blob: 4fd8a6c8dc570c57f3208e74b292fe7631efdf1a [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_SPACES_INL_H_
29#define V8_SPACES_INL_H_
30
31#include "memory.h"
32#include "spaces.h"
33
34namespace v8 {
35namespace internal {
36
37
38// -----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +000039// PageIterator
40
41bool PageIterator::has_next() {
42 return prev_page_ != stop_page_;
43}
44
45
46Page* PageIterator::next() {
47 ASSERT(has_next());
48 prev_page_ = (prev_page_ == NULL)
49 ? space_->first_page_
50 : prev_page_->next_page();
51 return prev_page_;
52}
53
54
55// -----------------------------------------------------------------------------
56// Page
57
58Page* Page::next_page() {
59 return MemoryAllocator::GetNextPage(this);
60}
61
62
63Address Page::AllocationTop() {
64 PagedSpace* owner = MemoryAllocator::PageOwner(this);
65 return owner->PageAllocationTop(this);
66}
67
68
69void Page::ClearRSet() {
70 // This method can be called in all rset states.
71 memset(RSetStart(), 0, kRSetEndOffset - kRSetStartOffset);
72}
73
74
75// Given a 32-bit address, separate its bits into:
76// | page address | words (6) | bit offset (5) | pointer alignment (2) |
77// The address of the rset word containing the bit for this word is computed as:
78// page_address + words * 4
79// For a 64-bit address, if it is:
80// | page address | words(5) | bit offset(5) | pointer alignment (3) |
81// The address of the rset word containing the bit for this word is computed as:
82// page_address + words * 4 + kRSetOffset.
83// The rset is accessed as 32-bit words, and bit offsets in a 32-bit word,
84// even on the X64 architecture.
85
86Address Page::ComputeRSetBitPosition(Address address, int offset,
87 uint32_t* bitmask) {
88 ASSERT(Page::is_rset_in_use());
89
90 Page* page = Page::FromAddress(address);
91 uint32_t bit_offset = ArithmeticShiftRight(page->Offset(address) + offset,
92 kPointerSizeLog2);
93 *bitmask = 1 << (bit_offset % kBitsPerInt);
94
95 Address rset_address =
96 page->address() + kRSetOffset + (bit_offset / kBitsPerInt) * kIntSize;
97 // The remembered set address is either in the normal remembered set range
98 // of a page or else we have a large object page.
99 ASSERT((page->RSetStart() <= rset_address && rset_address < page->RSetEnd())
100 || page->IsLargeObjectPage());
101
102 if (rset_address >= page->RSetEnd()) {
103 // We have a large object page, and the remembered set address is actually
104 // past the end of the object.
105
106 // The first part of the remembered set is still located at the start of
107 // the page, but anything after kRSetEndOffset must be relocated to after
108 // the large object, i.e. after
109 // (page->ObjectAreaStart() + object size)
110 // We do that by adding the difference between the normal RSet's end and
111 // the object's end.
112 ASSERT(HeapObject::FromAddress(address)->IsFixedArray());
113 int fixedarray_length =
114 FixedArray::SizeFor(Memory::int_at(page->ObjectAreaStart()
115 + Array::kLengthOffset));
116 rset_address += kObjectStartOffset - kRSetEndOffset + fixedarray_length;
117 }
118 return rset_address;
119}
120
121
122void Page::SetRSet(Address address, int offset) {
123 uint32_t bitmask = 0;
124 Address rset_address = ComputeRSetBitPosition(address, offset, &bitmask);
125 Memory::uint32_at(rset_address) |= bitmask;
126
127 ASSERT(IsRSetSet(address, offset));
128}
129
130
131// Clears the corresponding remembered set bit for a given address.
132void Page::UnsetRSet(Address address, int offset) {
133 uint32_t bitmask = 0;
134 Address rset_address = ComputeRSetBitPosition(address, offset, &bitmask);
135 Memory::uint32_at(rset_address) &= ~bitmask;
136
137 ASSERT(!IsRSetSet(address, offset));
138}
139
140
141bool Page::IsRSetSet(Address address, int offset) {
142 uint32_t bitmask = 0;
143 Address rset_address = ComputeRSetBitPosition(address, offset, &bitmask);
144 return (Memory::uint32_at(rset_address) & bitmask) != 0;
145}
146
147
148// -----------------------------------------------------------------------------
149// MemoryAllocator
150
151bool MemoryAllocator::IsValidChunk(int chunk_id) {
152 if (!IsValidChunkId(chunk_id)) return false;
153
154 ChunkInfo& c = chunks_[chunk_id];
155 return (c.address() != NULL) && (c.size() != 0) && (c.owner() != NULL);
156}
157
158
159bool MemoryAllocator::IsValidChunkId(int chunk_id) {
160 return (0 <= chunk_id) && (chunk_id < max_nof_chunks_);
161}
162
163
164bool MemoryAllocator::IsPageInSpace(Page* p, PagedSpace* space) {
165 ASSERT(p->is_valid());
166
167 int chunk_id = GetChunkId(p);
168 if (!IsValidChunkId(chunk_id)) return false;
169
170 ChunkInfo& c = chunks_[chunk_id];
171 return (c.address() <= p->address()) &&
172 (p->address() < c.address() + c.size()) &&
173 (space == c.owner());
174}
175
176
177Page* MemoryAllocator::GetNextPage(Page* p) {
178 ASSERT(p->is_valid());
179 intptr_t raw_addr = p->opaque_header & ~Page::kPageAlignmentMask;
180 return Page::FromAddress(AddressFrom<Address>(raw_addr));
181}
182
183
184int MemoryAllocator::GetChunkId(Page* p) {
185 ASSERT(p->is_valid());
186 return p->opaque_header & Page::kPageAlignmentMask;
187}
188
189
190void MemoryAllocator::SetNextPage(Page* prev, Page* next) {
191 ASSERT(prev->is_valid());
192 int chunk_id = GetChunkId(prev);
193 ASSERT_PAGE_ALIGNED(next->address());
194 prev->opaque_header = OffsetFrom(next->address()) | chunk_id;
195}
196
197
198PagedSpace* MemoryAllocator::PageOwner(Page* page) {
199 int chunk_id = GetChunkId(page);
200 ASSERT(IsValidChunk(chunk_id));
201 return chunks_[chunk_id].owner();
202}
203
204
205bool MemoryAllocator::InInitialChunk(Address address) {
206 if (initial_chunk_ == NULL) return false;
207
208 Address start = static_cast<Address>(initial_chunk_->address());
209 return (start <= address) && (address < start + initial_chunk_->size());
210}
211
212
213#ifdef ENABLE_HEAP_PROTECTION
214
215void MemoryAllocator::Protect(Address start, size_t size) {
216 OS::Protect(start, size);
217}
218
219
220void MemoryAllocator::Unprotect(Address start,
221 size_t size,
222 Executability executable) {
223 OS::Unprotect(start, size, executable);
224}
225
226
227void MemoryAllocator::ProtectChunkFromPage(Page* page) {
228 int id = GetChunkId(page);
229 OS::Protect(chunks_[id].address(), chunks_[id].size());
230}
231
232
233void MemoryAllocator::UnprotectChunkFromPage(Page* page) {
234 int id = GetChunkId(page);
235 OS::Unprotect(chunks_[id].address(), chunks_[id].size(),
236 chunks_[id].owner()->executable() == EXECUTABLE);
237}
238
239#endif
240
241
242// --------------------------------------------------------------------------
243// PagedSpace
244
245bool PagedSpace::Contains(Address addr) {
246 Page* p = Page::FromAddress(addr);
247 ASSERT(p->is_valid());
248
249 return MemoryAllocator::IsPageInSpace(p, this);
250}
251
252
253// Try linear allocation in the page of alloc_info's allocation top. Does
254// not contain slow case logic (eg, move to the next page or try free list
255// allocation) so it can be used by all the allocation functions and for all
256// the paged spaces.
257HeapObject* PagedSpace::AllocateLinearly(AllocationInfo* alloc_info,
258 int size_in_bytes) {
259 Address current_top = alloc_info->top;
260 Address new_top = current_top + size_in_bytes;
261 if (new_top > alloc_info->limit) return NULL;
262
263 alloc_info->top = new_top;
264 ASSERT(alloc_info->VerifyPagedAllocation());
265 accounting_stats_.AllocateBytes(size_in_bytes);
266 return HeapObject::FromAddress(current_top);
267}
268
269
270// Raw allocation.
271Object* PagedSpace::AllocateRaw(int size_in_bytes) {
272 ASSERT(HasBeenSetup());
273 ASSERT_OBJECT_SIZE(size_in_bytes);
274 HeapObject* object = AllocateLinearly(&allocation_info_, size_in_bytes);
275 if (object != NULL) return object;
276
277 object = SlowAllocateRaw(size_in_bytes);
278 if (object != NULL) return object;
279
280 return Failure::RetryAfterGC(size_in_bytes, identity());
281}
282
283
284// Reallocating (and promoting) objects during a compacting collection.
285Object* PagedSpace::MCAllocateRaw(int size_in_bytes) {
286 ASSERT(HasBeenSetup());
287 ASSERT_OBJECT_SIZE(size_in_bytes);
288 HeapObject* object = AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
289 if (object != NULL) return object;
290
291 object = SlowMCAllocateRaw(size_in_bytes);
292 if (object != NULL) return object;
293
294 return Failure::RetryAfterGC(size_in_bytes, identity());
295}
296
297
298// -----------------------------------------------------------------------------
299// LargeObjectChunk
300
301HeapObject* LargeObjectChunk::GetObject() {
302 // Round the chunk address up to the nearest page-aligned address
303 // and return the heap object in that page.
304 Page* page = Page::FromAddress(RoundUp(address(), Page::kPageSize));
305 return HeapObject::FromAddress(page->ObjectAreaStart());
306}
307
308
309// -----------------------------------------------------------------------------
310// LargeObjectSpace
311
312int LargeObjectSpace::ExtraRSetBytesFor(int object_size) {
313 int extra_rset_bits =
314 RoundUp((object_size - Page::kObjectAreaSize) / kPointerSize,
315 kBitsPerInt);
316 return extra_rset_bits / kBitsPerByte;
317}
318
319
320Object* NewSpace::AllocateRawInternal(int size_in_bytes,
321 AllocationInfo* alloc_info) {
322 Address new_top = alloc_info->top + size_in_bytes;
323 if (new_top > alloc_info->limit) return Failure::RetryAfterGC(size_in_bytes);
324
325 Object* obj = HeapObject::FromAddress(alloc_info->top);
326 alloc_info->top = new_top;
327#ifdef DEBUG
328 SemiSpace* space =
329 (alloc_info == &allocation_info_) ? &to_space_ : &from_space_;
330 ASSERT(space->low() <= alloc_info->top
331 && alloc_info->top <= space->high()
332 && alloc_info->limit == space->high());
333#endif
334 return obj;
335}
336
Steve Block3ce2e202009-11-05 08:53:23 +0000337
338bool FreeListNode::IsFreeListNode(HeapObject* object) {
339 return object->map() == Heap::raw_unchecked_byte_array_map()
340 || object->map() == Heap::raw_unchecked_one_pointer_filler_map()
341 || object->map() == Heap::raw_unchecked_two_pointer_filler_map();
342}
343
Steve Blocka7e24c12009-10-30 11:49:00 +0000344} } // namespace v8::internal
345
346#endif // V8_SPACES_INL_H_