blob: f5431512feb278fe929a5c511232b0ab7880dfd5 [file] [log] [blame]
Leon Clarked91b9f72010-01-27 17:25:45 +00001// Copyright 2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <stdlib.h>
29#include <cstdarg>
30#include "v8.h"
31
32#include "disasm.h"
33#include "assembler.h"
34#include "arm/constants-arm.h"
35#include "arm/simulator-arm.h"
36
37#if !defined(__arm__)
38
39// Only build the simulator if not compiling for real ARM hardware.
40namespace assembler {
41namespace arm {
42
43using ::v8::internal::Object;
44using ::v8::internal::PrintF;
45using ::v8::internal::OS;
46using ::v8::internal::ReadLine;
47using ::v8::internal::DeleteArray;
48
49// This macro provides a platform independent use of sscanf. The reason for
Leon Clarked91b9f72010-01-27 17:25:45 +000050// SScanF not being implemented in a platform independent way through
51// ::v8::internal::OS in the same way as SNPrintF is that the
52// Windows C Run-Time Library does not provide vsscanf.
Steve Blocka7e24c12009-10-30 11:49:00 +000053#define SScanF sscanf // NOLINT
54
55// The Debugger class is used by the simulator while debugging simulated ARM
56// code.
57class Debugger {
58 public:
59 explicit Debugger(Simulator* sim);
60 ~Debugger();
61
62 void Stop(Instr* instr);
63 void Debug();
64
65 private:
66 static const instr_t kBreakpointInstr =
67 ((AL << 28) | (7 << 25) | (1 << 24) | break_point);
68 static const instr_t kNopInstr =
69 ((AL << 28) | (13 << 21));
70
71 Simulator* sim_;
72
73 int32_t GetRegisterValue(int regnum);
74 bool GetValue(const char* desc, int32_t* value);
75
76 // Set or delete a breakpoint. Returns true if successful.
77 bool SetBreakpoint(Instr* breakpc);
78 bool DeleteBreakpoint(Instr* breakpc);
79
80 // Undo and redo all breakpoints. This is needed to bracket disassembly and
81 // execution to skip past breakpoints when run from the debugger.
82 void UndoBreakpoints();
83 void RedoBreakpoints();
84};
85
86
87Debugger::Debugger(Simulator* sim) {
88 sim_ = sim;
89}
90
91
92Debugger::~Debugger() {
93}
94
95
96
97#ifdef GENERATED_CODE_COVERAGE
98static FILE* coverage_log = NULL;
99
100
101static void InitializeCoverage() {
102 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
103 if (file_name != NULL) {
104 coverage_log = fopen(file_name, "aw+");
105 }
106}
107
108
109void Debugger::Stop(Instr* instr) {
110 char* str = reinterpret_cast<char*>(instr->InstructionBits() & 0x0fffffff);
111 if (strlen(str) > 0) {
112 if (coverage_log != NULL) {
113 fprintf(coverage_log, "%s\n", str);
114 fflush(coverage_log);
115 }
116 instr->SetInstructionBits(0xe1a00000); // Overwrite with nop.
117 }
118 sim_->set_pc(sim_->get_pc() + Instr::kInstrSize);
119}
120
121#else // ndef GENERATED_CODE_COVERAGE
122
123static void InitializeCoverage() {
124}
125
126
127void Debugger::Stop(Instr* instr) {
128 const char* str = (const char*)(instr->InstructionBits() & 0x0fffffff);
129 PrintF("Simulator hit %s\n", str);
130 sim_->set_pc(sim_->get_pc() + Instr::kInstrSize);
131 Debug();
132}
133#endif
134
135
136int32_t Debugger::GetRegisterValue(int regnum) {
137 if (regnum == kPCRegister) {
138 return sim_->get_pc();
139 } else {
140 return sim_->get_register(regnum);
141 }
142}
143
144
145bool Debugger::GetValue(const char* desc, int32_t* value) {
146 int regnum = Registers::Number(desc);
147 if (regnum != kNoRegister) {
148 *value = GetRegisterValue(regnum);
149 return true;
150 } else {
151 return SScanF(desc, "%i", value) == 1;
152 }
153 return false;
154}
155
156
157bool Debugger::SetBreakpoint(Instr* breakpc) {
158 // Check if a breakpoint can be set. If not return without any side-effects.
159 if (sim_->break_pc_ != NULL) {
160 return false;
161 }
162
163 // Set the breakpoint.
164 sim_->break_pc_ = breakpc;
165 sim_->break_instr_ = breakpc->InstructionBits();
166 // Not setting the breakpoint instruction in the code itself. It will be set
167 // when the debugger shell continues.
168 return true;
169}
170
171
172bool Debugger::DeleteBreakpoint(Instr* breakpc) {
173 if (sim_->break_pc_ != NULL) {
174 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
175 }
176
177 sim_->break_pc_ = NULL;
178 sim_->break_instr_ = 0;
179 return true;
180}
181
182
183void Debugger::UndoBreakpoints() {
184 if (sim_->break_pc_ != NULL) {
185 sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
186 }
187}
188
189
190void Debugger::RedoBreakpoints() {
191 if (sim_->break_pc_ != NULL) {
192 sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
193 }
194}
195
196
197void Debugger::Debug() {
198 intptr_t last_pc = -1;
199 bool done = false;
200
201#define COMMAND_SIZE 63
202#define ARG_SIZE 255
203
204#define STR(a) #a
205#define XSTR(a) STR(a)
206
207 char cmd[COMMAND_SIZE + 1];
208 char arg1[ARG_SIZE + 1];
209 char arg2[ARG_SIZE + 1];
210
211 // make sure to have a proper terminating character if reaching the limit
212 cmd[COMMAND_SIZE] = 0;
213 arg1[ARG_SIZE] = 0;
214 arg2[ARG_SIZE] = 0;
215
216 // Undo all set breakpoints while running in the debugger shell. This will
217 // make them invisible to all commands.
218 UndoBreakpoints();
219
220 while (!done) {
221 if (last_pc != sim_->get_pc()) {
222 disasm::NameConverter converter;
223 disasm::Disassembler dasm(converter);
224 // use a reasonably large buffer
225 v8::internal::EmbeddedVector<char, 256> buffer;
226 dasm.InstructionDecode(buffer,
227 reinterpret_cast<byte*>(sim_->get_pc()));
228 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start());
229 last_pc = sim_->get_pc();
230 }
231 char* line = ReadLine("sim> ");
232 if (line == NULL) {
233 break;
234 } else {
235 // Use sscanf to parse the individual parts of the command line. At the
236 // moment no command expects more than two parameters.
237 int args = SScanF(line,
238 "%" XSTR(COMMAND_SIZE) "s "
239 "%" XSTR(ARG_SIZE) "s "
240 "%" XSTR(ARG_SIZE) "s",
241 cmd, arg1, arg2);
242 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
243 sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
244 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
245 // Execute the one instruction we broke at with breakpoints disabled.
246 sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc()));
247 // Leave the debugger shell.
248 done = true;
249 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
250 if (args == 2) {
251 int32_t value;
252 if (strcmp(arg1, "all") == 0) {
253 for (int i = 0; i < kNumRegisters; i++) {
254 value = GetRegisterValue(i);
255 PrintF("%3s: 0x%08x %10d\n", Registers::Name(i), value, value);
256 }
257 } else {
258 if (GetValue(arg1, &value)) {
259 PrintF("%s: 0x%08x %d \n", arg1, value, value);
260 } else {
261 PrintF("%s unrecognized\n", arg1);
262 }
263 }
264 } else {
265 PrintF("print <register>\n");
266 }
267 } else if ((strcmp(cmd, "po") == 0)
268 || (strcmp(cmd, "printobject") == 0)) {
269 if (args == 2) {
270 int32_t value;
271 if (GetValue(arg1, &value)) {
272 Object* obj = reinterpret_cast<Object*>(value);
273 PrintF("%s: \n", arg1);
274#ifdef DEBUG
275 obj->PrintLn();
276#else
277 obj->ShortPrint();
278 PrintF("\n");
279#endif
280 } else {
281 PrintF("%s unrecognized\n", arg1);
282 }
283 } else {
284 PrintF("printobject <value>\n");
285 }
286 } else if (strcmp(cmd, "disasm") == 0) {
287 disasm::NameConverter converter;
288 disasm::Disassembler dasm(converter);
289 // use a reasonably large buffer
290 v8::internal::EmbeddedVector<char, 256> buffer;
291
292 byte* cur = NULL;
293 byte* end = NULL;
294
295 if (args == 1) {
296 cur = reinterpret_cast<byte*>(sim_->get_pc());
297 end = cur + (10 * Instr::kInstrSize);
298 } else if (args == 2) {
299 int32_t value;
300 if (GetValue(arg1, &value)) {
301 cur = reinterpret_cast<byte*>(value);
302 // no length parameter passed, assume 10 instructions
303 end = cur + (10 * Instr::kInstrSize);
304 }
305 } else {
306 int32_t value1;
307 int32_t value2;
308 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
309 cur = reinterpret_cast<byte*>(value1);
310 end = cur + (value2 * Instr::kInstrSize);
311 }
312 }
313
314 while (cur < end) {
315 dasm.InstructionDecode(buffer, cur);
316 PrintF(" 0x%08x %s\n", cur, buffer.start());
317 cur += Instr::kInstrSize;
318 }
319 } else if (strcmp(cmd, "gdb") == 0) {
320 PrintF("relinquishing control to gdb\n");
321 v8::internal::OS::DebugBreak();
322 PrintF("regaining control from gdb\n");
323 } else if (strcmp(cmd, "break") == 0) {
324 if (args == 2) {
325 int32_t value;
326 if (GetValue(arg1, &value)) {
327 if (!SetBreakpoint(reinterpret_cast<Instr*>(value))) {
328 PrintF("setting breakpoint failed\n");
329 }
330 } else {
331 PrintF("%s unrecognized\n", arg1);
332 }
333 } else {
334 PrintF("break <address>\n");
335 }
336 } else if (strcmp(cmd, "del") == 0) {
337 if (!DeleteBreakpoint(NULL)) {
338 PrintF("deleting breakpoint failed\n");
339 }
340 } else if (strcmp(cmd, "flags") == 0) {
341 PrintF("N flag: %d; ", sim_->n_flag_);
342 PrintF("Z flag: %d; ", sim_->z_flag_);
343 PrintF("C flag: %d; ", sim_->c_flag_);
344 PrintF("V flag: %d\n", sim_->v_flag_);
Steve Blockd0582a62009-12-15 09:54:21 +0000345 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
346 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
347 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
348 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
349 PrintF("INEXACT flag: %d; ", sim_->inexact_vfp_flag_);
Steve Blocka7e24c12009-10-30 11:49:00 +0000350 } else if (strcmp(cmd, "unstop") == 0) {
351 intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize;
352 Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc);
353 if (stop_instr->ConditionField() == special_condition) {
354 stop_instr->SetInstructionBits(kNopInstr);
355 } else {
356 PrintF("Not at debugger stop.");
357 }
Leon Clarkee46be812010-01-19 14:06:41 +0000358 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
359 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
360 PrintF("Trace of executed instructions is %s\n",
361 ::v8::internal::FLAG_trace_sim ? "on" : "off");
Steve Blocka7e24c12009-10-30 11:49:00 +0000362 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
363 PrintF("cont\n");
364 PrintF(" continue execution (alias 'c')\n");
365 PrintF("stepi\n");
366 PrintF(" step one instruction (alias 'si')\n");
367 PrintF("print <register>\n");
368 PrintF(" print register content (alias 'p')\n");
369 PrintF(" use register name 'all' to print all registers\n");
370 PrintF("printobject <register>\n");
371 PrintF(" print an object from a register (alias 'po')\n");
372 PrintF("flags\n");
373 PrintF(" print flags\n");
374 PrintF("disasm [<instructions>]\n");
375 PrintF("disasm [[<address>] <instructions>]\n");
376 PrintF(" disassemble code, default is 10 instructions from pc\n");
377 PrintF("gdb\n");
378 PrintF(" enter gdb\n");
379 PrintF("break <address>\n");
380 PrintF(" set a break point on the address\n");
381 PrintF("del\n");
382 PrintF(" delete the breakpoint\n");
383 PrintF("unstop\n");
384 PrintF(" ignore the stop instruction at the current location");
Leon Clarkee46be812010-01-19 14:06:41 +0000385 PrintF(" from now on\n");
386 PrintF("trace (alias 't')\n");
387 PrintF(" toogle the tracing of all executed statements");
Steve Blocka7e24c12009-10-30 11:49:00 +0000388 } else {
389 PrintF("Unknown command: %s\n", cmd);
390 }
391 }
392 DeleteArray(line);
393 }
394
395 // Add all the breakpoints back to stop execution and enter the debugger
396 // shell when hit.
397 RedoBreakpoints();
398
399#undef COMMAND_SIZE
400#undef ARG_SIZE
401
402#undef STR
403#undef XSTR
404}
405
406
407// Create one simulator per thread and keep it in thread local storage.
408static v8::internal::Thread::LocalStorageKey simulator_key;
409
410
411bool Simulator::initialized_ = false;
412
413
414void Simulator::Initialize() {
415 if (initialized_) return;
416 simulator_key = v8::internal::Thread::CreateThreadLocalKey();
417 initialized_ = true;
418 ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference);
419}
420
421
422Simulator::Simulator() {
423 Initialize();
424 // Setup simulator support first. Some of this information is needed to
425 // setup the architecture state.
426 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack
427 stack_ = reinterpret_cast<char*>(malloc(stack_size));
428 pc_modified_ = false;
429 icount_ = 0;
430 break_pc_ = NULL;
431 break_instr_ = 0;
432
433 // Setup architecture state.
434 // All registers are initialized to zero to start with.
435 for (int i = 0; i < num_registers; i++) {
436 registers_[i] = 0;
437 }
438 n_flag_ = false;
439 z_flag_ = false;
440 c_flag_ = false;
441 v_flag_ = false;
442
Steve Blockd0582a62009-12-15 09:54:21 +0000443 // Initializing VFP registers.
444 // All registers are initialized to zero to start with
445 // even though s_registers_ & d_registers_ share the same
446 // physical registers in the target.
447 for (int i = 0; i < num_s_registers; i++) {
448 vfp_register[i] = 0;
449 }
450 n_flag_FPSCR_ = false;
451 z_flag_FPSCR_ = false;
452 c_flag_FPSCR_ = false;
453 v_flag_FPSCR_ = false;
454
455 inv_op_vfp_flag_ = false;
456 div_zero_vfp_flag_ = false;
457 overflow_vfp_flag_ = false;
458 underflow_vfp_flag_ = false;
459 inexact_vfp_flag_ = false;
460
Steve Blocka7e24c12009-10-30 11:49:00 +0000461 // The sp is initialized to point to the bottom (high address) of the
462 // allocated stack area. To be safe in potential stack underflows we leave
463 // some buffer below.
464 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
465 // The lr and pc are initialized to a known bad value that will cause an
466 // access violation if the simulator ever tries to execute it.
467 registers_[pc] = bad_lr;
468 registers_[lr] = bad_lr;
469 InitializeCoverage();
470}
471
472
473// When the generated code calls an external reference we need to catch that in
474// the simulator. The external reference will be a function compiled for the
475// host architecture. We need to call that function instead of trying to
476// execute it with the simulator. We do that by redirecting the external
477// reference to a swi (software-interrupt) instruction that is handled by
478// the simulator. We write the original destination of the jump just at a known
479// offset from the swi instruction so the simulator knows what to call.
480class Redirection {
481 public:
482 Redirection(void* external_function, bool fp_return)
483 : external_function_(external_function),
484 swi_instruction_((AL << 28) | (0xf << 24) | call_rt_redirected),
485 fp_return_(fp_return),
486 next_(list_) {
487 list_ = this;
488 }
489
490 void* address_of_swi_instruction() {
491 return reinterpret_cast<void*>(&swi_instruction_);
492 }
493
494 void* external_function() { return external_function_; }
495 bool fp_return() { return fp_return_; }
496
497 static Redirection* Get(void* external_function, bool fp_return) {
498 Redirection* current;
499 for (current = list_; current != NULL; current = current->next_) {
500 if (current->external_function_ == external_function) return current;
501 }
502 return new Redirection(external_function, fp_return);
503 }
504
505 static Redirection* FromSwiInstruction(Instr* swi_instruction) {
506 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
507 char* addr_of_redirection =
508 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
509 return reinterpret_cast<Redirection*>(addr_of_redirection);
510 }
511
512 private:
513 void* external_function_;
514 uint32_t swi_instruction_;
515 bool fp_return_;
516 Redirection* next_;
517 static Redirection* list_;
518};
519
520
521Redirection* Redirection::list_ = NULL;
522
523
524void* Simulator::RedirectExternalReference(void* external_function,
525 bool fp_return) {
526 Redirection* redirection = Redirection::Get(external_function, fp_return);
527 return redirection->address_of_swi_instruction();
528}
529
530
531// Get the active Simulator for the current thread.
532Simulator* Simulator::current() {
533 Initialize();
534 Simulator* sim = reinterpret_cast<Simulator*>(
535 v8::internal::Thread::GetThreadLocal(simulator_key));
536 if (sim == NULL) {
537 // TODO(146): delete the simulator object when a thread goes away.
538 sim = new Simulator();
539 v8::internal::Thread::SetThreadLocal(simulator_key, sim);
540 }
541 return sim;
542}
543
544
545// Sets the register in the architecture state. It will also deal with updating
546// Simulator internal state for special registers such as PC.
547void Simulator::set_register(int reg, int32_t value) {
548 ASSERT((reg >= 0) && (reg < num_registers));
549 if (reg == pc) {
550 pc_modified_ = true;
551 }
552 registers_[reg] = value;
553}
554
555
556// Get the register from the architecture state. This function does handle
557// the special case of accessing the PC register.
558int32_t Simulator::get_register(int reg) const {
559 ASSERT((reg >= 0) && (reg < num_registers));
560 return registers_[reg] + ((reg == pc) ? Instr::kPCReadOffset : 0);
561}
562
563
564// Raw access to the PC register.
565void Simulator::set_pc(int32_t value) {
566 pc_modified_ = true;
567 registers_[pc] = value;
568}
569
570
571// Raw access to the PC register without the special adjustment when reading.
572int32_t Simulator::get_pc() const {
573 return registers_[pc];
574}
575
576
Steve Blockd0582a62009-12-15 09:54:21 +0000577// Getting from and setting into VFP registers.
578void Simulator::set_s_register(int sreg, unsigned int value) {
579 ASSERT((sreg >= 0) && (sreg < num_s_registers));
580 vfp_register[sreg] = value;
581}
582
583
584unsigned int Simulator::get_s_register(int sreg) const {
585 ASSERT((sreg >= 0) && (sreg < num_s_registers));
586 return vfp_register[sreg];
587}
588
589
590void Simulator::set_s_register_from_float(int sreg, const float flt) {
591 ASSERT((sreg >= 0) && (sreg < num_s_registers));
592 // Read the bits from the single precision floating point value
593 // into the unsigned integer element of vfp_register[] given by index=sreg.
594 char buffer[sizeof(vfp_register[0])];
595 memcpy(buffer, &flt, sizeof(vfp_register[0]));
596 memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
597}
598
599
600void Simulator::set_s_register_from_sinteger(int sreg, const int sint) {
601 ASSERT((sreg >= 0) && (sreg < num_s_registers));
602 // Read the bits from the integer value into the unsigned integer element of
603 // vfp_register[] given by index=sreg.
604 char buffer[sizeof(vfp_register[0])];
605 memcpy(buffer, &sint, sizeof(vfp_register[0]));
606 memcpy(&vfp_register[sreg], buffer, sizeof(vfp_register[0]));
607}
608
609
610void Simulator::set_d_register_from_double(int dreg, const double& dbl) {
611 ASSERT((dreg >= 0) && (dreg < num_d_registers));
612 // Read the bits from the double precision floating point value into the two
613 // consecutive unsigned integer elements of vfp_register[] given by index
614 // 2*sreg and 2*sreg+1.
615 char buffer[2 * sizeof(vfp_register[0])];
616 memcpy(buffer, &dbl, 2 * sizeof(vfp_register[0]));
617#ifndef BIG_ENDIAN_FLOATING_POINT
618 memcpy(&vfp_register[dreg * 2], buffer, 2 * sizeof(vfp_register[0]));
619#else
620 memcpy(&vfp_register[dreg * 2], &buffer[4], sizeof(vfp_register[0]));
621 memcpy(&vfp_register[dreg * 2 + 1], &buffer[0], sizeof(vfp_register[0]));
622#endif
623}
624
625
626float Simulator::get_float_from_s_register(int sreg) {
627 ASSERT((sreg >= 0) && (sreg < num_s_registers));
628
629 float sm_val = 0.0;
630 // Read the bits from the unsigned integer vfp_register[] array
631 // into the single precision floating point value and return it.
632 char buffer[sizeof(vfp_register[0])];
633 memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
634 memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
635 return(sm_val);
636}
637
638
639int Simulator::get_sinteger_from_s_register(int sreg) {
640 ASSERT((sreg >= 0) && (sreg < num_s_registers));
641
642 int sm_val = 0;
643 // Read the bits from the unsigned integer vfp_register[] array
644 // into the single precision floating point value and return it.
645 char buffer[sizeof(vfp_register[0])];
646 memcpy(buffer, &vfp_register[sreg], sizeof(vfp_register[0]));
647 memcpy(&sm_val, buffer, sizeof(vfp_register[0]));
648 return(sm_val);
649}
650
651
652double Simulator::get_double_from_d_register(int dreg) {
653 ASSERT((dreg >= 0) && (dreg < num_d_registers));
654
655 double dm_val = 0.0;
656 // Read the bits from the unsigned integer vfp_register[] array
657 // into the double precision floating point value and return it.
658 char buffer[2 * sizeof(vfp_register[0])];
659#ifdef BIG_ENDIAN_FLOATING_POINT
660 memcpy(&buffer[0], &vfp_register[2 * dreg + 1], sizeof(vfp_register[0]));
661 memcpy(&buffer[4], &vfp_register[2 * dreg], sizeof(vfp_register[0]));
662#else
663 memcpy(buffer, &vfp_register[2 * dreg], 2 * sizeof(vfp_register[0]));
664#endif
665 memcpy(&dm_val, buffer, 2 * sizeof(vfp_register[0]));
666 return(dm_val);
667}
668
669
Steve Blocka7e24c12009-10-30 11:49:00 +0000670// For use in calls that take two double values, constructed from r0, r1, r2
671// and r3.
672void Simulator::GetFpArgs(double* x, double* y) {
673 // We use a char buffer to get around the strict-aliasing rules which
674 // otherwise allow the compiler to optimize away the copy.
675 char buffer[2 * sizeof(registers_[0])];
676 // Registers 0 and 1 -> x.
677 memcpy(buffer, registers_, sizeof(buffer));
678 memcpy(x, buffer, sizeof(buffer));
679 // Registers 2 and 3 -> y.
680 memcpy(buffer, registers_ + 2, sizeof(buffer));
681 memcpy(y, buffer, sizeof(buffer));
682}
683
684
685void Simulator::SetFpResult(const double& result) {
686 char buffer[2 * sizeof(registers_[0])];
687 memcpy(buffer, &result, sizeof(buffer));
688 // result -> registers 0 and 1.
689 memcpy(registers_, buffer, sizeof(buffer));
690}
691
692
693void Simulator::TrashCallerSaveRegisters() {
694 // We don't trash the registers with the return value.
695 registers_[2] = 0x50Bad4U;
696 registers_[3] = 0x50Bad4U;
697 registers_[12] = 0x50Bad4U;
698}
699
700
701// The ARM cannot do unaligned reads and writes. On some ARM platforms an
702// interrupt is caused. On others it does a funky rotation thing. For now we
703// simply disallow unaligned reads, but at some point we may want to move to
704// emulating the rotate behaviour. Note that simulator runs have the runtime
705// system running directly on the host system and only generated code is
706// executed in the simulator. Since the host is typically IA32 we will not
707// get the correct ARM-like behaviour on unaligned accesses.
708
709int Simulator::ReadW(int32_t addr, Instr* instr) {
710 if ((addr & 3) == 0) {
711 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
712 return *ptr;
713 }
714 PrintF("Unaligned read at 0x%08x\n", addr);
715 UNIMPLEMENTED();
716 return 0;
717}
718
719
720void Simulator::WriteW(int32_t addr, int value, Instr* instr) {
721 if ((addr & 3) == 0) {
722 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
723 *ptr = value;
724 return;
725 }
726 PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr);
727 UNIMPLEMENTED();
728}
729
730
731uint16_t Simulator::ReadHU(int32_t addr, Instr* instr) {
732 if ((addr & 1) == 0) {
733 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
734 return *ptr;
735 }
736 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr);
737 UNIMPLEMENTED();
738 return 0;
739}
740
741
742int16_t Simulator::ReadH(int32_t addr, Instr* instr) {
743 if ((addr & 1) == 0) {
744 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
745 return *ptr;
746 }
747 PrintF("Unaligned signed halfword read at 0x%08x\n", addr);
748 UNIMPLEMENTED();
749 return 0;
750}
751
752
753void Simulator::WriteH(int32_t addr, uint16_t value, Instr* instr) {
754 if ((addr & 1) == 0) {
755 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
756 *ptr = value;
757 return;
758 }
759 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr);
760 UNIMPLEMENTED();
761}
762
763
764void Simulator::WriteH(int32_t addr, int16_t value, Instr* instr) {
765 if ((addr & 1) == 0) {
766 int16_t* ptr = reinterpret_cast<int16_t*>(addr);
767 *ptr = value;
768 return;
769 }
770 PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr);
771 UNIMPLEMENTED();
772}
773
774
775uint8_t Simulator::ReadBU(int32_t addr) {
776 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
777 return *ptr;
778}
779
780
781int8_t Simulator::ReadB(int32_t addr) {
782 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
783 return *ptr;
784}
785
786
787void Simulator::WriteB(int32_t addr, uint8_t value) {
788 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
789 *ptr = value;
790}
791
792
793void Simulator::WriteB(int32_t addr, int8_t value) {
794 int8_t* ptr = reinterpret_cast<int8_t*>(addr);
795 *ptr = value;
796}
797
798
799// Returns the limit of the stack area to enable checking for stack overflows.
800uintptr_t Simulator::StackLimit() const {
801 // Leave a safety margin of 256 bytes to prevent overrunning the stack when
802 // pushing values.
803 return reinterpret_cast<uintptr_t>(stack_) + 256;
804}
805
806
807// Unsupported instructions use Format to print an error and stop execution.
808void Simulator::Format(Instr* instr, const char* format) {
809 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
810 instr, format);
811 UNIMPLEMENTED();
812}
813
814
815// Checks if the current instruction should be executed based on its
816// condition bits.
817bool Simulator::ConditionallyExecute(Instr* instr) {
818 switch (instr->ConditionField()) {
819 case EQ: return z_flag_;
820 case NE: return !z_flag_;
821 case CS: return c_flag_;
822 case CC: return !c_flag_;
823 case MI: return n_flag_;
824 case PL: return !n_flag_;
825 case VS: return v_flag_;
826 case VC: return !v_flag_;
827 case HI: return c_flag_ && !z_flag_;
828 case LS: return !c_flag_ || z_flag_;
829 case GE: return n_flag_ == v_flag_;
830 case LT: return n_flag_ != v_flag_;
831 case GT: return !z_flag_ && (n_flag_ == v_flag_);
832 case LE: return z_flag_ || (n_flag_ != v_flag_);
833 case AL: return true;
834 default: UNREACHABLE();
835 }
836 return false;
837}
838
839
840// Calculate and set the Negative and Zero flags.
841void Simulator::SetNZFlags(int32_t val) {
842 n_flag_ = (val < 0);
843 z_flag_ = (val == 0);
844}
845
846
847// Set the Carry flag.
848void Simulator::SetCFlag(bool val) {
849 c_flag_ = val;
850}
851
852
853// Set the oVerflow flag.
854void Simulator::SetVFlag(bool val) {
855 v_flag_ = val;
856}
857
858
859// Calculate C flag value for additions.
860bool Simulator::CarryFrom(int32_t left, int32_t right) {
861 uint32_t uleft = static_cast<uint32_t>(left);
862 uint32_t uright = static_cast<uint32_t>(right);
863 uint32_t urest = 0xffffffffU - uleft;
864
865 return (uright > urest);
866}
867
868
869// Calculate C flag value for subtractions.
870bool Simulator::BorrowFrom(int32_t left, int32_t right) {
871 uint32_t uleft = static_cast<uint32_t>(left);
872 uint32_t uright = static_cast<uint32_t>(right);
873
874 return (uright > uleft);
875}
876
877
878// Calculate V flag value for additions and subtractions.
879bool Simulator::OverflowFrom(int32_t alu_out,
880 int32_t left, int32_t right, bool addition) {
881 bool overflow;
882 if (addition) {
883 // operands have the same sign
884 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
885 // and operands and result have different sign
886 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
887 } else {
888 // operands have different signs
889 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
890 // and first operand and result have different signs
891 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
892 }
893 return overflow;
894}
895
896
Steve Blockd0582a62009-12-15 09:54:21 +0000897// Support for VFP comparisons.
898void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
Leon Clarkee46be812010-01-19 14:06:41 +0000899 if (isnan(val1) || isnan(val2)) {
900 n_flag_FPSCR_ = false;
901 z_flag_FPSCR_ = false;
902 c_flag_FPSCR_ = true;
903 v_flag_FPSCR_ = true;
Steve Blockd0582a62009-12-15 09:54:21 +0000904 // All non-NaN cases.
Leon Clarkee46be812010-01-19 14:06:41 +0000905 } else if (val1 == val2) {
Steve Blockd0582a62009-12-15 09:54:21 +0000906 n_flag_FPSCR_ = false;
907 z_flag_FPSCR_ = true;
908 c_flag_FPSCR_ = true;
909 v_flag_FPSCR_ = false;
910 } else if (val1 < val2) {
911 n_flag_FPSCR_ = true;
912 z_flag_FPSCR_ = false;
913 c_flag_FPSCR_ = false;
914 v_flag_FPSCR_ = false;
915 } else {
916 // Case when (val1 > val2).
917 n_flag_FPSCR_ = false;
918 z_flag_FPSCR_ = false;
919 c_flag_FPSCR_ = true;
920 v_flag_FPSCR_ = false;
921 }
922}
923
924
925void Simulator::Copy_FPSCR_to_APSR() {
926 n_flag_ = n_flag_FPSCR_;
927 z_flag_ = z_flag_FPSCR_;
928 c_flag_ = c_flag_FPSCR_;
929 v_flag_ = v_flag_FPSCR_;
930}
931
932
Steve Blocka7e24c12009-10-30 11:49:00 +0000933// Addressing Mode 1 - Data-processing operands:
934// Get the value based on the shifter_operand with register.
935int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) {
936 Shift shift = instr->ShiftField();
937 int shift_amount = instr->ShiftAmountField();
938 int32_t result = get_register(instr->RmField());
939 if (instr->Bit(4) == 0) {
940 // by immediate
941 if ((shift == ROR) && (shift_amount == 0)) {
942 UNIMPLEMENTED();
943 return result;
944 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
945 shift_amount = 32;
946 }
947 switch (shift) {
948 case ASR: {
949 if (shift_amount == 0) {
950 if (result < 0) {
951 result = 0xffffffff;
952 *carry_out = true;
953 } else {
954 result = 0;
955 *carry_out = false;
956 }
957 } else {
958 result >>= (shift_amount - 1);
959 *carry_out = (result & 1) == 1;
960 result >>= 1;
961 }
962 break;
963 }
964
965 case LSL: {
966 if (shift_amount == 0) {
967 *carry_out = c_flag_;
968 } else {
969 result <<= (shift_amount - 1);
970 *carry_out = (result < 0);
971 result <<= 1;
972 }
973 break;
974 }
975
976 case LSR: {
977 if (shift_amount == 0) {
978 result = 0;
979 *carry_out = c_flag_;
980 } else {
981 uint32_t uresult = static_cast<uint32_t>(result);
982 uresult >>= (shift_amount - 1);
983 *carry_out = (uresult & 1) == 1;
984 uresult >>= 1;
985 result = static_cast<int32_t>(uresult);
986 }
987 break;
988 }
989
990 case ROR: {
991 UNIMPLEMENTED();
992 break;
993 }
994
995 default: {
996 UNREACHABLE();
997 break;
998 }
999 }
1000 } else {
1001 // by register
1002 int rs = instr->RsField();
1003 shift_amount = get_register(rs) &0xff;
1004 switch (shift) {
1005 case ASR: {
1006 if (shift_amount == 0) {
1007 *carry_out = c_flag_;
1008 } else if (shift_amount < 32) {
1009 result >>= (shift_amount - 1);
1010 *carry_out = (result & 1) == 1;
1011 result >>= 1;
1012 } else {
1013 ASSERT(shift_amount >= 32);
1014 if (result < 0) {
1015 *carry_out = true;
1016 result = 0xffffffff;
1017 } else {
1018 *carry_out = false;
1019 result = 0;
1020 }
1021 }
1022 break;
1023 }
1024
1025 case LSL: {
1026 if (shift_amount == 0) {
1027 *carry_out = c_flag_;
1028 } else if (shift_amount < 32) {
1029 result <<= (shift_amount - 1);
1030 *carry_out = (result < 0);
1031 result <<= 1;
1032 } else if (shift_amount == 32) {
1033 *carry_out = (result & 1) == 1;
1034 result = 0;
1035 } else {
1036 ASSERT(shift_amount > 32);
1037 *carry_out = false;
1038 result = 0;
1039 }
1040 break;
1041 }
1042
1043 case LSR: {
1044 if (shift_amount == 0) {
1045 *carry_out = c_flag_;
1046 } else if (shift_amount < 32) {
1047 uint32_t uresult = static_cast<uint32_t>(result);
1048 uresult >>= (shift_amount - 1);
1049 *carry_out = (uresult & 1) == 1;
1050 uresult >>= 1;
1051 result = static_cast<int32_t>(uresult);
1052 } else if (shift_amount == 32) {
1053 *carry_out = (result < 0);
1054 result = 0;
1055 } else {
1056 *carry_out = false;
1057 result = 0;
1058 }
1059 break;
1060 }
1061
1062 case ROR: {
1063 UNIMPLEMENTED();
1064 break;
1065 }
1066
1067 default: {
1068 UNREACHABLE();
1069 break;
1070 }
1071 }
1072 }
1073 return result;
1074}
1075
1076
1077// Addressing Mode 1 - Data-processing operands:
1078// Get the value based on the shifter_operand with immediate.
1079int32_t Simulator::GetImm(Instr* instr, bool* carry_out) {
1080 int rotate = instr->RotateField() * 2;
1081 int immed8 = instr->Immed8Field();
1082 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
1083 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
1084 return imm;
1085}
1086
1087
1088static int count_bits(int bit_vector) {
1089 int count = 0;
1090 while (bit_vector != 0) {
1091 if ((bit_vector & 1) != 0) {
1092 count++;
1093 }
1094 bit_vector >>= 1;
1095 }
1096 return count;
1097}
1098
1099
1100// Addressing Mode 4 - Load and Store Multiple
1101void Simulator::HandleRList(Instr* instr, bool load) {
1102 int rn = instr->RnField();
1103 int32_t rn_val = get_register(rn);
1104 int rlist = instr->RlistField();
1105 int num_regs = count_bits(rlist);
1106
1107 intptr_t start_address = 0;
1108 intptr_t end_address = 0;
1109 switch (instr->PUField()) {
1110 case 0: {
1111 // Print("da");
1112 UNIMPLEMENTED();
1113 break;
1114 }
1115 case 1: {
1116 // Print("ia");
1117 start_address = rn_val;
1118 end_address = rn_val + (num_regs * 4) - 4;
1119 rn_val = rn_val + (num_regs * 4);
1120 break;
1121 }
1122 case 2: {
1123 // Print("db");
1124 start_address = rn_val - (num_regs * 4);
1125 end_address = rn_val - 4;
1126 rn_val = start_address;
1127 break;
1128 }
1129 case 3: {
1130 // Print("ib");
1131 UNIMPLEMENTED();
1132 break;
1133 }
1134 default: {
1135 UNREACHABLE();
1136 break;
1137 }
1138 }
1139 if (instr->HasW()) {
1140 set_register(rn, rn_val);
1141 }
1142 intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1143 int reg = 0;
1144 while (rlist != 0) {
1145 if ((rlist & 1) != 0) {
1146 if (load) {
1147 set_register(reg, *address);
1148 } else {
1149 *address = get_register(reg);
1150 }
1151 address += 1;
1152 }
1153 reg++;
1154 rlist >>= 1;
1155 }
1156 ASSERT(end_address == ((intptr_t)address) - 4);
1157}
1158
1159
1160// Calls into the V8 runtime are based on this very simple interface.
1161// Note: To be able to return two values from some calls the code in runtime.cc
1162// uses the ObjectPair which is essentially two 32-bit values stuffed into a
1163// 64-bit value. With the code below we assume that all runtime calls return
1164// 64 bits of result. If they don't, the r1 result register contains a bogus
1165// value, which is fine because it is caller-saved.
1166typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
1167 int32_t arg1,
1168 int32_t arg2,
1169 int32_t arg3);
1170typedef double (*SimulatorRuntimeFPCall)(int32_t arg0,
1171 int32_t arg1,
1172 int32_t arg2,
1173 int32_t arg3);
1174
1175
1176// Software interrupt instructions are used by the simulator to call into the
1177// C-based V8 runtime.
1178void Simulator::SoftwareInterrupt(Instr* instr) {
1179 int swi = instr->SwiField();
1180 switch (swi) {
1181 case call_rt_redirected: {
1182 Redirection* redirection = Redirection::FromSwiInstruction(instr);
1183 int32_t arg0 = get_register(r0);
1184 int32_t arg1 = get_register(r1);
1185 int32_t arg2 = get_register(r2);
1186 int32_t arg3 = get_register(r3);
1187 // This is dodgy but it works because the C entry stubs are never moved.
1188 // See comment in codegen-arm.cc and bug 1242173.
1189 int32_t saved_lr = get_register(lr);
1190 if (redirection->fp_return()) {
1191 intptr_t external =
1192 reinterpret_cast<intptr_t>(redirection->external_function());
1193 SimulatorRuntimeFPCall target =
1194 reinterpret_cast<SimulatorRuntimeFPCall>(external);
1195 if (::v8::internal::FLAG_trace_sim) {
1196 double x, y;
1197 GetFpArgs(&x, &y);
1198 PrintF("Call to host function at %p with args %f, %f\n",
1199 FUNCTION_ADDR(target), x, y);
1200 }
1201 double result = target(arg0, arg1, arg2, arg3);
1202 SetFpResult(result);
1203 } else {
1204 intptr_t external =
1205 reinterpret_cast<int32_t>(redirection->external_function());
1206 SimulatorRuntimeCall target =
1207 reinterpret_cast<SimulatorRuntimeCall>(external);
1208 if (::v8::internal::FLAG_trace_sim) {
1209 PrintF(
1210 "Call to host function at %p with args %08x, %08x, %08x, %08x\n",
1211 FUNCTION_ADDR(target),
1212 arg0,
1213 arg1,
1214 arg2,
1215 arg3);
1216 }
1217 int64_t result = target(arg0, arg1, arg2, arg3);
1218 int32_t lo_res = static_cast<int32_t>(result);
1219 int32_t hi_res = static_cast<int32_t>(result >> 32);
1220 if (::v8::internal::FLAG_trace_sim) {
1221 PrintF("Returned %08x\n", lo_res);
1222 }
1223 set_register(r0, lo_res);
1224 set_register(r1, hi_res);
1225 }
1226 set_register(lr, saved_lr);
1227 set_pc(get_register(lr));
1228 break;
1229 }
1230 case break_point: {
1231 Debugger dbg(this);
1232 dbg.Debug();
1233 break;
1234 }
1235 default: {
1236 UNREACHABLE();
1237 break;
1238 }
1239 }
1240}
1241
1242
1243// Handle execution based on instruction types.
1244
1245// Instruction types 0 and 1 are both rolled into one function because they
1246// only differ in the handling of the shifter_operand.
1247void Simulator::DecodeType01(Instr* instr) {
1248 int type = instr->TypeField();
1249 if ((type == 0) && instr->IsSpecialType0()) {
1250 // multiply instruction or extra loads and stores
1251 if (instr->Bits(7, 4) == 9) {
1252 if (instr->Bit(24) == 0) {
1253 // Raw field decoding here. Multiply instructions have their Rd in
1254 // funny places.
1255 int rn = instr->RnField();
1256 int rm = instr->RmField();
1257 int rs = instr->RsField();
1258 int32_t rs_val = get_register(rs);
1259 int32_t rm_val = get_register(rm);
1260 if (instr->Bit(23) == 0) {
1261 if (instr->Bit(21) == 0) {
1262 // The MUL instruction description (A 4.1.33) refers to Rd as being
1263 // the destination for the operation, but it confusingly uses the
1264 // Rn field to encode it.
1265 // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
1266 int rd = rn; // Remap the rn field to the Rd register.
1267 int32_t alu_out = rm_val * rs_val;
1268 set_register(rd, alu_out);
1269 if (instr->HasS()) {
1270 SetNZFlags(alu_out);
1271 }
1272 } else {
1273 // The MLA instruction description (A 4.1.28) refers to the order
1274 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
1275 // Rn field to encode the Rd register and the Rd field to encode
1276 // the Rn register.
1277 Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
1278 }
1279 } else {
1280 // The signed/long multiply instructions use the terms RdHi and RdLo
1281 // when referring to the target registers. They are mapped to the Rn
1282 // and Rd fields as follows:
1283 // RdLo == Rd
1284 // RdHi == Rn (This is confusingly stored in variable rd here
1285 // because the mul instruction from above uses the
1286 // Rn field to encode the Rd register. Good luck figuring
1287 // this out without reading the ARM instruction manual
1288 // at a very detailed level.)
1289 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
1290 int rd_hi = rn; // Remap the rn field to the RdHi register.
1291 int rd_lo = instr->RdField();
1292 int32_t hi_res = 0;
1293 int32_t lo_res = 0;
1294 if (instr->Bit(22) == 1) {
1295 int64_t left_op = static_cast<int32_t>(rm_val);
1296 int64_t right_op = static_cast<int32_t>(rs_val);
1297 uint64_t result = left_op * right_op;
1298 hi_res = static_cast<int32_t>(result >> 32);
1299 lo_res = static_cast<int32_t>(result & 0xffffffff);
1300 } else {
1301 // unsigned multiply
1302 uint64_t left_op = static_cast<uint32_t>(rm_val);
1303 uint64_t right_op = static_cast<uint32_t>(rs_val);
1304 uint64_t result = left_op * right_op;
1305 hi_res = static_cast<int32_t>(result >> 32);
1306 lo_res = static_cast<int32_t>(result & 0xffffffff);
1307 }
1308 set_register(rd_lo, lo_res);
1309 set_register(rd_hi, hi_res);
1310 if (instr->HasS()) {
1311 UNIMPLEMENTED();
1312 }
1313 }
1314 } else {
Steve Blockd0582a62009-12-15 09:54:21 +00001315 UNIMPLEMENTED(); // Not used by V8.
Steve Blocka7e24c12009-10-30 11:49:00 +00001316 }
1317 } else {
1318 // extra load/store instructions
1319 int rd = instr->RdField();
1320 int rn = instr->RnField();
1321 int32_t rn_val = get_register(rn);
1322 int32_t addr = 0;
1323 if (instr->Bit(22) == 0) {
1324 int rm = instr->RmField();
1325 int32_t rm_val = get_register(rm);
1326 switch (instr->PUField()) {
1327 case 0: {
1328 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
1329 ASSERT(!instr->HasW());
1330 addr = rn_val;
1331 rn_val -= rm_val;
1332 set_register(rn, rn_val);
1333 break;
1334 }
1335 case 1: {
1336 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
1337 ASSERT(!instr->HasW());
1338 addr = rn_val;
1339 rn_val += rm_val;
1340 set_register(rn, rn_val);
1341 break;
1342 }
1343 case 2: {
1344 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
1345 rn_val -= rm_val;
1346 addr = rn_val;
1347 if (instr->HasW()) {
1348 set_register(rn, rn_val);
1349 }
1350 break;
1351 }
1352 case 3: {
1353 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
1354 rn_val += rm_val;
1355 addr = rn_val;
1356 if (instr->HasW()) {
1357 set_register(rn, rn_val);
1358 }
1359 break;
1360 }
1361 default: {
1362 // The PU field is a 2-bit field.
1363 UNREACHABLE();
1364 break;
1365 }
1366 }
1367 } else {
1368 int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField();
1369 switch (instr->PUField()) {
1370 case 0: {
1371 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
1372 ASSERT(!instr->HasW());
1373 addr = rn_val;
1374 rn_val -= imm_val;
1375 set_register(rn, rn_val);
1376 break;
1377 }
1378 case 1: {
1379 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
1380 ASSERT(!instr->HasW());
1381 addr = rn_val;
1382 rn_val += imm_val;
1383 set_register(rn, rn_val);
1384 break;
1385 }
1386 case 2: {
1387 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
1388 rn_val -= imm_val;
1389 addr = rn_val;
1390 if (instr->HasW()) {
1391 set_register(rn, rn_val);
1392 }
1393 break;
1394 }
1395 case 3: {
1396 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
1397 rn_val += imm_val;
1398 addr = rn_val;
1399 if (instr->HasW()) {
1400 set_register(rn, rn_val);
1401 }
1402 break;
1403 }
1404 default: {
1405 // The PU field is a 2-bit field.
1406 UNREACHABLE();
1407 break;
1408 }
1409 }
1410 }
1411 if (instr->HasH()) {
1412 if (instr->HasSign()) {
1413 if (instr->HasL()) {
1414 int16_t val = ReadH(addr, instr);
1415 set_register(rd, val);
1416 } else {
1417 int16_t val = get_register(rd);
1418 WriteH(addr, val, instr);
1419 }
1420 } else {
1421 if (instr->HasL()) {
1422 uint16_t val = ReadHU(addr, instr);
1423 set_register(rd, val);
1424 } else {
1425 uint16_t val = get_register(rd);
1426 WriteH(addr, val, instr);
1427 }
1428 }
1429 } else {
1430 // signed byte loads
1431 ASSERT(instr->HasSign());
1432 ASSERT(instr->HasL());
1433 int8_t val = ReadB(addr);
1434 set_register(rd, val);
1435 }
1436 return;
1437 }
1438 } else {
1439 int rd = instr->RdField();
1440 int rn = instr->RnField();
1441 int32_t rn_val = get_register(rn);
1442 int32_t shifter_operand = 0;
1443 bool shifter_carry_out = 0;
1444 if (type == 0) {
1445 shifter_operand = GetShiftRm(instr, &shifter_carry_out);
1446 } else {
1447 ASSERT(instr->TypeField() == 1);
1448 shifter_operand = GetImm(instr, &shifter_carry_out);
1449 }
1450 int32_t alu_out;
1451
1452 switch (instr->OpcodeField()) {
1453 case AND: {
1454 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
1455 // Format(instr, "and'cond's 'rd, 'rn, 'imm");
1456 alu_out = rn_val & shifter_operand;
1457 set_register(rd, alu_out);
1458 if (instr->HasS()) {
1459 SetNZFlags(alu_out);
1460 SetCFlag(shifter_carry_out);
1461 }
1462 break;
1463 }
1464
1465 case EOR: {
1466 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
1467 // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
1468 alu_out = rn_val ^ shifter_operand;
1469 set_register(rd, alu_out);
1470 if (instr->HasS()) {
1471 SetNZFlags(alu_out);
1472 SetCFlag(shifter_carry_out);
1473 }
1474 break;
1475 }
1476
1477 case SUB: {
1478 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
1479 // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
1480 alu_out = rn_val - shifter_operand;
1481 set_register(rd, alu_out);
1482 if (instr->HasS()) {
1483 SetNZFlags(alu_out);
1484 SetCFlag(!BorrowFrom(rn_val, shifter_operand));
1485 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
1486 }
1487 break;
1488 }
1489
1490 case RSB: {
1491 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
1492 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
1493 alu_out = shifter_operand - rn_val;
1494 set_register(rd, alu_out);
1495 if (instr->HasS()) {
1496 SetNZFlags(alu_out);
1497 SetCFlag(!BorrowFrom(shifter_operand, rn_val));
1498 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
1499 }
1500 break;
1501 }
1502
1503 case ADD: {
1504 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
1505 // Format(instr, "add'cond's 'rd, 'rn, 'imm");
1506 alu_out = rn_val + shifter_operand;
1507 set_register(rd, alu_out);
1508 if (instr->HasS()) {
1509 SetNZFlags(alu_out);
1510 SetCFlag(CarryFrom(rn_val, shifter_operand));
1511 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
1512 }
1513 break;
1514 }
1515
1516 case ADC: {
1517 Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
1518 Format(instr, "adc'cond's 'rd, 'rn, 'imm");
1519 break;
1520 }
1521
1522 case SBC: {
1523 Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
1524 Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
1525 break;
1526 }
1527
1528 case RSC: {
1529 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
1530 Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
1531 break;
1532 }
1533
1534 case TST: {
1535 if (instr->HasS()) {
1536 // Format(instr, "tst'cond 'rn, 'shift_rm");
1537 // Format(instr, "tst'cond 'rn, 'imm");
1538 alu_out = rn_val & shifter_operand;
1539 SetNZFlags(alu_out);
1540 SetCFlag(shifter_carry_out);
1541 } else {
1542 UNIMPLEMENTED();
1543 }
1544 break;
1545 }
1546
1547 case TEQ: {
1548 if (instr->HasS()) {
1549 // Format(instr, "teq'cond 'rn, 'shift_rm");
1550 // Format(instr, "teq'cond 'rn, 'imm");
1551 alu_out = rn_val ^ shifter_operand;
1552 SetNZFlags(alu_out);
1553 SetCFlag(shifter_carry_out);
1554 } else {
1555 ASSERT(type == 0);
1556 int rm = instr->RmField();
1557 switch (instr->Bits(7, 4)) {
1558 case BX:
1559 set_pc(get_register(rm));
1560 break;
1561 case BLX: {
1562 uint32_t old_pc = get_pc();
1563 set_pc(get_register(rm));
1564 set_register(lr, old_pc + Instr::kInstrSize);
1565 break;
1566 }
1567 default:
1568 UNIMPLEMENTED();
1569 }
1570 }
1571 break;
1572 }
1573
1574 case CMP: {
1575 if (instr->HasS()) {
1576 // Format(instr, "cmp'cond 'rn, 'shift_rm");
1577 // Format(instr, "cmp'cond 'rn, 'imm");
1578 alu_out = rn_val - shifter_operand;
1579 SetNZFlags(alu_out);
1580 SetCFlag(!BorrowFrom(rn_val, shifter_operand));
1581 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
1582 } else {
1583 UNIMPLEMENTED();
1584 }
1585 break;
1586 }
1587
1588 case CMN: {
1589 if (instr->HasS()) {
1590 // Format(instr, "cmn'cond 'rn, 'shift_rm");
1591 // Format(instr, "cmn'cond 'rn, 'imm");
1592 alu_out = rn_val + shifter_operand;
1593 SetNZFlags(alu_out);
1594 SetCFlag(!CarryFrom(rn_val, shifter_operand));
1595 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
1596 } else {
1597 ASSERT(type == 0);
1598 int rm = instr->RmField();
1599 int rd = instr->RdField();
1600 switch (instr->Bits(7, 4)) {
1601 case CLZ: {
1602 uint32_t bits = get_register(rm);
1603 int leading_zeros = 0;
1604 if (bits == 0) {
1605 leading_zeros = 32;
1606 } else {
1607 while ((bits & 0x80000000u) == 0) {
1608 bits <<= 1;
1609 leading_zeros++;
1610 }
1611 }
1612 set_register(rd, leading_zeros);
1613 break;
1614 }
1615 default:
1616 UNIMPLEMENTED();
1617 }
1618 }
1619 break;
1620 }
1621
1622 case ORR: {
1623 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
1624 // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
1625 alu_out = rn_val | shifter_operand;
1626 set_register(rd, alu_out);
1627 if (instr->HasS()) {
1628 SetNZFlags(alu_out);
1629 SetCFlag(shifter_carry_out);
1630 }
1631 break;
1632 }
1633
1634 case MOV: {
1635 // Format(instr, "mov'cond's 'rd, 'shift_rm");
1636 // Format(instr, "mov'cond's 'rd, 'imm");
1637 alu_out = shifter_operand;
1638 set_register(rd, alu_out);
1639 if (instr->HasS()) {
1640 SetNZFlags(alu_out);
1641 SetCFlag(shifter_carry_out);
1642 }
1643 break;
1644 }
1645
1646 case BIC: {
1647 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
1648 // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
1649 alu_out = rn_val & ~shifter_operand;
1650 set_register(rd, alu_out);
1651 if (instr->HasS()) {
1652 SetNZFlags(alu_out);
1653 SetCFlag(shifter_carry_out);
1654 }
1655 break;
1656 }
1657
1658 case MVN: {
1659 // Format(instr, "mvn'cond's 'rd, 'shift_rm");
1660 // Format(instr, "mvn'cond's 'rd, 'imm");
1661 alu_out = ~shifter_operand;
1662 set_register(rd, alu_out);
1663 if (instr->HasS()) {
1664 SetNZFlags(alu_out);
1665 SetCFlag(shifter_carry_out);
1666 }
1667 break;
1668 }
1669
1670 default: {
1671 UNREACHABLE();
1672 break;
1673 }
1674 }
1675 }
1676}
1677
1678
1679void Simulator::DecodeType2(Instr* instr) {
1680 int rd = instr->RdField();
1681 int rn = instr->RnField();
1682 int32_t rn_val = get_register(rn);
1683 int32_t im_val = instr->Offset12Field();
1684 int32_t addr = 0;
1685 switch (instr->PUField()) {
1686 case 0: {
1687 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
1688 ASSERT(!instr->HasW());
1689 addr = rn_val;
1690 rn_val -= im_val;
1691 set_register(rn, rn_val);
1692 break;
1693 }
1694 case 1: {
1695 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
1696 ASSERT(!instr->HasW());
1697 addr = rn_val;
1698 rn_val += im_val;
1699 set_register(rn, rn_val);
1700 break;
1701 }
1702 case 2: {
1703 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
1704 rn_val -= im_val;
1705 addr = rn_val;
1706 if (instr->HasW()) {
1707 set_register(rn, rn_val);
1708 }
1709 break;
1710 }
1711 case 3: {
1712 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
1713 rn_val += im_val;
1714 addr = rn_val;
1715 if (instr->HasW()) {
1716 set_register(rn, rn_val);
1717 }
1718 break;
1719 }
1720 default: {
1721 UNREACHABLE();
1722 break;
1723 }
1724 }
1725 if (instr->HasB()) {
1726 if (instr->HasL()) {
1727 byte val = ReadBU(addr);
1728 set_register(rd, val);
1729 } else {
1730 byte val = get_register(rd);
1731 WriteB(addr, val);
1732 }
1733 } else {
1734 if (instr->HasL()) {
1735 set_register(rd, ReadW(addr, instr));
1736 } else {
1737 WriteW(addr, get_register(rd), instr);
1738 }
1739 }
1740}
1741
1742
1743void Simulator::DecodeType3(Instr* instr) {
1744 ASSERT(instr->Bit(4) == 0);
1745 int rd = instr->RdField();
1746 int rn = instr->RnField();
1747 int32_t rn_val = get_register(rn);
1748 bool shifter_carry_out = 0;
1749 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
1750 int32_t addr = 0;
1751 switch (instr->PUField()) {
1752 case 0: {
1753 ASSERT(!instr->HasW());
1754 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
1755 break;
1756 }
1757 case 1: {
1758 ASSERT(!instr->HasW());
1759 Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
1760 break;
1761 }
1762 case 2: {
1763 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
1764 addr = rn_val - shifter_operand;
1765 if (instr->HasW()) {
1766 set_register(rn, addr);
1767 }
1768 break;
1769 }
1770 case 3: {
1771 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
1772 addr = rn_val + shifter_operand;
1773 if (instr->HasW()) {
1774 set_register(rn, addr);
1775 }
1776 break;
1777 }
1778 default: {
1779 UNREACHABLE();
1780 break;
1781 }
1782 }
1783 if (instr->HasB()) {
1784 if (instr->HasL()) {
1785 uint8_t byte = ReadB(addr);
1786 set_register(rd, byte);
1787 } else {
1788 UNIMPLEMENTED();
1789 }
1790 } else {
1791 if (instr->HasL()) {
1792 set_register(rd, ReadW(addr, instr));
1793 } else {
1794 WriteW(addr, get_register(rd), instr);
1795 }
1796 }
1797}
1798
1799
1800void Simulator::DecodeType4(Instr* instr) {
1801 ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode
1802 if (instr->HasL()) {
1803 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
1804 HandleRList(instr, true);
1805 } else {
1806 // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
1807 HandleRList(instr, false);
1808 }
1809}
1810
1811
1812void Simulator::DecodeType5(Instr* instr) {
1813 // Format(instr, "b'l'cond 'target");
1814 int off = (instr->SImmed24Field() << 2);
1815 intptr_t pc_address = get_pc();
1816 if (instr->HasLink()) {
1817 set_register(lr, pc_address + Instr::kInstrSize);
1818 }
1819 int pc_reg = get_register(pc);
1820 set_pc(pc_reg + off);
1821}
1822
1823
1824void Simulator::DecodeType6(Instr* instr) {
Steve Blockd0582a62009-12-15 09:54:21 +00001825 DecodeType6CoprocessorIns(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001826}
1827
1828
1829void Simulator::DecodeType7(Instr* instr) {
1830 if (instr->Bit(24) == 1) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001831 SoftwareInterrupt(instr);
1832 } else {
Steve Blockd0582a62009-12-15 09:54:21 +00001833 DecodeTypeVFP(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001834 }
1835}
1836
1837
1838void Simulator::DecodeUnconditional(Instr* instr) {
1839 if (instr->Bits(7, 4) == 0x0B && instr->Bits(27, 25) == 0 && instr->HasL()) {
1840 // Load halfword instruction, either register or immediate offset.
1841 int rd = instr->RdField();
1842 int rn = instr->RnField();
1843 int32_t rn_val = get_register(rn);
1844 int32_t addr = 0;
1845 int32_t offset;
1846 if (instr->Bit(22) == 0) {
1847 // Register offset.
1848 int rm = instr->RmField();
1849 offset = get_register(rm);
1850 } else {
1851 // Immediate offset
1852 offset = instr->Bits(3, 0) + (instr->Bits(11, 8) << 4);
1853 }
1854 switch (instr->PUField()) {
1855 case 0: {
1856 // Post index, negative.
1857 ASSERT(!instr->HasW());
1858 addr = rn_val;
1859 rn_val -= offset;
1860 set_register(rn, rn_val);
1861 break;
1862 }
1863 case 1: {
1864 // Post index, positive.
1865 ASSERT(!instr->HasW());
1866 addr = rn_val;
1867 rn_val += offset;
1868 set_register(rn, rn_val);
1869 break;
1870 }
1871 case 2: {
1872 // Pre index or offset, negative.
1873 rn_val -= offset;
1874 addr = rn_val;
1875 if (instr->HasW()) {
1876 set_register(rn, rn_val);
1877 }
1878 break;
1879 }
1880 case 3: {
1881 // Pre index or offset, positive.
1882 rn_val += offset;
1883 addr = rn_val;
1884 if (instr->HasW()) {
1885 set_register(rn, rn_val);
1886 }
1887 break;
1888 }
1889 default: {
1890 // The PU field is a 2-bit field.
1891 UNREACHABLE();
1892 break;
1893 }
1894 }
1895 // Not sign extending, so load as unsigned.
1896 uint16_t halfword = ReadH(addr, instr);
1897 set_register(rd, halfword);
1898 } else {
1899 Debugger dbg(this);
1900 dbg.Stop(instr);
1901 }
1902}
1903
1904
Steve Blockd0582a62009-12-15 09:54:21 +00001905// void Simulator::DecodeTypeVFP(Instr* instr)
1906// The Following ARMv7 VFPv instructions are currently supported.
Leon Clarkee46be812010-01-19 14:06:41 +00001907// vmov :Sn = Rt
1908// vmov :Rt = Sn
1909// vcvt: Dd = Sm
1910// vcvt: Sd = Dm
1911// Dd = vadd(Dn, Dm)
1912// Dd = vsub(Dn, Dm)
1913// Dd = vmul(Dn, Dm)
1914// Dd = vdiv(Dn, Dm)
Steve Blockd0582a62009-12-15 09:54:21 +00001915// vcmp(Dd, Dm)
1916// VMRS
1917void Simulator::DecodeTypeVFP(Instr* instr) {
1918 ASSERT((instr->TypeField() == 7) && (instr->Bit(24) == 0x0) );
1919
1920 int rt = instr->RtField();
1921 int vm = instr->VmField();
1922 int vn = instr->VnField();
1923 int vd = instr->VdField();
1924
1925 if (instr->Bit(23) == 1) {
1926 if ((instr->Bits(21, 19) == 0x7) &&
1927 (instr->Bits(18, 16) == 0x5) &&
1928 (instr->Bits(11, 9) == 0x5) &&
1929 (instr->Bit(8) == 1) &&
1930 (instr->Bit(6) == 1) &&
1931 (instr->Bit(4) == 0)) {
1932 double dm_val = get_double_from_d_register(vm);
1933 int32_t int_value = static_cast<int32_t>(dm_val);
1934 set_s_register_from_sinteger(((vd<<1) | instr->DField()), int_value);
1935 } else if ((instr->Bits(21, 19) == 0x7) &&
1936 (instr->Bits(18, 16) == 0x0) &&
1937 (instr->Bits(11, 9) == 0x5) &&
1938 (instr->Bit(8) == 1) &&
1939 (instr->Bit(7) == 1) &&
1940 (instr->Bit(6) == 1) &&
1941 (instr->Bit(4) == 0)) {
1942 int32_t int_value = get_sinteger_from_s_register(((vm<<1) |
1943 instr->MField()));
1944 double dbl_value = static_cast<double>(int_value);
1945 set_d_register_from_double(vd, dbl_value);
1946 } else if ((instr->Bit(21) == 0x0) &&
1947 (instr->Bit(20) == 0x0) &&
1948 (instr->Bits(11, 9) == 0x5) &&
1949 (instr->Bit(8) == 1) &&
1950 (instr->Bit(6) == 0) &&
1951 (instr->Bit(4) == 0)) {
1952 double dn_value = get_double_from_d_register(vn);
1953 double dm_value = get_double_from_d_register(vm);
1954 double dd_value = dn_value / dm_value;
1955 set_d_register_from_double(vd, dd_value);
1956 } else if ((instr->Bits(21, 20) == 0x3) &&
1957 (instr->Bits(19, 16) == 0x4) &&
1958 (instr->Bits(11, 9) == 0x5) &&
1959 (instr->Bit(8) == 0x1) &&
1960 (instr->Bit(6) == 0x1) &&
1961 (instr->Bit(4) == 0x0)) {
1962 double dd_value = get_double_from_d_register(vd);
1963 double dm_value = get_double_from_d_register(vm);
1964 Compute_FPSCR_Flags(dd_value, dm_value);
1965 } else if ((instr->Bits(23, 20) == 0xF) &&
1966 (instr->Bits(19, 16) == 0x1) &&
1967 (instr->Bits(11, 8) == 0xA) &&
1968 (instr->Bits(7, 5) == 0x0) &&
1969 (instr->Bit(4) == 0x1) &&
1970 (instr->Bits(3, 0) == 0x0)) {
1971 if (instr->Bits(15, 12) == 0xF)
1972 Copy_FPSCR_to_APSR();
1973 else
1974 UNIMPLEMENTED(); // Not used by V8.
1975 } else {
1976 UNIMPLEMENTED(); // Not used by V8.
1977 }
1978 } else if (instr->Bit(21) == 1) {
1979 if ((instr->Bit(20) == 0x1) &&
1980 (instr->Bits(11, 9) == 0x5) &&
1981 (instr->Bit(8) == 0x1) &&
1982 (instr->Bit(6) == 0) &&
1983 (instr->Bit(4) == 0)) {
1984 double dn_value = get_double_from_d_register(vn);
1985 double dm_value = get_double_from_d_register(vm);
1986 double dd_value = dn_value + dm_value;
1987 set_d_register_from_double(vd, dd_value);
1988 } else if ((instr->Bit(20) == 0x1) &&
1989 (instr->Bits(11, 9) == 0x5) &&
1990 (instr->Bit(8) == 0x1) &&
1991 (instr->Bit(6) == 1) &&
1992 (instr->Bit(4) == 0)) {
1993 double dn_value = get_double_from_d_register(vn);
1994 double dm_value = get_double_from_d_register(vm);
1995 double dd_value = dn_value - dm_value;
1996 set_d_register_from_double(vd, dd_value);
1997 } else if ((instr->Bit(20) == 0x0) &&
1998 (instr->Bits(11, 9) == 0x5) &&
1999 (instr->Bit(8) == 0x1) &&
2000 (instr->Bit(6) == 0) &&
2001 (instr->Bit(4) == 0)) {
2002 double dn_value = get_double_from_d_register(vn);
2003 double dm_value = get_double_from_d_register(vm);
2004 double dd_value = dn_value * dm_value;
2005 set_d_register_from_double(vd, dd_value);
2006 } else {
2007 UNIMPLEMENTED(); // Not used by V8.
2008 }
2009 } else {
2010 if ((instr->Bit(20) == 0x0) &&
2011 (instr->Bits(11, 8) == 0xA) &&
2012 (instr->Bits(6, 5) == 0x0) &&
2013 (instr->Bit(4) == 1) &&
2014 (instr->Bits(3, 0) == 0x0)) {
2015 int32_t rs_val = get_register(rt);
2016 set_s_register_from_sinteger(((vn<<1) | instr->NField()), rs_val);
2017 } else if ((instr->Bit(20) == 0x1) &&
2018 (instr->Bits(11, 8) == 0xA) &&
2019 (instr->Bits(6, 5) == 0x0) &&
2020 (instr->Bit(4) == 1) &&
2021 (instr->Bits(3, 0) == 0x0)) {
2022 int32_t int_value = get_sinteger_from_s_register(((vn<<1) |
2023 instr->NField()));
2024 set_register(rt, int_value);
2025 } else {
2026 UNIMPLEMENTED(); // Not used by V8.
2027 }
2028 }
2029}
2030
2031
2032// void Simulator::DecodeType6CoprocessorIns(Instr* instr)
2033// Decode Type 6 coprocessor instructions.
Leon Clarkee46be812010-01-19 14:06:41 +00002034// Dm = vmov(Rt, Rt2)
2035// <Rt, Rt2> = vmov(Dm)
Leon Clarked91b9f72010-01-27 17:25:45 +00002036// Ddst = MEM(Rbase + 4*offset).
2037// MEM(Rbase + 4*offset) = Dsrc.
Steve Blockd0582a62009-12-15 09:54:21 +00002038void Simulator::DecodeType6CoprocessorIns(Instr* instr) {
2039 ASSERT((instr->TypeField() == 6));
2040
Leon Clarked91b9f72010-01-27 17:25:45 +00002041 if (instr->CoprocessorField() != 0xB) {
2042 UNIMPLEMENTED(); // Not used by V8.
Leon Clarkeeab96aa2010-01-27 16:31:12 +00002043 } else {
Leon Clarked91b9f72010-01-27 17:25:45 +00002044 switch (instr->OpcodeField()) {
2045 case 0x2:
2046 // Load and store double to two GP registers
2047 if (instr->Bits(7, 4) != 0x1) {
2048 UNIMPLEMENTED(); // Not used by V8.
2049 } else {
2050 int rt = instr->RtField();
2051 int rn = instr->RnField();
2052 int vm = instr->VmField();
2053 if (instr->HasL()) {
2054 int32_t rt_int_value = get_sinteger_from_s_register(2*vm);
2055 int32_t rn_int_value = get_sinteger_from_s_register(2*vm+1);
2056
2057 set_register(rt, rt_int_value);
2058 set_register(rn, rn_int_value);
2059 } else {
2060 int32_t rs_val = get_register(rt);
2061 int32_t rn_val = get_register(rn);
2062
2063 set_s_register_from_sinteger(2*vm, rs_val);
2064 set_s_register_from_sinteger((2*vm+1), rn_val);
2065 }
2066 }
2067 break;
2068 case 0x8:
2069 case 0xC: { // Load and store double to memory.
2070 int rn = instr->RnField();
2071 int vd = instr->VdField();
2072 int offset = instr->Immed8Field();
2073 if (!instr->HasU()) {
2074 offset = -offset;
2075 }
2076 int32_t address = get_register(rn) + 4 * offset;
2077 if (instr->HasL()) {
2078 // Load double from memory: vldr.
2079 set_s_register_from_sinteger(2*vd, ReadW(address, instr));
2080 set_s_register_from_sinteger(2*vd + 1, ReadW(address + 4, instr));
2081 } else {
2082 // Store double to memory: vstr.
2083 WriteW(address, get_sinteger_from_s_register(2*vd), instr);
2084 WriteW(address + 4, get_sinteger_from_s_register(2*vd + 1), instr);
2085 }
2086 break;
2087 }
2088 default:
2089 UNIMPLEMENTED(); // Not used by V8.
2090 break;
2091 }
Steve Blockd0582a62009-12-15 09:54:21 +00002092 }
2093}
2094
2095
Steve Blocka7e24c12009-10-30 11:49:00 +00002096// Executes the current instruction.
2097void Simulator::InstructionDecode(Instr* instr) {
2098 pc_modified_ = false;
2099 if (::v8::internal::FLAG_trace_sim) {
2100 disasm::NameConverter converter;
2101 disasm::Disassembler dasm(converter);
2102 // use a reasonably large buffer
2103 v8::internal::EmbeddedVector<char, 256> buffer;
2104 dasm.InstructionDecode(buffer,
2105 reinterpret_cast<byte*>(instr));
2106 PrintF(" 0x%08x %s\n", instr, buffer.start());
2107 }
2108 if (instr->ConditionField() == special_condition) {
2109 DecodeUnconditional(instr);
2110 } else if (ConditionallyExecute(instr)) {
2111 switch (instr->TypeField()) {
2112 case 0:
2113 case 1: {
2114 DecodeType01(instr);
2115 break;
2116 }
2117 case 2: {
2118 DecodeType2(instr);
2119 break;
2120 }
2121 case 3: {
2122 DecodeType3(instr);
2123 break;
2124 }
2125 case 4: {
2126 DecodeType4(instr);
2127 break;
2128 }
2129 case 5: {
2130 DecodeType5(instr);
2131 break;
2132 }
2133 case 6: {
2134 DecodeType6(instr);
2135 break;
2136 }
2137 case 7: {
2138 DecodeType7(instr);
2139 break;
2140 }
2141 default: {
2142 UNIMPLEMENTED();
2143 break;
2144 }
2145 }
2146 }
2147 if (!pc_modified_) {
2148 set_register(pc, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize);
2149 }
2150}
2151
2152
Steve Blocka7e24c12009-10-30 11:49:00 +00002153void Simulator::Execute() {
2154 // Get the PC to simulate. Cannot use the accessor here as we need the
2155 // raw PC value and not the one used as input to arithmetic instructions.
2156 int program_counter = get_pc();
2157
2158 if (::v8::internal::FLAG_stop_sim_at == 0) {
2159 // Fast version of the dispatch loop without checking whether the simulator
2160 // should be stopping at a particular executed instruction.
2161 while (program_counter != end_sim_pc) {
2162 Instr* instr = reinterpret_cast<Instr*>(program_counter);
2163 icount_++;
2164 InstructionDecode(instr);
2165 program_counter = get_pc();
2166 }
2167 } else {
2168 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
2169 // we reach the particular instuction count.
2170 while (program_counter != end_sim_pc) {
2171 Instr* instr = reinterpret_cast<Instr*>(program_counter);
2172 icount_++;
2173 if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
2174 Debugger dbg(this);
2175 dbg.Debug();
2176 } else {
2177 InstructionDecode(instr);
2178 }
2179 program_counter = get_pc();
2180 }
2181 }
2182}
2183
2184
2185int32_t Simulator::Call(byte* entry, int argument_count, ...) {
2186 va_list parameters;
2187 va_start(parameters, argument_count);
2188 // Setup arguments
2189
2190 // First four arguments passed in registers.
2191 ASSERT(argument_count >= 4);
2192 set_register(r0, va_arg(parameters, int32_t));
2193 set_register(r1, va_arg(parameters, int32_t));
2194 set_register(r2, va_arg(parameters, int32_t));
2195 set_register(r3, va_arg(parameters, int32_t));
2196
2197 // Remaining arguments passed on stack.
2198 int original_stack = get_register(sp);
2199 // Compute position of stack on entry to generated code.
2200 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
2201 if (OS::ActivationFrameAlignment() != 0) {
2202 entry_stack &= -OS::ActivationFrameAlignment();
2203 }
2204 // Store remaining arguments on stack, from low to high memory.
2205 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
2206 for (int i = 4; i < argument_count; i++) {
2207 stack_argument[i - 4] = va_arg(parameters, int32_t);
2208 }
2209 va_end(parameters);
2210 set_register(sp, entry_stack);
2211
2212 // Prepare to execute the code at entry
2213 set_register(pc, reinterpret_cast<int32_t>(entry));
2214 // Put down marker for end of simulation. The simulator will stop simulation
2215 // when the PC reaches this value. By saving the "end simulation" value into
2216 // the LR the simulation stops when returning to this call point.
2217 set_register(lr, end_sim_pc);
2218
2219 // Remember the values of callee-saved registers.
2220 // The code below assumes that r9 is not used as sb (static base) in
2221 // simulator code and therefore is regarded as a callee-saved register.
2222 int32_t r4_val = get_register(r4);
2223 int32_t r5_val = get_register(r5);
2224 int32_t r6_val = get_register(r6);
2225 int32_t r7_val = get_register(r7);
2226 int32_t r8_val = get_register(r8);
2227 int32_t r9_val = get_register(r9);
2228 int32_t r10_val = get_register(r10);
2229 int32_t r11_val = get_register(r11);
2230
2231 // Setup the callee-saved registers with a known value. To be able to check
2232 // that they are preserved properly across JS execution.
2233 int32_t callee_saved_value = icount_;
2234 set_register(r4, callee_saved_value);
2235 set_register(r5, callee_saved_value);
2236 set_register(r6, callee_saved_value);
2237 set_register(r7, callee_saved_value);
2238 set_register(r8, callee_saved_value);
2239 set_register(r9, callee_saved_value);
2240 set_register(r10, callee_saved_value);
2241 set_register(r11, callee_saved_value);
2242
2243 // Start the simulation
2244 Execute();
2245
2246 // Check that the callee-saved registers have been preserved.
2247 CHECK_EQ(callee_saved_value, get_register(r4));
2248 CHECK_EQ(callee_saved_value, get_register(r5));
2249 CHECK_EQ(callee_saved_value, get_register(r6));
2250 CHECK_EQ(callee_saved_value, get_register(r7));
2251 CHECK_EQ(callee_saved_value, get_register(r8));
2252 CHECK_EQ(callee_saved_value, get_register(r9));
2253 CHECK_EQ(callee_saved_value, get_register(r10));
2254 CHECK_EQ(callee_saved_value, get_register(r11));
2255
2256 // Restore callee-saved registers with the original value.
2257 set_register(r4, r4_val);
2258 set_register(r5, r5_val);
2259 set_register(r6, r6_val);
2260 set_register(r7, r7_val);
2261 set_register(r8, r8_val);
2262 set_register(r9, r9_val);
2263 set_register(r10, r10_val);
2264 set_register(r11, r11_val);
2265
2266 // Pop stack passed arguments.
2267 CHECK_EQ(entry_stack, get_register(sp));
2268 set_register(sp, original_stack);
2269
2270 int32_t result = get_register(r0);
2271 return result;
2272}
2273
Steve Blockd0582a62009-12-15 09:54:21 +00002274
2275uintptr_t Simulator::PushAddress(uintptr_t address) {
2276 int new_sp = get_register(sp) - sizeof(uintptr_t);
2277 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
2278 *stack_slot = address;
2279 set_register(sp, new_sp);
2280 return new_sp;
2281}
2282
2283
2284uintptr_t Simulator::PopAddress() {
2285 int current_sp = get_register(sp);
2286 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
2287 uintptr_t address = *stack_slot;
2288 set_register(sp, current_sp + sizeof(uintptr_t));
2289 return address;
2290}
2291
2292
Steve Blocka7e24c12009-10-30 11:49:00 +00002293} } // namespace assembler::arm
2294
2295#endif // !defined(__arm__)