 LoadP(result,
2137 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2138
2139 // If the prototype or initial map is the hole, don't return it and
2140 // simply miss the cache instead. This will allow us to allocate a
2141 // prototype object on-demand in the runtime system.
2142 LoadRoot(r0, Heap::kTheHoleValueRootIndex);
2143 cmp(result, r0);
2144 beq(miss);
2145
2146 // If the function does not have an initial map, we're done.
2147 Label done;
2148 CompareObjectType(result, scratch, scratch, MAP_TYPE);
2149 bne(&done);
2150
2151 // Get the prototype from the initial map.
2152 LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
2153
2154 if (miss_on_bound_function) {
2155 b(&done);
2156
2157 // Non-instance prototype: Fetch prototype from constructor field
2158 // in initial map.
2159 bind(&non_instance);
2160 LoadP(result, FieldMemOperand(result, Map::kConstructorOffset));
2161 }
2162
2163 // All done.
2164 bind(&done);
2165}
2166
2167
2168void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id,
2169 Condition cond) {
2170 DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
2171 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
2172}
2173
2174
2175void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
2176 Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
2177}
2178
2179
2180static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
2181 return ref0.address() - ref1.address();
2182}
2183
2184
2185void MacroAssembler::CallApiFunctionAndReturn(
2186 Register function_address, ExternalReference thunk_ref, int stack_space,
2187 MemOperand return_value_operand, MemOperand* context_restore_operand) {
2188 ExternalReference next_address =
2189 ExternalReference::handle_scope_next_address(isolate());
2190 const int kNextOffset = 0;
2191 const int kLimitOffset = AddressOffset(
2192 ExternalReference::handle_scope_limit_address(isolate()), next_address);
2193 const int kLevelOffset = AddressOffset(
2194 ExternalReference::handle_scope_level_address(isolate()), next_address);
2195
2196 DCHECK(function_address.is(r4) || function_address.is(r5));
2197 Register scratch = r6;
2198
2199 Label profiler_disabled;
2200 Label end_profiler_check;
2201 mov(scratch, Operand(ExternalReference::is_profiling_address(isolate())));
2202 lbz(scratch, MemOperand(scratch, 0));
2203 cmpi(scratch, Operand::Zero());
2204 beq(&profiler_disabled);
2205
2206 // Additional parameter is the address of the actual callback.
2207 mov(scratch, Operand(thunk_ref));
2208 jmp(&end_profiler_check);
2209
2210 bind(&profiler_disabled);
2211 mr(scratch, function_address);
2212 bind(&end_profiler_check);
2213
2214 // Allocate HandleScope in callee-save registers.
2215 // r17 - next_address
2216 // r14 - next_address->kNextOffset
2217 // r15 - next_address->kLimitOffset
2218 // r16 - next_address->kLevelOffset
2219 mov(r17, Operand(next_address));
2220 LoadP(r14, MemOperand(r17, kNextOffset));
2221 LoadP(r15, MemOperand(r17, kLimitOffset));
2222 lwz(r16, MemOperand(r17, kLevelOffset));
2223 addi(r16, r16, Operand(1));
2224 stw(r16, MemOperand(r17, kLevelOffset));
2225
2226 if (FLAG_log_timer_events) {
2227 FrameScope frame(this, StackFrame::MANUAL);
2228 PushSafepointRegisters();
2229 PrepareCallCFunction(1, r3);
2230 mov(r3, Operand(ExternalReference::isolate_address(isolate())));
2231 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2232 PopSafepointRegisters();
2233 }
2234
2235 // Native call returns to the DirectCEntry stub which redirects to the
2236 // return address pushed on stack (could have moved after GC).
2237 // DirectCEntry stub itself is generated early and never moves.
2238 DirectCEntryStub stub(isolate());
2239 stub.GenerateCall(this, scratch);
2240
2241 if (FLAG_log_timer_events) {
2242 FrameScope frame(this, StackFrame::MANUAL);
2243 PushSafepointRegisters();
2244 PrepareCallCFunction(1, r3);
2245 mov(r3, Operand(ExternalReference::isolate_address(isolate())));
2246 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2247 PopSafepointRegisters();
2248 }
2249
2250 Label promote_scheduled_exception;
2251 Label exception_handled;
2252 Label delete_allocated_handles;
2253 Label leave_exit_frame;
2254 Label return_value_loaded;
2255
2256 // load value from ReturnValue
2257 LoadP(r3, return_value_operand);
2258 bind(&return_value_loaded);
2259 // No more valid handles (the result handle was the last one). Restore
2260 // previous handle scope.
2261 StoreP(r14, MemOperand(r17, kNextOffset));
2262 if (emit_debug_code()) {
2263 lwz(r4, MemOperand(r17, kLevelOffset));
2264 cmp(r4, r16);
2265 Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
2266 }
2267 subi(r16, r16, Operand(1));
2268 stw(r16, MemOperand(r17, kLevelOffset));
2269 LoadP(r0, MemOperand(r17, kLimitOffset));
2270 cmp(r15, r0);
2271 bne(&delete_allocated_handles);
2272
2273 // Check if the function scheduled an exception.
2274 bind(&leave_exit_frame);
2275 LoadRoot(r14, Heap::kTheHoleValueRootIndex);
2276 mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate())));
2277 LoadP(r15, MemOperand(r15));
2278 cmp(r14, r15);
2279 bne(&promote_scheduled_exception);
2280 bind(&exception_handled);
2281
2282 bool restore_context = context_restore_operand != NULL;
2283 if (restore_context) {
2284 LoadP(cp, *context_restore_operand);
2285 }
2286 // LeaveExitFrame expects unwind space to be in a register.
2287 mov(r14, Operand(stack_space));
2288 LeaveExitFrame(false, r14, !restore_context);
2289 blr();
2290
2291 bind(&promote_scheduled_exception);
2292 {
2293 FrameScope frame(this, StackFrame::INTERNAL);
2294 CallExternalReference(
2295 ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0);
2296 }
2297 jmp(&exception_handled);
2298
2299 // HandleScope limit has changed. Delete allocated extensions.
2300 bind(&delete_allocated_handles);
2301 StoreP(r15, MemOperand(r17, kLimitOffset));
2302 mr(r14, r3);
2303 PrepareCallCFunction(1, r15);
2304 mov(r3, Operand(ExternalReference::isolate_address(isolate())));
2305 CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
2306 1);
2307 mr(r3, r14);
2308 b(&leave_exit_frame);
2309}
2310
2311
2312bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2313 return has_frame_ || !stub->SometimesSetsUpAFrame();
2314}
2315
2316
2317void MacroAssembler::IndexFromHash(Register hash, Register index) {
2318 // If the hash field contains an array index pick it out. The assert checks
2319 // that the constants for the maximum number of digits for an array index
2320 // cached in the hash field and the number of bits reserved for it does not
2321 // conflict.
2322 DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
2323 (1 << String::kArrayIndexValueBits));
2324 DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
2325}
2326
2327
2328void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) {
2329 SmiUntag(ip, smi);
2330 ConvertIntToDouble(ip, value);
2331}
2332
2333
2334void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input,
2335 Register scratch1, Register scratch2,
2336 DoubleRegister double_scratch) {
2337 TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch);
2338}
2339
2340
2341void MacroAssembler::TryDoubleToInt32Exact(Register result,
2342 DoubleRegister double_input,
2343 Register scratch,
2344 DoubleRegister double_scratch) {
2345 Label done;
2346 DCHECK(!double_input.is(double_scratch));
2347
2348 ConvertDoubleToInt64(double_input,
2349#if !V8_TARGET_ARCH_PPC64
2350 scratch,
2351#endif
2352 result, double_scratch);
2353
2354#if V8_TARGET_ARCH_PPC64
2355 TestIfInt32(result, scratch, r0);
2356#else
2357 TestIfInt32(scratch, result, r0);
2358#endif
2359 bne(&done);
2360
2361 // convert back and compare
2362 fcfid(double_scratch, double_scratch);
2363 fcmpu(double_scratch, double_input);
2364 bind(&done);
2365}
2366
2367
2368void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input,
2369 Register input_high, Register scratch,
2370 DoubleRegister double_scratch, Label* done,
2371 Label* exact) {
2372 DCHECK(!result.is(input_high));
2373 DCHECK(!double_input.is(double_scratch));
2374 Label exception;
2375
2376 MovDoubleHighToInt(input_high, double_input);
2377
2378 // Test for NaN/Inf
2379 ExtractBitMask(result, input_high, HeapNumber::kExponentMask);
2380 cmpli(result, Operand(0x7ff));
2381 beq(&exception);
2382
2383 // Convert (rounding to -Inf)
2384 ConvertDoubleToInt64(double_input,
2385#if !V8_TARGET_ARCH_PPC64
2386 scratch,
2387#endif
2388 result, double_scratch, kRoundToMinusInf);
2389
2390// Test for overflow
2391#if V8_TARGET_ARCH_PPC64
2392 TestIfInt32(result, scratch, r0);
2393#else
2394 TestIfInt32(scratch, result, r0);
2395#endif
2396 bne(&exception);
2397
2398 // Test for exactness
2399 fcfid(double_scratch, double_scratch);
2400 fcmpu(double_scratch, double_input);
2401 beq(exact);
2402 b(done);
2403
2404 bind(&exception);
2405}
2406
2407
2408void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
2409 DoubleRegister double_input,
2410 Label* done) {
2411 DoubleRegister double_scratch = kScratchDoubleReg;
2412 Register scratch = ip;
2413
2414 ConvertDoubleToInt64(double_input,
2415#if !V8_TARGET_ARCH_PPC64
2416 scratch,
2417#endif
2418 result, double_scratch);
2419
2420// Test for overflow
2421#if V8_TARGET_ARCH_PPC64
2422 TestIfInt32(result, scratch, r0);
2423#else
2424 TestIfInt32(scratch, result, r0);
2425#endif
2426 beq(done);
2427}
2428
2429
2430void MacroAssembler::TruncateDoubleToI(Register result,
2431 DoubleRegister double_input) {
2432 Label done;
2433
2434 TryInlineTruncateDoubleToI(result, double_input, &done);
2435
2436 // If we fell through then inline version didn't succeed - call stub instead.
2437 mflr(r0);
2438 push(r0);
2439 // Put input on stack.
2440 stfdu(double_input, MemOperand(sp, -kDoubleSize));
2441
2442 DoubleToIStub stub(isolate(), sp, result, 0, true, true);
2443 CallStub(&stub);
2444
2445 addi(sp, sp, Operand(kDoubleSize));
2446 pop(r0);
2447 mtlr(r0);
2448
2449 bind(&done);
2450}
2451
2452
2453void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
2454 Label done;
2455 DoubleRegister double_scratch = kScratchDoubleReg;
2456 DCHECK(!result.is(object));
2457
2458 lfd(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2459 TryInlineTruncateDoubleToI(result, double_scratch, &done);
2460
2461 // If we fell through then inline version didn't succeed - call stub instead.
2462 mflr(r0);
2463 push(r0);
2464 DoubleToIStub stub(isolate(), object, result,
2465 HeapNumber::kValueOffset - kHeapObjectTag, true, true);
2466 CallStub(&stub);
2467 pop(r0);
2468 mtlr(r0);
2469
2470 bind(&done);
2471}
2472
2473
2474void MacroAssembler::TruncateNumberToI(Register object, Register result,
2475 Register heap_number_map,
2476 Register scratch1, Label* not_number) {
2477 Label done;
2478 DCHECK(!result.is(object));
2479
2480 UntagAndJumpIfSmi(result, object, &done);
2481 JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
2482 TruncateHeapNumberToI(result, object);
2483
2484 bind(&done);
2485}
2486
2487
2488void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src,
2489 int num_least_bits) {
2490#if V8_TARGET_ARCH_PPC64
2491 rldicl(dst, src, kBitsPerPointer - kSmiShift,
2492 kBitsPerPointer - num_least_bits);
2493#else
2494 rlwinm(dst, src, kBitsPerPointer - kSmiShift,
2495 kBitsPerPointer - num_least_bits, 31);
2496#endif
2497}
2498
2499
2500void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src,
2501 int num_least_bits) {
2502 rlwinm(dst, src, 0, 32 - num_least_bits, 31);
2503}
2504
2505
2506void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
2507 SaveFPRegsMode save_doubles) {
2508 // All parameters are on the stack. r3 has the return value after call.
2509
2510 // If the expected number of arguments of the runtime function is
2511 // constant, we check that the actual number of arguments match the
2512 // expectation.
2513 CHECK(f->nargs < 0 || f->nargs == num_arguments);
2514
2515 // TODO(1236192): Most runtime routines don't need the number of
2516 // arguments passed in because it is constant. At some point we
2517 // should remove this need and make the runtime routine entry code
2518 // smarter.
2519 mov(r3, Operand(num_arguments));
2520 mov(r4, Operand(ExternalReference(f, isolate())));
2521 CEntryStub stub(isolate(),
2522#if V8_TARGET_ARCH_PPC64
2523 f->result_size,
2524#else
2525 1,
2526#endif
2527 save_doubles);
2528 CallStub(&stub);
2529}
2530
2531
2532void MacroAssembler::CallExternalReference(const ExternalReference& ext,
2533 int num_arguments) {
2534 mov(r3, Operand(num_arguments));
2535 mov(r4, Operand(ext));
2536
2537 CEntryStub stub(isolate(), 1);
2538 CallStub(&stub);
2539}
2540
2541
2542void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2543 int num_arguments,
2544 int result_size) {
2545 // TODO(1236192): Most runtime routines don't need the number of
2546 // arguments passed in because it is constant. At some point we
2547 // should remove this need and make the runtime routine entry code
2548 // smarter.
2549 mov(r3, Operand(num_arguments));
2550 JumpToExternalReference(ext);
2551}
2552
2553
2554void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments,
2555 int result_size) {
2556 TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments,
2557 result_size);
2558}
2559
2560
2561void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
2562 mov(r4, Operand(builtin));
2563 CEntryStub stub(isolate(), 1);
2564 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
2565}
2566
2567
2568void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag,
2569 const CallWrapper& call_wrapper) {
2570 // You can't call a builtin without a valid frame.
2571 DCHECK(flag == JUMP_FUNCTION || has_frame());
2572
2573 GetBuiltinEntry(ip, id);
2574 if (flag == CALL_FUNCTION) {
2575 call_wrapper.BeforeCall(CallSize(ip));
2576 CallJSEntry(ip);
2577 call_wrapper.AfterCall();
2578 } else {
2579 DCHECK(flag == JUMP_FUNCTION);
2580 JumpToJSEntry(ip);
2581 }
2582}
2583
2584
2585void MacroAssembler::GetBuiltinFunction(Register target,
2586 Builtins::JavaScript id) {
2587 // Load the builtins object into target register.
2588 LoadP(target,
2589 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2590 LoadP(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
2591 // Load the JavaScript builtin function from the builtins object.
2592 LoadP(target,
2593 FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id)),
2594 r0);
2595}
2596
2597
2598void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2599 DCHECK(!target.is(r4));
2600 GetBuiltinFunction(r4, id);
2601 // Load the code entry point from the builtins object.
2602 LoadP(target, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
2603}
2604
2605
2606void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2607 Register scratch1, Register scratch2) {
2608 if (FLAG_native_code_counters && counter->Enabled()) {
2609 mov(scratch1, Operand(value));
2610 mov(scratch2, Operand(ExternalReference(counter)));
2611 stw(scratch1, MemOperand(scratch2));
2612 }
2613}
2614
2615
2616void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2617 Register scratch1, Register scratch2) {
2618 DCHECK(value > 0);
2619 if (FLAG_native_code_counters && counter->Enabled()) {
2620 mov(scratch2, Operand(ExternalReference(counter)));
2621 lwz(scratch1, MemOperand(scratch2));
2622 addi(scratch1, scratch1, Operand(value));
2623 stw(scratch1, MemOperand(scratch2));
2624 }
2625}
2626
2627
2628void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2629 Register scratch1, Register scratch2) {
2630 DCHECK(value > 0);
2631 if (FLAG_native_code_counters && counter->Enabled()) {
2632 mov(scratch2, Operand(ExternalReference(counter)));
2633 lwz(scratch1, MemOperand(scratch2));
2634 subi(scratch1, scratch1, Operand(value));
2635 stw(scratch1, MemOperand(scratch2));
2636 }
2637}
2638
2639
2640void MacroAssembler::Assert(Condition cond, BailoutReason reason,
2641 CRegister cr) {
2642 if (emit_debug_code()) Check(cond, reason, cr);
2643}
2644
2645
2646void MacroAssembler::AssertFastElements(Register elements) {
2647 if (emit_debug_code()) {
2648 DCHECK(!elements.is(r0));
2649 Label ok;
2650 push(elements);
2651 LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
2652 LoadRoot(r0, Heap::kFixedArrayMapRootIndex);
2653 cmp(elements, r0);
2654 beq(&ok);
2655 LoadRoot(r0, Heap::kFixedDoubleArrayMapRootIndex);
2656 cmp(elements, r0);
2657 beq(&ok);
2658 LoadRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
2659 cmp(elements, r0);
2660 beq(&ok);
2661 Abort(kJSObjectWithFastElementsMapHasSlowElements);
2662 bind(&ok);
2663 pop(elements);
2664 }
2665}
2666
2667
2668void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) {
2669 Label L;
2670 b(cond, &L, cr);
2671 Abort(reason);
2672 // will not return here
2673 bind(&L);
2674}
2675
2676
2677void MacroAssembler::Abort(BailoutReason reason) {
2678 Label abort_start;
2679 bind(&abort_start);
2680#ifdef DEBUG
2681 const char* msg = GetBailoutReason(reason);
2682 if (msg != NULL) {
2683 RecordComment("Abort message: ");
2684 RecordComment(msg);
2685 }
2686
2687 if (FLAG_trap_on_abort) {
2688 stop(msg);
2689 return;
2690 }
2691#endif
2692
2693 LoadSmiLiteral(r0, Smi::FromInt(reason));
2694 push(r0);
2695 // Disable stub call restrictions to always allow calls to abort.
2696 if (!has_frame_) {
2697 // We don't actually want to generate a pile of code for this, so just
2698 // claim there is a stack frame, without generating one.
2699 FrameScope scope(this, StackFrame::NONE);
2700 CallRuntime(Runtime::kAbort, 1);
2701 } else {
2702 CallRuntime(Runtime::kAbort, 1);
2703 }
2704 // will not return here
2705}
2706
2707
2708void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2709 if (context_chain_length > 0) {
2710 // Move up the chain of contexts to the context containing the slot.
2711 LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2712 for (int i = 1; i < context_chain_length; i++) {
2713 LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2714 }
2715 } else {
2716 // Slot is in the current function context. Move it into the
2717 // destination register in case we store into it (the write barrier
2718 // cannot be allowed to destroy the context in esi).
2719 mr(dst, cp);
2720 }
2721}
2722
2723
2724void MacroAssembler::LoadTransitionedArrayMapConditional(
2725 ElementsKind expected_kind, ElementsKind transitioned_kind,
2726 Register map_in_out, Register scratch, Label* no_map_match) {
2727 // Load the global or builtins object from the current context.
2728 LoadP(scratch,
2729 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2730 LoadP(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
2731
2732 // Check that the function's map is the same as the expected cached map.
2733 LoadP(scratch,
2734 MemOperand(scratch, Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2735 size_t offset = expected_kind * kPointerSize + FixedArrayBase::kHeaderSize;
2736 LoadP(scratch, FieldMemOperand(scratch, offset));
2737 cmp(map_in_out, scratch);
2738 bne(no_map_match);
2739
2740 // Use the transitioned cached map.
2741 offset = transitioned_kind * kPointerSize + FixedArrayBase::kHeaderSize;
2742 LoadP(map_in_out, FieldMemOperand(scratch, offset));
2743}
2744
2745
2746void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2747 // Load the global or builtins object from the current context.
2748 LoadP(function,
2749 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2750 // Load the native context from the global or builtins object.
2751 LoadP(function,
2752 FieldMemOperand(function, GlobalObject::kNativeContextOffset));
2753 // Load the function from the native context.
2754 LoadP(function, MemOperand(function, Context::SlotOffset(index)), r0);
2755}
2756
2757
2758void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2759 Register map,
2760 Register scratch) {
2761 // Load the initial map. The global functions all have initial maps.
2762 LoadP(map,
2763 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2764 if (emit_debug_code()) {
2765 Label ok, fail;
2766 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
2767 b(&ok);
2768 bind(&fail);
2769 Abort(kGlobalFunctionsMustHaveInitialMap);
2770 bind(&ok);
2771 }
2772}
2773
2774
2775void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
2776 Register reg, Register scratch, Label* not_power_of_two_or_zero) {
2777 subi(scratch, reg, Operand(1));
2778 cmpi(scratch, Operand::Zero());
2779 blt(not_power_of_two_or_zero);
2780 and_(r0, scratch, reg, SetRC);
2781 bne(not_power_of_two_or_zero, cr0);
2782}
2783
2784
2785void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
2786 Register scratch,
2787 Label* zero_and_neg,
2788 Label* not_power_of_two) {
2789 subi(scratch, reg, Operand(1));
2790 cmpi(scratch, Operand::Zero());
2791 blt(zero_and_neg);
2792 and_(r0, scratch, reg, SetRC);
2793 bne(not_power_of_two, cr0);
2794}
2795
2796#if !V8_TARGET_ARCH_PPC64
2797void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
2798 DCHECK(!reg.is(overflow));
2799 mr(overflow, reg); // Save original value.
2800 SmiTag(reg);
2801 xor_(overflow, overflow, reg, SetRC); // Overflow if (value ^ 2 * value) < 0.
2802}
2803
2804
2805void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src,
2806 Register overflow) {
2807 if (dst.is(src)) {
2808 // Fall back to slower case.
2809 SmiTagCheckOverflow(dst, overflow);
2810 } else {
2811 DCHECK(!dst.is(src));
2812 DCHECK(!dst.is(overflow));
2813 DCHECK(!src.is(overflow));
2814 SmiTag(dst, src);
2815 xor_(overflow, dst, src, SetRC); // Overflow if (value ^ 2 * value) < 0.
2816 }
2817}
2818#endif
2819
2820void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2,
2821 Label* on_not_both_smi) {
2822 STATIC_ASSERT(kSmiTag == 0);
2823 DCHECK_EQ(1, static_cast<int>(kSmiTagMask));
2824 orx(r0, reg1, reg2, LeaveRC);
2825 JumpIfNotSmi(r0, on_not_both_smi);
2826}
2827
2828
2829void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src,
2830 Label* smi_case) {
2831 STATIC_ASSERT(kSmiTag == 0);
2832 STATIC_ASSERT(kSmiTagSize == 1);
2833 TestBit(src, 0, r0);
2834 SmiUntag(dst, src);
2835 beq(smi_case, cr0);
2836}
2837
2838
2839void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src,
2840 Label* non_smi_case) {
2841 STATIC_ASSERT(kSmiTag == 0);
2842 STATIC_ASSERT(kSmiTagSize == 1);
2843 TestBit(src, 0, r0);
2844 SmiUntag(dst, src);
2845 bne(non_smi_case, cr0);
2846}
2847
2848
2849void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2,
2850 Label* on_either_smi) {
2851 STATIC_ASSERT(kSmiTag == 0);
2852 JumpIfSmi(reg1, on_either_smi);
2853 JumpIfSmi(reg2, on_either_smi);
2854}
2855
2856
2857void MacroAssembler::AssertNotSmi(Register object) {
2858 if (emit_debug_code()) {
2859 STATIC_ASSERT(kSmiTag == 0);
2860 TestIfSmi(object, r0);
2861 Check(ne, kOperandIsASmi, cr0);
2862 }
2863}
2864
2865
2866void MacroAssembler::AssertSmi(Register object) {
2867 if (emit_debug_code()) {
2868 STATIC_ASSERT(kSmiTag == 0);
2869 TestIfSmi(object, r0);
2870 Check(eq, kOperandIsNotSmi, cr0);
2871 }
2872}
2873
2874
2875void MacroAssembler::AssertString(Register object) {
2876 if (emit_debug_code()) {
2877 STATIC_ASSERT(kSmiTag == 0);
2878 TestIfSmi(object, r0);
2879 Check(ne, kOperandIsASmiAndNotAString, cr0);
2880 push(object);
2881 LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
2882 CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
2883 pop(object);
2884 Check(lt, kOperandIsNotAString);
2885 }
2886}
2887
2888
2889void MacroAssembler::AssertName(Register object) {
2890 if (emit_debug_code()) {
2891 STATIC_ASSERT(kSmiTag == 0);
2892 TestIfSmi(object, r0);
2893 Check(ne, kOperandIsASmiAndNotAName, cr0);
2894 push(object);
2895 LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
2896 CompareInstanceType(object, object, LAST_NAME_TYPE);
2897 pop(object);
2898 Check(le, kOperandIsNotAName);
2899 }
2900}
2901
2902
2903void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
2904 Register scratch) {
2905 if (emit_debug_code()) {
2906 Label done_checking;
2907 AssertNotSmi(object);
2908 CompareRoot(object, Heap::kUndefinedValueRootIndex);
2909 beq(&done_checking);
2910 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2911 CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
2912 Assert(eq, kExpectedUndefinedOrCell);
2913 bind(&done_checking);
2914 }
2915}
2916
2917
2918void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
2919 if (emit_debug_code()) {
2920 CompareRoot(reg, index);
2921 Check(eq, kHeapNumberMapRegisterClobbered);
2922 }
2923}
2924
2925
2926void MacroAssembler::JumpIfNotHeapNumber(Register object,
2927 Register heap_number_map,
2928 Register scratch,
2929 Label* on_not_heap_number) {
2930 LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2931 AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2932 cmp(scratch, heap_number_map);
2933 bne(on_not_heap_number);
2934}
2935
2936
2937void MacroAssembler::LookupNumberStringCache(Register object, Register result,
2938 Register scratch1,
2939 Register scratch2,
2940 Register scratch3,
2941 Label* not_found) {
2942 // Use of registers. Register result is used as a temporary.
2943 Register number_string_cache = result;
2944 Register mask = scratch3;
2945
2946 // Load the number string cache.
2947 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2948
2949 // Make the hash mask from the length of the number string cache. It
2950 // contains two elements (number and string) for each cache entry.
2951 LoadP(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
2952 // Divide length by two (length is a smi).
2953 ShiftRightArithImm(mask, mask, kSmiTagSize + kSmiShiftSize + 1);
2954 subi(mask, mask, Operand(1)); // Make mask.
2955
2956 // Calculate the entry in the number string cache. The hash value in the
2957 // number string cache for smis is just the smi value, and the hash for
2958 // doubles is the xor of the upper and lower words. See
2959 // Heap::GetNumberStringCache.
2960 Label is_smi;
2961 Label load_result_from_cache;
2962 JumpIfSmi(object, &is_smi);
2963 CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
2964 DONT_DO_SMI_CHECK);
2965
2966 STATIC_ASSERT(8 == kDoubleSize);
2967 lwz(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
2968 lwz(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
2969 xor_(scratch1, scratch1, scratch2);
2970 and_(scratch1, scratch1, mask);
2971
2972 // Calculate address of entry in string cache: each entry consists
2973 // of two pointer sized fields.
2974 ShiftLeftImm(scratch1, scratch1, Operand(kPointerSizeLog2 + 1));
2975 add(scratch1, number_string_cache, scratch1);
2976
2977 Register probe = mask;
2978 LoadP(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2979 JumpIfSmi(probe, not_found);
2980 lfd(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
2981 lfd(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
2982 fcmpu(d0, d1);
2983 bne(not_found); // The cache did not contain this value.
2984 b(&load_result_from_cache);
2985
2986 bind(&is_smi);
2987 Register scratch = scratch1;
2988 SmiUntag(scratch, object);
2989 and_(scratch, mask, scratch);
2990 // Calculate address of entry in string cache: each entry consists
2991 // of two pointer sized fields.
2992 ShiftLeftImm(scratch, scratch, Operand(kPointerSizeLog2 + 1));
2993 add(scratch, number_string_cache, scratch);
2994
2995 // Check if the entry is the smi we are looking for.
2996 LoadP(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2997 cmp(object, probe);
2998 bne(not_found);
2999
3000 // Get the result from the cache.
3001 bind(&load_result_from_cache);
3002 LoadP(result,
3003 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
3004 IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
3005 scratch1, scratch2);
3006}
3007
3008
3009void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
3010 Register first, Register second, Register scratch1, Register scratch2,
3011 Label* failure) {
3012 // Test that both first and second are sequential one-byte strings.
3013 // Assume that they are non-smis.
3014 LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
3015 LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
3016 lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3017 lbz(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
3018
3019 JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
3020 scratch2, failure);
3021}
3022
3023void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
3024 Register second,
3025 Register scratch1,
3026 Register scratch2,
3027 Label* failure) {
3028 // Check that neither is a smi.
3029 and_(scratch1, first, second);
3030 JumpIfSmi(scratch1, failure);
3031 JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
3032 scratch2, failure);
3033}
3034
3035
3036void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
3037 Label* not_unique_name) {
3038 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3039 Label succeed;
3040 andi(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3041 beq(&succeed, cr0);
3042 cmpi(reg, Operand(SYMBOL_TYPE));
3043 bne(not_unique_name);
3044
3045 bind(&succeed);
3046}
3047
3048
3049// Allocates a heap number or jumps to the need_gc label if the young space
3050// is full and a scavenge is needed.
3051void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1,
3052 Register scratch2,
3053 Register heap_number_map,
3054 Label* gc_required,
3055 TaggingMode tagging_mode,
3056 MutableMode mode) {
3057 // Allocate an object in the heap for the heap number and tag it as a heap
3058 // object.
3059 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3060 tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
3061
3062 Heap::RootListIndex map_index = mode == MUTABLE
3063 ? Heap::kMutableHeapNumberMapRootIndex
3064 : Heap::kHeapNumberMapRootIndex;
3065 AssertIsRoot(heap_number_map, map_index);
3066
3067 // Store heap number map in the allocated object.
3068 if (tagging_mode == TAG_RESULT) {
3069 StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset),
3070 r0);
3071 } else {
3072 StoreP(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3073 }
3074}
3075
3076
3077void MacroAssembler::AllocateHeapNumberWithValue(
3078 Register result, DoubleRegister value, Register scratch1, Register scratch2,
3079 Register heap_number_map, Label* gc_required) {
3080 AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
3081 stfd(value, FieldMemOperand(result, HeapNumber::kValueOffset));
3082}
3083
3084
3085// Copies a fixed number of fields of heap objects from src to dst.
3086void MacroAssembler::CopyFields(Register dst, Register src, RegList temps,
3087 int field_count) {
3088 // At least one bit set in the first 15 registers.
3089 DCHECK((temps & ((1 << 15) - 1)) != 0);
3090 DCHECK((temps & dst.bit()) == 0);
3091 DCHECK((temps & src.bit()) == 0);
3092 // Primitive implementation using only one temporary register.
3093
3094 Register tmp = no_reg;
3095 // Find a temp register in temps list.
3096 for (int i = 0; i < 15; i++) {
3097 if ((temps & (1 << i)) != 0) {
3098 tmp.set_code(i);
3099 break;
3100 }
3101 }
3102 DCHECK(!tmp.is(no_reg));
3103
3104 for (int i = 0; i < field_count; i++) {
3105 LoadP(tmp, FieldMemOperand(src, i * kPointerSize), r0);
3106 StoreP(tmp, FieldMemOperand(dst, i * kPointerSize), r0);
3107 }
3108}
3109
3110
3111void MacroAssembler::CopyBytes(Register src, Register dst, Register length,
3112 Register scratch) {
3113 Label align_loop, aligned, word_loop, byte_loop, byte_loop_1, done;
3114
3115 DCHECK(!scratch.is(r0));
3116
3117 cmpi(length, Operand::Zero());
3118 beq(&done);
3119
3120 // Check src alignment and length to see whether word_loop is possible
3121 andi(scratch, src, Operand(kPointerSize - 1));
3122 beq(&aligned, cr0);
3123 subfic(scratch, scratch, Operand(kPointerSize * 2));
3124 cmp(length, scratch);
3125 blt(&byte_loop);
3126
3127 // Align src before copying in word size chunks.
3128 subi(scratch, scratch, Operand(kPointerSize));
3129 mtctr(scratch);
3130 bind(&align_loop);
3131 lbz(scratch, MemOperand(src));
3132 addi(src, src, Operand(1));
3133 subi(length, length, Operand(1));
3134 stb(scratch, MemOperand(dst));
3135 addi(dst, dst, Operand(1));
3136 bdnz(&align_loop);
3137
3138 bind(&aligned);
3139
3140 // Copy bytes in word size chunks.
3141 if (emit_debug_code()) {
3142 andi(r0, src, Operand(kPointerSize - 1));
3143 Assert(eq, kExpectingAlignmentForCopyBytes, cr0);
3144 }
3145
3146 ShiftRightImm(scratch, length, Operand(kPointerSizeLog2));
3147 cmpi(scratch, Operand::Zero());
3148 beq(&byte_loop);
3149
3150 mtctr(scratch);
3151 bind(&word_loop);
3152 LoadP(scratch, MemOperand(src));
3153 addi(src, src, Operand(kPointerSize));
3154 subi(length, length, Operand(kPointerSize));
3155 if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) {
3156 // currently false for PPC - but possible future opt
3157 StoreP(scratch, MemOperand(dst));
3158 addi(dst, dst, Operand(kPointerSize));
3159 } else {
3160#if V8_TARGET_LITTLE_ENDIAN
3161 stb(scratch, MemOperand(dst, 0));
3162 ShiftRightImm(scratch, scratch, Operand(8));
3163 stb(scratch, MemOperand(dst, 1));
3164 ShiftRightImm(scratch, scratch, Operand(8));
3165 stb(scratch, MemOperand(dst, 2));
3166 ShiftRightImm(scratch, scratch, Operand(8));
3167 stb(scratch, MemOperand(dst, 3));
3168#if V8_TARGET_ARCH_PPC64
3169 ShiftRightImm(scratch, scratch, Operand(8));
3170 stb(scratch, MemOperand(dst, 4));
3171 ShiftRightImm(scratch, scratch, Operand(8));
3172 stb(scratch, MemOperand(dst, 5));
3173 ShiftRightImm(scratch, scratch, Operand(8));
3174 stb(scratch, MemOperand(dst, 6));
3175 ShiftRightImm(scratch, scratch, Operand(8));
3176 stb(scratch, MemOperand(dst, 7));
3177#endif
3178#else
3179#if V8_TARGET_ARCH_PPC64
3180 stb(scratch, MemOperand(dst, 7));
3181 ShiftRightImm(scratch, scratch, Operand(8));
3182 stb(scratch, MemOperand(dst, 6));
3183 ShiftRightImm(scratch, scratch, Operand(8));
3184 stb(scratch, MemOperand(dst, 5));
3185 ShiftRightImm(scratch, scratch, Operand(8));
3186 stb(scratch, MemOperand(dst, 4));
3187 ShiftRightImm(scratch, scratch, Operand(8));
3188#endif
3189 stb(scratch, MemOperand(dst, 3));
3190 ShiftRightImm(scratch, scratch, Operand(8));
3191 stb(scratch, MemOperand(dst, 2));
3192 ShiftRightImm(scratch, scratch, Operand(8));
3193 stb(scratch, MemOperand(dst, 1));
3194 ShiftRightImm(scratch, scratch, Operand(8));
3195 stb(scratch, MemOperand(dst, 0));
3196#endif
3197 addi(dst, dst, Operand(kPointerSize));
3198 }
3199 bdnz(&word_loop);
3200
3201 // Copy the last bytes if any left.
3202 cmpi(length, Operand::Zero());
3203 beq(&done);
3204
3205 bind(&byte_loop);
3206 mtctr(length);
3207 bind(&byte_loop_1);
3208 lbz(scratch, MemOperand(src));
3209 addi(src, src, Operand(1));
3210 stb(scratch, MemOperand(dst));
3211 addi(dst, dst, Operand(1));
3212 bdnz(&byte_loop_1);
3213
3214 bind(&done);
3215}
3216
3217
3218void MacroAssembler::InitializeNFieldsWithFiller(Register start_offset,
3219 Register count,
3220 Register filler) {
3221 Label loop;
3222 mtctr(count);
3223 bind(&loop);
3224 StoreP(filler, MemOperand(start_offset));
3225 addi(start_offset, start_offset, Operand(kPointerSize));
3226 bdnz(&loop);
3227}
3228
3229void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
3230 Register end_offset,
3231 Register filler) {
3232 Label done;
3233 sub(r0, end_offset, start_offset, LeaveOE, SetRC);
3234 beq(&done, cr0);
3235 ShiftRightImm(r0, r0, Operand(kPointerSizeLog2));
3236 InitializeNFieldsWithFiller(start_offset, r0, filler);
3237 bind(&done);
3238}
3239
3240
3241void MacroAssembler::SaveFPRegs(Register location, int first, int count) {
3242 DCHECK(count > 0);
3243 int cur = first;
3244 subi(location, location, Operand(count * kDoubleSize));
3245 for (int i = 0; i < count; i++) {
3246 DoubleRegister reg = DoubleRegister::from_code(cur++);
3247 stfd(reg, MemOperand(location, i * kDoubleSize));
3248 }
3249}
3250
3251
3252void MacroAssembler::RestoreFPRegs(Register location, int first, int count) {
3253 DCHECK(count > 0);
3254 int cur = first + count - 1;
3255 for (int i = count - 1; i >= 0; i--) {
3256 DoubleRegister reg = DoubleRegister::from_code(cur--);
3257 lfd(reg, MemOperand(location, i * kDoubleSize));
3258 }
3259 addi(location, location, Operand(count * kDoubleSize));
3260}
3261
3262
3263void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
3264 Register first, Register second, Register scratch1, Register scratch2,
3265 Label* failure) {
3266 const int kFlatOneByteStringMask =
3267 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3268 const int kFlatOneByteStringTag =
3269 kStringTag | kOneByteStringTag | kSeqStringTag;
3270 andi(scratch1, first, Operand(kFlatOneByteStringMask));
3271 andi(scratch2, second, Operand(kFlatOneByteStringMask));
3272 cmpi(scratch1, Operand(kFlatOneByteStringTag));
3273 bne(failure);
3274 cmpi(scratch2, Operand(kFlatOneByteStringTag));
3275 bne(failure);
3276}
3277
3278
3279void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
3280 Register scratch,
3281 Label* failure) {
3282 const int kFlatOneByteStringMask =
3283 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3284 const int kFlatOneByteStringTag =
3285 kStringTag | kOneByteStringTag | kSeqStringTag;
3286 andi(scratch, type, Operand(kFlatOneByteStringMask));
3287 cmpi(scratch, Operand(kFlatOneByteStringTag));
3288 bne(failure);
3289}
3290
3291static const int kRegisterPassedArguments = 8;
3292
3293
3294int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
3295 int num_double_arguments) {
3296 int stack_passed_words = 0;
3297 if (num_double_arguments > DoubleRegister::kNumRegisters) {
3298 stack_passed_words +=
3299 2 * (num_double_arguments - DoubleRegister::kNumRegisters);
3300 }
3301 // Up to 8 simple arguments are passed in registers r3..r10.
3302 if (num_reg_arguments > kRegisterPassedArguments) {
3303 stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
3304 }
3305 return stack_passed_words;
3306}
3307
3308
3309void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index,
3310 Register value,
3311 uint32_t encoding_mask) {
3312 Label is_object;
3313 TestIfSmi(string, r0);
3314 Check(ne, kNonObject, cr0);
3315
3316 LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset));
3317 lbz(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
3318
3319 andi(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
3320 cmpi(ip, Operand(encoding_mask));
3321 Check(eq, kUnexpectedStringType);
3322
3323// The index is assumed to be untagged coming in, tag it to compare with the
3324// string length without using a temp register, it is restored at the end of
3325// this function.
3326#if !V8_TARGET_ARCH_PPC64
3327 Label index_tag_ok, index_tag_bad;
3328 JumpIfNotSmiCandidate(index, r0, &index_tag_bad);
3329#endif
3330 SmiTag(index, index);
3331#if !V8_TARGET_ARCH_PPC64
3332 b(&index_tag_ok);
3333 bind(&index_tag_bad);
3334 Abort(kIndexIsTooLarge);
3335 bind(&index_tag_ok);
3336#endif
3337
3338 LoadP(ip, FieldMemOperand(string, String::kLengthOffset));
3339 cmp(index, ip);
3340 Check(lt, kIndexIsTooLarge);
3341
3342 DCHECK(Smi::FromInt(0) == 0);
3343 cmpi(index, Operand::Zero());
3344 Check(ge, kIndexIsNegative);
3345
3346 SmiUntag(index, index);
3347}
3348
3349
3350void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3351 int num_double_arguments,
3352 Register scratch) {
3353 int frame_alignment = ActivationFrameAlignment();
3354 int stack_passed_arguments =
3355 CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
3356 int stack_space = kNumRequiredStackFrameSlots;
3357
3358 if (frame_alignment > kPointerSize) {
3359 // Make stack end at alignment and make room for stack arguments
3360 // -- preserving original value of sp.
3361 mr(scratch, sp);
3362 addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
3363 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
3364 ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
3365 StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
3366 } else {
3367 // Make room for stack arguments
3368 stack_space += stack_passed_arguments;
3369 }
3370
3371 // Allocate frame with required slots to make ABI work.
3372 li(r0, Operand::Zero());
3373 StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
3374}
3375
3376
3377void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
3378 Register scratch) {
3379 PrepareCallCFunction(num_reg_arguments, 0, scratch);
3380}
3381
3382
3383void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d1, src); }
3384
3385
3386void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d1, src); }
3387
3388
3389void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
3390 DoubleRegister src2) {
3391 if (src2.is(d1)) {
3392 DCHECK(!src1.is(d2));
3393 Move(d2, src2);
3394 Move(d1, src1);
3395 } else {
3396 Move(d1, src1);
3397 Move(d2, src2);
3398 }
3399}
3400
3401
3402void MacroAssembler::CallCFunction(ExternalReference function,
3403 int num_reg_arguments,
3404 int num_double_arguments) {
3405 mov(ip, Operand(function));
3406 CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
3407}
3408
3409
3410void MacroAssembler::CallCFunction(Register function, int num_reg_arguments,
3411 int num_double_arguments) {
3412 CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
3413}
3414
3415
3416void MacroAssembler::CallCFunction(ExternalReference function,
3417 int num_arguments) {
3418 CallCFunction(function, num_arguments, 0);
3419}
3420
3421
3422void MacroAssembler::CallCFunction(Register function, int num_arguments) {
3423 CallCFunction(function, num_arguments, 0);
3424}
3425
3426
3427void MacroAssembler::CallCFunctionHelper(Register function,
3428 int num_reg_arguments,
3429 int num_double_arguments) {
3430 DCHECK(has_frame());
3431// Just call directly. The function called cannot cause a GC, or
3432// allow preemption, so the return address in the link register
3433// stays correct.
3434#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
3435 // AIX uses a function descriptor. When calling C code be aware
3436 // of this descriptor and pick up values from it
3437 LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(function, kPointerSize));
3438 LoadP(ip, MemOperand(function, 0));
3439 Register dest = ip;
3440#elif ABI_TOC_ADDRESSABILITY_VIA_IP
3441 Move(ip, function);
3442 Register dest = ip;
3443#else
3444 Register dest = function;
3445#endif
3446
3447 Call(dest);
3448
3449 // Remove frame bought in PrepareCallCFunction
3450 int stack_passed_arguments =
3451 CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
3452 int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
3453 if (ActivationFrameAlignment() > kPointerSize) {
3454 LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
3455 } else {
3456 addi(sp, sp, Operand(stack_space * kPointerSize));
3457 }
3458}
3459
3460
3461void MacroAssembler::FlushICache(Register address, size_t size,
3462 Register scratch) {
3463 if (CpuFeatures::IsSupported(INSTR_AND_DATA_CACHE_COHERENCY)) {
3464 sync();
3465 icbi(r0, address);
3466 isync();
3467 return;
3468 }
3469
3470 Label done;
3471
3472 dcbf(r0, address);
3473 sync();
3474 icbi(r0, address);
3475 isync();
3476
3477 // This code handles ranges which cross a single cacheline boundary.
3478 // scratch is last cacheline which intersects range.
3479 const int kCacheLineSizeLog2 = WhichPowerOf2(CpuFeatures::cache_line_size());
3480
3481 DCHECK(size > 0 && size <= (size_t)(1 << kCacheLineSizeLog2));
3482 addi(scratch, address, Operand(size - 1));
3483 ClearRightImm(scratch, scratch, Operand(kCacheLineSizeLog2));
3484 cmpl(scratch, address);
3485 ble(&done);
3486
3487 dcbf(r0, scratch);
3488 sync();
3489 icbi(r0, scratch);
3490 isync();
3491
3492 bind(&done);
3493}
3494
3495
3496void MacroAssembler::SetRelocatedValue(Register location, Register scratch,
3497 Register new_value) {
3498 lwz(scratch, MemOperand(location));
3499
3500#if V8_OOL_CONSTANT_POOL
3501 if (emit_debug_code()) {
3502// Check that the instruction sequence is a load from the constant pool
3503#if V8_TARGET_ARCH_PPC64
3504 And(scratch, scratch, Operand(kOpcodeMask | (0x1f * B16)));
3505 Cmpi(scratch, Operand(ADDI), r0);
3506 Check(eq, kTheInstructionShouldBeALi);
3507 lwz(scratch, MemOperand(location, kInstrSize));
3508#endif
3509 ExtractBitMask(scratch, scratch, 0x1f * B16);
3510 cmpi(scratch, Operand(kConstantPoolRegister.code()));
3511 Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
3512 // Scratch was clobbered. Restore it.
3513 lwz(scratch, MemOperand(location));
3514 }
3515 // Get the address of the constant and patch it.
3516 andi(scratch, scratch, Operand(kImm16Mask));
3517 StorePX(new_value, MemOperand(kConstantPoolRegister, scratch));
3518#else
3519 // This code assumes a FIXED_SEQUENCE for lis/ori
3520
3521 // At this point scratch is a lis instruction.
3522 if (emit_debug_code()) {
3523 And(scratch, scratch, Operand(kOpcodeMask | (0x1f * B16)));
3524 Cmpi(scratch, Operand(ADDIS), r0);
3525 Check(eq, kTheInstructionToPatchShouldBeALis);
3526 lwz(scratch, MemOperand(location));
3527 }
3528
3529// insert new high word into lis instruction
3530#if V8_TARGET_ARCH_PPC64
3531 srdi(ip, new_value, Operand(32));
3532 rlwimi(scratch, ip, 16, 16, 31);
3533#else
3534 rlwimi(scratch, new_value, 16, 16, 31);
3535#endif
3536
3537 stw(scratch, MemOperand(location));
3538
3539 lwz(scratch, MemOperand(location, kInstrSize));
3540 // scratch is now ori.
3541 if (emit_debug_code()) {
3542 And(scratch, scratch, Operand(kOpcodeMask));
3543 Cmpi(scratch, Operand(ORI), r0);
3544 Check(eq, kTheInstructionShouldBeAnOri);
3545 lwz(scratch, MemOperand(location, kInstrSize));
3546 }
3547
3548// insert new low word into ori instruction
3549#if V8_TARGET_ARCH_PPC64
3550 rlwimi(scratch, ip, 0, 16, 31);
3551#else
3552 rlwimi(scratch, new_value, 0, 16, 31);
3553#endif
3554 stw(scratch, MemOperand(location, kInstrSize));
3555
3556#if V8_TARGET_ARCH_PPC64
3557 if (emit_debug_code()) {
3558 lwz(scratch, MemOperand(location, 2 * kInstrSize));
3559 // scratch is now sldi.
3560 And(scratch, scratch, Operand(kOpcodeMask | kExt5OpcodeMask));
3561 Cmpi(scratch, Operand(EXT5 | RLDICR), r0);
3562 Check(eq, kTheInstructionShouldBeASldi);
3563 }
3564
3565 lwz(scratch, MemOperand(location, 3 * kInstrSize));
3566 // scratch is now ori.
3567 if (emit_debug_code()) {
3568 And(scratch, scratch, Operand(kOpcodeMask));
3569 Cmpi(scratch, Operand(ORIS), r0);
3570 Check(eq, kTheInstructionShouldBeAnOris);
3571 lwz(scratch, MemOperand(location, 3 * kInstrSize));
3572 }
3573
3574 rlwimi(scratch, new_value, 16, 16, 31);
3575 stw(scratch, MemOperand(location, 3 * kInstrSize));
3576
3577 lwz(scratch, MemOperand(location, 4 * kInstrSize));
3578 // scratch is now ori.
3579 if (emit_debug_code()) {
3580 And(scratch, scratch, Operand(kOpcodeMask));
3581 Cmpi(scratch, Operand(ORI), r0);
3582 Check(eq, kTheInstructionShouldBeAnOri);
3583 lwz(scratch, MemOperand(location, 4 * kInstrSize));
3584 }
3585 rlwimi(scratch, new_value, 0, 16, 31);
3586 stw(scratch, MemOperand(location, 4 * kInstrSize));
3587#endif
3588
3589// Update the I-cache so the new lis and addic can be executed.
3590#if V8_TARGET_ARCH_PPC64
3591 FlushICache(location, 5 * kInstrSize, scratch);
3592#else
3593 FlushICache(location, 2 * kInstrSize, scratch);
3594#endif
3595#endif
3596}
3597
3598
3599void MacroAssembler::GetRelocatedValue(Register location, Register result,
3600 Register scratch) {
3601 lwz(result, MemOperand(location));
3602
3603#if V8_OOL_CONSTANT_POOL
3604 if (emit_debug_code()) {
3605// Check that the instruction sequence is a load from the constant pool
3606#if V8_TARGET_ARCH_PPC64
3607 And(result, result, Operand(kOpcodeMask | (0x1f * B16)));
3608 Cmpi(result, Operand(ADDI), r0);
3609 Check(eq, kTheInstructionShouldBeALi);
3610 lwz(result, MemOperand(location, kInstrSize));
3611#endif
3612 ExtractBitMask(result, result, 0x1f * B16);
3613 cmpi(result, Operand(kConstantPoolRegister.code()));
3614 Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
3615 lwz(result, MemOperand(location));
3616 }
3617 // Get the address of the constant and retrieve it.
3618 andi(result, result, Operand(kImm16Mask));
3619 LoadPX(result, MemOperand(kConstantPoolRegister, result));
3620#else
3621 // This code assumes a FIXED_SEQUENCE for lis/ori
3622 if (emit_debug_code()) {
3623 And(result, result, Operand(kOpcodeMask | (0x1f * B16)));
3624 Cmpi(result, Operand(ADDIS), r0);
3625 Check(eq, kTheInstructionShouldBeALis);
3626 lwz(result, MemOperand(location));
3627 }
3628
3629 // result now holds a lis instruction. Extract the immediate.
3630 slwi(result, result, Operand(16));
3631
3632 lwz(scratch, MemOperand(location, kInstrSize));
3633 if (emit_debug_code()) {
3634 And(scratch, scratch, Operand(kOpcodeMask));
3635 Cmpi(scratch, Operand(ORI), r0);
3636 Check(eq, kTheInstructionShouldBeAnOri);
3637 lwz(scratch, MemOperand(location, kInstrSize));
3638 }
3639 // Copy the low 16bits from ori instruction into result
3640 rlwimi(result, scratch, 0, 16, 31);
3641
3642#if V8_TARGET_ARCH_PPC64
3643 if (emit_debug_code()) {
3644 lwz(scratch, MemOperand(location, 2 * kInstrSize));
3645 // scratch is now sldi.
3646 And(scratch, scratch, Operand(kOpcodeMask | kExt5OpcodeMask));
3647 Cmpi(scratch, Operand(EXT5 | RLDICR), r0);
3648 Check(eq, kTheInstructionShouldBeASldi);
3649 }
3650
3651 lwz(scratch, MemOperand(location, 3 * kInstrSize));
3652 // scratch is now ori.
3653 if (emit_debug_code()) {
3654 And(scratch, scratch, Operand(kOpcodeMask));
3655 Cmpi(scratch, Operand(ORIS), r0);
3656 Check(eq, kTheInstructionShouldBeAnOris);
3657 lwz(scratch, MemOperand(location, 3 * kInstrSize));
3658 }
3659 sldi(result, result, Operand(16));
3660 rldimi(result, scratch, 0, 48);
3661
3662 lwz(scratch, MemOperand(location, 4 * kInstrSize));
3663 // scratch is now ori.
3664 if (emit_debug_code()) {
3665 And(scratch, scratch, Operand(kOpcodeMask));
3666 Cmpi(scratch, Operand(ORI), r0);
3667 Check(eq, kTheInstructionShouldBeAnOri);
3668 lwz(scratch, MemOperand(location, 4 * kInstrSize));
3669 }
3670 sldi(result, result, Operand(16));
3671 rldimi(result, scratch, 0, 48);
3672#endif
3673#endif
3674}
3675
3676
3677void MacroAssembler::CheckPageFlag(
3678 Register object,
3679 Register scratch, // scratch may be same register as object
3680 int mask, Condition cc, Label* condition_met) {
3681 DCHECK(cc == ne || cc == eq);
3682 ClearRightImm(scratch, object, Operand(kPageSizeBits));
3683 LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
3684
3685 And(r0, scratch, Operand(mask), SetRC);
3686
3687 if (cc == ne) {
3688 bne(condition_met, cr0);
3689 }
3690 if (cc == eq) {
3691 beq(condition_met, cr0);
3692 }
3693}
3694
3695
3696void MacroAssembler::CheckMapDeprecated(Handle<Map> map, Register scratch,
3697 Label* if_deprecated) {
3698 if (map->CanBeDeprecated()) {
3699 mov(scratch, Operand(map));
3700 lwz(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
3701 ExtractBitMask(scratch, scratch, Map::Deprecated::kMask, SetRC);
3702 bne(if_deprecated, cr0);
3703 }
3704}
3705
3706
3707void MacroAssembler::JumpIfBlack(Register object, Register scratch0,
3708 Register scratch1, Label* on_black) {
3709 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
3710 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3711}
3712
3713
3714void MacroAssembler::HasColor(Register object, Register bitmap_scratch,
3715 Register mask_scratch, Label* has_color,
3716 int first_bit, int second_bit) {
3717 DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
3718
3719 GetMarkBits(object, bitmap_scratch, mask_scratch);
3720
3721 Label other_color, word_boundary;
3722 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3723 // Test the first bit
3724 and_(r0, ip, mask_scratch, SetRC);
3725 b(first_bit == 1 ? eq : ne, &other_color, cr0);
3726 // Shift left 1
3727 // May need to load the next cell
3728 slwi(mask_scratch, mask_scratch, Operand(1), SetRC);
3729 beq(&word_boundary, cr0);
3730 // Test the second bit
3731 and_(r0, ip, mask_scratch, SetRC);
3732 b(second_bit == 1 ? ne : eq, has_color, cr0);
3733 b(&other_color);
3734
3735 bind(&word_boundary);
3736 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize));
3737 andi(r0, ip, Operand(1));
3738 b(second_bit == 1 ? ne : eq, has_color, cr0);
3739 bind(&other_color);
3740}
3741
3742
3743// Detect some, but not all, common pointer-free objects. This is used by the
3744// incremental write barrier which doesn't care about oddballs (they are always
3745// marked black immediately so this code is not hit).
3746void MacroAssembler::JumpIfDataObject(Register value, Register scratch,
3747 Label* not_data_object) {
3748 Label is_data_object;
3749 LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
3750 CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
3751 beq(&is_data_object);
3752 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3753 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3754 // If it's a string and it's not a cons string then it's an object containing
3755 // no GC pointers.
3756 lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3757 STATIC_ASSERT((kIsIndirectStringMask | kIsNotStringMask) == 0x81);
3758 andi(scratch, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
3759 bne(not_data_object, cr0);
3760 bind(&is_data_object);
3761}
3762
3763
3764void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg,
3765 Register mask_reg) {
3766 DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
3767 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
3768 lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
3769 and_(bitmap_reg, addr_reg, r0);
3770 const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
3771 ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2);
3772 ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits);
3773 ShiftLeftImm(ip, ip, Operand(Bitmap::kBytesPerCellLog2));
3774 add(bitmap_reg, bitmap_reg, ip);
3775 li(ip, Operand(1));
3776 slw(mask_reg, ip, mask_reg);
3777}
3778
3779
3780void MacroAssembler::EnsureNotWhite(Register value, Register bitmap_scratch,
3781 Register mask_scratch,
3782 Register load_scratch,
3783 Label* value_is_white_and_not_data) {
3784 DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
3785 GetMarkBits(value, bitmap_scratch, mask_scratch);
3786
3787 // If the value is black or grey we don't need to do anything.
3788 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3789 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
3790 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
3791 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3792
3793 Label done;
3794
3795 // Since both black and grey have a 1 in the first position and white does
3796 // not have a 1 there we only need to check one bit.
3797 lwz(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3798 and_(r0, mask_scratch, load_scratch, SetRC);
3799 bne(&done, cr0);
3800
3801 if (emit_debug_code()) {
3802 // Check for impossible bit pattern.
3803 Label ok;
3804 // LSL may overflow, making the check conservative.
3805 slwi(r0, mask_scratch, Operand(1));
3806 and_(r0, load_scratch, r0, SetRC);
3807 beq(&ok, cr0);
3808 stop("Impossible marking bit pattern");
3809 bind(&ok);
3810 }
3811
3812 // Value is white. We check whether it is data that doesn't need scanning.
3813 // Currently only checks for HeapNumber and non-cons strings.
3814 Register map = load_scratch; // Holds map while checking type.
3815 Register length = load_scratch; // Holds length of object after testing type.
3816 Label is_data_object, maybe_string_object, is_string_object, is_encoded;
3817#if V8_TARGET_ARCH_PPC64
3818 Label length_computed;
3819#endif
3820
3821
3822 // Check for heap-number
3823 LoadP(map, FieldMemOperand(value, HeapObject::kMapOffset));
3824 CompareRoot(map, Heap::kHeapNumberMapRootIndex);
3825 bne(&maybe_string_object);
3826 li(length, Operand(HeapNumber::kSize));
3827 b(&is_data_object);
3828 bind(&maybe_string_object);
3829
3830 // Check for strings.
3831 DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3832 DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3833 // If it's a string and it's not a cons string then it's an object containing
3834 // no GC pointers.
3835 Register instance_type = load_scratch;
3836 lbz(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
3837 andi(r0, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
3838 bne(value_is_white_and_not_data, cr0);
3839 // It's a non-indirect (non-cons and non-slice) string.
3840 // If it's external, the length is just ExternalString::kSize.
3841 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3842 // External strings are the only ones with the kExternalStringTag bit
3843 // set.
3844 DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
3845 DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
3846 andi(r0, instance_type, Operand(kExternalStringTag));
3847 beq(&is_string_object, cr0);
3848 li(length, Operand(ExternalString::kSize));
3849 b(&is_data_object);
3850 bind(&is_string_object);
3851
3852 // Sequential string, either Latin1 or UC16.
3853 // For Latin1 (char-size of 1) we untag the smi to get the length.
3854 // For UC16 (char-size of 2):
3855 // - (32-bit) we just leave the smi tag in place, thereby getting
3856 // the length multiplied by 2.
3857 // - (64-bit) we compute the offset in the 2-byte array
3858 DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
3859 LoadP(ip, FieldMemOperand(value, String::kLengthOffset));
3860 andi(r0, instance_type, Operand(kStringEncodingMask));
3861 beq(&is_encoded, cr0);
3862 SmiUntag(ip);
3863#if V8_TARGET_ARCH_PPC64
3864 b(&length_computed);
3865#endif
3866 bind(&is_encoded);
3867#if V8_TARGET_ARCH_PPC64
3868 SmiToShortArrayOffset(ip, ip);
3869 bind(&length_computed);
3870#else
3871 DCHECK(kSmiShift == 1);
3872#endif
3873 addi(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
3874 li(r0, Operand(~kObjectAlignmentMask));
3875 and_(length, length, r0);
3876
3877 bind(&is_data_object);
3878 // Value is a data object, and it is white. Mark it black. Since we know
3879 // that the object is white we can make it black by flipping one bit.
3880 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3881 orx(ip, ip, mask_scratch);
3882 stw(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
3883
3884 mov(ip, Operand(~Page::kPageAlignmentMask));
3885 and_(bitmap_scratch, bitmap_scratch, ip);
3886 lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3887 add(ip, ip, length);
3888 stw(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3889
3890 bind(&done);
3891}
3892
3893
3894// Saturate a value into 8-bit unsigned integer
3895// if input_value < 0, output_value is 0
3896// if input_value > 255, output_value is 255
3897// otherwise output_value is the input_value
3898void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
3899 Label done, negative_label, overflow_label;
3900 int satval = (1 << 8) - 1;
3901
3902 cmpi(input_reg, Operand::Zero());
3903 blt(&negative_label);
3904
3905 cmpi(input_reg, Operand(satval));
3906 bgt(&overflow_label);
3907 if (!output_reg.is(input_reg)) {
3908 mr(output_reg, input_reg);
3909 }
3910 b(&done);
3911
3912 bind(&negative_label);
3913 li(output_reg, Operand::Zero()); // set to 0 if negative
3914 b(&done);
3915
3916
3917 bind(&overflow_label); // set to satval if > satval
3918 li(output_reg, Operand(satval));
3919
3920 bind(&done);
3921}
3922
3923
3924void MacroAssembler::SetRoundingMode(FPRoundingMode RN) { mtfsfi(7, RN); }
3925
3926
3927void MacroAssembler::ResetRoundingMode() {
3928 mtfsfi(7, kRoundToNearest); // reset (default is kRoundToNearest)
3929}
3930
3931
3932void MacroAssembler::ClampDoubleToUint8(Register result_reg,
3933 DoubleRegister input_reg,
3934 DoubleRegister double_scratch) {
3935 Label above_zero;
3936 Label done;
3937 Label in_bounds;
3938
3939 LoadDoubleLiteral(double_scratch, 0.0, result_reg);
3940 fcmpu(input_reg, double_scratch);
3941 bgt(&above_zero);
3942
3943 // Double value is less than zero, NaN or Inf, return 0.
3944 LoadIntLiteral(result_reg, 0);
3945 b(&done);
3946
3947 // Double value is >= 255, return 255.
3948 bind(&above_zero);
3949 LoadDoubleLiteral(double_scratch, 255.0, result_reg);
3950 fcmpu(input_reg, double_scratch);
3951 ble(&in_bounds);
3952 LoadIntLiteral(result_reg, 255);
3953 b(&done);
3954
3955 // In 0-255 range, round and truncate.
3956 bind(&in_bounds);
3957
3958 // round to nearest (default rounding mode)
3959 fctiw(double_scratch, input_reg);
3960 MovDoubleLowToInt(result_reg, double_scratch);
3961 bind(&done);
3962}
3963
3964
3965void MacroAssembler::LoadInstanceDescriptors(Register map,
3966 Register descriptors) {
3967 LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
3968}
3969
3970
3971void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
3972 lwz(dst, FieldMemOperand(map, Map::kBitField3Offset));
3973 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
3974}
3975
3976
3977void MacroAssembler::EnumLength(Register dst, Register map) {
3978 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3979 lwz(dst, FieldMemOperand(map, Map::kBitField3Offset));
3980 ExtractBitMask(dst, dst, Map::EnumLengthBits::kMask);
3981 SmiTag(dst);
3982}
3983
3984
3985void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
3986 Register empty_fixed_array_value = r9;
3987 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
3988 Label next, start;
3989 mr(r5, r3);
3990
3991 // Check if the enum length field is properly initialized, indicating that
3992 // there is an enum cache.
3993 LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
3994
3995 EnumLength(r6, r4);
3996 CmpSmiLiteral(r6, Smi::FromInt(kInvalidEnumCacheSentinel), r0);
3997 beq(call_runtime);
3998
3999 b(&start);
4000
4001 bind(&next);
4002 LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
4003
4004 // For all objects but the receiver, check that the cache is empty.
4005 EnumLength(r6, r4);
4006 CmpSmiLiteral(r6, Smi::FromInt(0), r0);
4007 bne(call_runtime);
4008
4009 bind(&start);
4010
4011 // Check that there are no elements. Register r5 contains the current JS
4012 // object we've reached through the prototype chain.
4013 Label no_elements;
4014 LoadP(r5, FieldMemOperand(r5, JSObject::kElementsOffset));
4015 cmp(r5, empty_fixed_array_value);
4016 beq(&no_elements);
4017
4018 // Second chance, the object may be using the empty slow element dictionary.
4019 CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex);
4020 bne(call_runtime);
4021
4022 bind(&no_elements);
4023 LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
4024 cmp(r5, null_value);
4025 bne(&next);
4026}
4027
4028
4029////////////////////////////////////////////////////////////////////////////////
4030//
4031// New MacroAssembler Interfaces added for PPC
4032//
4033////////////////////////////////////////////////////////////////////////////////
4034void MacroAssembler::LoadIntLiteral(Register dst, int value) {
4035 mov(dst, Operand(value));
4036}
4037
4038
4039void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) {
4040 mov(dst, Operand(smi));
4041}
4042
4043
4044void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value,
4045 Register scratch) {
4046#if V8_OOL_CONSTANT_POOL
4047 // TODO(mbrandy): enable extended constant pool usage for doubles.
4048 // See ARM commit e27ab337 for a reference.
4049 if (is_ool_constant_pool_available() && !is_constant_pool_full()) {
4050 RelocInfo rinfo(pc_, value);
4051 ConstantPoolAddEntry(rinfo);
4052#if V8_TARGET_ARCH_PPC64
4053 // We use 2 instruction sequence here for consistency with mov.
4054 li(scratch, Operand::Zero());
4055 lfdx(result, MemOperand(kConstantPoolRegister, scratch));
4056#else
4057 lfd(result, MemOperand(kConstantPoolRegister, 0));
4058#endif
4059 return;
4060 }
4061#endif
4062
4063 // avoid gcc strict aliasing error using union cast
4064 union {
4065 double dval;
4066#if V8_TARGET_ARCH_PPC64
4067 intptr_t ival;
4068#else
4069 intptr_t ival[2];
4070#endif
4071 } litVal;
4072
4073 litVal.dval = value;
4074
4075#if V8_TARGET_ARCH_PPC64
4076 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4077 mov(scratch, Operand(litVal.ival));
4078 mtfprd(result, scratch);
4079 return;
4080 }
4081#endif
4082
4083 addi(sp, sp, Operand(-kDoubleSize));
4084#if V8_TARGET_ARCH_PPC64
4085 mov(scratch, Operand(litVal.ival));
4086 std(scratch, MemOperand(sp));
4087#else
4088 LoadIntLiteral(scratch, litVal.ival[0]);
4089 stw(scratch, MemOperand(sp, 0));
4090 LoadIntLiteral(scratch, litVal.ival[1]);
4091 stw(scratch, MemOperand(sp, 4));
4092#endif
4093 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4094 lfd(result, MemOperand(sp, 0));
4095 addi(sp, sp, Operand(kDoubleSize));
4096}
4097
4098
4099void MacroAssembler::MovIntToDouble(DoubleRegister dst, Register src,
4100 Register scratch) {
4101// sign-extend src to 64-bit
4102#if V8_TARGET_ARCH_PPC64
4103 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4104 mtfprwa(dst, src);
4105 return;
4106 }
4107#endif
4108
4109 DCHECK(!src.is(scratch));
4110 subi(sp, sp, Operand(kDoubleSize));
4111#if V8_TARGET_ARCH_PPC64
4112 extsw(scratch, src);
4113 std(scratch, MemOperand(sp, 0));
4114#else
4115 srawi(scratch, src, 31);
4116 stw(scratch, MemOperand(sp, Register::kExponentOffset));
4117 stw(src, MemOperand(sp, Register::kMantissaOffset));
4118#endif
4119 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4120 lfd(dst, MemOperand(sp, 0));
4121 addi(sp, sp, Operand(kDoubleSize));
4122}
4123
4124
4125void MacroAssembler::MovUnsignedIntToDouble(DoubleRegister dst, Register src,
4126 Register scratch) {
4127// zero-extend src to 64-bit
4128#if V8_TARGET_ARCH_PPC64
4129 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4130 mtfprwz(dst, src);
4131 return;
4132 }
4133#endif
4134
4135 DCHECK(!src.is(scratch));
4136 subi(sp, sp, Operand(kDoubleSize));
4137#if V8_TARGET_ARCH_PPC64
4138 clrldi(scratch, src, Operand(32));
4139 std(scratch, MemOperand(sp, 0));
4140#else
4141 li(scratch, Operand::Zero());
4142 stw(scratch, MemOperand(sp, Register::kExponentOffset));
4143 stw(src, MemOperand(sp, Register::kMantissaOffset));
4144#endif
4145 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4146 lfd(dst, MemOperand(sp, 0));
4147 addi(sp, sp, Operand(kDoubleSize));
4148}
4149
4150
4151void MacroAssembler::MovInt64ToDouble(DoubleRegister dst,
4152#if !V8_TARGET_ARCH_PPC64
4153 Register src_hi,
4154#endif
4155 Register src) {
4156#if V8_TARGET_ARCH_PPC64
4157 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4158 mtfprd(dst, src);
4159 return;
4160 }
4161#endif
4162
4163 subi(sp, sp, Operand(kDoubleSize));
4164#if V8_TARGET_ARCH_PPC64
4165 std(src, MemOperand(sp, 0));
4166#else
4167 stw(src_hi, MemOperand(sp, Register::kExponentOffset));
4168 stw(src, MemOperand(sp, Register::kMantissaOffset));
4169#endif
4170 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4171 lfd(dst, MemOperand(sp, 0));
4172 addi(sp, sp, Operand(kDoubleSize));
4173}
4174
4175
4176#if V8_TARGET_ARCH_PPC64
4177void MacroAssembler::MovInt64ComponentsToDouble(DoubleRegister dst,
4178 Register src_hi,
4179 Register src_lo,
4180 Register scratch) {
4181 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4182 sldi(scratch, src_hi, Operand(32));
4183 rldimi(scratch, src_lo, 0, 32);
4184 mtfprd(dst, scratch);
4185 return;
4186 }
4187
4188 subi(sp, sp, Operand(kDoubleSize));
4189 stw(src_hi, MemOperand(sp, Register::kExponentOffset));
4190 stw(src_lo, MemOperand(sp, Register::kMantissaOffset));
4191 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4192 lfd(dst, MemOperand(sp));
4193 addi(sp, sp, Operand(kDoubleSize));
4194}
4195#endif
4196
4197
4198void MacroAssembler::MovDoubleLowToInt(Register dst, DoubleRegister src) {
4199#if V8_TARGET_ARCH_PPC64
4200 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4201 mffprwz(dst, src);
4202 return;
4203 }
4204#endif
4205
4206 subi(sp, sp, Operand(kDoubleSize));
4207 stfd(src, MemOperand(sp));
4208 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4209 lwz(dst, MemOperand(sp, Register::kMantissaOffset));
4210 addi(sp, sp, Operand(kDoubleSize));
4211}
4212
4213
4214void MacroAssembler::MovDoubleHighToInt(Register dst, DoubleRegister src) {
4215#if V8_TARGET_ARCH_PPC64
4216 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4217 mffprd(dst, src);
4218 srdi(dst, dst, Operand(32));
4219 return;
4220 }
4221#endif
4222
4223 subi(sp, sp, Operand(kDoubleSize));
4224 stfd(src, MemOperand(sp));
4225 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4226 lwz(dst, MemOperand(sp, Register::kExponentOffset));
4227 addi(sp, sp, Operand(kDoubleSize));
4228}
4229
4230
4231void MacroAssembler::MovDoubleToInt64(
4232#if !V8_TARGET_ARCH_PPC64
4233 Register dst_hi,
4234#endif
4235 Register dst, DoubleRegister src) {
4236#if V8_TARGET_ARCH_PPC64
4237 if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
4238 mffprd(dst, src);
4239 return;
4240 }
4241#endif
4242
4243 subi(sp, sp, Operand(kDoubleSize));
4244 stfd(src, MemOperand(sp));
4245 nop(GROUP_ENDING_NOP); // LHS/RAW optimization
4246#if V8_TARGET_ARCH_PPC64
4247 ld(dst, MemOperand(sp, 0));
4248#else
4249 lwz(dst_hi, MemOperand(sp, Register::kExponentOffset));
4250 lwz(dst, MemOperand(sp, Register::kMantissaOffset));
4251#endif
4252 addi(sp, sp, Operand(kDoubleSize));
4253}
4254
4255
4256void MacroAssembler::Add(Register dst, Register src, intptr_t value,
4257 Register scratch) {
4258 if (is_int16(value)) {
4259 addi(dst, src, Operand(value));
4260 } else {
4261 mov(scratch, Operand(value));
4262 add(dst, src, scratch);
4263 }
4264}
4265
4266
4267void MacroAssembler::Cmpi(Register src1, const Operand& src2, Register scratch,
4268 CRegister cr) {
4269 intptr_t value = src2.immediate();
4270 if (is_int16(value)) {
4271 cmpi(src1, src2, cr);
4272 } else {
4273 mov(scratch, src2);
4274 cmp(src1, scratch, cr);
4275 }
4276}
4277
4278
4279void MacroAssembler::Cmpli(Register src1, const Operand& src2, Register scratch,
4280 CRegister cr) {
4281 intptr_t value = src2.immediate();
4282 if (is_uint16(value)) {
4283 cmpli(src1, src2, cr);
4284 } else {
4285 mov(scratch, src2);
4286 cmpl(src1, scratch, cr);
4287 }
4288}
4289
4290
4291void MacroAssembler::Cmpwi(Register src1, const Operand& src2, Register scratch,
4292 CRegister cr) {
4293 intptr_t value = src2.immediate();
4294 if (is_int16(value)) {
4295 cmpwi(src1, src2, cr);
4296 } else {
4297 mov(scratch, src2);
4298 cmpw(src1, scratch, cr);
4299 }
4300}
4301
4302
4303void MacroAssembler::Cmplwi(Register src1, const Operand& src2,
4304 Register scratch, CRegister cr) {
4305 intptr_t value = src2.immediate();
4306 if (is_uint16(value)) {
4307 cmplwi(src1, src2, cr);
4308 } else {
4309 mov(scratch, src2);
4310 cmplw(src1, scratch, cr);
4311 }
4312}
4313
4314
4315void MacroAssembler::And(Register ra, Register rs, const Operand& rb,
4316 RCBit rc) {
4317 if (rb.is_reg()) {
4318 and_(ra, rs, rb.rm(), rc);
4319 } else {
4320 if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == SetRC) {
4321 andi(ra, rs, rb);
4322 } else {
4323 // mov handles the relocation.
4324 DCHECK(!rs.is(r0));
4325 mov(r0, rb);
4326 and_(ra, rs, r0, rc);
4327 }
4328 }
4329}
4330
4331
4332void MacroAssembler::Or(Register ra, Register rs, const Operand& rb, RCBit rc) {
4333 if (rb.is_reg()) {
4334 orx(ra, rs, rb.rm(), rc);
4335 } else {
4336 if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) {
4337 ori(ra, rs, rb);
4338 } else {
4339 // mov handles the relocation.
4340 DCHECK(!rs.is(r0));
4341 mov(r0, rb);
4342 orx(ra, rs, r0, rc);
4343 }
4344 }
4345}
4346
4347
4348void MacroAssembler::Xor(Register ra, Register rs, const Operand& rb,
4349 RCBit rc) {
4350 if (rb.is_reg()) {
4351 xor_(ra, rs, rb.rm(), rc);
4352 } else {
4353 if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) {
4354 xori(ra, rs, rb);
4355 } else {
4356 // mov handles the relocation.
4357 DCHECK(!rs.is(r0));
4358 mov(r0, rb);
4359 xor_(ra, rs, r0, rc);
4360 }
4361 }
4362}
4363
4364
4365void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
4366 CRegister cr) {
4367#if V8_TARGET_ARCH_PPC64
4368 LoadSmiLiteral(scratch, smi);
4369 cmp(src1, scratch, cr);
4370#else
4371 Cmpi(src1, Operand(smi), scratch, cr);
4372#endif
4373}
4374
4375
4376void MacroAssembler::CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
4377 CRegister cr) {
4378#if V8_TARGET_ARCH_PPC64
4379 LoadSmiLiteral(scratch, smi);
4380 cmpl(src1, scratch, cr);
4381#else
4382 Cmpli(src1, Operand(smi), scratch, cr);
4383#endif
4384}
4385
4386
4387void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi,
4388 Register scratch) {
4389#if V8_TARGET_ARCH_PPC64
4390 LoadSmiLiteral(scratch, smi);
4391 add(dst, src, scratch);
4392#else
4393 Add(dst, src, reinterpret_cast<intptr_t>(smi), scratch);
4394#endif
4395}
4396
4397
4398void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi,
4399 Register scratch) {
4400#if V8_TARGET_ARCH_PPC64
4401 LoadSmiLiteral(scratch, smi);
4402 sub(dst, src, scratch);
4403#else
4404 Add(dst, src, -(reinterpret_cast<intptr_t>(smi)), scratch);
4405#endif
4406}
4407
4408
4409void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi,
4410 Register scratch, RCBit rc) {
4411#if V8_TARGET_ARCH_PPC64
4412 LoadSmiLiteral(scratch, smi);
4413 and_(dst, src, scratch, rc);
4414#else
4415 And(dst, src, Operand(smi), rc);
4416#endif
4417}
4418
4419
4420// Load a "pointer" sized value from the memory location
4421void MacroAssembler::LoadP(Register dst, const MemOperand& mem,
4422 Register scratch) {
4423 int offset = mem.offset();
4424
4425 if (!scratch.is(no_reg) && !is_int16(offset)) {
4426 /* cannot use d-form */
4427 LoadIntLiteral(scratch, offset);
4428#if V8_TARGET_ARCH_PPC64
4429 ldx(dst, MemOperand(mem.ra(), scratch));
4430#else
4431 lwzx(dst, MemOperand(mem.ra(), scratch));
4432#endif
4433 } else {
4434#if V8_TARGET_ARCH_PPC64
4435 int misaligned = (offset & 3);
4436 if (misaligned) {
4437 // adjust base to conform to offset alignment requirements
4438 // Todo: enhance to use scratch if dst is unsuitable
4439 DCHECK(!dst.is(r0));
4440 addi(dst, mem.ra(), Operand((offset & 3) - 4));
4441 ld(dst, MemOperand(dst, (offset & ~3) + 4));
4442 } else {
4443 ld(dst, mem);
4444 }
4445#else
4446 lwz(dst, mem);
4447#endif
4448 }
4449}
4450
4451
4452// Store a "pointer" sized value to the memory location
4453void MacroAssembler::StoreP(Register src, const MemOperand& mem,
4454 Register scratch) {
4455 int offset = mem.offset();
4456
4457 if (!scratch.is(no_reg) && !is_int16(offset)) {
4458 /* cannot use d-form */
4459 LoadIntLiteral(scratch, offset);
4460#if V8_TARGET_ARCH_PPC64
4461 stdx(src, MemOperand(mem.ra(), scratch));
4462#else
4463 stwx(src, MemOperand(mem.ra(), scratch));
4464#endif
4465 } else {
4466#if V8_TARGET_ARCH_PPC64
4467 int misaligned = (offset & 3);
4468 if (misaligned) {
4469 // adjust base to conform to offset alignment requirements
4470 // a suitable scratch is required here
4471 DCHECK(!scratch.is(no_reg));
4472 if (scratch.is(r0)) {
4473 LoadIntLiteral(scratch, offset);
4474 stdx(src, MemOperand(mem.ra(), scratch));
4475 } else {
4476 addi(scratch, mem.ra(), Operand((offset & 3) - 4));
4477 std(src, MemOperand(scratch, (offset & ~3) + 4));
4478 }
4479 } else {
4480 std(src, mem);
4481 }
4482#else
4483 stw(src, mem);
4484#endif
4485 }
4486}
4487
4488void MacroAssembler::LoadWordArith(Register dst, const MemOperand& mem,
4489 Register scratch) {
4490 int offset = mem.offset();
4491
4492 if (!scratch.is(no_reg) && !is_int16(offset)) {
4493 /* cannot use d-form */
4494 LoadIntLiteral(scratch, offset);
4495#if V8_TARGET_ARCH_PPC64
4496 // lwax(dst, MemOperand(mem.ra(), scratch));
4497 DCHECK(0); // lwax not yet implemented
4498#else
4499 lwzx(dst, MemOperand(mem.ra(), scratch));
4500#endif
4501 } else {
4502#if V8_TARGET_ARCH_PPC64
4503 int misaligned = (offset & 3);
4504 if (misaligned) {
4505 // adjust base to conform to offset alignment requirements
4506 // Todo: enhance to use scratch if dst is unsuitable
4507 DCHECK(!dst.is(r0));
4508 addi(dst, mem.ra(), Operand((offset & 3) - 4));
4509 lwa(dst, MemOperand(dst, (offset & ~3) + 4));
4510 } else {
4511 lwa(dst, mem);
4512 }
4513#else
4514 lwz(dst, mem);
4515#endif
4516 }
4517}
4518
4519
4520// Variable length depending on whether offset fits into immediate field
4521// MemOperand currently only supports d-form
4522void MacroAssembler::LoadWord(Register dst, const MemOperand& mem,
4523 Register scratch) {
4524 Register base = mem.ra();
4525 int offset = mem.offset();
4526
4527 if (!is_int16(offset)) {
4528 LoadIntLiteral(scratch, offset);
4529 lwzx(dst, MemOperand(base, scratch));
4530 } else {
4531 lwz(dst, mem);
4532 }
4533}
4534
4535
4536// Variable length depending on whether offset fits into immediate field
4537// MemOperand current only supports d-form
4538void MacroAssembler::StoreWord(Register src, const MemOperand& mem,
4539 Register scratch) {
4540 Register base = mem.ra();
4541 int offset = mem.offset();
4542
4543 if (!is_int16(offset)) {
4544 LoadIntLiteral(scratch, offset);
4545 stwx(src, MemOperand(base, scratch));
4546 } else {
4547 stw(src, mem);
4548 }
4549}
4550
4551
4552// Variable length depending on whether offset fits into immediate field
4553// MemOperand currently only supports d-form
4554void MacroAssembler::LoadHalfWord(Register dst, const MemOperand& mem,
4555 Register scratch) {
4556 Register base = mem.ra();
4557 int offset = mem.offset();
4558
4559 if (!is_int16(offset)) {
4560 LoadIntLiteral(scratch, offset);
4561 lhzx(dst, MemOperand(base, scratch));
4562 } else {
4563 lhz(dst, mem);
4564 }
4565}
4566
4567
4568// Variable length depending on whether offset fits into immediate field
4569// MemOperand current only supports d-form
4570void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem,
4571 Register scratch) {
4572 Register base = mem.ra();
4573 int offset = mem.offset();
4574
4575 if (!is_int16(offset)) {
4576 LoadIntLiteral(scratch, offset);
4577 sthx(src, MemOperand(base, scratch));
4578 } else {
4579 sth(src, mem);
4580 }
4581}
4582
4583
4584// Variable length depending on whether offset fits into immediate field
4585// MemOperand currently only supports d-form
4586void MacroAssembler::LoadByte(Register dst, const MemOperand& mem,
4587 Register scratch) {
4588 Register base = mem.ra();
4589 int offset = mem.offset();
4590
4591 if (!is_int16(offset)) {
4592 LoadIntLiteral(scratch, offset);
4593 lbzx(dst, MemOperand(base, scratch));
4594 } else {
4595 lbz(dst, mem);
4596 }
4597}
4598
4599
4600// Variable length depending on whether offset fits into immediate field
4601// MemOperand current only supports d-form
4602void MacroAssembler::StoreByte(Register src, const MemOperand& mem,
4603 Register scratch) {
4604 Register base = mem.ra();
4605 int offset = mem.offset();
4606
4607 if (!is_int16(offset)) {
4608 LoadIntLiteral(scratch, offset);
4609 stbx(src, MemOperand(base, scratch));
4610 } else {
4611 stb(src, mem);
4612 }
4613}
4614
4615
4616void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem,
4617 Representation r, Register scratch) {
4618 DCHECK(!r.IsDouble());
4619 if (r.IsInteger8()) {
4620 LoadByte(dst, mem, scratch);
4621 extsb(dst, dst);
4622 } else if (r.IsUInteger8()) {
4623 LoadByte(dst, mem, scratch);
4624 } else if (r.IsInteger16()) {
4625 LoadHalfWord(dst, mem, scratch);
4626 extsh(dst, dst);
4627 } else if (r.IsUInteger16()) {
4628 LoadHalfWord(dst, mem, scratch);
4629#if V8_TARGET_ARCH_PPC64
4630 } else if (r.IsInteger32()) {
4631 LoadWord(dst, mem, scratch);
4632#endif
4633 } else {
4634 LoadP(dst, mem, scratch);
4635 }
4636}
4637
4638
4639void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem,
4640 Representation r, Register scratch) {
4641 DCHECK(!r.IsDouble());
4642 if (r.IsInteger8() || r.IsUInteger8()) {
4643 StoreByte(src, mem, scratch);
4644 } else if (r.IsInteger16() || r.IsUInteger16()) {
4645 StoreHalfWord(src, mem, scratch);
4646#if V8_TARGET_ARCH_PPC64
4647 } else if (r.IsInteger32()) {
4648 StoreWord(src, mem, scratch);
4649#endif
4650 } else {
4651 if (r.IsHeapObject()) {
4652 AssertNotSmi(src);
4653 } else if (r.IsSmi()) {
4654 AssertSmi(src);
4655 }
4656 StoreP(src, mem, scratch);
4657 }
4658}
4659
4660
4661void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg,
4662 Register scratch_reg,
4663 Label* no_memento_found) {
4664 ExternalReference new_space_start =
4665 ExternalReference::new_space_start(isolate());
4666 ExternalReference new_space_allocation_top =
4667 ExternalReference::new_space_allocation_top_address(isolate());
4668 addi(scratch_reg, receiver_reg,
4669 Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
4670 Cmpi(scratch_reg, Operand(new_space_start), r0);
4671 blt(no_memento_found);
4672 mov(ip, Operand(new_space_allocation_top));
4673 LoadP(ip, MemOperand(ip));
4674 cmp(scratch_reg, ip);
4675 bgt(no_memento_found);
4676 LoadP(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
4677 Cmpi(scratch_reg, Operand(isolate()->factory()->allocation_memento_map()),
4678 r0);
4679}
4680
4681
4682Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
4683 Register reg4, Register reg5,
4684 Register reg6) {
4685 RegList regs = 0;
4686 if (reg1.is_valid()) regs |= reg1.bit();
4687 if (reg2.is_valid()) regs |= reg2.bit();
4688 if (reg3.is_valid()) regs |= reg3.bit();
4689 if (reg4.is_valid()) regs |= reg4.bit();
4690 if (reg5.is_valid()) regs |= reg5.bit();
4691 if (reg6.is_valid()) regs |= reg6.bit();
4692
4693 for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
4694 Register candidate = Register::FromAllocationIndex(i);
4695 if (regs & candidate.bit()) continue;
4696 return candidate;
4697 }
4698 UNREACHABLE();
4699 return no_reg;
4700}
4701
4702
4703void MacroAssembler::JumpIfDictionaryInPrototypeChain(Register object,
4704 Register scratch0,
4705 Register scratch1,
4706 Label* found) {
4707 DCHECK(!scratch1.is(scratch0));
4708 Factory* factory = isolate()->factory();
4709 Register current = scratch0;
4710 Label loop_again;
4711
4712 // scratch contained elements pointer.
4713 mr(current, object);
4714
4715 // Loop based on the map going up the prototype chain.
4716 bind(&loop_again);
4717 LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset));
4718 lbz(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4719 DecodeField<Map::ElementsKindBits>(scratch1);
4720 cmpi(scratch1, Operand(DICTIONARY_ELEMENTS));
4721 beq(found);
4722 LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset));
4723 Cmpi(current, Operand(factory->null_value()), r0);
4724 bne(&loop_again);
4725}
4726
4727
4728#ifdef DEBUG
4729bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4,
4730 Register reg5, Register reg6, Register reg7, Register reg8) {
4731 int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() +
4732 reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
4733 reg7.is_valid() + reg8.is_valid();
4734
4735 RegList regs = 0;
4736 if (reg1.is_valid()) regs |= reg1.bit();
4737 if (reg2.is_valid()) regs |= reg2.bit();
4738 if (reg3.is_valid()) regs |= reg3.bit();
4739 if (reg4.is_valid()) regs |= reg4.bit();
4740 if (reg5.is_valid()) regs |= reg5.bit();
4741 if (reg6.is_valid()) regs |= reg6.bit();
4742 if (reg7.is_valid()) regs |= reg7.bit();
4743 if (reg8.is_valid()) regs |= reg8.bit();
4744 int n_of_non_aliasing_regs = NumRegs(regs);
4745
4746 return n_of_valid_regs != n_of_non_aliasing_regs;
4747}
4748#endif
4749
4750
4751CodePatcher::CodePatcher(byte* address, int instructions,
4752 FlushICache flush_cache)
4753 : address_(address),
4754 size_(instructions * Assembler::kInstrSize),
4755 masm_(NULL, address, size_ + Assembler::kGap),
4756 flush_cache_(flush_cache) {
4757 // Create a new macro assembler pointing to the address of the code to patch.
4758 // The size is adjusted with kGap on order for the assembler to generate size
4759 // bytes of instructions without failing with buffer size constraints.
4760 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4761}
4762
4763
4764CodePatcher::~CodePatcher() {
4765 // Indicate that code has changed.
4766 if (flush_cache_ == FLUSH) {
4767 CpuFeatures::FlushICache(address_, size_);
4768 }
4769
4770 // Check that the code was patched as expected.
4771 DCHECK(masm_.pc_ == address_ + size_);
4772 DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
4773}
4774
4775
4776void CodePatcher::Emit(Instr instr) { masm()->emit(instr); }
4777
4778
4779void CodePatcher::EmitCondition(Condition cond) {
4780 Instr instr = Assembler::instr_at(masm_.pc_);
4781 switch (cond) {
4782 case eq:
4783 instr = (instr & ~kCondMask) | BT;
4784 break;
4785 case ne:
4786 instr = (instr & ~kCondMask) | BF;
4787 break;
4788 default:
4789 UNIMPLEMENTED();
4790 }
4791 masm_.emit(instr);
4792}
4793
4794
4795void MacroAssembler::TruncatingDiv(Register result, Register dividend,
4796 int32_t divisor) {
4797 DCHECK(!dividend.is(result));
4798 DCHECK(!dividend.is(r0));
4799 DCHECK(!result.is(r0));
4800 base::MagicNumbersForDivision<uint32_t> mag =
4801 base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
4802 mov(r0, Operand(mag.multiplier));
4803 mulhw(result, dividend, r0);
4804 bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
4805 if (divisor > 0 && neg) {
4806 add(result, result, dividend);
4807 }
4808 if (divisor < 0 && !neg && mag.multiplier > 0) {
4809 sub(result, result, dividend);
4810 }
4811 if (mag.shift > 0) srawi(result, result, mag.shift);
4812 ExtractBit(r0, dividend, 31);
4813 add(result, result, r0);
4814}
4815
4816} // namespace internal
4817} // namespace v8
4818
4819#endif // V8_TARGET_ARCH_PPC