blob: 98fe9a53512f11f7489c58d8c3c8f10002304e12 [file] [log] [blame]
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Declares a Simulator for PPC instructions if we are not generating a native
7// PPC binary. This Simulator allows us to run and debug PPC code generation on
8// regular desktop machines.
9// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10// which will start execution in the Simulator or forwards to the real entry
11// on a PPC HW platform.
12
13#ifndef V8_PPC_SIMULATOR_PPC_H_
14#define V8_PPC_SIMULATOR_PPC_H_
15
16#include "src/allocation.h"
17
18#if !defined(USE_SIMULATOR)
19// Running without a simulator on a native ppc platform.
20
21namespace v8 {
22namespace internal {
23
24// When running without a simulator we call the entry directly.
25#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
26 (entry(p0, p1, p2, p3, p4))
27
28typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
29 int, Address, int, void*, Isolate*);
30
31
32// Call the generated regexp code directly. The code at the entry address
33// should act as a function matching the type ppc_regexp_matcher.
34// The ninth argument is a dummy that reserves the space used for
35// the return address added by the ExitFrame in native calls.
36#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
37 (FUNCTION_CAST<ppc_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \
38 NULL, p8))
39
40// The stack limit beyond which we will throw stack overflow errors in
41// generated code. Because generated code on ppc uses the C stack, we
42// just use the C stack limit.
43class SimulatorStack : public v8::internal::AllStatic {
44 public:
45 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
46 uintptr_t c_limit) {
47 USE(isolate);
48 return c_limit;
49 }
50
51 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
52 return try_catch_address;
53 }
54
55 static inline void UnregisterCTryCatch() {}
56};
57}
58} // namespace v8::internal
59
60#else // !defined(USE_SIMULATOR)
61// Running with a simulator.
62
63#include "src/assembler.h"
64#include "src/hashmap.h"
65#include "src/ppc/constants-ppc.h"
66
67namespace v8 {
68namespace internal {
69
70class CachePage {
71 public:
72 static const int LINE_VALID = 0;
73 static const int LINE_INVALID = 1;
74
75 static const int kPageShift = 12;
76 static const int kPageSize = 1 << kPageShift;
77 static const int kPageMask = kPageSize - 1;
78 static const int kLineShift = 2; // The cache line is only 4 bytes right now.
79 static const int kLineLength = 1 << kLineShift;
80 static const int kLineMask = kLineLength - 1;
81
82 CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
83
84 char* ValidityByte(int offset) {
85 return &validity_map_[offset >> kLineShift];
86 }
87
88 char* CachedData(int offset) { return &data_[offset]; }
89
90 private:
91 char data_[kPageSize]; // The cached data.
92 static const int kValidityMapSize = kPageSize >> kLineShift;
93 char validity_map_[kValidityMapSize]; // One byte per line.
94};
95
96
97class Simulator {
98 public:
99 friend class PPCDebugger;
100 enum Register {
101 no_reg = -1,
102 r0 = 0,
103 sp,
104 r2,
105 r3,
106 r4,
107 r5,
108 r6,
109 r7,
110 r8,
111 r9,
112 r10,
113 r11,
114 r12,
115 r13,
116 r14,
117 r15,
118 r16,
119 r17,
120 r18,
121 r19,
122 r20,
123 r21,
124 r22,
125 r23,
126 r24,
127 r25,
128 r26,
129 r27,
130 r28,
131 r29,
132 r30,
133 fp,
134 kNumGPRs = 32,
135 d0 = 0,
136 d1,
137 d2,
138 d3,
139 d4,
140 d5,
141 d6,
142 d7,
143 d8,
144 d9,
145 d10,
146 d11,
147 d12,
148 d13,
149 d14,
150 d15,
151 d16,
152 d17,
153 d18,
154 d19,
155 d20,
156 d21,
157 d22,
158 d23,
159 d24,
160 d25,
161 d26,
162 d27,
163 d28,
164 d29,
165 d30,
166 d31,
167 kNumFPRs = 32
168 };
169
170 explicit Simulator(Isolate* isolate);
171 ~Simulator();
172
173 // The currently executing Simulator instance. Potentially there can be one
174 // for each native thread.
175 static Simulator* current(v8::internal::Isolate* isolate);
176
177 // Accessors for register state.
178 void set_register(int reg, intptr_t value);
179 intptr_t get_register(int reg) const;
180 double get_double_from_register_pair(int reg);
181 void set_d_register_from_double(int dreg, const double dbl) {
182 DCHECK(dreg >= 0 && dreg < kNumFPRs);
183 fp_registers_[dreg] = dbl;
184 }
185 double get_double_from_d_register(int dreg) { return fp_registers_[dreg]; }
186
187 // Special case of set_register and get_register to access the raw PC value.
188 void set_pc(intptr_t value);
189 intptr_t get_pc() const;
190
191 Address get_sp() {
192 return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
193 }
194
195 // Accessor to the internal simulator stack area.
196 uintptr_t StackLimit() const;
197
198 // Executes PPC instructions until the PC reaches end_sim_pc.
199 void Execute();
200
201 // Call on program start.
202 static void Initialize(Isolate* isolate);
203
204 // V8 generally calls into generated JS code with 5 parameters and into
205 // generated RegExp code with 7 parameters. This is a convenience function,
206 // which sets up the simulator state and grabs the result on return.
207 intptr_t Call(byte* entry, int argument_count, ...);
208 // Alternative: call a 2-argument double function.
209 void CallFP(byte* entry, double d0, double d1);
210 int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
211 double CallFPReturnsDouble(byte* entry, double d0, double d1);
212
213 // Push an address onto the JS stack.
214 uintptr_t PushAddress(uintptr_t address);
215
216 // Pop an address from the JS stack.
217 uintptr_t PopAddress();
218
219 // Debugger input.
220 void set_last_debugger_input(char* input);
221 char* last_debugger_input() { return last_debugger_input_; }
222
223 // ICache checking.
224 static void FlushICache(v8::internal::HashMap* i_cache, void* start,
225 size_t size);
226
227 // Returns true if pc register contains one of the 'special_values' defined
228 // below (bad_lr, end_sim_pc).
229 bool has_bad_pc() const;
230
231 private:
232 enum special_values {
233 // Known bad pc value to ensure that the simulator does not execute
234 // without being properly setup.
235 bad_lr = -1,
236 // A pc value used to signal the simulator to stop execution. Generally
237 // the lr is set to this value on transition from native C code to
238 // simulated execution, so that the simulator can "return" to the native
239 // C code.
240 end_sim_pc = -2
241 };
242
243 // Unsupported instructions use Format to print an error and stop execution.
244 void Format(Instruction* instr, const char* format);
245
246 // Helper functions to set the conditional flags in the architecture state.
247 bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
248 bool BorrowFrom(int32_t left, int32_t right);
249 bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
250 bool addition);
251
252 // Helper functions to decode common "addressing" modes
253 int32_t GetShiftRm(Instruction* instr, bool* carry_out);
254 int32_t GetImm(Instruction* instr, bool* carry_out);
255 void ProcessPUW(Instruction* instr, int num_regs, int operand_size,
256 intptr_t* start_address, intptr_t* end_address);
257 void HandleRList(Instruction* instr, bool load);
258 void HandleVList(Instruction* inst);
259 void SoftwareInterrupt(Instruction* instr);
260
261 // Stop helper functions.
262 inline bool isStopInstruction(Instruction* instr);
263 inline bool isWatchedStop(uint32_t bkpt_code);
264 inline bool isEnabledStop(uint32_t bkpt_code);
265 inline void EnableStop(uint32_t bkpt_code);
266 inline void DisableStop(uint32_t bkpt_code);
267 inline void IncreaseStopCounter(uint32_t bkpt_code);
268 void PrintStopInfo(uint32_t code);
269
270 // Read and write memory.
271 inline uint8_t ReadBU(intptr_t addr);
272 inline int8_t ReadB(intptr_t addr);
273 inline void WriteB(intptr_t addr, uint8_t value);
274 inline void WriteB(intptr_t addr, int8_t value);
275
276 inline uint16_t ReadHU(intptr_t addr, Instruction* instr);
277 inline int16_t ReadH(intptr_t addr, Instruction* instr);
278 // Note: Overloaded on the sign of the value.
279 inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr);
280 inline void WriteH(intptr_t addr, int16_t value, Instruction* instr);
281
282 inline uint32_t ReadWU(intptr_t addr, Instruction* instr);
283 inline int32_t ReadW(intptr_t addr, Instruction* instr);
284 inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
285 inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);
286
287 intptr_t* ReadDW(intptr_t addr);
288 void WriteDW(intptr_t addr, int64_t value);
289
290 void Trace(Instruction* instr);
291 void SetCR0(intptr_t result, bool setSO = false);
292 void ExecuteBranchConditional(Instruction* instr);
293 void ExecuteExt1(Instruction* instr);
294 bool ExecuteExt2_10bit(Instruction* instr);
295 bool ExecuteExt2_9bit_part1(Instruction* instr);
296 void ExecuteExt2_9bit_part2(Instruction* instr);
297 void ExecuteExt2(Instruction* instr);
298 void ExecuteExt4(Instruction* instr);
299#if V8_TARGET_ARCH_PPC64
300 void ExecuteExt5(Instruction* instr);
301#endif
302 void ExecuteGeneric(Instruction* instr);
303
304 // Executes one instruction.
305 void ExecuteInstruction(Instruction* instr);
306
307 // ICache.
308 static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
309 static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
310 int size);
311 static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
312
313 // Runtime call support.
314 static void* RedirectExternalReference(
315 void* external_function, v8::internal::ExternalReference::Type type);
316
317 // Handle arguments and return value for runtime FP functions.
318 void GetFpArgs(double* x, double* y, intptr_t* z);
319 void SetFpResult(const double& result);
320 void TrashCallerSaveRegisters();
321
322 void CallInternal(byte* entry);
323
324 // Architecture state.
325 // Saturating instructions require a Q flag to indicate saturation.
326 // There is currently no way to read the CPSR directly, and thus read the Q
327 // flag, so this is left unimplemented.
328 intptr_t registers_[kNumGPRs];
329 int32_t condition_reg_;
330 int32_t fp_condition_reg_;
331 intptr_t special_reg_lr_;
332 intptr_t special_reg_pc_;
333 intptr_t special_reg_ctr_;
334 int32_t special_reg_xer_;
335
336 double fp_registers_[kNumFPRs];
337
338 // Simulator support.
339 char* stack_;
340 bool pc_modified_;
341 int icount_;
342
343 // Debugger input.
344 char* last_debugger_input_;
345
346 // Icache simulation
347 v8::internal::HashMap* i_cache_;
348
349 // Registered breakpoints.
350 Instruction* break_pc_;
351 Instr break_instr_;
352
353 v8::internal::Isolate* isolate_;
354
355 // A stop is watched if its code is less than kNumOfWatchedStops.
356 // Only watched stops support enabling/disabling and the counter feature.
357 static const uint32_t kNumOfWatchedStops = 256;
358
359 // Breakpoint is disabled if bit 31 is set.
360 static const uint32_t kStopDisabledBit = 1 << 31;
361
362 // A stop is enabled, meaning the simulator will stop when meeting the
363 // instruction, if bit 31 of watched_stops_[code].count is unset.
364 // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
365 // the breakpoint was hit or gone through.
366 struct StopCountAndDesc {
367 uint32_t count;
368 char* desc;
369 };
370 StopCountAndDesc watched_stops_[kNumOfWatchedStops];
371};
372
373
374// When running with the simulator transition into simulated execution at this
375// point.
376#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
377 reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
378 FUNCTION_ADDR(entry), 5, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \
379 (intptr_t)p3, (intptr_t)p4))
380
381#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
382 Simulator::current(Isolate::Current()) \
383 ->Call(entry, 10, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \
384 (intptr_t)p3, (intptr_t)p4, (intptr_t)p5, (intptr_t)p6, \
385 (intptr_t)p7, (intptr_t)NULL, (intptr_t)p8)
386
387
388// The simulator has its own stack. Thus it has a different stack limit from
389// the C-based native code. Setting the c_limit to indicate a very small
390// stack cause stack overflow errors, since the simulator ignores the input.
391// This is unlikely to be an issue in practice, though it might cause testing
392// trouble down the line.
393class SimulatorStack : public v8::internal::AllStatic {
394 public:
395 static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
396 uintptr_t c_limit) {
397 return Simulator::current(isolate)->StackLimit();
398 }
399
400 static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
401 Simulator* sim = Simulator::current(Isolate::Current());
402 return sim->PushAddress(try_catch_address);
403 }
404
405 static inline void UnregisterCTryCatch() {
406 Simulator::current(Isolate::Current())->PopAddress();
407 }
408};
409}
410} // namespace v8::internal
411
412#endif // !defined(USE_SIMULATOR)
413#endif // V8_PPC_SIMULATOR_PPC_H_