blob: 6c3bbbb847af2179a3b42e6b4b89eb3007ccbdbd [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "bootstrapper.h"
31#include "codegen-inl.h"
32#include "debug.h"
33#include "runtime.h"
34
35namespace v8 {
36namespace internal {
37
38MacroAssembler::MacroAssembler(void* buffer, int size)
39 : Assembler(buffer, size),
40 unresolved_(0),
41 generating_stub_(false),
42 allow_stub_calls_(true),
43 code_object_(Heap::undefined_value()) {
44}
45
46
47// We always generate arm code, never thumb code, even if V8 is compiled to
48// thumb, so we require inter-working support
49#if defined(__thumb__) && !defined(USE_THUMB_INTERWORK)
50#error "flag -mthumb-interwork missing"
51#endif
52
53
54// We do not support thumb inter-working with an arm architecture not supporting
55// the blx instruction (below v5t). If you know what CPU you are compiling for
56// you can use -march=armv7 or similar.
57#if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS)
58# error "For thumb inter-working we require an architecture which supports blx"
59#endif
60
61
62// Using blx may yield better code, so use it when required or when available
63#if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
64#define USE_BLX 1
65#endif
66
67// Using bx does not yield better code, so use it only when required
68#if defined(USE_THUMB_INTERWORK)
69#define USE_BX 1
70#endif
71
72
73void MacroAssembler::Jump(Register target, Condition cond) {
74#if USE_BX
75 bx(target, cond);
76#else
77 mov(pc, Operand(target), LeaveCC, cond);
78#endif
79}
80
81
82void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
83 Condition cond) {
84#if USE_BX
85 mov(ip, Operand(target, rmode), LeaveCC, cond);
86 bx(ip, cond);
87#else
88 mov(pc, Operand(target, rmode), LeaveCC, cond);
89#endif
90}
91
92
93void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode,
94 Condition cond) {
95 ASSERT(!RelocInfo::IsCodeTarget(rmode));
96 Jump(reinterpret_cast<intptr_t>(target), rmode, cond);
97}
98
99
100void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
101 Condition cond) {
102 ASSERT(RelocInfo::IsCodeTarget(rmode));
103 // 'code' is always generated ARM code, never THUMB code
104 Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
105}
106
107
108void MacroAssembler::Call(Register target, Condition cond) {
109#if USE_BLX
110 blx(target, cond);
111#else
112 // set lr for return at current pc + 8
113 mov(lr, Operand(pc), LeaveCC, cond);
114 mov(pc, Operand(target), LeaveCC, cond);
115#endif
116}
117
118
119void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode,
120 Condition cond) {
121 // Set lr for return at current pc + 8.
122 mov(lr, Operand(pc), LeaveCC, cond);
123 // Emit a ldr<cond> pc, [pc + offset of target in constant pool].
124 mov(pc, Operand(target, rmode), LeaveCC, cond);
125 // If USE_BLX is defined, we could emit a 'mov ip, target', followed by a
126 // 'blx ip'; however, the code would not be shorter than the above sequence
127 // and the target address of the call would be referenced by the first
128 // instruction rather than the second one, which would make it harder to patch
129 // (two instructions before the return address, instead of one).
130 ASSERT(kCallTargetAddressOffset == kInstrSize);
131}
132
133
134void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode,
135 Condition cond) {
136 ASSERT(!RelocInfo::IsCodeTarget(rmode));
137 Call(reinterpret_cast<intptr_t>(target), rmode, cond);
138}
139
140
141void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
142 Condition cond) {
143 ASSERT(RelocInfo::IsCodeTarget(rmode));
144 // 'code' is always generated ARM code, never THUMB code
145 Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
146}
147
148
149void MacroAssembler::Ret(Condition cond) {
150#if USE_BX
151 bx(lr, cond);
152#else
153 mov(pc, Operand(lr), LeaveCC, cond);
154#endif
155}
156
157
Steve Blockd0582a62009-12-15 09:54:21 +0000158void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) {
159 LoadRoot(ip, Heap::kStackLimitRootIndex);
160 cmp(sp, Operand(ip));
161 b(lo, on_stack_overflow);
162}
163
164
Leon Clarkee46be812010-01-19 14:06:41 +0000165void MacroAssembler::Drop(int count, Condition cond) {
166 if (count > 0) {
167 add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond);
168 }
169}
170
171
172void MacroAssembler::Call(Label* target) {
173 bl(target);
174}
175
176
177void MacroAssembler::Move(Register dst, Handle<Object> value) {
178 mov(dst, Operand(value));
179}
Steve Blockd0582a62009-12-15 09:54:21 +0000180
181
Steve Blocka7e24c12009-10-30 11:49:00 +0000182void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) {
183 // Empty the const pool.
184 CheckConstPool(true, true);
185 add(pc, pc, Operand(index,
186 LSL,
187 assembler::arm::Instr::kInstrSizeLog2 - kSmiTagSize));
188 BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize);
189 nop(); // Jump table alignment.
190 for (int i = 0; i < targets.length(); i++) {
191 b(targets[i]);
192 }
193}
194
195
196void MacroAssembler::LoadRoot(Register destination,
197 Heap::RootListIndex index,
198 Condition cond) {
199 ldr(destination, MemOperand(r10, index << kPointerSizeLog2), cond);
200}
201
202
203// Will clobber 4 registers: object, offset, scratch, ip. The
204// register 'object' contains a heap object pointer. The heap object
205// tag is shifted away.
206void MacroAssembler::RecordWrite(Register object, Register offset,
207 Register scratch) {
208 // This is how much we shift the remembered set bit offset to get the
209 // offset of the word in the remembered set. We divide by kBitsPerInt (32,
210 // shift right 5) and then multiply by kIntSize (4, shift left 2).
211 const int kRSetWordShift = 3;
212
213 Label fast, done;
214
215 // First, test that the object is not in the new space. We cannot set
216 // remembered set bits in the new space.
217 // object: heap object pointer (with tag)
218 // offset: offset to store location from the object
219 and_(scratch, object, Operand(Heap::NewSpaceMask()));
220 cmp(scratch, Operand(ExternalReference::new_space_start()));
221 b(eq, &done);
222
223 // Compute the bit offset in the remembered set.
224 // object: heap object pointer (with tag)
225 // offset: offset to store location from the object
226 mov(ip, Operand(Page::kPageAlignmentMask)); // load mask only once
227 and_(scratch, object, Operand(ip)); // offset into page of the object
228 add(offset, scratch, Operand(offset)); // add offset into the object
229 mov(offset, Operand(offset, LSR, kObjectAlignmentBits));
230
231 // Compute the page address from the heap object pointer.
232 // object: heap object pointer (with tag)
233 // offset: bit offset of store position in the remembered set
234 bic(object, object, Operand(ip));
235
236 // If the bit offset lies beyond the normal remembered set range, it is in
237 // the extra remembered set area of a large object.
238 // object: page start
239 // offset: bit offset of store position in the remembered set
240 cmp(offset, Operand(Page::kPageSize / kPointerSize));
241 b(lt, &fast);
242
243 // Adjust the bit offset to be relative to the start of the extra
244 // remembered set and the start address to be the address of the extra
245 // remembered set.
246 sub(offset, offset, Operand(Page::kPageSize / kPointerSize));
247 // Load the array length into 'scratch' and multiply by four to get the
248 // size in bytes of the elements.
249 ldr(scratch, MemOperand(object, Page::kObjectStartOffset
250 + FixedArray::kLengthOffset));
251 mov(scratch, Operand(scratch, LSL, kObjectAlignmentBits));
252 // Add the page header (including remembered set), array header, and array
253 // body size to the page address.
254 add(object, object, Operand(Page::kObjectStartOffset
255 + FixedArray::kHeaderSize));
256 add(object, object, Operand(scratch));
257
258 bind(&fast);
259 // Get address of the rset word.
260 // object: start of the remembered set (page start for the fast case)
261 // offset: bit offset of store position in the remembered set
262 bic(scratch, offset, Operand(kBitsPerInt - 1)); // clear the bit offset
263 add(object, object, Operand(scratch, LSR, kRSetWordShift));
264 // Get bit offset in the rset word.
265 // object: address of remembered set word
266 // offset: bit offset of store position
267 and_(offset, offset, Operand(kBitsPerInt - 1));
268
269 ldr(scratch, MemOperand(object));
270 mov(ip, Operand(1));
271 orr(scratch, scratch, Operand(ip, LSL, offset));
272 str(scratch, MemOperand(object));
273
274 bind(&done);
275}
276
277
278void MacroAssembler::EnterFrame(StackFrame::Type type) {
279 // r0-r3: preserved
280 stm(db_w, sp, cp.bit() | fp.bit() | lr.bit());
281 mov(ip, Operand(Smi::FromInt(type)));
282 push(ip);
283 mov(ip, Operand(CodeObject()));
284 push(ip);
285 add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP.
286}
287
288
289void MacroAssembler::LeaveFrame(StackFrame::Type type) {
290 // r0: preserved
291 // r1: preserved
292 // r2: preserved
293
294 // Drop the execution stack down to the frame pointer and restore
295 // the caller frame pointer and return address.
296 mov(sp, fp);
297 ldm(ia_w, sp, fp.bit() | lr.bit());
298}
299
300
Steve Blockd0582a62009-12-15 09:54:21 +0000301void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000302 // Compute the argv pointer and keep it in a callee-saved register.
303 // r0 is argc.
304 add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
305 sub(r6, r6, Operand(kPointerSize));
306
307 // Compute callee's stack pointer before making changes and save it as
308 // ip register so that it is restored as sp register on exit, thereby
309 // popping the args.
310
311 // ip = sp + kPointerSize * #args;
312 add(ip, sp, Operand(r0, LSL, kPointerSizeLog2));
313
314 // Align the stack at this point. After this point we have 5 pushes,
315 // so in fact we have to unalign here! See also the assert on the
316 // alignment in AlignStack.
317 AlignStack(1);
318
319 // Push in reverse order: caller_fp, sp_on_exit, and caller_pc.
320 stm(db_w, sp, fp.bit() | ip.bit() | lr.bit());
321 mov(fp, Operand(sp)); // setup new frame pointer
322
Steve Blockd0582a62009-12-15 09:54:21 +0000323 if (mode == ExitFrame::MODE_DEBUG) {
324 mov(ip, Operand(Smi::FromInt(0)));
325 } else {
326 mov(ip, Operand(CodeObject()));
327 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000328 push(ip);
329
330 // Save the frame pointer and the context in top.
331 mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
332 str(fp, MemOperand(ip));
333 mov(ip, Operand(ExternalReference(Top::k_context_address)));
334 str(cp, MemOperand(ip));
335
336 // Setup argc and the builtin function in callee-saved registers.
337 mov(r4, Operand(r0));
338 mov(r5, Operand(r1));
339
340
341#ifdef ENABLE_DEBUGGER_SUPPORT
342 // Save the state of all registers to the stack from the memory
343 // location. This is needed to allow nested break points.
Steve Blockd0582a62009-12-15 09:54:21 +0000344 if (mode == ExitFrame::MODE_DEBUG) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000345 // Use sp as base to push.
346 CopyRegistersFromMemoryToStack(sp, kJSCallerSaved);
347 }
348#endif
349}
350
351
352void MacroAssembler::AlignStack(int offset) {
353#if defined(V8_HOST_ARCH_ARM)
354 // Running on the real platform. Use the alignment as mandated by the local
355 // environment.
356 // Note: This will break if we ever start generating snapshots on one ARM
357 // platform for another ARM platform with a different alignment.
358 int activation_frame_alignment = OS::ActivationFrameAlignment();
359#else // defined(V8_HOST_ARCH_ARM)
360 // If we are using the simulator then we should always align to the expected
361 // alignment. As the simulator is used to generate snapshots we do not know
362 // if the target platform will need alignment, so we will always align at
363 // this point here.
364 int activation_frame_alignment = 2 * kPointerSize;
365#endif // defined(V8_HOST_ARCH_ARM)
366 if (activation_frame_alignment != kPointerSize) {
367 // This code needs to be made more general if this assert doesn't hold.
368 ASSERT(activation_frame_alignment == 2 * kPointerSize);
369 mov(r7, Operand(Smi::FromInt(0)));
370 tst(sp, Operand(activation_frame_alignment - offset));
371 push(r7, eq); // Conditional push instruction.
372 }
373}
374
375
Steve Blockd0582a62009-12-15 09:54:21 +0000376void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000377#ifdef ENABLE_DEBUGGER_SUPPORT
378 // Restore the memory copy of the registers by digging them out from
379 // the stack. This is needed to allow nested break points.
Steve Blockd0582a62009-12-15 09:54:21 +0000380 if (mode == ExitFrame::MODE_DEBUG) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000381 // This code intentionally clobbers r2 and r3.
382 const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +0000383 const int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize;
Steve Blocka7e24c12009-10-30 11:49:00 +0000384 add(r3, fp, Operand(kOffset));
385 CopyRegistersFromStackToMemory(r3, r2, kJSCallerSaved);
386 }
387#endif
388
389 // Clear top frame.
390 mov(r3, Operand(0));
391 mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
392 str(r3, MemOperand(ip));
393
394 // Restore current context from top and clear it in debug mode.
395 mov(ip, Operand(ExternalReference(Top::k_context_address)));
396 ldr(cp, MemOperand(ip));
397#ifdef DEBUG
398 str(r3, MemOperand(ip));
399#endif
400
401 // Pop the arguments, restore registers, and return.
402 mov(sp, Operand(fp)); // respect ABI stack constraint
403 ldm(ia, sp, fp.bit() | sp.bit() | pc.bit());
404}
405
406
407void MacroAssembler::InvokePrologue(const ParameterCount& expected,
408 const ParameterCount& actual,
409 Handle<Code> code_constant,
410 Register code_reg,
411 Label* done,
412 InvokeFlag flag) {
413 bool definitely_matches = false;
414 Label regular_invoke;
415
416 // Check whether the expected and actual arguments count match. If not,
417 // setup registers according to contract with ArgumentsAdaptorTrampoline:
418 // r0: actual arguments count
419 // r1: function (passed through to callee)
420 // r2: expected arguments count
421 // r3: callee code entry
422
423 // The code below is made a lot easier because the calling code already sets
424 // up actual and expected registers according to the contract if values are
425 // passed in registers.
426 ASSERT(actual.is_immediate() || actual.reg().is(r0));
427 ASSERT(expected.is_immediate() || expected.reg().is(r2));
428 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3));
429
430 if (expected.is_immediate()) {
431 ASSERT(actual.is_immediate());
432 if (expected.immediate() == actual.immediate()) {
433 definitely_matches = true;
434 } else {
435 mov(r0, Operand(actual.immediate()));
436 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
437 if (expected.immediate() == sentinel) {
438 // Don't worry about adapting arguments for builtins that
439 // don't want that done. Skip adaption code by making it look
440 // like we have a match between expected and actual number of
441 // arguments.
442 definitely_matches = true;
443 } else {
444 mov(r2, Operand(expected.immediate()));
445 }
446 }
447 } else {
448 if (actual.is_immediate()) {
449 cmp(expected.reg(), Operand(actual.immediate()));
450 b(eq, &regular_invoke);
451 mov(r0, Operand(actual.immediate()));
452 } else {
453 cmp(expected.reg(), Operand(actual.reg()));
454 b(eq, &regular_invoke);
455 }
456 }
457
458 if (!definitely_matches) {
459 if (!code_constant.is_null()) {
460 mov(r3, Operand(code_constant));
461 add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
462 }
463
464 Handle<Code> adaptor =
465 Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
466 if (flag == CALL_FUNCTION) {
467 Call(adaptor, RelocInfo::CODE_TARGET);
468 b(done);
469 } else {
470 Jump(adaptor, RelocInfo::CODE_TARGET);
471 }
472 bind(&regular_invoke);
473 }
474}
475
476
477void MacroAssembler::InvokeCode(Register code,
478 const ParameterCount& expected,
479 const ParameterCount& actual,
480 InvokeFlag flag) {
481 Label done;
482
483 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
484 if (flag == CALL_FUNCTION) {
485 Call(code);
486 } else {
487 ASSERT(flag == JUMP_FUNCTION);
488 Jump(code);
489 }
490
491 // Continue here if InvokePrologue does handle the invocation due to
492 // mismatched parameter counts.
493 bind(&done);
494}
495
496
497void MacroAssembler::InvokeCode(Handle<Code> code,
498 const ParameterCount& expected,
499 const ParameterCount& actual,
500 RelocInfo::Mode rmode,
501 InvokeFlag flag) {
502 Label done;
503
504 InvokePrologue(expected, actual, code, no_reg, &done, flag);
505 if (flag == CALL_FUNCTION) {
506 Call(code, rmode);
507 } else {
508 Jump(code, rmode);
509 }
510
511 // Continue here if InvokePrologue does handle the invocation due to
512 // mismatched parameter counts.
513 bind(&done);
514}
515
516
517void MacroAssembler::InvokeFunction(Register fun,
518 const ParameterCount& actual,
519 InvokeFlag flag) {
520 // Contract with called JS functions requires that function is passed in r1.
521 ASSERT(fun.is(r1));
522
523 Register expected_reg = r2;
524 Register code_reg = r3;
525
526 ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
527 ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
528 ldr(expected_reg,
529 FieldMemOperand(code_reg,
530 SharedFunctionInfo::kFormalParameterCountOffset));
531 ldr(code_reg,
532 MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
533 add(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
534
535 ParameterCount expected(expected_reg);
536 InvokeCode(code_reg, expected, actual, flag);
537}
538
539
540#ifdef ENABLE_DEBUGGER_SUPPORT
541void MacroAssembler::SaveRegistersToMemory(RegList regs) {
542 ASSERT((regs & ~kJSCallerSaved) == 0);
543 // Copy the content of registers to memory location.
544 for (int i = 0; i < kNumJSCallerSaved; i++) {
545 int r = JSCallerSavedCode(i);
546 if ((regs & (1 << r)) != 0) {
547 Register reg = { r };
548 mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
549 str(reg, MemOperand(ip));
550 }
551 }
552}
553
554
555void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
556 ASSERT((regs & ~kJSCallerSaved) == 0);
557 // Copy the content of memory location to registers.
558 for (int i = kNumJSCallerSaved; --i >= 0;) {
559 int r = JSCallerSavedCode(i);
560 if ((regs & (1 << r)) != 0) {
561 Register reg = { r };
562 mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
563 ldr(reg, MemOperand(ip));
564 }
565 }
566}
567
568
569void MacroAssembler::CopyRegistersFromMemoryToStack(Register base,
570 RegList regs) {
571 ASSERT((regs & ~kJSCallerSaved) == 0);
572 // Copy the content of the memory location to the stack and adjust base.
573 for (int i = kNumJSCallerSaved; --i >= 0;) {
574 int r = JSCallerSavedCode(i);
575 if ((regs & (1 << r)) != 0) {
576 mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
577 ldr(ip, MemOperand(ip));
578 str(ip, MemOperand(base, 4, NegPreIndex));
579 }
580 }
581}
582
583
584void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
585 Register scratch,
586 RegList regs) {
587 ASSERT((regs & ~kJSCallerSaved) == 0);
588 // Copy the content of the stack to the memory location and adjust base.
589 for (int i = 0; i < kNumJSCallerSaved; i++) {
590 int r = JSCallerSavedCode(i);
591 if ((regs & (1 << r)) != 0) {
592 mov(ip, Operand(ExternalReference(Debug_Address::Register(i))));
593 ldr(scratch, MemOperand(base, 4, PostIndex));
594 str(scratch, MemOperand(ip));
595 }
596 }
597}
598#endif
599
600
601void MacroAssembler::PushTryHandler(CodeLocation try_location,
602 HandlerType type) {
603 // Adjust this code if not the case.
604 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
605 // The pc (return address) is passed in register lr.
606 if (try_location == IN_JAVASCRIPT) {
607 if (type == TRY_CATCH_HANDLER) {
608 mov(r3, Operand(StackHandler::TRY_CATCH));
609 } else {
610 mov(r3, Operand(StackHandler::TRY_FINALLY));
611 }
612 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
613 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
614 && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
615 stm(db_w, sp, r3.bit() | fp.bit() | lr.bit());
616 // Save the current handler as the next handler.
617 mov(r3, Operand(ExternalReference(Top::k_handler_address)));
618 ldr(r1, MemOperand(r3));
619 ASSERT(StackHandlerConstants::kNextOffset == 0);
620 push(r1);
621 // Link this handler as the new current one.
622 str(sp, MemOperand(r3));
623 } else {
624 // Must preserve r0-r4, r5-r7 are available.
625 ASSERT(try_location == IN_JS_ENTRY);
626 // The frame pointer does not point to a JS frame so we save NULL
627 // for fp. We expect the code throwing an exception to check fp
628 // before dereferencing it to restore the context.
629 mov(ip, Operand(0)); // To save a NULL frame pointer.
630 mov(r6, Operand(StackHandler::ENTRY));
631 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
632 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
633 && StackHandlerConstants::kPCOffset == 3 * kPointerSize);
634 stm(db_w, sp, r6.bit() | ip.bit() | lr.bit());
635 // Save the current handler as the next handler.
636 mov(r7, Operand(ExternalReference(Top::k_handler_address)));
637 ldr(r6, MemOperand(r7));
638 ASSERT(StackHandlerConstants::kNextOffset == 0);
639 push(r6);
640 // Link this handler as the new current one.
641 str(sp, MemOperand(r7));
642 }
643}
644
645
Leon Clarkee46be812010-01-19 14:06:41 +0000646void MacroAssembler::PopTryHandler() {
647 ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
648 pop(r1);
649 mov(ip, Operand(ExternalReference(Top::k_handler_address)));
650 add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
651 str(r1, MemOperand(ip));
652}
653
654
Steve Blocka7e24c12009-10-30 11:49:00 +0000655Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg,
656 JSObject* holder, Register holder_reg,
657 Register scratch,
658 Label* miss) {
659 // Make sure there's no overlap between scratch and the other
660 // registers.
661 ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));
662
663 // Keep track of the current object in register reg.
664 Register reg = object_reg;
665 int depth = 1;
666
667 // Check the maps in the prototype chain.
668 // Traverse the prototype chain from the object and do map checks.
669 while (object != holder) {
670 depth++;
671
672 // Only global objects and objects that do not require access
673 // checks are allowed in stubs.
674 ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
675
676 // Get the map of the current object.
677 ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
678 cmp(scratch, Operand(Handle<Map>(object->map())));
679
680 // Branch on the result of the map check.
681 b(ne, miss);
682
683 // Check access rights to the global object. This has to happen
684 // after the map check so that we know that the object is
685 // actually a global object.
686 if (object->IsJSGlobalProxy()) {
687 CheckAccessGlobalProxy(reg, scratch, miss);
688 // Restore scratch register to be the map of the object. In the
689 // new space case below, we load the prototype from the map in
690 // the scratch register.
691 ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
692 }
693
694 reg = holder_reg; // from now the object is in holder_reg
695 JSObject* prototype = JSObject::cast(object->GetPrototype());
696 if (Heap::InNewSpace(prototype)) {
697 // The prototype is in new space; we cannot store a reference
698 // to it in the code. Load it from the map.
699 ldr(reg, FieldMemOperand(scratch, Map::kPrototypeOffset));
700 } else {
701 // The prototype is in old space; load it directly.
702 mov(reg, Operand(Handle<JSObject>(prototype)));
703 }
704
705 // Go to the next object in the prototype chain.
706 object = prototype;
707 }
708
709 // Check the holder map.
710 ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
711 cmp(scratch, Operand(Handle<Map>(object->map())));
712 b(ne, miss);
713
714 // Log the check depth.
715 LOG(IntEvent("check-maps-depth", depth));
716
717 // Perform security check for access to the global object and return
718 // the holder register.
719 ASSERT(object == holder);
720 ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
721 if (object->IsJSGlobalProxy()) {
722 CheckAccessGlobalProxy(reg, scratch, miss);
723 }
724 return reg;
725}
726
727
728void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
729 Register scratch,
730 Label* miss) {
731 Label same_contexts;
732
733 ASSERT(!holder_reg.is(scratch));
734 ASSERT(!holder_reg.is(ip));
735 ASSERT(!scratch.is(ip));
736
737 // Load current lexical context from the stack frame.
738 ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
739 // In debug mode, make sure the lexical context is set.
740#ifdef DEBUG
741 cmp(scratch, Operand(0));
742 Check(ne, "we should not have an empty lexical context");
743#endif
744
745 // Load the global context of the current context.
746 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
747 ldr(scratch, FieldMemOperand(scratch, offset));
748 ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
749
750 // Check the context is a global context.
751 if (FLAG_debug_code) {
752 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
753 // Cannot use ip as a temporary in this verification code. Due to the fact
754 // that ip is clobbered as part of cmp with an object Operand.
755 push(holder_reg); // Temporarily save holder on the stack.
756 // Read the first word and compare to the global_context_map.
757 ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
758 LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
759 cmp(holder_reg, ip);
760 Check(eq, "JSGlobalObject::global_context should be a global context.");
761 pop(holder_reg); // Restore holder.
762 }
763
764 // Check if both contexts are the same.
765 ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
766 cmp(scratch, Operand(ip));
767 b(eq, &same_contexts);
768
769 // Check the context is a global context.
770 if (FLAG_debug_code) {
771 // TODO(119): avoid push(holder_reg)/pop(holder_reg)
772 // Cannot use ip as a temporary in this verification code. Due to the fact
773 // that ip is clobbered as part of cmp with an object Operand.
774 push(holder_reg); // Temporarily save holder on the stack.
775 mov(holder_reg, ip); // Move ip to its holding place.
776 LoadRoot(ip, Heap::kNullValueRootIndex);
777 cmp(holder_reg, ip);
778 Check(ne, "JSGlobalProxy::context() should not be null.");
779
780 ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
781 LoadRoot(ip, Heap::kGlobalContextMapRootIndex);
782 cmp(holder_reg, ip);
783 Check(eq, "JSGlobalObject::global_context should be a global context.");
784 // Restore ip is not needed. ip is reloaded below.
785 pop(holder_reg); // Restore holder.
786 // Restore ip to holder's context.
787 ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
788 }
789
790 // Check that the security token in the calling global object is
791 // compatible with the security token in the receiving global
792 // object.
793 int token_offset = Context::kHeaderSize +
794 Context::SECURITY_TOKEN_INDEX * kPointerSize;
795
796 ldr(scratch, FieldMemOperand(scratch, token_offset));
797 ldr(ip, FieldMemOperand(ip, token_offset));
798 cmp(scratch, Operand(ip));
799 b(ne, miss);
800
801 bind(&same_contexts);
802}
803
804
805void MacroAssembler::AllocateInNewSpace(int object_size,
806 Register result,
807 Register scratch1,
808 Register scratch2,
809 Label* gc_required,
810 AllocationFlags flags) {
811 ASSERT(!result.is(scratch1));
812 ASSERT(!scratch1.is(scratch2));
813
814 // Load address of new object into result and allocation top address into
815 // scratch1.
816 ExternalReference new_space_allocation_top =
817 ExternalReference::new_space_allocation_top_address();
818 mov(scratch1, Operand(new_space_allocation_top));
819 if ((flags & RESULT_CONTAINS_TOP) == 0) {
820 ldr(result, MemOperand(scratch1));
Steve Blockd0582a62009-12-15 09:54:21 +0000821 } else if (FLAG_debug_code) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000822 // Assert that result actually contains top on entry. scratch2 is used
823 // immediately below so this use of scratch2 does not cause difference with
824 // respect to register content between debug and release mode.
825 ldr(scratch2, MemOperand(scratch1));
826 cmp(result, scratch2);
827 Check(eq, "Unexpected allocation top");
Steve Blocka7e24c12009-10-30 11:49:00 +0000828 }
829
830 // Calculate new top and bail out if new space is exhausted. Use result
831 // to calculate the new top.
832 ExternalReference new_space_allocation_limit =
833 ExternalReference::new_space_allocation_limit_address();
834 mov(scratch2, Operand(new_space_allocation_limit));
835 ldr(scratch2, MemOperand(scratch2));
836 add(result, result, Operand(object_size * kPointerSize));
837 cmp(result, Operand(scratch2));
838 b(hi, gc_required);
839
Steve Blockd0582a62009-12-15 09:54:21 +0000840 // Update allocation top. result temporarily holds the new top.
841 if (FLAG_debug_code) {
842 tst(result, Operand(kObjectAlignmentMask));
843 Check(eq, "Unaligned allocation in new space");
844 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000845 str(result, MemOperand(scratch1));
846
847 // Tag and adjust back to start of new object.
848 if ((flags & TAG_OBJECT) != 0) {
849 sub(result, result, Operand((object_size * kPointerSize) -
850 kHeapObjectTag));
851 } else {
852 sub(result, result, Operand(object_size * kPointerSize));
853 }
854}
855
856
857void MacroAssembler::AllocateInNewSpace(Register object_size,
858 Register result,
859 Register scratch1,
860 Register scratch2,
861 Label* gc_required,
862 AllocationFlags flags) {
863 ASSERT(!result.is(scratch1));
864 ASSERT(!scratch1.is(scratch2));
865
866 // Load address of new object into result and allocation top address into
867 // scratch1.
868 ExternalReference new_space_allocation_top =
869 ExternalReference::new_space_allocation_top_address();
870 mov(scratch1, Operand(new_space_allocation_top));
871 if ((flags & RESULT_CONTAINS_TOP) == 0) {
872 ldr(result, MemOperand(scratch1));
Steve Blockd0582a62009-12-15 09:54:21 +0000873 } else if (FLAG_debug_code) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000874 // Assert that result actually contains top on entry. scratch2 is used
875 // immediately below so this use of scratch2 does not cause difference with
876 // respect to register content between debug and release mode.
877 ldr(scratch2, MemOperand(scratch1));
878 cmp(result, scratch2);
879 Check(eq, "Unexpected allocation top");
Steve Blocka7e24c12009-10-30 11:49:00 +0000880 }
881
882 // Calculate new top and bail out if new space is exhausted. Use result
883 // to calculate the new top. Object size is in words so a shift is required to
884 // get the number of bytes
885 ExternalReference new_space_allocation_limit =
886 ExternalReference::new_space_allocation_limit_address();
887 mov(scratch2, Operand(new_space_allocation_limit));
888 ldr(scratch2, MemOperand(scratch2));
889 add(result, result, Operand(object_size, LSL, kPointerSizeLog2));
890 cmp(result, Operand(scratch2));
891 b(hi, gc_required);
892
Steve Blockd0582a62009-12-15 09:54:21 +0000893 // Update allocation top. result temporarily holds the new top.
894 if (FLAG_debug_code) {
895 tst(result, Operand(kObjectAlignmentMask));
896 Check(eq, "Unaligned allocation in new space");
897 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000898 str(result, MemOperand(scratch1));
899
900 // Adjust back to start of new object.
901 sub(result, result, Operand(object_size, LSL, kPointerSizeLog2));
902
903 // Tag object if requested.
904 if ((flags & TAG_OBJECT) != 0) {
905 add(result, result, Operand(kHeapObjectTag));
906 }
907}
908
909
910void MacroAssembler::UndoAllocationInNewSpace(Register object,
911 Register scratch) {
912 ExternalReference new_space_allocation_top =
913 ExternalReference::new_space_allocation_top_address();
914
915 // Make sure the object has no tag before resetting top.
916 and_(object, object, Operand(~kHeapObjectTagMask));
917#ifdef DEBUG
918 // Check that the object un-allocated is below the current top.
919 mov(scratch, Operand(new_space_allocation_top));
920 ldr(scratch, MemOperand(scratch));
921 cmp(object, scratch);
922 Check(lt, "Undo allocation of non allocated memory");
923#endif
924 // Write the address of the object to un-allocate as the current top.
925 mov(scratch, Operand(new_space_allocation_top));
926 str(object, MemOperand(scratch));
927}
928
929
930void MacroAssembler::CompareObjectType(Register function,
931 Register map,
932 Register type_reg,
933 InstanceType type) {
934 ldr(map, FieldMemOperand(function, HeapObject::kMapOffset));
935 CompareInstanceType(map, type_reg, type);
936}
937
938
939void MacroAssembler::CompareInstanceType(Register map,
940 Register type_reg,
941 InstanceType type) {
942 ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
943 cmp(type_reg, Operand(type));
944}
945
946
947void MacroAssembler::TryGetFunctionPrototype(Register function,
948 Register result,
949 Register scratch,
950 Label* miss) {
951 // Check that the receiver isn't a smi.
952 BranchOnSmi(function, miss);
953
954 // Check that the function really is a function. Load map into result reg.
955 CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
956 b(ne, miss);
957
958 // Make sure that the function has an instance prototype.
959 Label non_instance;
960 ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
961 tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
962 b(ne, &non_instance);
963
964 // Get the prototype or initial map from the function.
965 ldr(result,
966 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
967
968 // If the prototype or initial map is the hole, don't return it and
969 // simply miss the cache instead. This will allow us to allocate a
970 // prototype object on-demand in the runtime system.
971 LoadRoot(ip, Heap::kTheHoleValueRootIndex);
972 cmp(result, ip);
973 b(eq, miss);
974
975 // If the function does not have an initial map, we're done.
976 Label done;
977 CompareObjectType(result, scratch, scratch, MAP_TYPE);
978 b(ne, &done);
979
980 // Get the prototype from the initial map.
981 ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
982 jmp(&done);
983
984 // Non-instance prototype: Fetch prototype from constructor field
985 // in initial map.
986 bind(&non_instance);
987 ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
988
989 // All done.
990 bind(&done);
991}
992
993
994void MacroAssembler::CallStub(CodeStub* stub, Condition cond) {
995 ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs
996 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
997}
998
999
1000void MacroAssembler::StubReturn(int argc) {
1001 ASSERT(argc >= 1 && generating_stub());
1002 if (argc > 1)
1003 add(sp, sp, Operand((argc - 1) * kPointerSize));
1004 Ret();
1005}
1006
1007
1008void MacroAssembler::IllegalOperation(int num_arguments) {
1009 if (num_arguments > 0) {
1010 add(sp, sp, Operand(num_arguments * kPointerSize));
1011 }
1012 LoadRoot(r0, Heap::kUndefinedValueRootIndex);
1013}
1014
1015
Steve Blockd0582a62009-12-15 09:54:21 +00001016void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg,
1017 Register outHighReg,
1018 Register outLowReg) {
1019 // ARMv7 VFP3 instructions to implement integer to double conversion.
1020 mov(r7, Operand(inReg, ASR, kSmiTagSize));
Leon Clarkee46be812010-01-19 14:06:41 +00001021 vmov(s15, r7);
1022 vcvt(d7, s15);
1023 vmov(outLowReg, outHighReg, d7);
Steve Blockd0582a62009-12-15 09:54:21 +00001024}
1025
1026
Steve Blocka7e24c12009-10-30 11:49:00 +00001027void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
1028 // All parameters are on the stack. r0 has the return value after call.
1029
1030 // If the expected number of arguments of the runtime function is
1031 // constant, we check that the actual number of arguments match the
1032 // expectation.
1033 if (f->nargs >= 0 && f->nargs != num_arguments) {
1034 IllegalOperation(num_arguments);
1035 return;
1036 }
1037
1038 Runtime::FunctionId function_id =
1039 static_cast<Runtime::FunctionId>(f->stub_id);
1040 RuntimeStub stub(function_id, num_arguments);
1041 CallStub(&stub);
1042}
1043
1044
1045void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
1046 CallRuntime(Runtime::FunctionForId(fid), num_arguments);
1047}
1048
1049
1050void MacroAssembler::TailCallRuntime(const ExternalReference& ext,
1051 int num_arguments,
1052 int result_size) {
1053 // TODO(1236192): Most runtime routines don't need the number of
1054 // arguments passed in because it is constant. At some point we
1055 // should remove this need and make the runtime routine entry code
1056 // smarter.
1057 mov(r0, Operand(num_arguments));
1058 JumpToRuntime(ext);
1059}
1060
1061
1062void MacroAssembler::JumpToRuntime(const ExternalReference& builtin) {
1063#if defined(__thumb__)
1064 // Thumb mode builtin.
1065 ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1);
1066#endif
1067 mov(r1, Operand(builtin));
1068 CEntryStub stub(1);
1069 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1070}
1071
1072
1073Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id,
1074 bool* resolved) {
1075 // Contract with compiled functions is that the function is passed in r1.
1076 int builtins_offset =
1077 JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
1078 ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
1079 ldr(r1, FieldMemOperand(r1, GlobalObject::kBuiltinsOffset));
1080 ldr(r1, FieldMemOperand(r1, builtins_offset));
1081
1082 return Builtins::GetCode(id, resolved);
1083}
1084
1085
1086void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1087 InvokeJSFlags flags) {
1088 bool resolved;
1089 Handle<Code> code = ResolveBuiltin(id, &resolved);
1090
1091 if (flags == CALL_JS) {
1092 Call(code, RelocInfo::CODE_TARGET);
1093 } else {
1094 ASSERT(flags == JUMP_JS);
1095 Jump(code, RelocInfo::CODE_TARGET);
1096 }
1097
1098 if (!resolved) {
1099 const char* name = Builtins::GetName(id);
1100 int argc = Builtins::GetArgumentsCount(id);
1101 uint32_t flags =
1102 Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
Steve Blocka7e24c12009-10-30 11:49:00 +00001103 Bootstrapper::FixupFlagsUseCodeObject::encode(false);
1104 Unresolved entry = { pc_offset() - kInstrSize, flags, name };
1105 unresolved_.Add(entry);
1106 }
1107}
1108
1109
1110void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
1111 bool resolved;
1112 Handle<Code> code = ResolveBuiltin(id, &resolved);
1113
1114 mov(target, Operand(code));
1115 if (!resolved) {
1116 const char* name = Builtins::GetName(id);
1117 int argc = Builtins::GetArgumentsCount(id);
1118 uint32_t flags =
1119 Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
Steve Blocka7e24c12009-10-30 11:49:00 +00001120 Bootstrapper::FixupFlagsUseCodeObject::encode(true);
1121 Unresolved entry = { pc_offset() - kInstrSize, flags, name };
1122 unresolved_.Add(entry);
1123 }
1124
1125 add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
1126}
1127
1128
1129void MacroAssembler::SetCounter(StatsCounter* counter, int value,
1130 Register scratch1, Register scratch2) {
1131 if (FLAG_native_code_counters && counter->Enabled()) {
1132 mov(scratch1, Operand(value));
1133 mov(scratch2, Operand(ExternalReference(counter)));
1134 str(scratch1, MemOperand(scratch2));
1135 }
1136}
1137
1138
1139void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
1140 Register scratch1, Register scratch2) {
1141 ASSERT(value > 0);
1142 if (FLAG_native_code_counters && counter->Enabled()) {
1143 mov(scratch2, Operand(ExternalReference(counter)));
1144 ldr(scratch1, MemOperand(scratch2));
1145 add(scratch1, scratch1, Operand(value));
1146 str(scratch1, MemOperand(scratch2));
1147 }
1148}
1149
1150
1151void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
1152 Register scratch1, Register scratch2) {
1153 ASSERT(value > 0);
1154 if (FLAG_native_code_counters && counter->Enabled()) {
1155 mov(scratch2, Operand(ExternalReference(counter)));
1156 ldr(scratch1, MemOperand(scratch2));
1157 sub(scratch1, scratch1, Operand(value));
1158 str(scratch1, MemOperand(scratch2));
1159 }
1160}
1161
1162
1163void MacroAssembler::Assert(Condition cc, const char* msg) {
1164 if (FLAG_debug_code)
1165 Check(cc, msg);
1166}
1167
1168
1169void MacroAssembler::Check(Condition cc, const char* msg) {
1170 Label L;
1171 b(cc, &L);
1172 Abort(msg);
1173 // will not return here
1174 bind(&L);
1175}
1176
1177
1178void MacroAssembler::Abort(const char* msg) {
1179 // We want to pass the msg string like a smi to avoid GC
1180 // problems, however msg is not guaranteed to be aligned
1181 // properly. Instead, we pass an aligned pointer that is
1182 // a proper v8 smi, but also pass the alignment difference
1183 // from the real pointer as a smi.
1184 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
1185 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
1186 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
1187#ifdef DEBUG
1188 if (msg != NULL) {
1189 RecordComment("Abort message: ");
1190 RecordComment(msg);
1191 }
1192#endif
Steve Blockd0582a62009-12-15 09:54:21 +00001193 // Disable stub call restrictions to always allow calls to abort.
1194 set_allow_stub_calls(true);
1195
Steve Blocka7e24c12009-10-30 11:49:00 +00001196 mov(r0, Operand(p0));
1197 push(r0);
1198 mov(r0, Operand(Smi::FromInt(p1 - p0)));
1199 push(r0);
1200 CallRuntime(Runtime::kAbort, 2);
1201 // will not return here
1202}
1203
1204
Steve Blockd0582a62009-12-15 09:54:21 +00001205void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
1206 if (context_chain_length > 0) {
1207 // Move up the chain of contexts to the context containing the slot.
1208 ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX)));
1209 // Load the function context (which is the incoming, outer context).
1210 ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
1211 for (int i = 1; i < context_chain_length; i++) {
1212 ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
1213 ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
1214 }
1215 // The context may be an intermediate context, not a function context.
1216 ldr(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
1217 } else { // Slot is in the current function context.
1218 // The context may be an intermediate context, not a function context.
1219 ldr(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX)));
1220 }
1221}
1222
1223
Leon Clarked91b9f72010-01-27 17:25:45 +00001224void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
1225 Register first,
1226 Register second,
1227 Register scratch1,
1228 Register scratch2,
1229 Label* failure) {
1230 // Test that both first and second are sequential ASCII strings.
1231 // Assume that they are non-smis.
1232 ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
1233 ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
1234 ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
1235 ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
1236 int kFlatAsciiStringMask =
1237 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
1238 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
1239 and_(scratch1, scratch1, Operand(kFlatAsciiStringMask));
1240 and_(scratch2, scratch2, Operand(kFlatAsciiStringMask));
1241 cmp(scratch1, Operand(kFlatAsciiStringTag));
1242 // Ignore second test if first test failed.
1243 cmp(scratch2, Operand(kFlatAsciiStringTag), eq);
1244 b(ne, failure);
1245}
1246
1247void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
1248 Register second,
1249 Register scratch1,
1250 Register scratch2,
1251 Label* failure) {
1252 // Check that neither is a smi.
1253 ASSERT_EQ(0, kSmiTag);
1254 and_(scratch1, first, Operand(second));
1255 tst(scratch1, Operand(kSmiTagMask));
1256 b(eq, failure);
1257 JumpIfNonSmisNotBothSequentialAsciiStrings(first,
1258 second,
1259 scratch1,
1260 scratch2,
1261 failure);
1262}
1263
Steve Blockd0582a62009-12-15 09:54:21 +00001264
Steve Blocka7e24c12009-10-30 11:49:00 +00001265#ifdef ENABLE_DEBUGGER_SUPPORT
1266CodePatcher::CodePatcher(byte* address, int instructions)
1267 : address_(address),
1268 instructions_(instructions),
1269 size_(instructions * Assembler::kInstrSize),
1270 masm_(address, size_ + Assembler::kGap) {
1271 // Create a new macro assembler pointing to the address of the code to patch.
1272 // The size is adjusted with kGap on order for the assembler to generate size
1273 // bytes of instructions without failing with buffer size constraints.
1274 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
1275}
1276
1277
1278CodePatcher::~CodePatcher() {
1279 // Indicate that code has changed.
1280 CPU::FlushICache(address_, size_);
1281
1282 // Check that the code was patched as expected.
1283 ASSERT(masm_.pc_ == address_ + size_);
1284 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
1285}
1286
1287
1288void CodePatcher::Emit(Instr x) {
1289 masm()->emit(x);
1290}
1291
1292
1293void CodePatcher::Emit(Address addr) {
1294 masm()->emit(reinterpret_cast<Instr>(addr));
1295}
1296#endif // ENABLE_DEBUGGER_SUPPORT
1297
1298
1299} } // namespace v8::internal