blob: 0d10153790b7c761b09a304ade49493598760441 [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include <stdarg.h>
6#include <stdlib.h>
7#include <cmath>
8
9#include "src/v8.h"
10
11#if V8_TARGET_ARCH_PPC
12
13#include "src/assembler.h"
14#include "src/codegen.h"
15#include "src/disasm.h"
16#include "src/ppc/constants-ppc.h"
17#include "src/ppc/frames-ppc.h"
18#include "src/ppc/simulator-ppc.h"
19
20#if defined(USE_SIMULATOR)
21
22// Only build the simulator if not compiling for real PPC hardware.
23namespace v8 {
24namespace internal {
25
26// This macro provides a platform independent use of sscanf. The reason for
27// SScanF not being implemented in a platform independent way through
28// ::v8::internal::OS in the same way as SNPrintF is that the
29// Windows C Run-Time Library does not provide vsscanf.
30#define SScanF sscanf // NOLINT
31
32// The PPCDebugger class is used by the simulator while debugging simulated
33// PowerPC code.
34class PPCDebugger {
35 public:
36 explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
37 ~PPCDebugger();
38
39 void Stop(Instruction* instr);
40 void Info(Instruction* instr);
41 void Debug();
42
43 private:
44 static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
45 static const Instr kNopInstr = (ORI); // ori, 0,0,0
46
47 Simulator* sim_;
48
49 intptr_t GetRegisterValue(int regnum);
50 double GetRegisterPairDoubleValue(int regnum);
51 double GetFPDoubleRegisterValue(int regnum);
52 bool GetValue(const char* desc, intptr_t* value);
53 bool GetFPDoubleValue(const char* desc, double* value);
54
55 // Set or delete a breakpoint. Returns true if successful.
56 bool SetBreakpoint(Instruction* break_pc);
57 bool DeleteBreakpoint(Instruction* break_pc);
58
59 // Undo and redo all breakpoints. This is needed to bracket disassembly and
60 // execution to skip past breakpoints when run from the debugger.
61 void UndoBreakpoints();
62 void RedoBreakpoints();
63};
64
65
66PPCDebugger::~PPCDebugger() {}
67
68
69#ifdef GENERATED_CODE_COVERAGE
70static FILE* coverage_log = NULL;
71
72
73static void InitializeCoverage() {
74 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
75 if (file_name != NULL) {
76 coverage_log = fopen(file_name, "aw+");
77 }
78}
79
80
81void PPCDebugger::Stop(Instruction* instr) {
82 // Get the stop code.
83 uint32_t code = instr->SvcValue() & kStopCodeMask;
84 // Retrieve the encoded address, which comes just after this stop.
85 char** msg_address =
86 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
87 char* msg = *msg_address;
88 DCHECK(msg != NULL);
89
90 // Update this stop description.
91 if (isWatchedStop(code) && !watched_stops_[code].desc) {
92 watched_stops_[code].desc = msg;
93 }
94
95 if (strlen(msg) > 0) {
96 if (coverage_log != NULL) {
97 fprintf(coverage_log, "%s\n", msg);
98 fflush(coverage_log);
99 }
100 // Overwrite the instruction and address with nops.
101 instr->SetInstructionBits(kNopInstr);
102 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
103 }
104 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
105}
106
107#else // ndef GENERATED_CODE_COVERAGE
108
109static void InitializeCoverage() {}
110
111
112void PPCDebugger::Stop(Instruction* instr) {
113 // Get the stop code.
114 // use of kStopCodeMask not right on PowerPC
115 uint32_t code = instr->SvcValue() & kStopCodeMask;
116 // Retrieve the encoded address, which comes just after this stop.
117 char* msg =
118 *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
119 // Update this stop description.
120 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
121 sim_->watched_stops_[code].desc = msg;
122 }
123 // Print the stop message and code if it is not the default code.
124 if (code != kMaxStopCode) {
125 PrintF("Simulator hit stop %u: %s\n", code, msg);
126 } else {
127 PrintF("Simulator hit %s\n", msg);
128 }
129 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
130 Debug();
131}
132#endif
133
134
135void PPCDebugger::Info(Instruction* instr) {
136 // Retrieve the encoded address immediately following the Info breakpoint.
137 char* msg =
138 *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
139 PrintF("Simulator info %s\n", msg);
140 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
141}
142
143
144intptr_t PPCDebugger::GetRegisterValue(int regnum) {
145 return sim_->get_register(regnum);
146}
147
148
149double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
150 return sim_->get_double_from_register_pair(regnum);
151}
152
153
154double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
155 return sim_->get_double_from_d_register(regnum);
156}
157
158
159bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
160 int regnum = Registers::Number(desc);
161 if (regnum != kNoRegister) {
162 *value = GetRegisterValue(regnum);
163 return true;
164 } else {
165 if (strncmp(desc, "0x", 2) == 0) {
166 return SScanF(desc + 2, "%" V8PRIxPTR,
167 reinterpret_cast<uintptr_t*>(value)) == 1;
168 } else {
169 return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
170 1;
171 }
172 }
173 return false;
174}
175
176
177bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
178 int regnum = FPRegisters::Number(desc);
179 if (regnum != kNoRegister) {
180 *value = sim_->get_double_from_d_register(regnum);
181 return true;
182 }
183 return false;
184}
185
186
187bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
188 // Check if a breakpoint can be set. If not return without any side-effects.
189 if (sim_->break_pc_ != NULL) {
190 return false;
191 }
192
193 // Set the breakpoint.
194 sim_->break_pc_ = break_pc;
195 sim_->break_instr_ = break_pc->InstructionBits();
196 // Not setting the breakpoint instruction in the code itself. It will be set
197 // when the debugger shell continues.
198 return true;
199}
200
201
202bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
203 if (sim_->break_pc_ != NULL) {
204 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
205 }
206
207 sim_->break_pc_ = NULL;
208 sim_->break_instr_ = 0;
209 return true;
210}
211
212
213void PPCDebugger::UndoBreakpoints() {
214 if (sim_->break_pc_ != NULL) {
215 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
216 }
217}
218
219
220void PPCDebugger::RedoBreakpoints() {
221 if (sim_->break_pc_ != NULL) {
222 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
223 }
224}
225
226
227void PPCDebugger::Debug() {
228 intptr_t last_pc = -1;
229 bool done = false;
230
231#define COMMAND_SIZE 63
232#define ARG_SIZE 255
233
234#define STR(a) #a
235#define XSTR(a) STR(a)
236
237 char cmd[COMMAND_SIZE + 1];
238 char arg1[ARG_SIZE + 1];
239 char arg2[ARG_SIZE + 1];
240 char* argv[3] = {cmd, arg1, arg2};
241
242 // make sure to have a proper terminating character if reaching the limit
243 cmd[COMMAND_SIZE] = 0;
244 arg1[ARG_SIZE] = 0;
245 arg2[ARG_SIZE] = 0;
246
247 // Undo all set breakpoints while running in the debugger shell. This will
248 // make them invisible to all commands.
249 UndoBreakpoints();
250 // Disable tracing while simulating
251 bool trace = ::v8::internal::FLAG_trace_sim;
252 ::v8::internal::FLAG_trace_sim = false;
253
254 while (!done && !sim_->has_bad_pc()) {
255 if (last_pc != sim_->get_pc()) {
256 disasm::NameConverter converter;
257 disasm::Disassembler dasm(converter);
258 // use a reasonably large buffer
259 v8::internal::EmbeddedVector<char, 256> buffer;
260 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
261 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
262 last_pc = sim_->get_pc();
263 }
264 char* line = ReadLine("sim> ");
265 if (line == NULL) {
266 break;
267 } else {
268 char* last_input = sim_->last_debugger_input();
269 if (strcmp(line, "\n") == 0 && last_input != NULL) {
270 line = last_input;
271 } else {
272 // Ownership is transferred to sim_;
273 sim_->set_last_debugger_input(line);
274 }
275 // Use sscanf to parse the individual parts of the command line. At the
276 // moment no command expects more than two parameters.
277 int argc = SScanF(line,
278 "%" XSTR(COMMAND_SIZE) "s "
279 "%" XSTR(ARG_SIZE) "s "
280 "%" XSTR(ARG_SIZE) "s",
281 cmd, arg1, arg2);
282 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
283 intptr_t value;
284
285 // If at a breakpoint, proceed past it.
286 if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
287 ->InstructionBits() == 0x7d821008) {
288 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
289 } else {
290 sim_->ExecuteInstruction(
291 reinterpret_cast<Instruction*>(sim_->get_pc()));
292 }
293
294 if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
295 for (int i = 1; i < value; i++) {
296 disasm::NameConverter converter;
297 disasm::Disassembler dasm(converter);
298 // use a reasonably large buffer
299 v8::internal::EmbeddedVector<char, 256> buffer;
300 dasm.InstructionDecode(buffer,
301 reinterpret_cast<byte*>(sim_->get_pc()));
302 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
303 buffer.start());
304 sim_->ExecuteInstruction(
305 reinterpret_cast<Instruction*>(sim_->get_pc()));
306 }
307 }
308 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
309 // If at a breakpoint, proceed past it.
310 if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
311 ->InstructionBits() == 0x7d821008) {
312 sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
313 } else {
314 // Execute the one instruction we broke at with breakpoints disabled.
315 sim_->ExecuteInstruction(
316 reinterpret_cast<Instruction*>(sim_->get_pc()));
317 }
318 // Leave the debugger shell.
319 done = true;
320 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
321 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
322 intptr_t value;
323 double dvalue;
324 if (strcmp(arg1, "all") == 0) {
325 for (int i = 0; i < kNumRegisters; i++) {
326 value = GetRegisterValue(i);
327 PrintF(" %3s: %08" V8PRIxPTR, Registers::Name(i), value);
328 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
329 (i % 2) == 0) {
330 dvalue = GetRegisterPairDoubleValue(i);
331 PrintF(" (%f)\n", dvalue);
332 } else if (i != 0 && !((i + 1) & 3)) {
333 PrintF("\n");
334 }
335 }
336 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
337 " "
338 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
339 sim_->special_reg_pc_, sim_->special_reg_lr_,
340 sim_->special_reg_ctr_, sim_->special_reg_xer_,
341 sim_->condition_reg_);
342 } else if (strcmp(arg1, "alld") == 0) {
343 for (int i = 0; i < kNumRegisters; i++) {
344 value = GetRegisterValue(i);
345 PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
346 Registers::Name(i), value, value);
347 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
348 (i % 2) == 0) {
349 dvalue = GetRegisterPairDoubleValue(i);
350 PrintF(" (%f)\n", dvalue);
351 } else if (!((i + 1) % 2)) {
352 PrintF("\n");
353 }
354 }
355 PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
356 " "
357 "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
358 sim_->special_reg_pc_, sim_->special_reg_lr_,
359 sim_->special_reg_ctr_, sim_->special_reg_xer_,
360 sim_->condition_reg_);
361 } else if (strcmp(arg1, "allf") == 0) {
362 for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
363 dvalue = GetFPDoubleRegisterValue(i);
364 uint64_t as_words = bit_cast<uint64_t>(dvalue);
365 PrintF("%3s: %f 0x%08x %08x\n", FPRegisters::Name(i), dvalue,
366 static_cast<uint32_t>(as_words >> 32),
367 static_cast<uint32_t>(as_words & 0xffffffff));
368 }
369 } else if (arg1[0] == 'r' &&
370 (arg1[1] >= '0' && arg1[1] <= '9' &&
371 (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
372 arg1[3] == '\0')))) {
373 int regnum = strtoul(&arg1[1], 0, 10);
374 if (regnum != kNoRegister) {
375 value = GetRegisterValue(regnum);
376 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
377 value);
378 } else {
379 PrintF("%s unrecognized\n", arg1);
380 }
381 } else {
382 if (GetValue(arg1, &value)) {
383 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
384 value);
385 } else if (GetFPDoubleValue(arg1, &dvalue)) {
386 uint64_t as_words = bit_cast<uint64_t>(dvalue);
387 PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
388 static_cast<uint32_t>(as_words >> 32),
389 static_cast<uint32_t>(as_words & 0xffffffff));
390 } else {
391 PrintF("%s unrecognized\n", arg1);
392 }
393 }
394 } else {
395 PrintF("print <register>\n");
396 }
397 } else if ((strcmp(cmd, "po") == 0) ||
398 (strcmp(cmd, "printobject") == 0)) {
399 if (argc == 2) {
400 intptr_t value;
401 OFStream os(stdout);
402 if (GetValue(arg1, &value)) {
403 Object* obj = reinterpret_cast<Object*>(value);
404 os << arg1 << ": \n";
405#ifdef DEBUG
406 obj->Print(os);
407 os << "\n";
408#else
409 os << Brief(obj) << "\n";
410#endif
411 } else {
412 os << arg1 << " unrecognized\n";
413 }
414 } else {
415 PrintF("printobject <value>\n");
416 }
417 } else if (strcmp(cmd, "setpc") == 0) {
418 intptr_t value;
419
420 if (!GetValue(arg1, &value)) {
421 PrintF("%s unrecognized\n", arg1);
422 continue;
423 }
424 sim_->set_pc(value);
425 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
426 intptr_t* cur = NULL;
427 intptr_t* end = NULL;
428 int next_arg = 1;
429
430 if (strcmp(cmd, "stack") == 0) {
431 cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
432 } else { // "mem"
433 intptr_t value;
434 if (!GetValue(arg1, &value)) {
435 PrintF("%s unrecognized\n", arg1);
436 continue;
437 }
438 cur = reinterpret_cast<intptr_t*>(value);
439 next_arg++;
440 }
441
442 intptr_t words; // likely inaccurate variable name for 64bit
443 if (argc == next_arg) {
444 words = 10;
445 } else {
446 if (!GetValue(argv[next_arg], &words)) {
447 words = 10;
448 }
449 }
450 end = cur + words;
451
452 while (cur < end) {
453 PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
454 reinterpret_cast<intptr_t>(cur), *cur, *cur);
455 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
456 intptr_t value = *cur;
457 Heap* current_heap = v8::internal::Isolate::Current()->heap();
458 if (((value & 1) == 0) || current_heap->Contains(obj)) {
459 PrintF(" (");
460 if ((value & 1) == 0) {
461 PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
462 } else {
463 obj->ShortPrint();
464 }
465 PrintF(")");
466 }
467 PrintF("\n");
468 cur++;
469 }
470 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
471 disasm::NameConverter converter;
472 disasm::Disassembler dasm(converter);
473 // use a reasonably large buffer
474 v8::internal::EmbeddedVector<char, 256> buffer;
475
476 byte* prev = NULL;
477 byte* cur = NULL;
478 byte* end = NULL;
479
480 if (argc == 1) {
481 cur = reinterpret_cast<byte*>(sim_->get_pc());
482 end = cur + (10 * Instruction::kInstrSize);
483 } else if (argc == 2) {
484 int regnum = Registers::Number(arg1);
485 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
486 // The argument is an address or a register name.
487 intptr_t value;
488 if (GetValue(arg1, &value)) {
489 cur = reinterpret_cast<byte*>(value);
490 // Disassemble 10 instructions at <arg1>.
491 end = cur + (10 * Instruction::kInstrSize);
492 }
493 } else {
494 // The argument is the number of instructions.
495 intptr_t value;
496 if (GetValue(arg1, &value)) {
497 cur = reinterpret_cast<byte*>(sim_->get_pc());
498 // Disassemble <arg1> instructions.
499 end = cur + (value * Instruction::kInstrSize);
500 }
501 }
502 } else {
503 intptr_t value1;
504 intptr_t value2;
505 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
506 cur = reinterpret_cast<byte*>(value1);
507 end = cur + (value2 * Instruction::kInstrSize);
508 }
509 }
510
511 while (cur < end) {
512 prev = cur;
513 cur += dasm.InstructionDecode(buffer, cur);
514 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
515 buffer.start());
516 }
517 } else if (strcmp(cmd, "gdb") == 0) {
518 PrintF("relinquishing control to gdb\n");
519 v8::base::OS::DebugBreak();
520 PrintF("regaining control from gdb\n");
521 } else if (strcmp(cmd, "break") == 0) {
522 if (argc == 2) {
523 intptr_t value;
524 if (GetValue(arg1, &value)) {
525 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
526 PrintF("setting breakpoint failed\n");
527 }
528 } else {
529 PrintF("%s unrecognized\n", arg1);
530 }
531 } else {
532 PrintF("break <address>\n");
533 }
534 } else if (strcmp(cmd, "del") == 0) {
535 if (!DeleteBreakpoint(NULL)) {
536 PrintF("deleting breakpoint failed\n");
537 }
538 } else if (strcmp(cmd, "cr") == 0) {
539 PrintF("Condition reg: %08x\n", sim_->condition_reg_);
540 } else if (strcmp(cmd, "lr") == 0) {
541 PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
542 } else if (strcmp(cmd, "ctr") == 0) {
543 PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
544 } else if (strcmp(cmd, "xer") == 0) {
545 PrintF("XER: %08x\n", sim_->special_reg_xer_);
546 } else if (strcmp(cmd, "fpscr") == 0) {
547 PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
548 } else if (strcmp(cmd, "stop") == 0) {
549 intptr_t value;
550 intptr_t stop_pc =
551 sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
552 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
553 Instruction* msg_address =
554 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
555 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
556 // Remove the current stop.
557 if (sim_->isStopInstruction(stop_instr)) {
558 stop_instr->SetInstructionBits(kNopInstr);
559 msg_address->SetInstructionBits(kNopInstr);
560 } else {
561 PrintF("Not at debugger stop.\n");
562 }
563 } else if (argc == 3) {
564 // Print information about all/the specified breakpoint(s).
565 if (strcmp(arg1, "info") == 0) {
566 if (strcmp(arg2, "all") == 0) {
567 PrintF("Stop information:\n");
568 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
569 sim_->PrintStopInfo(i);
570 }
571 } else if (GetValue(arg2, &value)) {
572 sim_->PrintStopInfo(value);
573 } else {
574 PrintF("Unrecognized argument.\n");
575 }
576 } else if (strcmp(arg1, "enable") == 0) {
577 // Enable all/the specified breakpoint(s).
578 if (strcmp(arg2, "all") == 0) {
579 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
580 sim_->EnableStop(i);
581 }
582 } else if (GetValue(arg2, &value)) {
583 sim_->EnableStop(value);
584 } else {
585 PrintF("Unrecognized argument.\n");
586 }
587 } else if (strcmp(arg1, "disable") == 0) {
588 // Disable all/the specified breakpoint(s).
589 if (strcmp(arg2, "all") == 0) {
590 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
591 sim_->DisableStop(i);
592 }
593 } else if (GetValue(arg2, &value)) {
594 sim_->DisableStop(value);
595 } else {
596 PrintF("Unrecognized argument.\n");
597 }
598 }
599 } else {
600 PrintF("Wrong usage. Use help command for more information.\n");
601 }
602 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
603 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
604 PrintF("Trace of executed instructions is %s\n",
605 ::v8::internal::FLAG_trace_sim ? "on" : "off");
606 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
607 PrintF("cont\n");
608 PrintF(" continue execution (alias 'c')\n");
609 PrintF("stepi [num instructions]\n");
610 PrintF(" step one/num instruction(s) (alias 'si')\n");
611 PrintF("print <register>\n");
612 PrintF(" print register content (alias 'p')\n");
613 PrintF(" use register name 'all' to display all integer registers\n");
614 PrintF(
615 " use register name 'alld' to display integer registers "
616 "with decimal values\n");
617 PrintF(" use register name 'rN' to display register number 'N'\n");
618 PrintF(" add argument 'fp' to print register pair double values\n");
619 PrintF(
620 " use register name 'allf' to display floating-point "
621 "registers\n");
622 PrintF("printobject <register>\n");
623 PrintF(" print an object from a register (alias 'po')\n");
624 PrintF("cr\n");
625 PrintF(" print condition register\n");
626 PrintF("lr\n");
627 PrintF(" print link register\n");
628 PrintF("ctr\n");
629 PrintF(" print ctr register\n");
630 PrintF("xer\n");
631 PrintF(" print XER\n");
632 PrintF("fpscr\n");
633 PrintF(" print FPSCR\n");
634 PrintF("stack [<num words>]\n");
635 PrintF(" dump stack content, default dump 10 words)\n");
636 PrintF("mem <address> [<num words>]\n");
637 PrintF(" dump memory content, default dump 10 words)\n");
638 PrintF("disasm [<instructions>]\n");
639 PrintF("disasm [<address/register>]\n");
640 PrintF("disasm [[<address/register>] <instructions>]\n");
641 PrintF(" disassemble code, default is 10 instructions\n");
642 PrintF(" from pc (alias 'di')\n");
643 PrintF("gdb\n");
644 PrintF(" enter gdb\n");
645 PrintF("break <address>\n");
646 PrintF(" set a break point on the address\n");
647 PrintF("del\n");
648 PrintF(" delete the breakpoint\n");
649 PrintF("trace (alias 't')\n");
650 PrintF(" toogle the tracing of all executed statements\n");
651 PrintF("stop feature:\n");
652 PrintF(" Description:\n");
653 PrintF(" Stops are debug instructions inserted by\n");
654 PrintF(" the Assembler::stop() function.\n");
655 PrintF(" When hitting a stop, the Simulator will\n");
656 PrintF(" stop and and give control to the PPCDebugger.\n");
657 PrintF(" The first %d stop codes are watched:\n",
658 Simulator::kNumOfWatchedStops);
659 PrintF(" - They can be enabled / disabled: the Simulator\n");
660 PrintF(" will / won't stop when hitting them.\n");
661 PrintF(" - The Simulator keeps track of how many times they \n");
662 PrintF(" are met. (See the info command.) Going over a\n");
663 PrintF(" disabled stop still increases its counter. \n");
664 PrintF(" Commands:\n");
665 PrintF(" stop info all/<code> : print infos about number <code>\n");
666 PrintF(" or all stop(s).\n");
667 PrintF(" stop enable/disable all/<code> : enables / disables\n");
668 PrintF(" all or number <code> stop(s)\n");
669 PrintF(" stop unstop\n");
670 PrintF(" ignore the stop instruction at the current location\n");
671 PrintF(" from now on\n");
672 } else {
673 PrintF("Unknown command: %s\n", cmd);
674 }
675 }
676 }
677
678 // Add all the breakpoints back to stop execution and enter the debugger
679 // shell when hit.
680 RedoBreakpoints();
681 // Restore tracing
682 ::v8::internal::FLAG_trace_sim = trace;
683
684#undef COMMAND_SIZE
685#undef ARG_SIZE
686
687#undef STR
688#undef XSTR
689}
690
691
692static bool ICacheMatch(void* one, void* two) {
693 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
694 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
695 return one == two;
696}
697
698
699static uint32_t ICacheHash(void* key) {
700 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
701}
702
703
704static bool AllOnOnePage(uintptr_t start, int size) {
705 intptr_t start_page = (start & ~CachePage::kPageMask);
706 intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
707 return start_page == end_page;
708}
709
710
711void Simulator::set_last_debugger_input(char* input) {
712 DeleteArray(last_debugger_input_);
713 last_debugger_input_ = input;
714}
715
716
717void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
718 size_t size) {
719 intptr_t start = reinterpret_cast<intptr_t>(start_addr);
720 int intra_line = (start & CachePage::kLineMask);
721 start -= intra_line;
722 size += intra_line;
723 size = ((size - 1) | CachePage::kLineMask) + 1;
724 int offset = (start & CachePage::kPageMask);
725 while (!AllOnOnePage(start, size - 1)) {
726 int bytes_to_flush = CachePage::kPageSize - offset;
727 FlushOnePage(i_cache, start, bytes_to_flush);
728 start += bytes_to_flush;
729 size -= bytes_to_flush;
730 DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
731 offset = 0;
732 }
733 if (size != 0) {
734 FlushOnePage(i_cache, start, size);
735 }
736}
737
738
739CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
740 v8::internal::HashMap::Entry* entry =
741 i_cache->Lookup(page, ICacheHash(page), true);
742 if (entry->value == NULL) {
743 CachePage* new_page = new CachePage();
744 entry->value = new_page;
745 }
746 return reinterpret_cast<CachePage*>(entry->value);
747}
748
749
750// Flush from start up to and not including start + size.
751void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
752 int size) {
753 DCHECK(size <= CachePage::kPageSize);
754 DCHECK(AllOnOnePage(start, size - 1));
755 DCHECK((start & CachePage::kLineMask) == 0);
756 DCHECK((size & CachePage::kLineMask) == 0);
757 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
758 int offset = (start & CachePage::kPageMask);
759 CachePage* cache_page = GetCachePage(i_cache, page);
760 char* valid_bytemap = cache_page->ValidityByte(offset);
761 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
762}
763
764
765void Simulator::CheckICache(v8::internal::HashMap* i_cache,
766 Instruction* instr) {
767 intptr_t address = reinterpret_cast<intptr_t>(instr);
768 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
769 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
770 int offset = (address & CachePage::kPageMask);
771 CachePage* cache_page = GetCachePage(i_cache, page);
772 char* cache_valid_byte = cache_page->ValidityByte(offset);
773 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
774 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
775 if (cache_hit) {
776 // Check that the data in memory matches the contents of the I-cache.
777 CHECK_EQ(0,
778 memcmp(reinterpret_cast<void*>(instr),
779 cache_page->CachedData(offset), Instruction::kInstrSize));
780 } else {
781 // Cache miss. Load memory into the cache.
782 memcpy(cached_line, line, CachePage::kLineLength);
783 *cache_valid_byte = CachePage::LINE_VALID;
784 }
785}
786
787
788void Simulator::Initialize(Isolate* isolate) {
789 if (isolate->simulator_initialized()) return;
790 isolate->set_simulator_initialized(true);
791 ::v8::internal::ExternalReference::set_redirector(isolate,
792 &RedirectExternalReference);
793}
794
795
796Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
797 i_cache_ = isolate_->simulator_i_cache();
798 if (i_cache_ == NULL) {
799 i_cache_ = new v8::internal::HashMap(&ICacheMatch);
800 isolate_->set_simulator_i_cache(i_cache_);
801 }
802 Initialize(isolate);
803// Set up simulator support first. Some of this information is needed to
804// setup the architecture state.
805#if V8_TARGET_ARCH_PPC64
806 size_t stack_size = 2 * 1024 * 1024; // allocate 2MB for stack
807#else
808 size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack
809#endif
810 stack_ = reinterpret_cast<char*>(malloc(stack_size));
811 pc_modified_ = false;
812 icount_ = 0;
813 break_pc_ = NULL;
814 break_instr_ = 0;
815
816 // Set up architecture state.
817 // All registers are initialized to zero to start with.
818 for (int i = 0; i < kNumGPRs; i++) {
819 registers_[i] = 0;
820 }
821 condition_reg_ = 0;
822 fp_condition_reg_ = 0;
823 special_reg_pc_ = 0;
824 special_reg_lr_ = 0;
825 special_reg_ctr_ = 0;
826
827 // Initializing FP registers.
828 for (int i = 0; i < kNumFPRs; i++) {
829 fp_registers_[i] = 0.0;
830 }
831
832 // The sp is initialized to point to the bottom (high address) of the
833 // allocated stack area. To be safe in potential stack underflows we leave
834 // some buffer below.
835 registers_[sp] = reinterpret_cast<intptr_t>(stack_) + stack_size - 64;
836 InitializeCoverage();
837
838 last_debugger_input_ = NULL;
839}
840
841
842Simulator::~Simulator() {}
843
844
845// When the generated code calls an external reference we need to catch that in
846// the simulator. The external reference will be a function compiled for the
847// host architecture. We need to call that function instead of trying to
848// execute it with the simulator. We do that by redirecting the external
849// reference to a svc (Supervisor Call) instruction that is handled by
850// the simulator. We write the original destination of the jump just at a known
851// offset from the svc instruction so the simulator knows what to call.
852class Redirection {
853 public:
854 Redirection(void* external_function, ExternalReference::Type type)
855 : external_function_(external_function),
856 swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
857 type_(type),
858 next_(NULL) {
859 Isolate* isolate = Isolate::Current();
860 next_ = isolate->simulator_redirection();
861 Simulator::current(isolate)->FlushICache(
862 isolate->simulator_i_cache(),
863 reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
864 isolate->set_simulator_redirection(this);
865 }
866
867 void* address_of_swi_instruction() {
868 return reinterpret_cast<void*>(&swi_instruction_);
869 }
870
871 void* external_function() { return external_function_; }
872 ExternalReference::Type type() { return type_; }
873
874 static Redirection* Get(void* external_function,
875 ExternalReference::Type type) {
876 Isolate* isolate = Isolate::Current();
877 Redirection* current = isolate->simulator_redirection();
878 for (; current != NULL; current = current->next_) {
879 if (current->external_function_ == external_function) {
880 DCHECK_EQ(current->type(), type);
881 return current;
882 }
883 }
884 return new Redirection(external_function, type);
885 }
886
887 static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
888 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
889 char* addr_of_redirection =
890 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
891 return reinterpret_cast<Redirection*>(addr_of_redirection);
892 }
893
894 static void* ReverseRedirection(intptr_t reg) {
895 Redirection* redirection = FromSwiInstruction(
896 reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
897 return redirection->external_function();
898 }
899
900 private:
901 void* external_function_;
902 uint32_t swi_instruction_;
903 ExternalReference::Type type_;
904 Redirection* next_;
905};
906
907
908void* Simulator::RedirectExternalReference(void* external_function,
909 ExternalReference::Type type) {
910 Redirection* redirection = Redirection::Get(external_function, type);
911 return redirection->address_of_swi_instruction();
912}
913
914
915// Get the active Simulator for the current thread.
916Simulator* Simulator::current(Isolate* isolate) {
917 v8::internal::Isolate::PerIsolateThreadData* isolate_data =
918 isolate->FindOrAllocatePerThreadDataForThisThread();
919 DCHECK(isolate_data != NULL);
920
921 Simulator* sim = isolate_data->simulator();
922 if (sim == NULL) {
923 // TODO(146): delete the simulator object when a thread/isolate goes away.
924 sim = new Simulator(isolate);
925 isolate_data->set_simulator(sim);
926 }
927 return sim;
928}
929
930
931// Sets the register in the architecture state.
932void Simulator::set_register(int reg, intptr_t value) {
933 DCHECK((reg >= 0) && (reg < kNumGPRs));
934 registers_[reg] = value;
935}
936
937
938// Get the register from the architecture state.
939intptr_t Simulator::get_register(int reg) const {
940 DCHECK((reg >= 0) && (reg < kNumGPRs));
941 // Stupid code added to avoid bug in GCC.
942 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
943 if (reg >= kNumGPRs) return 0;
944 // End stupid code.
945 return registers_[reg];
946}
947
948
949double Simulator::get_double_from_register_pair(int reg) {
950 DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
951
952 double dm_val = 0.0;
953#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
954 // Read the bits from the unsigned integer register_[] array
955 // into the double precision floating point value and return it.
956 char buffer[sizeof(fp_registers_[0])];
957 memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
958 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
959#endif
960 return (dm_val);
961}
962
963
964// Raw access to the PC register.
965void Simulator::set_pc(intptr_t value) {
966 pc_modified_ = true;
967 special_reg_pc_ = value;
968}
969
970
971bool Simulator::has_bad_pc() const {
972 return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
973}
974
975
976// Raw access to the PC register without the special adjustment when reading.
977intptr_t Simulator::get_pc() const { return special_reg_pc_; }
978
979
980// Runtime FP routines take:
981// - two double arguments
982// - one double argument and zero or one integer arguments.
983// All are consructed here from d1, d2 and r3.
984void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
985 *x = get_double_from_d_register(1);
986 *y = get_double_from_d_register(2);
987 *z = get_register(3);
988}
989
990
991// The return value is in d1.
992void Simulator::SetFpResult(const double& result) { fp_registers_[1] = result; }
993
994
995void Simulator::TrashCallerSaveRegisters() {
996// We don't trash the registers with the return value.
997#if 0 // A good idea to trash volatile registers, needs to be done
998 registers_[2] = 0x50Bad4U;
999 registers_[3] = 0x50Bad4U;
1000 registers_[12] = 0x50Bad4U;
1001#endif
1002}
1003
1004
1005uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
1006 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1007 return *ptr;
1008}
1009
1010
1011int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
1012 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1013 return *ptr;
1014}
1015
1016
1017void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
1018 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
1019 *ptr = value;
1020 return;
1021}
1022
1023
1024void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
1025 int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1026 *ptr = value;
1027 return;
1028}
1029
1030
1031uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
1032 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1033 return *ptr;
1034}
1035
1036
1037int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
1038 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1039 return *ptr;
1040}
1041
1042
1043void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
1044 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1045 *ptr = value;
1046 return;
1047}
1048
1049
1050void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
1051 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1052 *ptr = value;
1053 return;
1054}
1055
1056
1057uint8_t Simulator::ReadBU(intptr_t addr) {
1058 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1059 return *ptr;
1060}
1061
1062
1063int8_t Simulator::ReadB(intptr_t addr) {
1064 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1065 return *ptr;
1066}
1067
1068
1069void Simulator::WriteB(intptr_t addr, uint8_t value) {
1070 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1071 *ptr = value;
1072}
1073
1074
1075void Simulator::WriteB(intptr_t addr, int8_t value) {
1076 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1077 *ptr = value;
1078}
1079
1080
1081intptr_t* Simulator::ReadDW(intptr_t addr) {
1082 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1083 return ptr;
1084}
1085
1086
1087void Simulator::WriteDW(intptr_t addr, int64_t value) {
1088 int64_t* ptr = reinterpret_cast<int64_t*>(addr);
1089 *ptr = value;
1090 return;
1091}
1092
1093
1094// Returns the limit of the stack area to enable checking for stack overflows.
1095uintptr_t Simulator::StackLimit() const {
1096 // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
1097 // pushing values.
1098 return reinterpret_cast<uintptr_t>(stack_) + 1024;
1099}
1100
1101
1102// Unsupported instructions use Format to print an error and stop execution.
1103void Simulator::Format(Instruction* instr, const char* format) {
1104 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
1105 reinterpret_cast<intptr_t>(instr), format);
1106 UNIMPLEMENTED();
1107}
1108
1109
1110// Calculate C flag value for additions.
1111bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1112 uint32_t uleft = static_cast<uint32_t>(left);
1113 uint32_t uright = static_cast<uint32_t>(right);
1114 uint32_t urest = 0xffffffffU - uleft;
1115
1116 return (uright > urest) ||
1117 (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1118}
1119
1120
1121// Calculate C flag value for subtractions.
1122bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1123 uint32_t uleft = static_cast<uint32_t>(left);
1124 uint32_t uright = static_cast<uint32_t>(right);
1125
1126 return (uright > uleft);
1127}
1128
1129
1130// Calculate V flag value for additions and subtractions.
1131bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
1132 bool addition) {
1133 bool overflow;
1134 if (addition) {
1135 // operands have the same sign
1136 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1137 // and operands and result have different sign
1138 &&
1139 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1140 } else {
1141 // operands have different signs
1142 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1143 // and first operand and result have different signs
1144 &&
1145 ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1146 }
1147 return overflow;
1148}
1149
1150
1151#if !V8_TARGET_ARCH_PPC64
1152// Calls into the V8 runtime are based on this very simple interface.
1153// Note: To be able to return two values from some calls the code in runtime.cc
1154// uses the ObjectPair which is essentially two 32-bit values stuffed into a
1155// 64-bit value. With the code below we assume that all runtime calls return
1156// 64 bits of result. If they don't, the r4 result register contains a bogus
1157// value, which is fine because it is caller-saved.
1158typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1159 intptr_t arg2, intptr_t arg3,
1160 intptr_t arg4, intptr_t arg5);
1161#else
1162// For 64-bit, we need to be more explicit.
1163typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
1164 intptr_t arg2, intptr_t arg3,
1165 intptr_t arg4, intptr_t arg5);
1166struct ObjectPair {
1167 intptr_t x;
1168 intptr_t y;
1169};
1170
1171typedef struct ObjectPair (*SimulatorRuntimeObjectPairCall)(
1172 intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4,
1173 intptr_t arg5);
1174#endif
1175
1176// These prototypes handle the four types of FP calls.
1177typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1178typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1179typedef double (*SimulatorRuntimeFPCall)(double darg0);
1180typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
1181
1182// This signature supports direct call in to API function native callback
1183// (refer to InvocationCallback in v8.h).
1184typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
1185typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
1186
1187// This signature supports direct call to accessor getter callback.
1188typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
1189typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
1190 intptr_t arg1, void* arg2);
1191
1192// Software interrupt instructions are used by the simulator to call into the
1193// C-based V8 runtime.
1194void Simulator::SoftwareInterrupt(Instruction* instr) {
1195 int svc = instr->SvcValue();
1196 switch (svc) {
1197 case kCallRtRedirected: {
1198 // Check if stack is aligned. Error if not aligned is reported below to
1199 // include information on the function called.
1200 bool stack_aligned =
1201 (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
1202 0;
1203 Redirection* redirection = Redirection::FromSwiInstruction(instr);
1204 const int kArgCount = 6;
1205 int arg0_regnum = 3;
1206#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1207 intptr_t result_buffer = 0;
1208 if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
1209 result_buffer = get_register(r3);
1210 arg0_regnum++;
1211 }
1212#endif
1213 intptr_t arg[kArgCount];
1214 for (int i = 0; i < kArgCount; i++) {
1215 arg[i] = get_register(arg0_regnum + i);
1216 }
1217 bool fp_call =
1218 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1219 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1220 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1221 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1222 // This is dodgy but it works because the C entry stubs are never moved.
1223 // See comment in codegen-arm.cc and bug 1242173.
1224 intptr_t saved_lr = special_reg_lr_;
1225 intptr_t external =
1226 reinterpret_cast<intptr_t>(redirection->external_function());
1227 if (fp_call) {
1228 double dval0, dval1; // one or two double parameters
1229 intptr_t ival; // zero or one integer parameters
1230 int iresult = 0; // integer return value
1231 double dresult = 0; // double return value
1232 GetFpArgs(&dval0, &dval1, &ival);
1233 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1234 SimulatorRuntimeCall generic_target =
1235 reinterpret_cast<SimulatorRuntimeCall>(external);
1236 switch (redirection->type()) {
1237 case ExternalReference::BUILTIN_FP_FP_CALL:
1238 case ExternalReference::BUILTIN_COMPARE_CALL:
1239 PrintF("Call to host function at %p with args %f, %f",
1240 FUNCTION_ADDR(generic_target), dval0, dval1);
1241 break;
1242 case ExternalReference::BUILTIN_FP_CALL:
1243 PrintF("Call to host function at %p with arg %f",
1244 FUNCTION_ADDR(generic_target), dval0);
1245 break;
1246 case ExternalReference::BUILTIN_FP_INT_CALL:
1247 PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
1248 FUNCTION_ADDR(generic_target), dval0, ival);
1249 break;
1250 default:
1251 UNREACHABLE();
1252 break;
1253 }
1254 if (!stack_aligned) {
1255 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1256 get_register(sp));
1257 }
1258 PrintF("\n");
1259 }
1260 CHECK(stack_aligned);
1261 switch (redirection->type()) {
1262 case ExternalReference::BUILTIN_COMPARE_CALL: {
1263 SimulatorRuntimeCompareCall target =
1264 reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1265 iresult = target(dval0, dval1);
1266 set_register(r3, iresult);
1267 break;
1268 }
1269 case ExternalReference::BUILTIN_FP_FP_CALL: {
1270 SimulatorRuntimeFPFPCall target =
1271 reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1272 dresult = target(dval0, dval1);
1273 SetFpResult(dresult);
1274 break;
1275 }
1276 case ExternalReference::BUILTIN_FP_CALL: {
1277 SimulatorRuntimeFPCall target =
1278 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1279 dresult = target(dval0);
1280 SetFpResult(dresult);
1281 break;
1282 }
1283 case ExternalReference::BUILTIN_FP_INT_CALL: {
1284 SimulatorRuntimeFPIntCall target =
1285 reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1286 dresult = target(dval0, ival);
1287 SetFpResult(dresult);
1288 break;
1289 }
1290 default:
1291 UNREACHABLE();
1292 break;
1293 }
1294 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1295 switch (redirection->type()) {
1296 case ExternalReference::BUILTIN_COMPARE_CALL:
1297 PrintF("Returned %08x\n", iresult);
1298 break;
1299 case ExternalReference::BUILTIN_FP_FP_CALL:
1300 case ExternalReference::BUILTIN_FP_CALL:
1301 case ExternalReference::BUILTIN_FP_INT_CALL:
1302 PrintF("Returned %f\n", dresult);
1303 break;
1304 default:
1305 UNREACHABLE();
1306 break;
1307 }
1308 }
1309 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1310 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1311 // explanation of register usage.
1312 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1313 PrintF("Call to host function at %p args %08" V8PRIxPTR,
1314 reinterpret_cast<void*>(external), arg[0]);
1315 if (!stack_aligned) {
1316 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1317 get_register(sp));
1318 }
1319 PrintF("\n");
1320 }
1321 CHECK(stack_aligned);
1322 SimulatorRuntimeDirectApiCall target =
1323 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1324 target(arg[0]);
1325 } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
1326 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1327 // explanation of register usage.
1328 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1329 PrintF("Call to host function at %p args %08" V8PRIxPTR
1330 " %08" V8PRIxPTR,
1331 reinterpret_cast<void*>(external), arg[0], arg[1]);
1332 if (!stack_aligned) {
1333 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1334 get_register(sp));
1335 }
1336 PrintF("\n");
1337 }
1338 CHECK(stack_aligned);
1339 SimulatorRuntimeProfilingApiCall target =
1340 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1341 target(arg[0], Redirection::ReverseRedirection(arg[1]));
1342 } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1343 // See callers of MacroAssembler::CallApiFunctionAndReturn for
1344 // explanation of register usage.
1345 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1346 PrintF("Call to host function at %p args %08" V8PRIxPTR
1347 " %08" V8PRIxPTR,
1348 reinterpret_cast<void*>(external), arg[0], arg[1]);
1349 if (!stack_aligned) {
1350 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1351 get_register(sp));
1352 }
1353 PrintF("\n");
1354 }
1355 CHECK(stack_aligned);
1356 SimulatorRuntimeDirectGetterCall target =
1357 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1358#if !ABI_PASSES_HANDLES_IN_REGS
1359 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1360#endif
1361 target(arg[0], arg[1]);
1362 } else if (redirection->type() ==
1363 ExternalReference::PROFILING_GETTER_CALL) {
1364 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1365 PrintF("Call to host function at %p args %08" V8PRIxPTR
1366 " %08" V8PRIxPTR " %08" V8PRIxPTR,
1367 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
1368 if (!stack_aligned) {
1369 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1370 get_register(sp));
1371 }
1372 PrintF("\n");
1373 }
1374 CHECK(stack_aligned);
1375 SimulatorRuntimeProfilingGetterCall target =
1376 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
1377#if !ABI_PASSES_HANDLES_IN_REGS
1378 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
1379#endif
1380 target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
1381 } else {
1382 // builtin call.
1383 if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1384 SimulatorRuntimeCall target =
1385 reinterpret_cast<SimulatorRuntimeCall>(external);
1386 PrintF(
1387 "Call to host function at %p,\n"
1388 "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
1389 ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
1390 FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
1391 arg[5]);
1392 if (!stack_aligned) {
1393 PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
1394 get_register(sp));
1395 }
1396 PrintF("\n");
1397 }
1398 CHECK(stack_aligned);
1399#if !V8_TARGET_ARCH_PPC64
1400 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1401 SimulatorRuntimeCall target =
1402 reinterpret_cast<SimulatorRuntimeCall>(external);
1403 int64_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1404 int32_t lo_res = static_cast<int32_t>(result);
1405 int32_t hi_res = static_cast<int32_t>(result >> 32);
1406#if V8_TARGET_BIG_ENDIAN
1407 if (::v8::internal::FLAG_trace_sim) {
1408 PrintF("Returned %08x\n", hi_res);
1409 }
1410 set_register(r3, hi_res);
1411 set_register(r4, lo_res);
1412#else
1413 if (::v8::internal::FLAG_trace_sim) {
1414 PrintF("Returned %08x\n", lo_res);
1415 }
1416 set_register(r3, lo_res);
1417 set_register(r4, hi_res);
1418#endif
1419#else
1420 if (redirection->type() == ExternalReference::BUILTIN_CALL) {
1421 SimulatorRuntimeCall target =
1422 reinterpret_cast<SimulatorRuntimeCall>(external);
1423 intptr_t result =
1424 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1425 if (::v8::internal::FLAG_trace_sim) {
1426 PrintF("Returned %08" V8PRIxPTR "\n", result);
1427 }
1428 set_register(r3, result);
1429 } else {
1430 DCHECK(redirection->type() ==
1431 ExternalReference::BUILTIN_OBJECTPAIR_CALL);
1432 SimulatorRuntimeObjectPairCall target =
1433 reinterpret_cast<SimulatorRuntimeObjectPairCall>(external);
1434 struct ObjectPair result =
1435 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
1436 if (::v8::internal::FLAG_trace_sim) {
1437 PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", result.x,
1438 result.y);
1439 }
1440#if ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1441 set_register(r3, result.x);
1442 set_register(r4, result.y);
1443#else
1444 memcpy(reinterpret_cast<void*>(result_buffer), &result,
1445 sizeof(struct ObjectPair));
1446#endif
1447 }
1448#endif
1449 }
1450 set_pc(saved_lr);
1451 break;
1452 }
1453 case kBreakpoint: {
1454 PPCDebugger dbg(this);
1455 dbg.Debug();
1456 break;
1457 }
1458 case kInfo: {
1459 PPCDebugger dbg(this);
1460 dbg.Info(instr);
1461 break;
1462 }
1463 // stop uses all codes greater than 1 << 23.
1464 default: {
1465 if (svc >= (1 << 23)) {
1466 uint32_t code = svc & kStopCodeMask;
1467 if (isWatchedStop(code)) {
1468 IncreaseStopCounter(code);
1469 }
1470 // Stop if it is enabled, otherwise go on jumping over the stop
1471 // and the message address.
1472 if (isEnabledStop(code)) {
1473 PPCDebugger dbg(this);
1474 dbg.Stop(instr);
1475 } else {
1476 set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
1477 }
1478 } else {
1479 // This is not a valid svc code.
1480 UNREACHABLE();
1481 break;
1482 }
1483 }
1484 }
1485}
1486
1487
1488// Stop helper functions.
1489bool Simulator::isStopInstruction(Instruction* instr) {
1490 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1491}
1492
1493
1494bool Simulator::isWatchedStop(uint32_t code) {
1495 DCHECK(code <= kMaxStopCode);
1496 return code < kNumOfWatchedStops;
1497}
1498
1499
1500bool Simulator::isEnabledStop(uint32_t code) {
1501 DCHECK(code <= kMaxStopCode);
1502 // Unwatched stops are always enabled.
1503 return !isWatchedStop(code) ||
1504 !(watched_stops_[code].count & kStopDisabledBit);
1505}
1506
1507
1508void Simulator::EnableStop(uint32_t code) {
1509 DCHECK(isWatchedStop(code));
1510 if (!isEnabledStop(code)) {
1511 watched_stops_[code].count &= ~kStopDisabledBit;
1512 }
1513}
1514
1515
1516void Simulator::DisableStop(uint32_t code) {
1517 DCHECK(isWatchedStop(code));
1518 if (isEnabledStop(code)) {
1519 watched_stops_[code].count |= kStopDisabledBit;
1520 }
1521}
1522
1523
1524void Simulator::IncreaseStopCounter(uint32_t code) {
1525 DCHECK(code <= kMaxStopCode);
1526 DCHECK(isWatchedStop(code));
1527 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1528 PrintF(
1529 "Stop counter for code %i has overflowed.\n"
1530 "Enabling this code and reseting the counter to 0.\n",
1531 code);
1532 watched_stops_[code].count = 0;
1533 EnableStop(code);
1534 } else {
1535 watched_stops_[code].count++;
1536 }
1537}
1538
1539
1540// Print a stop status.
1541void Simulator::PrintStopInfo(uint32_t code) {
1542 DCHECK(code <= kMaxStopCode);
1543 if (!isWatchedStop(code)) {
1544 PrintF("Stop not watched.");
1545 } else {
1546 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1547 int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1548 // Don't print the state of unused breakpoints.
1549 if (count != 0) {
1550 if (watched_stops_[code].desc) {
1551 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
1552 state, count, watched_stops_[code].desc);
1553 } else {
1554 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
1555 count);
1556 }
1557 }
1558 }
1559}
1560
1561
1562void Simulator::SetCR0(intptr_t result, bool setSO) {
1563 int bf = 0;
1564 if (result < 0) {
1565 bf |= 0x80000000;
1566 }
1567 if (result > 0) {
1568 bf |= 0x40000000;
1569 }
1570 if (result == 0) {
1571 bf |= 0x20000000;
1572 }
1573 if (setSO) {
1574 bf |= 0x10000000;
1575 }
1576 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
1577}
1578
1579
1580void Simulator::ExecuteBranchConditional(Instruction* instr) {
1581 int bo = instr->Bits(25, 21) << 21;
1582 int offset = (instr->Bits(15, 2) << 18) >> 16;
1583 int condition_bit = instr->Bits(20, 16);
1584 int condition_mask = 0x80000000 >> condition_bit;
1585 switch (bo) {
1586 case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
1587 case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
1588 UNIMPLEMENTED();
1589 case BF: { // Branch if condition false
1590 if (!(condition_reg_ & condition_mask)) {
1591 if (instr->Bit(0) == 1) { // LK flag set
1592 special_reg_lr_ = get_pc() + 4;
1593 }
1594 set_pc(get_pc() + offset);
1595 }
1596 break;
1597 }
1598 case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
1599 case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
1600 UNIMPLEMENTED();
1601 case BT: { // Branch if condition true
1602 if (condition_reg_ & condition_mask) {
1603 if (instr->Bit(0) == 1) { // LK flag set
1604 special_reg_lr_ = get_pc() + 4;
1605 }
1606 set_pc(get_pc() + offset);
1607 }
1608 break;
1609 }
1610 case DCBNZ: // Decrement CTR; branch if CTR != 0
1611 case DCBEZ: // Decrement CTR; branch if CTR == 0
1612 special_reg_ctr_ -= 1;
1613 if ((special_reg_ctr_ == 0) == (bo == DCBEZ)) {
1614 if (instr->Bit(0) == 1) { // LK flag set
1615 special_reg_lr_ = get_pc() + 4;
1616 }
1617 set_pc(get_pc() + offset);
1618 }
1619 break;
1620 case BA: { // Branch always
1621 if (instr->Bit(0) == 1) { // LK flag set
1622 special_reg_lr_ = get_pc() + 4;
1623 }
1624 set_pc(get_pc() + offset);
1625 break;
1626 }
1627 default:
1628 UNIMPLEMENTED(); // Invalid encoding
1629 }
1630}
1631
1632
1633// Handle execution based on instruction types.
1634void Simulator::ExecuteExt1(Instruction* instr) {
1635 switch (instr->Bits(10, 1) << 1) {
1636 case MCRF:
1637 UNIMPLEMENTED(); // Not used by V8.
1638 case BCLRX: {
1639 // need to check BO flag
1640 intptr_t old_pc = get_pc();
1641 set_pc(special_reg_lr_);
1642 if (instr->Bit(0) == 1) { // LK flag set
1643 special_reg_lr_ = old_pc + 4;
1644 }
1645 break;
1646 }
1647 case BCCTRX: {
1648 // need to check BO flag
1649 intptr_t old_pc = get_pc();
1650 set_pc(special_reg_ctr_);
1651 if (instr->Bit(0) == 1) { // LK flag set
1652 special_reg_lr_ = old_pc + 4;
1653 }
1654 break;
1655 }
1656 case CRNOR:
1657 case RFI:
1658 case CRANDC:
1659 UNIMPLEMENTED();
1660 case ISYNC: {
1661 // todo - simulate isync
1662 break;
1663 }
1664 case CRXOR: {
1665 int bt = instr->Bits(25, 21);
1666 int ba = instr->Bits(20, 16);
1667 int bb = instr->Bits(15, 11);
1668 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1669 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1670 int bt_val = ba_val ^ bb_val;
1671 bt_val = bt_val << (31 - bt); // shift bit to correct destination
1672 condition_reg_ &= ~(0x80000000 >> bt);
1673 condition_reg_ |= bt_val;
1674 break;
1675 }
1676 case CREQV: {
1677 int bt = instr->Bits(25, 21);
1678 int ba = instr->Bits(20, 16);
1679 int bb = instr->Bits(15, 11);
1680 int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
1681 int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
1682 int bt_val = 1 - (ba_val ^ bb_val);
1683 bt_val = bt_val << (31 - bt); // shift bit to correct destination
1684 condition_reg_ &= ~(0x80000000 >> bt);
1685 condition_reg_ |= bt_val;
1686 break;
1687 }
1688 case CRNAND:
1689 case CRAND:
1690 case CRORC:
1691 case CROR:
1692 default: {
1693 UNIMPLEMENTED(); // Not used by V8.
1694 }
1695 }
1696}
1697
1698
1699bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
1700 bool found = true;
1701
1702 int opcode = instr->Bits(10, 1) << 1;
1703 switch (opcode) {
1704 case SRWX: {
1705 int rs = instr->RSValue();
1706 int ra = instr->RAValue();
1707 int rb = instr->RBValue();
1708 uint32_t rs_val = get_register(rs);
1709 uintptr_t rb_val = get_register(rb);
1710 intptr_t result = rs_val >> (rb_val & 0x3f);
1711 set_register(ra, result);
1712 if (instr->Bit(0)) { // RC bit set
1713 SetCR0(result);
1714 }
1715 break;
1716 }
1717#if V8_TARGET_ARCH_PPC64
1718 case SRDX: {
1719 int rs = instr->RSValue();
1720 int ra = instr->RAValue();
1721 int rb = instr->RBValue();
1722 uintptr_t rs_val = get_register(rs);
1723 uintptr_t rb_val = get_register(rb);
1724 intptr_t result = rs_val >> (rb_val & 0x7f);
1725 set_register(ra, result);
1726 if (instr->Bit(0)) { // RC bit set
1727 SetCR0(result);
1728 }
1729 break;
1730 }
1731#endif
1732 case SRAW: {
1733 int rs = instr->RSValue();
1734 int ra = instr->RAValue();
1735 int rb = instr->RBValue();
1736 int32_t rs_val = get_register(rs);
1737 intptr_t rb_val = get_register(rb);
1738 intptr_t result = rs_val >> (rb_val & 0x3f);
1739 set_register(ra, result);
1740 if (instr->Bit(0)) { // RC bit set
1741 SetCR0(result);
1742 }
1743 break;
1744 }
1745#if V8_TARGET_ARCH_PPC64
1746 case SRAD: {
1747 int rs = instr->RSValue();
1748 int ra = instr->RAValue();
1749 int rb = instr->RBValue();
1750 intptr_t rs_val = get_register(rs);
1751 intptr_t rb_val = get_register(rb);
1752 intptr_t result = rs_val >> (rb_val & 0x7f);
1753 set_register(ra, result);
1754 if (instr->Bit(0)) { // RC bit set
1755 SetCR0(result);
1756 }
1757 break;
1758 }
1759#endif
1760 case SRAWIX: {
1761 int ra = instr->RAValue();
1762 int rs = instr->RSValue();
1763 int sh = instr->Bits(15, 11);
1764 int32_t rs_val = get_register(rs);
1765 intptr_t result = rs_val >> sh;
1766 set_register(ra, result);
1767 if (instr->Bit(0)) { // RC bit set
1768 SetCR0(result);
1769 }
1770 break;
1771 }
1772#if V8_TARGET_ARCH_PPC64
1773 case EXTSW: {
1774 const int shift = kBitsPerPointer - 32;
1775 int ra = instr->RAValue();
1776 int rs = instr->RSValue();
1777 intptr_t rs_val = get_register(rs);
1778 intptr_t ra_val = (rs_val << shift) >> shift;
1779 set_register(ra, ra_val);
1780 if (instr->Bit(0)) { // RC bit set
1781 SetCR0(ra_val);
1782 }
1783 break;
1784 }
1785#endif
1786 case EXTSH: {
1787 const int shift = kBitsPerPointer - 16;
1788 int ra = instr->RAValue();
1789 int rs = instr->RSValue();
1790 intptr_t rs_val = get_register(rs);
1791 intptr_t ra_val = (rs_val << shift) >> shift;
1792 set_register(ra, ra_val);
1793 if (instr->Bit(0)) { // RC bit set
1794 SetCR0(ra_val);
1795 }
1796 break;
1797 }
1798 case EXTSB: {
1799 const int shift = kBitsPerPointer - 8;
1800 int ra = instr->RAValue();
1801 int rs = instr->RSValue();
1802 intptr_t rs_val = get_register(rs);
1803 intptr_t ra_val = (rs_val << shift) >> shift;
1804 set_register(ra, ra_val);
1805 if (instr->Bit(0)) { // RC bit set
1806 SetCR0(ra_val);
1807 }
1808 break;
1809 }
1810 case LFSUX:
1811 case LFSX: {
1812 int frt = instr->RTValue();
1813 int ra = instr->RAValue();
1814 int rb = instr->RBValue();
1815 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1816 intptr_t rb_val = get_register(rb);
1817 int32_t val = ReadW(ra_val + rb_val, instr);
1818 float* fptr = reinterpret_cast<float*>(&val);
1819 set_d_register_from_double(frt, static_cast<double>(*fptr));
1820 if (opcode == LFSUX) {
1821 DCHECK(ra != 0);
1822 set_register(ra, ra_val + rb_val);
1823 }
1824 break;
1825 }
1826 case LFDUX:
1827 case LFDX: {
1828 int frt = instr->RTValue();
1829 int ra = instr->RAValue();
1830 int rb = instr->RBValue();
1831 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1832 intptr_t rb_val = get_register(rb);
1833 double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + rb_val));
1834 set_d_register_from_double(frt, *dptr);
1835 if (opcode == LFDUX) {
1836 DCHECK(ra != 0);
1837 set_register(ra, ra_val + rb_val);
1838 }
1839 break;
1840 }
1841 case STFSUX: {
1842 case STFSX:
1843 int frs = instr->RSValue();
1844 int ra = instr->RAValue();
1845 int rb = instr->RBValue();
1846 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1847 intptr_t rb_val = get_register(rb);
1848 float frs_val = static_cast<float>(get_double_from_d_register(frs));
1849 int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
1850 WriteW(ra_val + rb_val, *p, instr);
1851 if (opcode == STFSUX) {
1852 DCHECK(ra != 0);
1853 set_register(ra, ra_val + rb_val);
1854 }
1855 break;
1856 }
1857 case STFDUX: {
1858 case STFDX:
1859 int frs = instr->RSValue();
1860 int ra = instr->RAValue();
1861 int rb = instr->RBValue();
1862 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
1863 intptr_t rb_val = get_register(rb);
1864 double frs_val = get_double_from_d_register(frs);
1865 int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
1866 WriteDW(ra_val + rb_val, *p);
1867 if (opcode == STFDUX) {
1868 DCHECK(ra != 0);
1869 set_register(ra, ra_val + rb_val);
1870 }
1871 break;
1872 }
1873 case SYNC: {
1874 // todo - simulate sync
1875 break;
1876 }
1877 case ICBI: {
1878 // todo - simulate icbi
1879 break;
1880 }
1881 default: {
1882 found = false;
1883 break;
1884 }
1885 }
1886
1887 if (found) return found;
1888
1889 found = true;
1890 opcode = instr->Bits(10, 2) << 2;
1891 switch (opcode) {
1892 case SRADIX: {
1893 int ra = instr->RAValue();
1894 int rs = instr->RSValue();
1895 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
1896 intptr_t rs_val = get_register(rs);
1897 intptr_t result = rs_val >> sh;
1898 set_register(ra, result);
1899 if (instr->Bit(0)) { // RC bit set
1900 SetCR0(result);
1901 }
1902 break;
1903 }
1904 default: {
1905 found = false;
1906 break;
1907 }
1908 }
1909
1910 return found;
1911}
1912
1913
1914bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
1915 bool found = true;
1916
1917 int opcode = instr->Bits(9, 1) << 1;
1918 switch (opcode) {
1919 case TW: {
1920 // used for call redirection in simulation mode
1921 SoftwareInterrupt(instr);
1922 break;
1923 }
1924 case CMP: {
1925 int ra = instr->RAValue();
1926 int rb = instr->RBValue();
1927 int cr = instr->Bits(25, 23);
1928 uint32_t bf = 0;
1929#if V8_TARGET_ARCH_PPC64
1930 int L = instr->Bit(21);
1931 if (L) {
1932#endif
1933 intptr_t ra_val = get_register(ra);
1934 intptr_t rb_val = get_register(rb);
1935 if (ra_val < rb_val) {
1936 bf |= 0x80000000;
1937 }
1938 if (ra_val > rb_val) {
1939 bf |= 0x40000000;
1940 }
1941 if (ra_val == rb_val) {
1942 bf |= 0x20000000;
1943 }
1944#if V8_TARGET_ARCH_PPC64
1945 } else {
1946 int32_t ra_val = get_register(ra);
1947 int32_t rb_val = get_register(rb);
1948 if (ra_val < rb_val) {
1949 bf |= 0x80000000;
1950 }
1951 if (ra_val > rb_val) {
1952 bf |= 0x40000000;
1953 }
1954 if (ra_val == rb_val) {
1955 bf |= 0x20000000;
1956 }
1957 }
1958#endif
1959 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
1960 uint32_t condition = bf >> (cr * 4);
1961 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
1962 break;
1963 }
1964 case SUBFCX: {
1965 int rt = instr->RTValue();
1966 int ra = instr->RAValue();
1967 int rb = instr->RBValue();
1968 // int oe = instr->Bit(10);
1969 uintptr_t ra_val = get_register(ra);
1970 uintptr_t rb_val = get_register(rb);
1971 uintptr_t alu_out = ~ra_val + rb_val + 1;
1972 set_register(rt, alu_out);
1973 // If the sign of rb and alu_out don't match, carry = 0
1974 if ((alu_out ^ rb_val) & 0x80000000) {
1975 special_reg_xer_ &= ~0xF0000000;
1976 } else {
1977 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
1978 }
1979 if (instr->Bit(0)) { // RC bit set
1980 SetCR0(alu_out);
1981 }
1982 // todo - handle OE bit
1983 break;
1984 }
1985 case ADDCX: {
1986 int rt = instr->RTValue();
1987 int ra = instr->RAValue();
1988 int rb = instr->RBValue();
1989 // int oe = instr->Bit(10);
1990 uintptr_t ra_val = get_register(ra);
1991 uintptr_t rb_val = get_register(rb);
1992 uintptr_t alu_out = ra_val + rb_val;
1993 // Check overflow
1994 if (~ra_val < rb_val) {
1995 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
1996 } else {
1997 special_reg_xer_ &= ~0xF0000000;
1998 }
1999 set_register(rt, alu_out);
2000 if (instr->Bit(0)) { // RC bit set
2001 SetCR0(static_cast<intptr_t>(alu_out));
2002 }
2003 // todo - handle OE bit
2004 break;
2005 }
2006 case MULHWX: {
2007 int rt = instr->RTValue();
2008 int ra = instr->RAValue();
2009 int rb = instr->RBValue();
2010 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2011 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2012 int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
2013 alu_out >>= 32;
2014 set_register(rt, alu_out);
2015 if (instr->Bit(0)) { // RC bit set
2016 SetCR0(static_cast<intptr_t>(alu_out));
2017 }
2018 // todo - handle OE bit
2019 break;
2020 }
2021 case NEGX: {
2022 int rt = instr->RTValue();
2023 int ra = instr->RAValue();
2024 intptr_t ra_val = get_register(ra);
2025 intptr_t alu_out = 1 + ~ra_val;
2026#if V8_TARGET_ARCH_PPC64
2027 intptr_t one = 1; // work-around gcc
2028 intptr_t kOverflowVal = (one << 63);
2029#else
2030 intptr_t kOverflowVal = kMinInt;
2031#endif
2032 set_register(rt, alu_out);
2033 if (instr->Bit(10)) { // OE bit set
2034 if (ra_val == kOverflowVal) {
2035 special_reg_xer_ |= 0xC0000000; // set SO,OV
2036 } else {
2037 special_reg_xer_ &= ~0x40000000; // clear OV
2038 }
2039 }
2040 if (instr->Bit(0)) { // RC bit set
2041 bool setSO = (special_reg_xer_ & 0x80000000);
2042 SetCR0(alu_out, setSO);
2043 }
2044 break;
2045 }
2046 case SLWX: {
2047 int rs = instr->RSValue();
2048 int ra = instr->RAValue();
2049 int rb = instr->RBValue();
2050 uint32_t rs_val = get_register(rs);
2051 uintptr_t rb_val = get_register(rb);
2052 uint32_t result = rs_val << (rb_val & 0x3f);
2053 set_register(ra, result);
2054 if (instr->Bit(0)) { // RC bit set
2055 SetCR0(result);
2056 }
2057 break;
2058 }
2059#if V8_TARGET_ARCH_PPC64
2060 case SLDX: {
2061 int rs = instr->RSValue();
2062 int ra = instr->RAValue();
2063 int rb = instr->RBValue();
2064 uintptr_t rs_val = get_register(rs);
2065 uintptr_t rb_val = get_register(rb);
2066 uintptr_t result = rs_val << (rb_val & 0x7f);
2067 set_register(ra, result);
2068 if (instr->Bit(0)) { // RC bit set
2069 SetCR0(result);
2070 }
2071 break;
2072 }
2073 case MFVSRD: {
2074 DCHECK(!instr->Bit(0));
2075 int frt = instr->RTValue();
2076 int ra = instr->RAValue();
2077 double frt_val = get_double_from_d_register(frt);
2078 int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
2079 set_register(ra, *p);
2080 break;
2081 }
2082 case MFVSRWZ: {
2083 DCHECK(!instr->Bit(0));
2084 int frt = instr->RTValue();
2085 int ra = instr->RAValue();
2086 double frt_val = get_double_from_d_register(frt);
2087 int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
2088 set_register(ra, static_cast<uint32_t>(*p));
2089 break;
2090 }
2091 case MTVSRD: {
2092 DCHECK(!instr->Bit(0));
2093 int frt = instr->RTValue();
2094 int ra = instr->RAValue();
2095 int64_t ra_val = get_register(ra);
2096 double* p = reinterpret_cast<double*>(&ra_val);
2097 set_d_register_from_double(frt, *p);
2098 break;
2099 }
2100 case MTVSRWA: {
2101 DCHECK(!instr->Bit(0));
2102 int frt = instr->RTValue();
2103 int ra = instr->RAValue();
2104 int64_t ra_val = static_cast<int32_t>(get_register(ra));
2105 double* p = reinterpret_cast<double*>(&ra_val);
2106 set_d_register_from_double(frt, *p);
2107 break;
2108 }
2109 case MTVSRWZ: {
2110 DCHECK(!instr->Bit(0));
2111 int frt = instr->RTValue();
2112 int ra = instr->RAValue();
2113 uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
2114 double* p = reinterpret_cast<double*>(&ra_val);
2115 set_d_register_from_double(frt, *p);
2116 break;
2117 }
2118#endif
2119 default: {
2120 found = false;
2121 break;
2122 }
2123 }
2124
2125 return found;
2126}
2127
2128
2129void Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
2130 int opcode = instr->Bits(9, 1) << 1;
2131 switch (opcode) {
2132 case CNTLZWX: {
2133 int rs = instr->RSValue();
2134 int ra = instr->RAValue();
2135 uintptr_t rs_val = get_register(rs);
2136 uintptr_t count = 0;
2137 int n = 0;
2138 uintptr_t bit = 0x80000000;
2139 for (; n < 32; n++) {
2140 if (bit & rs_val) break;
2141 count++;
2142 bit >>= 1;
2143 }
2144 set_register(ra, count);
2145 if (instr->Bit(0)) { // RC Bit set
2146 int bf = 0;
2147 if (count > 0) {
2148 bf |= 0x40000000;
2149 }
2150 if (count == 0) {
2151 bf |= 0x20000000;
2152 }
2153 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2154 }
2155 break;
2156 }
2157#if V8_TARGET_ARCH_PPC64
2158 case CNTLZDX: {
2159 int rs = instr->RSValue();
2160 int ra = instr->RAValue();
2161 uintptr_t rs_val = get_register(rs);
2162 uintptr_t count = 0;
2163 int n = 0;
2164 uintptr_t bit = 0x8000000000000000UL;
2165 for (; n < 64; n++) {
2166 if (bit & rs_val) break;
2167 count++;
2168 bit >>= 1;
2169 }
2170 set_register(ra, count);
2171 if (instr->Bit(0)) { // RC Bit set
2172 int bf = 0;
2173 if (count > 0) {
2174 bf |= 0x40000000;
2175 }
2176 if (count == 0) {
2177 bf |= 0x20000000;
2178 }
2179 condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
2180 }
2181 break;
2182 }
2183#endif
2184 case ANDX: {
2185 int rs = instr->RSValue();
2186 int ra = instr->RAValue();
2187 int rb = instr->RBValue();
2188 intptr_t rs_val = get_register(rs);
2189 intptr_t rb_val = get_register(rb);
2190 intptr_t alu_out = rs_val & rb_val;
2191 set_register(ra, alu_out);
2192 if (instr->Bit(0)) { // RC Bit set
2193 SetCR0(alu_out);
2194 }
2195 break;
2196 }
2197 case ANDCX: {
2198 int rs = instr->RSValue();
2199 int ra = instr->RAValue();
2200 int rb = instr->RBValue();
2201 intptr_t rs_val = get_register(rs);
2202 intptr_t rb_val = get_register(rb);
2203 intptr_t alu_out = rs_val & ~rb_val;
2204 set_register(ra, alu_out);
2205 if (instr->Bit(0)) { // RC Bit set
2206 SetCR0(alu_out);
2207 }
2208 break;
2209 }
2210 case CMPL: {
2211 int ra = instr->RAValue();
2212 int rb = instr->RBValue();
2213 int cr = instr->Bits(25, 23);
2214 uint32_t bf = 0;
2215#if V8_TARGET_ARCH_PPC64
2216 int L = instr->Bit(21);
2217 if (L) {
2218#endif
2219 uintptr_t ra_val = get_register(ra);
2220 uintptr_t rb_val = get_register(rb);
2221 if (ra_val < rb_val) {
2222 bf |= 0x80000000;
2223 }
2224 if (ra_val > rb_val) {
2225 bf |= 0x40000000;
2226 }
2227 if (ra_val == rb_val) {
2228 bf |= 0x20000000;
2229 }
2230#if V8_TARGET_ARCH_PPC64
2231 } else {
2232 uint32_t ra_val = get_register(ra);
2233 uint32_t rb_val = get_register(rb);
2234 if (ra_val < rb_val) {
2235 bf |= 0x80000000;
2236 }
2237 if (ra_val > rb_val) {
2238 bf |= 0x40000000;
2239 }
2240 if (ra_val == rb_val) {
2241 bf |= 0x20000000;
2242 }
2243 }
2244#endif
2245 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
2246 uint32_t condition = bf >> (cr * 4);
2247 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2248 break;
2249 }
2250 case SUBFX: {
2251 int rt = instr->RTValue();
2252 int ra = instr->RAValue();
2253 int rb = instr->RBValue();
2254 // int oe = instr->Bit(10);
2255 intptr_t ra_val = get_register(ra);
2256 intptr_t rb_val = get_register(rb);
2257 intptr_t alu_out = rb_val - ra_val;
2258 // todo - figure out underflow
2259 set_register(rt, alu_out);
2260 if (instr->Bit(0)) { // RC Bit set
2261 SetCR0(alu_out);
2262 }
2263 // todo - handle OE bit
2264 break;
2265 }
2266 case ADDZEX: {
2267 int rt = instr->RTValue();
2268 int ra = instr->RAValue();
2269 intptr_t ra_val = get_register(ra);
2270 if (special_reg_xer_ & 0x20000000) {
2271 ra_val += 1;
2272 }
2273 set_register(rt, ra_val);
2274 if (instr->Bit(0)) { // RC bit set
2275 SetCR0(ra_val);
2276 }
2277 // todo - handle OE bit
2278 break;
2279 }
2280 case NORX: {
2281 int rs = instr->RSValue();
2282 int ra = instr->RAValue();
2283 int rb = instr->RBValue();
2284 intptr_t rs_val = get_register(rs);
2285 intptr_t rb_val = get_register(rb);
2286 intptr_t alu_out = ~(rs_val | rb_val);
2287 set_register(ra, alu_out);
2288 if (instr->Bit(0)) { // RC bit set
2289 SetCR0(alu_out);
2290 }
2291 break;
2292 }
2293 case MULLW: {
2294 int rt = instr->RTValue();
2295 int ra = instr->RAValue();
2296 int rb = instr->RBValue();
2297 int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
2298 int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
2299 int32_t alu_out = ra_val * rb_val;
2300 set_register(rt, alu_out);
2301 if (instr->Bit(0)) { // RC bit set
2302 SetCR0(alu_out);
2303 }
2304 // todo - handle OE bit
2305 break;
2306 }
2307#if V8_TARGET_ARCH_PPC64
2308 case MULLD: {
2309 int rt = instr->RTValue();
2310 int ra = instr->RAValue();
2311 int rb = instr->RBValue();
2312 int64_t ra_val = get_register(ra);
2313 int64_t rb_val = get_register(rb);
2314 int64_t alu_out = ra_val * rb_val;
2315 set_register(rt, alu_out);
2316 if (instr->Bit(0)) { // RC bit set
2317 SetCR0(alu_out);
2318 }
2319 // todo - handle OE bit
2320 break;
2321 }
2322#endif
2323 case DIVW: {
2324 int rt = instr->RTValue();
2325 int ra = instr->RAValue();
2326 int rb = instr->RBValue();
2327 int32_t ra_val = get_register(ra);
2328 int32_t rb_val = get_register(rb);
2329 bool overflow = (ra_val == kMinInt && rb_val == -1);
2330 // result is undefined if divisor is zero or if operation
2331 // is 0x80000000 / -1.
2332 int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
2333 set_register(rt, alu_out);
2334 if (instr->Bit(10)) { // OE bit set
2335 if (overflow) {
2336 special_reg_xer_ |= 0xC0000000; // set SO,OV
2337 } else {
2338 special_reg_xer_ &= ~0x40000000; // clear OV
2339 }
2340 }
2341 if (instr->Bit(0)) { // RC bit set
2342 bool setSO = (special_reg_xer_ & 0x80000000);
2343 SetCR0(alu_out, setSO);
2344 }
2345 break;
2346 }
2347#if V8_TARGET_ARCH_PPC64
2348 case DIVD: {
2349 int rt = instr->RTValue();
2350 int ra = instr->RAValue();
2351 int rb = instr->RBValue();
2352 int64_t ra_val = get_register(ra);
2353 int64_t rb_val = get_register(rb);
2354 int64_t one = 1; // work-around gcc
2355 int64_t kMinLongLong = (one << 63);
2356 // result is undefined if divisor is zero or if operation
2357 // is 0x80000000_00000000 / -1.
2358 int64_t alu_out =
2359 (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
2360 ? -1
2361 : ra_val / rb_val;
2362 set_register(rt, alu_out);
2363 if (instr->Bit(0)) { // RC bit set
2364 SetCR0(alu_out);
2365 }
2366 // todo - handle OE bit
2367 break;
2368 }
2369#endif
2370 case ADDX: {
2371 int rt = instr->RTValue();
2372 int ra = instr->RAValue();
2373 int rb = instr->RBValue();
2374 // int oe = instr->Bit(10);
2375 intptr_t ra_val = get_register(ra);
2376 intptr_t rb_val = get_register(rb);
2377 intptr_t alu_out = ra_val + rb_val;
2378 set_register(rt, alu_out);
2379 if (instr->Bit(0)) { // RC bit set
2380 SetCR0(alu_out);
2381 }
2382 // todo - handle OE bit
2383 break;
2384 }
2385 case XORX: {
2386 int rs = instr->RSValue();
2387 int ra = instr->RAValue();
2388 int rb = instr->RBValue();
2389 intptr_t rs_val = get_register(rs);
2390 intptr_t rb_val = get_register(rb);
2391 intptr_t alu_out = rs_val ^ rb_val;
2392 set_register(ra, alu_out);
2393 if (instr->Bit(0)) { // RC bit set
2394 SetCR0(alu_out);
2395 }
2396 break;
2397 }
2398 case ORX: {
2399 int rs = instr->RSValue();
2400 int ra = instr->RAValue();
2401 int rb = instr->RBValue();
2402 intptr_t rs_val = get_register(rs);
2403 intptr_t rb_val = get_register(rb);
2404 intptr_t alu_out = rs_val | rb_val;
2405 set_register(ra, alu_out);
2406 if (instr->Bit(0)) { // RC bit set
2407 SetCR0(alu_out);
2408 }
2409 break;
2410 }
2411 case MFSPR: {
2412 int rt = instr->RTValue();
2413 int spr = instr->Bits(20, 11);
2414 if (spr != 256) {
2415 UNIMPLEMENTED(); // Only LRLR supported
2416 }
2417 set_register(rt, special_reg_lr_);
2418 break;
2419 }
2420 case MTSPR: {
2421 int rt = instr->RTValue();
2422 intptr_t rt_val = get_register(rt);
2423 int spr = instr->Bits(20, 11);
2424 if (spr == 256) {
2425 special_reg_lr_ = rt_val;
2426 } else if (spr == 288) {
2427 special_reg_ctr_ = rt_val;
2428 } else if (spr == 32) {
2429 special_reg_xer_ = rt_val;
2430 } else {
2431 UNIMPLEMENTED(); // Only LR supported
2432 }
2433 break;
2434 }
2435 case MFCR: {
2436 int rt = instr->RTValue();
2437 set_register(rt, condition_reg_);
2438 break;
2439 }
2440 case STWUX:
2441 case STWX: {
2442 int rs = instr->RSValue();
2443 int ra = instr->RAValue();
2444 int rb = instr->RBValue();
2445 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2446 int32_t rs_val = get_register(rs);
2447 intptr_t rb_val = get_register(rb);
2448 WriteW(ra_val + rb_val, rs_val, instr);
2449 if (opcode == STWUX) {
2450 DCHECK(ra != 0);
2451 set_register(ra, ra_val + rb_val);
2452 }
2453 break;
2454 }
2455 case STBUX:
2456 case STBX: {
2457 int rs = instr->RSValue();
2458 int ra = instr->RAValue();
2459 int rb = instr->RBValue();
2460 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2461 int8_t rs_val = get_register(rs);
2462 intptr_t rb_val = get_register(rb);
2463 WriteB(ra_val + rb_val, rs_val);
2464 if (opcode == STBUX) {
2465 DCHECK(ra != 0);
2466 set_register(ra, ra_val + rb_val);
2467 }
2468 break;
2469 }
2470 case STHUX:
2471 case STHX: {
2472 int rs = instr->RSValue();
2473 int ra = instr->RAValue();
2474 int rb = instr->RBValue();
2475 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2476 int16_t rs_val = get_register(rs);
2477 intptr_t rb_val = get_register(rb);
2478 WriteH(ra_val + rb_val, rs_val, instr);
2479 if (opcode == STHUX) {
2480 DCHECK(ra != 0);
2481 set_register(ra, ra_val + rb_val);
2482 }
2483 break;
2484 }
2485 case LWZX:
2486 case LWZUX: {
2487 int rt = instr->RTValue();
2488 int ra = instr->RAValue();
2489 int rb = instr->RBValue();
2490 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2491 intptr_t rb_val = get_register(rb);
2492 set_register(rt, ReadWU(ra_val + rb_val, instr));
2493 if (opcode == LWZUX) {
2494 DCHECK(ra != 0 && ra != rt);
2495 set_register(ra, ra_val + rb_val);
2496 }
2497 break;
2498 }
2499#if V8_TARGET_ARCH_PPC64
2500 case LDX:
2501 case LDUX: {
2502 int rt = instr->RTValue();
2503 int ra = instr->RAValue();
2504 int rb = instr->RBValue();
2505 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2506 intptr_t rb_val = get_register(rb);
2507 intptr_t* result = ReadDW(ra_val + rb_val);
2508 set_register(rt, *result);
2509 if (opcode == LDUX) {
2510 DCHECK(ra != 0 && ra != rt);
2511 set_register(ra, ra_val + rb_val);
2512 }
2513 break;
2514 }
2515 case STDX:
2516 case STDUX: {
2517 int rs = instr->RSValue();
2518 int ra = instr->RAValue();
2519 int rb = instr->RBValue();
2520 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2521 intptr_t rs_val = get_register(rs);
2522 intptr_t rb_val = get_register(rb);
2523 WriteDW(ra_val + rb_val, rs_val);
2524 if (opcode == STDUX) {
2525 DCHECK(ra != 0);
2526 set_register(ra, ra_val + rb_val);
2527 }
2528 break;
2529 }
2530#endif
2531 case LBZX:
2532 case LBZUX: {
2533 int rt = instr->RTValue();
2534 int ra = instr->RAValue();
2535 int rb = instr->RBValue();
2536 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2537 intptr_t rb_val = get_register(rb);
2538 set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
2539 if (opcode == LBZUX) {
2540 DCHECK(ra != 0 && ra != rt);
2541 set_register(ra, ra_val + rb_val);
2542 }
2543 break;
2544 }
2545 case LHZX:
2546 case LHZUX: {
2547 int rt = instr->RTValue();
2548 int ra = instr->RAValue();
2549 int rb = instr->RBValue();
2550 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
2551 intptr_t rb_val = get_register(rb);
2552 set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
2553 if (opcode == LHZUX) {
2554 DCHECK(ra != 0 && ra != rt);
2555 set_register(ra, ra_val + rb_val);
2556 }
2557 break;
2558 }
2559 case DCBF: {
2560 // todo - simulate dcbf
2561 break;
2562 }
2563 default: {
2564 PrintF("Unimplemented: %08x\n", instr->InstructionBits());
2565 UNIMPLEMENTED(); // Not used by V8.
2566 }
2567 }
2568}
2569
2570
2571void Simulator::ExecuteExt2(Instruction* instr) {
2572 // Check first the 10-1 bit versions
2573 if (ExecuteExt2_10bit(instr)) return;
2574 // Now look at the lesser encodings
2575 if (ExecuteExt2_9bit_part1(instr)) return;
2576 ExecuteExt2_9bit_part2(instr);
2577}
2578
2579
2580void Simulator::ExecuteExt4(Instruction* instr) {
2581 switch (instr->Bits(5, 1) << 1) {
2582 case FDIV: {
2583 int frt = instr->RTValue();
2584 int fra = instr->RAValue();
2585 int frb = instr->RBValue();
2586 double fra_val = get_double_from_d_register(fra);
2587 double frb_val = get_double_from_d_register(frb);
2588 double frt_val = fra_val / frb_val;
2589 set_d_register_from_double(frt, frt_val);
2590 return;
2591 }
2592 case FSUB: {
2593 int frt = instr->RTValue();
2594 int fra = instr->RAValue();
2595 int frb = instr->RBValue();
2596 double fra_val = get_double_from_d_register(fra);
2597 double frb_val = get_double_from_d_register(frb);
2598 double frt_val = fra_val - frb_val;
2599 set_d_register_from_double(frt, frt_val);
2600 return;
2601 }
2602 case FADD: {
2603 int frt = instr->RTValue();
2604 int fra = instr->RAValue();
2605 int frb = instr->RBValue();
2606 double fra_val = get_double_from_d_register(fra);
2607 double frb_val = get_double_from_d_register(frb);
2608 double frt_val = fra_val + frb_val;
2609 set_d_register_from_double(frt, frt_val);
2610 return;
2611 }
2612 case FSQRT: {
2613 int frt = instr->RTValue();
2614 int frb = instr->RBValue();
2615 double frb_val = get_double_from_d_register(frb);
2616 double frt_val = std::sqrt(frb_val);
2617 set_d_register_from_double(frt, frt_val);
2618 return;
2619 }
2620 case FSEL: {
2621 int frt = instr->RTValue();
2622 int fra = instr->RAValue();
2623 int frb = instr->RBValue();
2624 int frc = instr->RCValue();
2625 double fra_val = get_double_from_d_register(fra);
2626 double frb_val = get_double_from_d_register(frb);
2627 double frc_val = get_double_from_d_register(frc);
2628 double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
2629 set_d_register_from_double(frt, frt_val);
2630 return;
2631 }
2632 case FMUL: {
2633 int frt = instr->RTValue();
2634 int fra = instr->RAValue();
2635 int frc = instr->RCValue();
2636 double fra_val = get_double_from_d_register(fra);
2637 double frc_val = get_double_from_d_register(frc);
2638 double frt_val = fra_val * frc_val;
2639 set_d_register_from_double(frt, frt_val);
2640 return;
2641 }
2642 case FMSUB: {
2643 int frt = instr->RTValue();
2644 int fra = instr->RAValue();
2645 int frb = instr->RBValue();
2646 int frc = instr->RCValue();
2647 double fra_val = get_double_from_d_register(fra);
2648 double frb_val = get_double_from_d_register(frb);
2649 double frc_val = get_double_from_d_register(frc);
2650 double frt_val = (fra_val * frc_val) - frb_val;
2651 set_d_register_from_double(frt, frt_val);
2652 return;
2653 }
2654 case FMADD: {
2655 int frt = instr->RTValue();
2656 int fra = instr->RAValue();
2657 int frb = instr->RBValue();
2658 int frc = instr->RCValue();
2659 double fra_val = get_double_from_d_register(fra);
2660 double frb_val = get_double_from_d_register(frb);
2661 double frc_val = get_double_from_d_register(frc);
2662 double frt_val = (fra_val * frc_val) + frb_val;
2663 set_d_register_from_double(frt, frt_val);
2664 return;
2665 }
2666 }
2667 int opcode = instr->Bits(10, 1) << 1;
2668 switch (opcode) {
2669 case FCMPU: {
2670 int fra = instr->RAValue();
2671 int frb = instr->RBValue();
2672 double fra_val = get_double_from_d_register(fra);
2673 double frb_val = get_double_from_d_register(frb);
2674 int cr = instr->Bits(25, 23);
2675 int bf = 0;
2676 if (fra_val < frb_val) {
2677 bf |= 0x80000000;
2678 }
2679 if (fra_val > frb_val) {
2680 bf |= 0x40000000;
2681 }
2682 if (fra_val == frb_val) {
2683 bf |= 0x20000000;
2684 }
2685 if (std::isunordered(fra_val, frb_val)) {
2686 bf |= 0x10000000;
2687 }
2688 int condition_mask = 0xF0000000 >> (cr * 4);
2689 int condition = bf >> (cr * 4);
2690 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
2691 return;
2692 }
2693 case FRSP: {
2694 int frt = instr->RTValue();
2695 int frb = instr->RBValue();
2696 double frb_val = get_double_from_d_register(frb);
2697 // frsp round 8-byte double-precision value to 8-byte
2698 // single-precision value, ignore the round here
2699 set_d_register_from_double(frt, frb_val);
2700 if (instr->Bit(0)) { // RC bit set
2701 // UNIMPLEMENTED();
2702 }
2703 return;
2704 }
2705 case FCFID: {
2706 int frt = instr->RTValue();
2707 int frb = instr->RBValue();
2708 double t_val = get_double_from_d_register(frb);
2709 int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val);
2710 double frt_val = static_cast<double>(*frb_val_p);
2711 set_d_register_from_double(frt, frt_val);
2712 return;
2713 }
2714 case FCTID: {
2715 int frt = instr->RTValue();
2716 int frb = instr->RBValue();
2717 double frb_val = get_double_from_d_register(frb);
2718 int64_t frt_val;
2719 int64_t one = 1; // work-around gcc
2720 int64_t kMinLongLong = (one << 63);
2721 int64_t kMaxLongLong = kMinLongLong - 1;
2722
2723 if (frb_val > kMaxLongLong) {
2724 frt_val = kMaxLongLong;
2725 } else if (frb_val < kMinLongLong) {
2726 frt_val = kMinLongLong;
2727 } else {
2728 switch (fp_condition_reg_ & kFPRoundingModeMask) {
2729 case kRoundToZero:
2730 frt_val = (int64_t)frb_val;
2731 break;
2732 case kRoundToPlusInf:
2733 frt_val = (int64_t)std::ceil(frb_val);
2734 break;
2735 case kRoundToMinusInf:
2736 frt_val = (int64_t)std::floor(frb_val);
2737 break;
2738 default:
2739 frt_val = (int64_t)frb_val;
2740 UNIMPLEMENTED(); // Not used by V8.
2741 break;
2742 }
2743 }
2744 double* p = reinterpret_cast<double*>(&frt_val);
2745 set_d_register_from_double(frt, *p);
2746 return;
2747 }
2748 case FCTIDZ: {
2749 int frt = instr->RTValue();
2750 int frb = instr->RBValue();
2751 double frb_val = get_double_from_d_register(frb);
2752 int64_t frt_val;
2753 int64_t one = 1; // work-around gcc
2754 int64_t kMinLongLong = (one << 63);
2755 int64_t kMaxLongLong = kMinLongLong - 1;
2756
2757 if (frb_val > kMaxLongLong) {
2758 frt_val = kMaxLongLong;
2759 } else if (frb_val < kMinLongLong) {
2760 frt_val = kMinLongLong;
2761 } else {
2762 frt_val = (int64_t)frb_val;
2763 }
2764 double* p = reinterpret_cast<double*>(&frt_val);
2765 set_d_register_from_double(frt, *p);
2766 return;
2767 }
2768 case FCTIW:
2769 case FCTIWZ: {
2770 int frt = instr->RTValue();
2771 int frb = instr->RBValue();
2772 double frb_val = get_double_from_d_register(frb);
2773 int64_t frt_val;
2774 if (frb_val > kMaxInt) {
2775 frt_val = kMaxInt;
2776 } else if (frb_val < kMinInt) {
2777 frt_val = kMinInt;
2778 } else {
2779 if (opcode == FCTIWZ) {
2780 frt_val = (int64_t)frb_val;
2781 } else {
2782 switch (fp_condition_reg_ & kFPRoundingModeMask) {
2783 case kRoundToZero:
2784 frt_val = (int64_t)frb_val;
2785 break;
2786 case kRoundToPlusInf:
2787 frt_val = (int64_t)std::ceil(frb_val);
2788 break;
2789 case kRoundToMinusInf:
2790 frt_val = (int64_t)std::floor(frb_val);
2791 break;
2792 case kRoundToNearest:
2793 frt_val = (int64_t)lround(frb_val);
2794
2795 // Round to even if exactly halfway. (lround rounds up)
2796 if (std::fabs(static_cast<double>(frt_val) - frb_val) == 0.5 &&
2797 (frt_val % 2)) {
2798 frt_val += ((frt_val > 0) ? -1 : 1);
2799 }
2800
2801 break;
2802 default:
2803 DCHECK(false);
2804 frt_val = (int64_t)frb_val;
2805 break;
2806 }
2807 }
2808 }
2809 double* p = reinterpret_cast<double*>(&frt_val);
2810 set_d_register_from_double(frt, *p);
2811 return;
2812 }
2813 case FNEG: {
2814 int frt = instr->RTValue();
2815 int frb = instr->RBValue();
2816 double frb_val = get_double_from_d_register(frb);
2817 double frt_val = -frb_val;
2818 set_d_register_from_double(frt, frt_val);
2819 return;
2820 }
2821 case FMR: {
2822 int frt = instr->RTValue();
2823 int frb = instr->RBValue();
2824 double frb_val = get_double_from_d_register(frb);
2825 double frt_val = frb_val;
2826 set_d_register_from_double(frt, frt_val);
2827 return;
2828 }
2829 case MTFSFI: {
2830 int bf = instr->Bits(25, 23);
2831 int imm = instr->Bits(15, 12);
2832 int fp_condition_mask = 0xF0000000 >> (bf * 4);
2833 fp_condition_reg_ &= ~fp_condition_mask;
2834 fp_condition_reg_ |= (imm << (28 - (bf * 4)));
2835 if (instr->Bit(0)) { // RC bit set
2836 condition_reg_ &= 0xF0FFFFFF;
2837 condition_reg_ |= (imm << 23);
2838 }
2839 return;
2840 }
2841 case MTFSF: {
2842 int frb = instr->RBValue();
2843 double frb_dval = get_double_from_d_register(frb);
2844 int64_t* p = reinterpret_cast<int64_t*>(&frb_dval);
2845 int32_t frb_ival = static_cast<int32_t>((*p) & 0xffffffff);
2846 int l = instr->Bits(25, 25);
2847 if (l == 1) {
2848 fp_condition_reg_ = frb_ival;
2849 } else {
2850 UNIMPLEMENTED();
2851 }
2852 if (instr->Bit(0)) { // RC bit set
2853 UNIMPLEMENTED();
2854 // int w = instr->Bits(16, 16);
2855 // int flm = instr->Bits(24, 17);
2856 }
2857 return;
2858 }
2859 case MFFS: {
2860 int frt = instr->RTValue();
2861 int64_t lval = static_cast<int64_t>(fp_condition_reg_);
2862 double* p = reinterpret_cast<double*>(&lval);
2863 set_d_register_from_double(frt, *p);
2864 return;
2865 }
2866 case FABS: {
2867 int frt = instr->RTValue();
2868 int frb = instr->RBValue();
2869 double frb_val = get_double_from_d_register(frb);
2870 double frt_val = std::fabs(frb_val);
2871 set_d_register_from_double(frt, frt_val);
2872 return;
2873 }
2874 case FRIM: {
2875 int frt = instr->RTValue();
2876 int frb = instr->RBValue();
2877 double frb_val = get_double_from_d_register(frb);
2878 int64_t floor_val = (int64_t)frb_val;
2879 if (floor_val > frb_val) floor_val--;
2880 double frt_val = static_cast<double>(floor_val);
2881 set_d_register_from_double(frt, frt_val);
2882 return;
2883 }
2884 }
2885 UNIMPLEMENTED(); // Not used by V8.
2886}
2887
2888#if V8_TARGET_ARCH_PPC64
2889void Simulator::ExecuteExt5(Instruction* instr) {
2890 switch (instr->Bits(4, 2) << 2) {
2891 case RLDICL: {
2892 int ra = instr->RAValue();
2893 int rs = instr->RSValue();
2894 uintptr_t rs_val = get_register(rs);
2895 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
2896 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
2897 DCHECK(sh >= 0 && sh <= 63);
2898 DCHECK(mb >= 0 && mb <= 63);
2899 // rotate left
2900 uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
2901 uintptr_t mask = 0xffffffffffffffff >> mb;
2902 result &= mask;
2903 set_register(ra, result);
2904 if (instr->Bit(0)) { // RC bit set
2905 SetCR0(result);
2906 }
2907 return;
2908 }
2909 case RLDICR: {
2910 int ra = instr->RAValue();
2911 int rs = instr->RSValue();
2912 uintptr_t rs_val = get_register(rs);
2913 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
2914 int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
2915 DCHECK(sh >= 0 && sh <= 63);
2916 DCHECK(me >= 0 && me <= 63);
2917 // rotate left
2918 uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
2919 uintptr_t mask = 0xffffffffffffffff << (63 - me);
2920 result &= mask;
2921 set_register(ra, result);
2922 if (instr->Bit(0)) { // RC bit set
2923 SetCR0(result);
2924 }
2925 return;
2926 }
2927 case RLDIC: {
2928 int ra = instr->RAValue();
2929 int rs = instr->RSValue();
2930 uintptr_t rs_val = get_register(rs);
2931 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
2932 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
2933 DCHECK(sh >= 0 && sh <= 63);
2934 DCHECK(mb >= 0 && mb <= 63);
2935 // rotate left
2936 uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
2937 uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
2938 result &= mask;
2939 set_register(ra, result);
2940 if (instr->Bit(0)) { // RC bit set
2941 SetCR0(result);
2942 }
2943 return;
2944 }
2945 case RLDIMI: {
2946 int ra = instr->RAValue();
2947 int rs = instr->RSValue();
2948 uintptr_t rs_val = get_register(rs);
2949 intptr_t ra_val = get_register(ra);
2950 int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
2951 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
2952 int me = 63 - sh;
2953 // rotate left
2954 uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
2955 uintptr_t mask = 0;
2956 if (mb < me + 1) {
2957 uintptr_t bit = 0x8000000000000000 >> mb;
2958 for (; mb <= me; mb++) {
2959 mask |= bit;
2960 bit >>= 1;
2961 }
2962 } else if (mb == me + 1) {
2963 mask = 0xffffffffffffffff;
2964 } else { // mb > me+1
2965 uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
2966 mask = 0xffffffffffffffff;
2967 for (; me < mb; me++) {
2968 mask ^= bit;
2969 bit >>= 1;
2970 }
2971 }
2972 result &= mask;
2973 ra_val &= ~mask;
2974 result |= ra_val;
2975 set_register(ra, result);
2976 if (instr->Bit(0)) { // RC bit set
2977 SetCR0(result);
2978 }
2979 return;
2980 }
2981 }
2982 switch (instr->Bits(4, 1) << 1) {
2983 case RLDCL: {
2984 int ra = instr->RAValue();
2985 int rs = instr->RSValue();
2986 int rb = instr->RBValue();
2987 uintptr_t rs_val = get_register(rs);
2988 uintptr_t rb_val = get_register(rb);
2989 int sh = (rb_val & 0x3f);
2990 int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
2991 DCHECK(sh >= 0 && sh <= 63);
2992 DCHECK(mb >= 0 && mb <= 63);
2993 // rotate left
2994 uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
2995 uintptr_t mask = 0xffffffffffffffff >> mb;
2996 result &= mask;
2997 set_register(ra, result);
2998 if (instr->Bit(0)) { // RC bit set
2999 SetCR0(result);
3000 }
3001 return;
3002 }
3003 }
3004 UNIMPLEMENTED(); // Not used by V8.
3005}
3006#endif
3007
3008
3009void Simulator::ExecuteGeneric(Instruction* instr) {
3010 int opcode = instr->OpcodeValue() << 26;
3011 switch (opcode) {
3012 case SUBFIC: {
3013 int rt = instr->RTValue();
3014 int ra = instr->RAValue();
3015 intptr_t ra_val = get_register(ra);
3016 int32_t im_val = instr->Bits(15, 0);
3017 im_val = SIGN_EXT_IMM16(im_val);
3018 intptr_t alu_out = im_val - ra_val;
3019 set_register(rt, alu_out);
3020 // todo - handle RC bit
3021 break;
3022 }
3023 case CMPLI: {
3024 int ra = instr->RAValue();
3025 uint32_t im_val = instr->Bits(15, 0);
3026 int cr = instr->Bits(25, 23);
3027 uint32_t bf = 0;
3028#if V8_TARGET_ARCH_PPC64
3029 int L = instr->Bit(21);
3030 if (L) {
3031#endif
3032 uintptr_t ra_val = get_register(ra);
3033 if (ra_val < im_val) {
3034 bf |= 0x80000000;
3035 }
3036 if (ra_val > im_val) {
3037 bf |= 0x40000000;
3038 }
3039 if (ra_val == im_val) {
3040 bf |= 0x20000000;
3041 }
3042#if V8_TARGET_ARCH_PPC64
3043 } else {
3044 uint32_t ra_val = get_register(ra);
3045 if (ra_val < im_val) {
3046 bf |= 0x80000000;
3047 }
3048 if (ra_val > im_val) {
3049 bf |= 0x40000000;
3050 }
3051 if (ra_val == im_val) {
3052 bf |= 0x20000000;
3053 }
3054 }
3055#endif
3056 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3057 uint32_t condition = bf >> (cr * 4);
3058 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3059 break;
3060 }
3061 case CMPI: {
3062 int ra = instr->RAValue();
3063 int32_t im_val = instr->Bits(15, 0);
3064 im_val = SIGN_EXT_IMM16(im_val);
3065 int cr = instr->Bits(25, 23);
3066 uint32_t bf = 0;
3067#if V8_TARGET_ARCH_PPC64
3068 int L = instr->Bit(21);
3069 if (L) {
3070#endif
3071 intptr_t ra_val = get_register(ra);
3072 if (ra_val < im_val) {
3073 bf |= 0x80000000;
3074 }
3075 if (ra_val > im_val) {
3076 bf |= 0x40000000;
3077 }
3078 if (ra_val == im_val) {
3079 bf |= 0x20000000;
3080 }
3081#if V8_TARGET_ARCH_PPC64
3082 } else {
3083 int32_t ra_val = get_register(ra);
3084 if (ra_val < im_val) {
3085 bf |= 0x80000000;
3086 }
3087 if (ra_val > im_val) {
3088 bf |= 0x40000000;
3089 }
3090 if (ra_val == im_val) {
3091 bf |= 0x20000000;
3092 }
3093 }
3094#endif
3095 uint32_t condition_mask = 0xF0000000U >> (cr * 4);
3096 uint32_t condition = bf >> (cr * 4);
3097 condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
3098 break;
3099 }
3100 case ADDIC: {
3101 int rt = instr->RTValue();
3102 int ra = instr->RAValue();
3103 uintptr_t ra_val = get_register(ra);
3104 uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3105 uintptr_t alu_out = ra_val + im_val;
3106 // Check overflow
3107 if (~ra_val < im_val) {
3108 special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
3109 } else {
3110 special_reg_xer_ &= ~0xF0000000;
3111 }
3112 set_register(rt, alu_out);
3113 break;
3114 }
3115 case ADDI: {
3116 int rt = instr->RTValue();
3117 int ra = instr->RAValue();
3118 int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
3119 intptr_t alu_out;
3120 if (ra == 0) {
3121 alu_out = im_val;
3122 } else {
3123 intptr_t ra_val = get_register(ra);
3124 alu_out = ra_val + im_val;
3125 }
3126 set_register(rt, alu_out);
3127 // todo - handle RC bit
3128 break;
3129 }
3130 case ADDIS: {
3131 int rt = instr->RTValue();
3132 int ra = instr->RAValue();
3133 int32_t im_val = (instr->Bits(15, 0) << 16);
3134 intptr_t alu_out;
3135 if (ra == 0) { // treat r0 as zero
3136 alu_out = im_val;
3137 } else {
3138 intptr_t ra_val = get_register(ra);
3139 alu_out = ra_val + im_val;
3140 }
3141 set_register(rt, alu_out);
3142 break;
3143 }
3144 case BCX: {
3145 ExecuteBranchConditional(instr);
3146 break;
3147 }
3148 case BX: {
3149 int offset = (instr->Bits(25, 2) << 8) >> 6;
3150 if (instr->Bit(0) == 1) { // LK flag set
3151 special_reg_lr_ = get_pc() + 4;
3152 }
3153 set_pc(get_pc() + offset);
3154 // todo - AA flag
3155 break;
3156 }
3157 case EXT1: {
3158 ExecuteExt1(instr);
3159 break;
3160 }
3161 case RLWIMIX: {
3162 int ra = instr->RAValue();
3163 int rs = instr->RSValue();
3164 uint32_t rs_val = get_register(rs);
3165 int32_t ra_val = get_register(ra);
3166 int sh = instr->Bits(15, 11);
3167 int mb = instr->Bits(10, 6);
3168 int me = instr->Bits(5, 1);
3169 // rotate left
3170 uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh));
3171 int mask = 0;
3172 if (mb < me + 1) {
3173 int bit = 0x80000000 >> mb;
3174 for (; mb <= me; mb++) {
3175 mask |= bit;
3176 bit >>= 1;
3177 }
3178 } else if (mb == me + 1) {
3179 mask = 0xffffffff;
3180 } else { // mb > me+1
3181 int bit = 0x80000000 >> (me + 1); // needs to be tested
3182 mask = 0xffffffff;
3183 for (; me < mb; me++) {
3184 mask ^= bit;
3185 bit >>= 1;
3186 }
3187 }
3188 result &= mask;
3189 ra_val &= ~mask;
3190 result |= ra_val;
3191 set_register(ra, result);
3192 if (instr->Bit(0)) { // RC bit set
3193 SetCR0(result);
3194 }
3195 break;
3196 }
3197 case RLWINMX:
3198 case RLWNMX: {
3199 int ra = instr->RAValue();
3200 int rs = instr->RSValue();
3201 uint32_t rs_val = get_register(rs);
3202 int sh = 0;
3203 if (opcode == RLWINMX) {
3204 sh = instr->Bits(15, 11);
3205 } else {
3206 int rb = instr->RBValue();
3207 uint32_t rb_val = get_register(rb);
3208 sh = (rb_val & 0x1f);
3209 }
3210 int mb = instr->Bits(10, 6);
3211 int me = instr->Bits(5, 1);
3212 // rotate left
3213 uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh));
3214 int mask = 0;
3215 if (mb < me + 1) {
3216 int bit = 0x80000000 >> mb;
3217 for (; mb <= me; mb++) {
3218 mask |= bit;
3219 bit >>= 1;
3220 }
3221 } else if (mb == me + 1) {
3222 mask = 0xffffffff;
3223 } else { // mb > me+1
3224 int bit = 0x80000000 >> (me + 1); // needs to be tested
3225 mask = 0xffffffff;
3226 for (; me < mb; me++) {
3227 mask ^= bit;
3228 bit >>= 1;
3229 }
3230 }
3231 result &= mask;
3232 set_register(ra, result);
3233 if (instr->Bit(0)) { // RC bit set
3234 SetCR0(result);
3235 }
3236 break;
3237 }
3238 case ORI: {
3239 int rs = instr->RSValue();
3240 int ra = instr->RAValue();
3241 intptr_t rs_val = get_register(rs);
3242 uint32_t im_val = instr->Bits(15, 0);
3243 intptr_t alu_out = rs_val | im_val;
3244 set_register(ra, alu_out);
3245 break;
3246 }
3247 case ORIS: {
3248 int rs = instr->RSValue();
3249 int ra = instr->RAValue();
3250 intptr_t rs_val = get_register(rs);
3251 uint32_t im_val = instr->Bits(15, 0);
3252 intptr_t alu_out = rs_val | (im_val << 16);
3253 set_register(ra, alu_out);
3254 break;
3255 }
3256 case XORI: {
3257 int rs = instr->RSValue();
3258 int ra = instr->RAValue();
3259 intptr_t rs_val = get_register(rs);
3260 uint32_t im_val = instr->Bits(15, 0);
3261 intptr_t alu_out = rs_val ^ im_val;
3262 set_register(ra, alu_out);
3263 // todo - set condition based SO bit
3264 break;
3265 }
3266 case XORIS: {
3267 int rs = instr->RSValue();
3268 int ra = instr->RAValue();
3269 intptr_t rs_val = get_register(rs);
3270 uint32_t im_val = instr->Bits(15, 0);
3271 intptr_t alu_out = rs_val ^ (im_val << 16);
3272 set_register(ra, alu_out);
3273 break;
3274 }
3275 case ANDIx: {
3276 int rs = instr->RSValue();
3277 int ra = instr->RAValue();
3278 intptr_t rs_val = get_register(rs);
3279 uint32_t im_val = instr->Bits(15, 0);
3280 intptr_t alu_out = rs_val & im_val;
3281 set_register(ra, alu_out);
3282 SetCR0(alu_out);
3283 break;
3284 }
3285 case ANDISx: {
3286 int rs = instr->RSValue();
3287 int ra = instr->RAValue();
3288 intptr_t rs_val = get_register(rs);
3289 uint32_t im_val = instr->Bits(15, 0);
3290 intptr_t alu_out = rs_val & (im_val << 16);
3291 set_register(ra, alu_out);
3292 SetCR0(alu_out);
3293 break;
3294 }
3295 case EXT2: {
3296 ExecuteExt2(instr);
3297 break;
3298 }
3299
3300 case LWZU:
3301 case LWZ: {
3302 int ra = instr->RAValue();
3303 int rt = instr->RTValue();
3304 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3305 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3306 set_register(rt, ReadWU(ra_val + offset, instr));
3307 if (opcode == LWZU) {
3308 DCHECK(ra != 0);
3309 set_register(ra, ra_val + offset);
3310 }
3311 break;
3312 }
3313
3314 case LBZU:
3315 case LBZ: {
3316 int ra = instr->RAValue();
3317 int rt = instr->RTValue();
3318 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3319 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3320 set_register(rt, ReadB(ra_val + offset) & 0xFF);
3321 if (opcode == LBZU) {
3322 DCHECK(ra != 0);
3323 set_register(ra, ra_val + offset);
3324 }
3325 break;
3326 }
3327
3328 case STWU:
3329 case STW: {
3330 int ra = instr->RAValue();
3331 int rs = instr->RSValue();
3332 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3333 int32_t rs_val = get_register(rs);
3334 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3335 WriteW(ra_val + offset, rs_val, instr);
3336 if (opcode == STWU) {
3337 DCHECK(ra != 0);
3338 set_register(ra, ra_val + offset);
3339 }
3340 // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
3341 break;
3342 }
3343
3344 case STBU:
3345 case STB: {
3346 int ra = instr->RAValue();
3347 int rs = instr->RSValue();
3348 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3349 int8_t rs_val = get_register(rs);
3350 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3351 WriteB(ra_val + offset, rs_val);
3352 if (opcode == STBU) {
3353 DCHECK(ra != 0);
3354 set_register(ra, ra_val + offset);
3355 }
3356 break;
3357 }
3358
3359 case LHZU:
3360 case LHZ: {
3361 int ra = instr->RAValue();
3362 int rt = instr->RTValue();
3363 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3364 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3365 uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
3366 set_register(rt, result);
3367 if (opcode == LHZU) {
3368 DCHECK(ra != 0);
3369 set_register(ra, ra_val + offset);
3370 }
3371 break;
3372 }
3373
3374 case LHA:
3375 case LHAU: {
3376 UNIMPLEMENTED();
3377 break;
3378 }
3379
3380 case STHU:
3381 case STH: {
3382 int ra = instr->RAValue();
3383 int rs = instr->RSValue();
3384 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3385 int16_t rs_val = get_register(rs);
3386 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3387 WriteH(ra_val + offset, rs_val, instr);
3388 if (opcode == STHU) {
3389 DCHECK(ra != 0);
3390 set_register(ra, ra_val + offset);
3391 }
3392 break;
3393 }
3394
3395 case LMW:
3396 case STMW: {
3397 UNIMPLEMENTED();
3398 break;
3399 }
3400
3401 case LFSU:
3402 case LFS: {
3403 int frt = instr->RTValue();
3404 int ra = instr->RAValue();
3405 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3406 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3407 int32_t val = ReadW(ra_val + offset, instr);
3408 float* fptr = reinterpret_cast<float*>(&val);
3409 set_d_register_from_double(frt, static_cast<double>(*fptr));
3410 if (opcode == LFSU) {
3411 DCHECK(ra != 0);
3412 set_register(ra, ra_val + offset);
3413 }
3414 break;
3415 }
3416
3417 case LFDU:
3418 case LFD: {
3419 int frt = instr->RTValue();
3420 int ra = instr->RAValue();
3421 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3422 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3423 double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + offset));
3424 set_d_register_from_double(frt, *dptr);
3425 if (opcode == LFDU) {
3426 DCHECK(ra != 0);
3427 set_register(ra, ra_val + offset);
3428 }
3429 break;
3430 }
3431
3432 case STFSU: {
3433 case STFS:
3434 int frs = instr->RSValue();
3435 int ra = instr->RAValue();
3436 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3437 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3438 float frs_val = static_cast<float>(get_double_from_d_register(frs));
3439 int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
3440 WriteW(ra_val + offset, *p, instr);
3441 if (opcode == STFSU) {
3442 DCHECK(ra != 0);
3443 set_register(ra, ra_val + offset);
3444 }
3445 break;
3446 }
3447
3448 case STFDU:
3449 case STFD: {
3450 int frs = instr->RSValue();
3451 int ra = instr->RAValue();
3452 int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
3453 intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
3454 double frs_val = get_double_from_d_register(frs);
3455 int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
3456 WriteDW(ra_val + offset, *p);
3457 if (opcode == STFDU) {
3458 DCHECK(ra != 0);
3459 set_register(ra, ra_val + offset);
3460 }
3461 break;
3462 }
3463
3464 case EXT3:
3465 UNIMPLEMENTED();
3466 case EXT4: {
3467 ExecuteExt4(instr);
3468 break;
3469 }
3470
3471#if V8_TARGET_ARCH_PPC64
3472 case EXT5: {
3473 ExecuteExt5(instr);
3474 break;
3475 }
3476 case LD: {
3477 int ra = instr->RAValue();
3478 int rt = instr->RTValue();
3479 int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3480 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3481 switch (instr->Bits(1, 0)) {
3482 case 0: { // ld
3483 intptr_t* result = ReadDW(ra_val + offset);
3484 set_register(rt, *result);
3485 break;
3486 }
3487 case 1: { // ldu
3488 intptr_t* result = ReadDW(ra_val + offset);
3489 set_register(rt, *result);
3490 DCHECK(ra != 0);
3491 set_register(ra, ra_val + offset);
3492 break;
3493 }
3494 case 2: { // lwa
3495 intptr_t result = ReadW(ra_val + offset, instr);
3496 set_register(rt, result);
3497 break;
3498 }
3499 }
3500 break;
3501 }
3502
3503 case STD: {
3504 int ra = instr->RAValue();
3505 int rs = instr->RSValue();
3506 int64_t ra_val = ra == 0 ? 0 : get_register(ra);
3507 int64_t rs_val = get_register(rs);
3508 int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
3509 WriteDW(ra_val + offset, rs_val);
3510 if (instr->Bit(0) == 1) { // This is the STDU form
3511 DCHECK(ra != 0);
3512 set_register(ra, ra_val + offset);
3513 }
3514 break;
3515 }
3516#endif
3517
3518 case FAKE_OPCODE: {
3519 if (instr->Bits(MARKER_SUBOPCODE_BIT, MARKER_SUBOPCODE_BIT) == 1) {
3520 int marker_code = instr->Bits(STUB_MARKER_HIGH_BIT, 0);
3521 DCHECK(marker_code < F_NEXT_AVAILABLE_STUB_MARKER);
3522 PrintF("Hit stub-marker: %d (EMIT_STUB_MARKER)\n", marker_code);
3523 } else {
3524 int fake_opcode = instr->Bits(FAKE_OPCODE_HIGH_BIT, 0);
3525 if (fake_opcode == fBKPT) {
3526 PPCDebugger dbg(this);
3527 PrintF("Simulator hit BKPT.\n");
3528 dbg.Debug();
3529 } else {
3530 DCHECK(fake_opcode < fLastFaker);
3531 PrintF("Hit ARM opcode: %d(FAKE_OPCODE defined in constant-ppc.h)\n",
3532 fake_opcode);
3533 UNIMPLEMENTED();
3534 }
3535 }
3536 break;
3537 }
3538
3539 default: {
3540 UNIMPLEMENTED();
3541 break;
3542 }
3543 }
3544} // NOLINT
3545
3546
3547void Simulator::Trace(Instruction* instr) {
3548 disasm::NameConverter converter;
3549 disasm::Disassembler dasm(converter);
3550 // use a reasonably large buffer
3551 v8::internal::EmbeddedVector<char, 256> buffer;
3552 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
3553 PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
3554 reinterpret_cast<intptr_t>(instr), buffer.start());
3555}
3556
3557
3558// Executes the current instruction.
3559void Simulator::ExecuteInstruction(Instruction* instr) {
3560 if (v8::internal::FLAG_check_icache) {
3561 CheckICache(isolate_->simulator_i_cache(), instr);
3562 }
3563 pc_modified_ = false;
3564 if (::v8::internal::FLAG_trace_sim) {
3565 Trace(instr);
3566 }
3567 int opcode = instr->OpcodeValue() << 26;
3568 if (opcode == TWI) {
3569 SoftwareInterrupt(instr);
3570 } else {
3571 ExecuteGeneric(instr);
3572 }
3573 if (!pc_modified_) {
3574 set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
3575 }
3576}
3577
3578
3579void Simulator::Execute() {
3580 // Get the PC to simulate. Cannot use the accessor here as we need the
3581 // raw PC value and not the one used as input to arithmetic instructions.
3582 intptr_t program_counter = get_pc();
3583
3584 if (::v8::internal::FLAG_stop_sim_at == 0) {
3585 // Fast version of the dispatch loop without checking whether the simulator
3586 // should be stopping at a particular executed instruction.
3587 while (program_counter != end_sim_pc) {
3588 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3589 icount_++;
3590 ExecuteInstruction(instr);
3591 program_counter = get_pc();
3592 }
3593 } else {
3594 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3595 // we reach the particular instuction count.
3596 while (program_counter != end_sim_pc) {
3597 Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3598 icount_++;
3599 if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3600 PPCDebugger dbg(this);
3601 dbg.Debug();
3602 } else {
3603 ExecuteInstruction(instr);
3604 }
3605 program_counter = get_pc();
3606 }
3607 }
3608}
3609
3610
3611void Simulator::CallInternal(byte* entry) {
3612// Prepare to execute the code at entry
3613#if ABI_USES_FUNCTION_DESCRIPTORS
3614 // entry is the function descriptor
3615 set_pc(*(reinterpret_cast<intptr_t*>(entry)));
3616#else
3617 // entry is the instruction address
3618 set_pc(reinterpret_cast<intptr_t>(entry));
3619#endif
3620
3621 // Put down marker for end of simulation. The simulator will stop simulation
3622 // when the PC reaches this value. By saving the "end simulation" value into
3623 // the LR the simulation stops when returning to this call point.
3624 special_reg_lr_ = end_sim_pc;
3625
3626 // Remember the values of non-volatile registers.
3627 intptr_t r2_val = get_register(r2);
3628 intptr_t r13_val = get_register(r13);
3629 intptr_t r14_val = get_register(r14);
3630 intptr_t r15_val = get_register(r15);
3631 intptr_t r16_val = get_register(r16);
3632 intptr_t r17_val = get_register(r17);
3633 intptr_t r18_val = get_register(r18);
3634 intptr_t r19_val = get_register(r19);
3635 intptr_t r20_val = get_register(r20);
3636 intptr_t r21_val = get_register(r21);
3637 intptr_t r22_val = get_register(r22);
3638 intptr_t r23_val = get_register(r23);
3639 intptr_t r24_val = get_register(r24);
3640 intptr_t r25_val = get_register(r25);
3641 intptr_t r26_val = get_register(r26);
3642 intptr_t r27_val = get_register(r27);
3643 intptr_t r28_val = get_register(r28);
3644 intptr_t r29_val = get_register(r29);
3645 intptr_t r30_val = get_register(r30);
3646 intptr_t r31_val = get_register(fp);
3647
3648 // Set up the non-volatile registers with a known value. To be able to check
3649 // that they are preserved properly across JS execution.
3650 intptr_t callee_saved_value = icount_;
3651 set_register(r2, callee_saved_value);
3652 set_register(r13, callee_saved_value);
3653 set_register(r14, callee_saved_value);
3654 set_register(r15, callee_saved_value);
3655 set_register(r16, callee_saved_value);
3656 set_register(r17, callee_saved_value);
3657 set_register(r18, callee_saved_value);
3658 set_register(r19, callee_saved_value);
3659 set_register(r20, callee_saved_value);
3660 set_register(r21, callee_saved_value);
3661 set_register(r22, callee_saved_value);
3662 set_register(r23, callee_saved_value);
3663 set_register(r24, callee_saved_value);
3664 set_register(r25, callee_saved_value);
3665 set_register(r26, callee_saved_value);
3666 set_register(r27, callee_saved_value);
3667 set_register(r28, callee_saved_value);
3668 set_register(r29, callee_saved_value);
3669 set_register(r30, callee_saved_value);
3670 set_register(fp, callee_saved_value);
3671
3672 // Start the simulation
3673 Execute();
3674
3675 // Check that the non-volatile registers have been preserved.
3676 CHECK_EQ(callee_saved_value, get_register(r2));
3677 CHECK_EQ(callee_saved_value, get_register(r13));
3678 CHECK_EQ(callee_saved_value, get_register(r14));
3679 CHECK_EQ(callee_saved_value, get_register(r15));
3680 CHECK_EQ(callee_saved_value, get_register(r16));
3681 CHECK_EQ(callee_saved_value, get_register(r17));
3682 CHECK_EQ(callee_saved_value, get_register(r18));
3683 CHECK_EQ(callee_saved_value, get_register(r19));
3684 CHECK_EQ(callee_saved_value, get_register(r20));
3685 CHECK_EQ(callee_saved_value, get_register(r21));
3686 CHECK_EQ(callee_saved_value, get_register(r22));
3687 CHECK_EQ(callee_saved_value, get_register(r23));
3688 CHECK_EQ(callee_saved_value, get_register(r24));
3689 CHECK_EQ(callee_saved_value, get_register(r25));
3690 CHECK_EQ(callee_saved_value, get_register(r26));
3691 CHECK_EQ(callee_saved_value, get_register(r27));
3692 CHECK_EQ(callee_saved_value, get_register(r28));
3693 CHECK_EQ(callee_saved_value, get_register(r29));
3694 CHECK_EQ(callee_saved_value, get_register(r30));
3695 CHECK_EQ(callee_saved_value, get_register(fp));
3696
3697 // Restore non-volatile registers with the original value.
3698 set_register(r2, r2_val);
3699 set_register(r13, r13_val);
3700 set_register(r14, r14_val);
3701 set_register(r15, r15_val);
3702 set_register(r16, r16_val);
3703 set_register(r17, r17_val);
3704 set_register(r18, r18_val);
3705 set_register(r19, r19_val);
3706 set_register(r20, r20_val);
3707 set_register(r21, r21_val);
3708 set_register(r22, r22_val);
3709 set_register(r23, r23_val);
3710 set_register(r24, r24_val);
3711 set_register(r25, r25_val);
3712 set_register(r26, r26_val);
3713 set_register(r27, r27_val);
3714 set_register(r28, r28_val);
3715 set_register(r29, r29_val);
3716 set_register(r30, r30_val);
3717 set_register(fp, r31_val);
3718}
3719
3720
3721intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
3722 va_list parameters;
3723 va_start(parameters, argument_count);
3724 // Set up arguments
3725
3726 // First eight arguments passed in registers r3-r10.
3727 int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
3728 int stack_arg_count = argument_count - reg_arg_count;
3729 for (int i = 0; i < reg_arg_count; i++) {
3730 set_register(i + 3, va_arg(parameters, intptr_t));
3731 }
3732
3733 // Remaining arguments passed on stack.
3734 intptr_t original_stack = get_register(sp);
3735 // Compute position of stack on entry to generated code.
3736 intptr_t entry_stack =
3737 (original_stack -
3738 (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
3739 if (base::OS::ActivationFrameAlignment() != 0) {
3740 entry_stack &= -base::OS::ActivationFrameAlignment();
3741 }
3742 // Store remaining arguments on stack, from low to high memory.
3743 // +2 is a hack for the LR slot + old SP on PPC
3744 intptr_t* stack_argument =
3745 reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
3746 for (int i = 0; i < stack_arg_count; i++) {
3747 stack_argument[i] = va_arg(parameters, intptr_t);
3748 }
3749 va_end(parameters);
3750 set_register(sp, entry_stack);
3751
3752 CallInternal(entry);
3753
3754 // Pop stack passed arguments.
3755 CHECK_EQ(entry_stack, get_register(sp));
3756 set_register(sp, original_stack);
3757
3758 intptr_t result = get_register(r3);
3759 return result;
3760}
3761
3762
3763void Simulator::CallFP(byte* entry, double d0, double d1) {
3764 set_d_register_from_double(1, d0);
3765 set_d_register_from_double(2, d1);
3766 CallInternal(entry);
3767}
3768
3769
3770int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
3771 CallFP(entry, d0, d1);
3772 int32_t result = get_register(r3);
3773 return result;
3774}
3775
3776
3777double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
3778 CallFP(entry, d0, d1);
3779 return get_double_from_d_register(1);
3780}
3781
3782
3783uintptr_t Simulator::PushAddress(uintptr_t address) {
3784 uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
3785 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
3786 *stack_slot = address;
3787 set_register(sp, new_sp);
3788 return new_sp;
3789}
3790
3791
3792uintptr_t Simulator::PopAddress() {
3793 uintptr_t current_sp = get_register(sp);
3794 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
3795 uintptr_t address = *stack_slot;
3796 set_register(sp, current_sp + sizeof(uintptr_t));
3797 return address;
3798}
3799}
3800} // namespace v8::internal
3801
3802#endif // USE_SIMULATOR
3803#endif // V8_TARGET_ARCH_PPC