blob: 1c7d27b5caec915f8ea6730fbfaf119d0be85b74 [file] [log] [blame]
Ben Murdochda12d292016-06-02 14:46:10 +01001// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_S390
6
7#include "src/code-stubs.h"
8#include "src/api-arguments.h"
9#include "src/base/bits.h"
10#include "src/bootstrapper.h"
11#include "src/codegen.h"
12#include "src/ic/handler-compiler.h"
13#include "src/ic/ic.h"
14#include "src/ic/stub-cache.h"
15#include "src/isolate.h"
16#include "src/regexp/jsregexp.h"
17#include "src/regexp/regexp-macro-assembler.h"
18#include "src/runtime/runtime.h"
19#include "src/s390/code-stubs-s390.h"
20
21namespace v8 {
22namespace internal {
23
24static void InitializeArrayConstructorDescriptor(
25 Isolate* isolate, CodeStubDescriptor* descriptor,
26 int constant_stack_parameter_count) {
27 Address deopt_handler =
28 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
29
30 if (constant_stack_parameter_count == 0) {
31 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
32 JS_FUNCTION_STUB_MODE);
33 } else {
34 descriptor->Initialize(r2, deopt_handler, constant_stack_parameter_count,
35 JS_FUNCTION_STUB_MODE);
36 }
37}
38
39static void InitializeInternalArrayConstructorDescriptor(
40 Isolate* isolate, CodeStubDescriptor* descriptor,
41 int constant_stack_parameter_count) {
42 Address deopt_handler =
43 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
44
45 if (constant_stack_parameter_count == 0) {
46 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47 JS_FUNCTION_STUB_MODE);
48 } else {
49 descriptor->Initialize(r2, deopt_handler, constant_stack_parameter_count,
50 JS_FUNCTION_STUB_MODE);
51 }
52}
53
54void ArrayNoArgumentConstructorStub::InitializeDescriptor(
55 CodeStubDescriptor* descriptor) {
56 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
57}
58
59void ArraySingleArgumentConstructorStub::InitializeDescriptor(
60 CodeStubDescriptor* descriptor) {
61 InitializeArrayConstructorDescriptor(isolate(), descriptor, 1);
62}
63
64void ArrayNArgumentsConstructorStub::InitializeDescriptor(
65 CodeStubDescriptor* descriptor) {
66 InitializeArrayConstructorDescriptor(isolate(), descriptor, -1);
67}
68
69void InternalArrayNoArgumentConstructorStub::InitializeDescriptor(
70 CodeStubDescriptor* descriptor) {
71 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0);
72}
73
74void FastArrayPushStub::InitializeDescriptor(CodeStubDescriptor* descriptor) {
75 Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayPush)->entry;
76 descriptor->Initialize(r2, deopt_handler, -1, JS_FUNCTION_STUB_MODE);
77}
78
79void InternalArraySingleArgumentConstructorStub::InitializeDescriptor(
80 CodeStubDescriptor* descriptor) {
81 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1);
82}
83
84void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
85 CodeStubDescriptor* descriptor) {
86 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
87}
88
89#define __ ACCESS_MASM(masm)
90
91static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
92 Condition cond);
93static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
94 Register rhs, Label* lhs_not_nan,
95 Label* slow, bool strict);
96static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
97 Register rhs);
98
99void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
100 ExternalReference miss) {
101 // Update the static counter each time a new code stub is generated.
102 isolate()->counters()->code_stubs()->Increment();
103
104 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
105 int param_count = descriptor.GetRegisterParameterCount();
106 {
107 // Call the runtime system in a fresh internal frame.
108 FrameScope scope(masm, StackFrame::INTERNAL);
109 DCHECK(param_count == 0 ||
110 r2.is(descriptor.GetRegisterParameter(param_count - 1)));
111 // Push arguments
112 for (int i = 0; i < param_count; ++i) {
113 __ push(descriptor.GetRegisterParameter(i));
114 }
115 __ CallExternalReference(miss, param_count);
116 }
117
118 __ Ret();
119}
120
121void DoubleToIStub::Generate(MacroAssembler* masm) {
122 Label out_of_range, only_low, negate, done, fastpath_done;
123 Register input_reg = source();
124 Register result_reg = destination();
125 DCHECK(is_truncating());
126
127 int double_offset = offset();
128
129 // Immediate values for this stub fit in instructions, so it's safe to use ip.
130 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
131 Register scratch_low =
132 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
133 Register scratch_high =
134 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
135 DoubleRegister double_scratch = kScratchDoubleReg;
136
137 __ push(scratch);
138 // Account for saved regs if input is sp.
139 if (input_reg.is(sp)) double_offset += kPointerSize;
140
141 if (!skip_fastpath()) {
142 // Load double input.
143 __ LoadDouble(double_scratch, MemOperand(input_reg, double_offset));
144
145 // Do fast-path convert from double to int.
146 __ ConvertDoubleToInt64(double_scratch,
147#if !V8_TARGET_ARCH_S390X
148 scratch,
149#endif
150 result_reg, d0);
151
152// Test for overflow
153#if V8_TARGET_ARCH_S390X
154 __ TestIfInt32(result_reg, r0);
155#else
156 __ TestIfInt32(scratch, result_reg, r0);
157#endif
158 __ beq(&fastpath_done, Label::kNear);
159 }
160
161 __ Push(scratch_high, scratch_low);
162 // Account for saved regs if input is sp.
163 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
164
165 __ LoadlW(scratch_high,
166 MemOperand(input_reg, double_offset + Register::kExponentOffset));
167 __ LoadlW(scratch_low,
168 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
169
170 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
171 // Load scratch with exponent - 1. This is faster than loading
172 // with exponent because Bias + 1 = 1024 which is a *S390* immediate value.
173 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
174 __ SubP(scratch, Operand(HeapNumber::kExponentBias + 1));
175 // If exponent is greater than or equal to 84, the 32 less significant
176 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
177 // the result is 0.
178 // Compare exponent with 84 (compare exponent - 1 with 83).
179 __ CmpP(scratch, Operand(83));
180 __ bge(&out_of_range, Label::kNear);
181
182 // If we reach this code, 31 <= exponent <= 83.
183 // So, we don't have to handle cases where 0 <= exponent <= 20 for
184 // which we would need to shift right the high part of the mantissa.
185 // Scratch contains exponent - 1.
186 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
187 __ Load(r0, Operand(51));
188 __ SubP(scratch, r0, scratch);
189 __ CmpP(scratch, Operand::Zero());
190 __ ble(&only_low, Label::kNear);
191 // 21 <= exponent <= 51, shift scratch_low and scratch_high
192 // to generate the result.
193 __ ShiftRight(scratch_low, scratch_low, scratch);
194 // Scratch contains: 52 - exponent.
195 // We needs: exponent - 20.
196 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
197 __ Load(r0, Operand(32));
198 __ SubP(scratch, r0, scratch);
199 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
200 // Set the implicit 1 before the mantissa part in scratch_high.
201 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
202 __ Load(r0, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
203 __ ShiftLeftP(r0, r0, Operand(16));
204 __ OrP(result_reg, result_reg, r0);
205 __ ShiftLeft(r0, result_reg, scratch);
206 __ OrP(result_reg, scratch_low, r0);
207 __ b(&negate, Label::kNear);
208
209 __ bind(&out_of_range);
210 __ mov(result_reg, Operand::Zero());
211 __ b(&done, Label::kNear);
212
213 __ bind(&only_low);
214 // 52 <= exponent <= 83, shift only scratch_low.
215 // On entry, scratch contains: 52 - exponent.
216 __ LoadComplementRR(scratch, scratch);
217 __ ShiftLeft(result_reg, scratch_low, scratch);
218
219 __ bind(&negate);
220 // If input was positive, scratch_high ASR 31 equals 0 and
221 // scratch_high LSR 31 equals zero.
222 // New result = (result eor 0) + 0 = result.
223 // If the input was negative, we have to negate the result.
224 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
225 // New result = (result eor 0xffffffff) + 1 = 0 - result.
226 __ ShiftRightArith(r0, scratch_high, Operand(31));
227#if V8_TARGET_ARCH_S390X
228 __ lgfr(r0, r0);
229 __ ShiftRightP(r0, r0, Operand(32));
230#endif
231 __ XorP(result_reg, r0);
232 __ ShiftRight(r0, scratch_high, Operand(31));
233 __ AddP(result_reg, r0);
234
235 __ bind(&done);
236 __ Pop(scratch_high, scratch_low);
237
238 __ bind(&fastpath_done);
239 __ pop(scratch);
240
241 __ Ret();
242}
243
244// Handle the case where the lhs and rhs are the same object.
245// Equality is almost reflexive (everything but NaN), so this is a test
246// for "identity and not NaN".
247static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
248 Condition cond) {
249 Label not_identical;
250 Label heap_number, return_equal;
251 __ CmpP(r2, r3);
252 __ bne(&not_identical);
253
254 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
255 // so we do the second best thing - test it ourselves.
256 // They are both equal and they are not both Smis so both of them are not
257 // Smis. If it's not a heap number, then return equal.
258 if (cond == lt || cond == gt) {
259 // Call runtime on identical JSObjects.
260 __ CompareObjectType(r2, r6, r6, FIRST_JS_RECEIVER_TYPE);
261 __ bge(slow);
262 // Call runtime on identical symbols since we need to throw a TypeError.
263 __ CmpP(r6, Operand(SYMBOL_TYPE));
264 __ beq(slow);
265 // Call runtime on identical SIMD values since we must throw a TypeError.
266 __ CmpP(r6, Operand(SIMD128_VALUE_TYPE));
267 __ beq(slow);
268 } else {
269 __ CompareObjectType(r2, r6, r6, HEAP_NUMBER_TYPE);
270 __ beq(&heap_number);
271 // Comparing JS objects with <=, >= is complicated.
272 if (cond != eq) {
273 __ CmpP(r6, Operand(FIRST_JS_RECEIVER_TYPE));
274 __ bge(slow);
275 // Call runtime on identical symbols since we need to throw a TypeError.
276 __ CmpP(r6, Operand(SYMBOL_TYPE));
277 __ beq(slow);
278 // Call runtime on identical SIMD values since we must throw a TypeError.
279 __ CmpP(r6, Operand(SIMD128_VALUE_TYPE));
280 __ beq(slow);
281 // Normally here we fall through to return_equal, but undefined is
282 // special: (undefined == undefined) == true, but
283 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
284 if (cond == le || cond == ge) {
285 __ CmpP(r6, Operand(ODDBALL_TYPE));
286 __ bne(&return_equal);
287 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
288 __ bne(&return_equal);
289 if (cond == le) {
290 // undefined <= undefined should fail.
291 __ LoadImmP(r2, Operand(GREATER));
292 } else {
293 // undefined >= undefined should fail.
294 __ LoadImmP(r2, Operand(LESS));
295 }
296 __ Ret();
297 }
298 }
299 }
300
301 __ bind(&return_equal);
302 if (cond == lt) {
303 __ LoadImmP(r2, Operand(GREATER)); // Things aren't less than themselves.
304 } else if (cond == gt) {
305 __ LoadImmP(r2, Operand(LESS)); // Things aren't greater than themselves.
306 } else {
307 __ LoadImmP(r2, Operand(EQUAL)); // Things are <=, >=, ==, === themselves
308 }
309 __ Ret();
310
311 // For less and greater we don't have to check for NaN since the result of
312 // x < x is false regardless. For the others here is some code to check
313 // for NaN.
314 if (cond != lt && cond != gt) {
315 __ bind(&heap_number);
316 // It is a heap number, so return non-equal if it's NaN and equal if it's
317 // not NaN.
318
319 // The representation of NaN values has all exponent bits (52..62) set,
320 // and not all mantissa bits (0..51) clear.
321 // Read top bits of double representation (second word of value).
322 __ LoadlW(r4, FieldMemOperand(r2, HeapNumber::kExponentOffset));
323 // Test that exponent bits are all set.
324 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
325 __ ExtractBitMask(r5, r4, HeapNumber::kExponentMask);
326 __ CmpLogicalP(r5, Operand(0x7ff));
327 __ bne(&return_equal);
328
329 // Shift out flag and all exponent bits, retaining only mantissa.
330 __ sll(r4, Operand(HeapNumber::kNonMantissaBitsInTopWord));
331 // Or with all low-bits of mantissa.
332 __ LoadlW(r5, FieldMemOperand(r2, HeapNumber::kMantissaOffset));
333 __ OrP(r2, r5, r4);
334 __ CmpP(r2, Operand::Zero());
335 // For equal we already have the right value in r2: Return zero (equal)
336 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
337 // not (it's a NaN). For <= and >= we need to load r0 with the failing
338 // value if it's a NaN.
339 if (cond != eq) {
340 Label not_equal;
341 __ bne(&not_equal, Label::kNear);
342 // All-zero means Infinity means equal.
343 __ Ret();
344 __ bind(&not_equal);
345 if (cond == le) {
346 __ LoadImmP(r2, Operand(GREATER)); // NaN <= NaN should fail.
347 } else {
348 __ LoadImmP(r2, Operand(LESS)); // NaN >= NaN should fail.
349 }
350 }
351 __ Ret();
352 }
353 // No fall through here.
354
355 __ bind(&not_identical);
356}
357
358// See comment at call site.
359static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
360 Register rhs, Label* lhs_not_nan,
361 Label* slow, bool strict) {
362 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
363
364 Label rhs_is_smi;
365 __ JumpIfSmi(rhs, &rhs_is_smi);
366
367 // Lhs is a Smi. Check whether the rhs is a heap number.
368 __ CompareObjectType(rhs, r5, r6, HEAP_NUMBER_TYPE);
369 if (strict) {
370 // If rhs is not a number and lhs is a Smi then strict equality cannot
371 // succeed. Return non-equal
372 // If rhs is r2 then there is already a non zero value in it.
373 Label skip;
374 __ beq(&skip, Label::kNear);
375 if (!rhs.is(r2)) {
376 __ mov(r2, Operand(NOT_EQUAL));
377 }
378 __ Ret();
379 __ bind(&skip);
380 } else {
381 // Smi compared non-strictly with a non-Smi non-heap-number. Call
382 // the runtime.
383 __ bne(slow);
384 }
385
386 // Lhs is a smi, rhs is a number.
387 // Convert lhs to a double in d7.
388 __ SmiToDouble(d7, lhs);
389 // Load the double from rhs, tagged HeapNumber r2, to d6.
390 __ LoadDouble(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
391
392 // We now have both loaded as doubles but we can skip the lhs nan check
393 // since it's a smi.
394 __ b(lhs_not_nan);
395
396 __ bind(&rhs_is_smi);
397 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
398 __ CompareObjectType(lhs, r6, r6, HEAP_NUMBER_TYPE);
399 if (strict) {
400 // If lhs is not a number and rhs is a smi then strict equality cannot
401 // succeed. Return non-equal.
402 // If lhs is r2 then there is already a non zero value in it.
403 Label skip;
404 __ beq(&skip, Label::kNear);
405 if (!lhs.is(r2)) {
406 __ mov(r2, Operand(NOT_EQUAL));
407 }
408 __ Ret();
409 __ bind(&skip);
410 } else {
411 // Smi compared non-strictly with a non-smi non-heap-number. Call
412 // the runtime.
413 __ bne(slow);
414 }
415
416 // Rhs is a smi, lhs is a heap number.
417 // Load the double from lhs, tagged HeapNumber r3, to d7.
418 __ LoadDouble(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
419 // Convert rhs to a double in d6.
420 __ SmiToDouble(d6, rhs);
421 // Fall through to both_loaded_as_doubles.
422}
423
424// See comment at call site.
425static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
426 Register rhs) {
427 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
428
429 // If either operand is a JS object or an oddball value, then they are
430 // not equal since their pointers are different.
431 // There is no test for undetectability in strict equality.
432 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
433 Label first_non_object;
434 // Get the type of the first operand into r4 and compare it with
435 // FIRST_JS_RECEIVER_TYPE.
436 __ CompareObjectType(rhs, r4, r4, FIRST_JS_RECEIVER_TYPE);
437 __ blt(&first_non_object, Label::kNear);
438
439 // Return non-zero (r2 is not zero)
440 Label return_not_equal;
441 __ bind(&return_not_equal);
442 __ Ret();
443
444 __ bind(&first_non_object);
445 // Check for oddballs: true, false, null, undefined.
446 __ CmpP(r4, Operand(ODDBALL_TYPE));
447 __ beq(&return_not_equal);
448
449 __ CompareObjectType(lhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
450 __ bge(&return_not_equal);
451
452 // Check for oddballs: true, false, null, undefined.
453 __ CmpP(r5, Operand(ODDBALL_TYPE));
454 __ beq(&return_not_equal);
455
456 // Now that we have the types we might as well check for
457 // internalized-internalized.
458 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
459 __ OrP(r4, r4, r5);
460 __ AndP(r0, r4, Operand(kIsNotStringMask | kIsNotInternalizedMask));
461 __ beq(&return_not_equal);
462}
463
464// See comment at call site.
465static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
466 Register rhs,
467 Label* both_loaded_as_doubles,
468 Label* not_heap_numbers, Label* slow) {
469 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
470
471 __ CompareObjectType(rhs, r5, r4, HEAP_NUMBER_TYPE);
472 __ bne(not_heap_numbers);
473 __ LoadP(r4, FieldMemOperand(lhs, HeapObject::kMapOffset));
474 __ CmpP(r4, r5);
475 __ bne(slow); // First was a heap number, second wasn't. Go slow case.
476
477 // Both are heap numbers. Load them up then jump to the code we have
478 // for that.
479 __ LoadDouble(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
480 __ LoadDouble(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
481
482 __ b(both_loaded_as_doubles);
483}
484
485// Fast negative check for internalized-to-internalized equality or receiver
486// equality. Also handles the undetectable receiver to null/undefined
487// comparison.
488static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
489 Register lhs, Register rhs,
490 Label* possible_strings,
491 Label* runtime_call) {
492 DCHECK((lhs.is(r2) && rhs.is(r3)) || (lhs.is(r3) && rhs.is(r2)));
493
494 // r4 is object type of rhs.
495 Label object_test, return_equal, return_unequal, undetectable;
496 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
497 __ mov(r0, Operand(kIsNotStringMask));
498 __ AndP(r0, r4);
499 __ bne(&object_test, Label::kNear);
500 __ mov(r0, Operand(kIsNotInternalizedMask));
501 __ AndP(r0, r4);
502 __ bne(possible_strings);
503 __ CompareObjectType(lhs, r5, r5, FIRST_NONSTRING_TYPE);
504 __ bge(runtime_call);
505 __ mov(r0, Operand(kIsNotInternalizedMask));
506 __ AndP(r0, r5);
507 __ bne(possible_strings);
508
509 // Both are internalized. We already checked they weren't the same pointer so
510 // they are not equal. Return non-equal by returning the non-zero object
511 // pointer in r2.
512 __ Ret();
513
514 __ bind(&object_test);
515 __ LoadP(r4, FieldMemOperand(lhs, HeapObject::kMapOffset));
516 __ LoadP(r5, FieldMemOperand(rhs, HeapObject::kMapOffset));
517 __ LoadlB(r6, FieldMemOperand(r4, Map::kBitFieldOffset));
518 __ LoadlB(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
519 __ AndP(r0, r6, Operand(1 << Map::kIsUndetectable));
520 __ bne(&undetectable);
521 __ AndP(r0, r7, Operand(1 << Map::kIsUndetectable));
522 __ bne(&return_unequal);
523
524 __ CompareInstanceType(r4, r4, FIRST_JS_RECEIVER_TYPE);
525 __ blt(runtime_call);
526 __ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
527 __ blt(runtime_call);
528
529 __ bind(&return_unequal);
530 // Return non-equal by returning the non-zero object pointer in r2.
531 __ Ret();
532
533 __ bind(&undetectable);
534 __ AndP(r0, r7, Operand(1 << Map::kIsUndetectable));
535 __ beq(&return_unequal);
536
537 // If both sides are JSReceivers, then the result is false according to
538 // the HTML specification, which says that only comparisons with null or
539 // undefined are affected by special casing for document.all.
540 __ CompareInstanceType(r4, r4, ODDBALL_TYPE);
541 __ beq(&return_equal);
542 __ CompareInstanceType(r5, r5, ODDBALL_TYPE);
543 __ bne(&return_unequal);
544
545 __ bind(&return_equal);
546 __ LoadImmP(r2, Operand(EQUAL));
547 __ Ret();
548}
549
550static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
551 Register scratch,
552 CompareICState::State expected,
553 Label* fail) {
554 Label ok;
555 if (expected == CompareICState::SMI) {
556 __ JumpIfNotSmi(input, fail);
557 } else if (expected == CompareICState::NUMBER) {
558 __ JumpIfSmi(input, &ok);
559 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
560 DONT_DO_SMI_CHECK);
561 }
562 // We could be strict about internalized/non-internalized here, but as long as
563 // hydrogen doesn't care, the stub doesn't have to care either.
564 __ bind(&ok);
565}
566
567// On entry r3 and r4 are the values to be compared.
568// On exit r2 is 0, positive or negative to indicate the result of
569// the comparison.
570void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
571 Register lhs = r3;
572 Register rhs = r2;
573 Condition cc = GetCondition();
574
575 Label miss;
576 CompareICStub_CheckInputType(masm, lhs, r4, left(), &miss);
577 CompareICStub_CheckInputType(masm, rhs, r5, right(), &miss);
578
579 Label slow; // Call builtin.
580 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
581
582 Label not_two_smis, smi_done;
583 __ OrP(r4, r3, r2);
584 __ JumpIfNotSmi(r4, &not_two_smis);
585 __ SmiUntag(r3);
586 __ SmiUntag(r2);
587 __ SubP(r2, r3, r2);
588 __ Ret();
589 __ bind(&not_two_smis);
590
591 // NOTICE! This code is only reached after a smi-fast-case check, so
592 // it is certain that at least one operand isn't a smi.
593
594 // Handle the case where the objects are identical. Either returns the answer
595 // or goes to slow. Only falls through if the objects were not identical.
596 EmitIdenticalObjectComparison(masm, &slow, cc);
597
598 // If either is a Smi (we know that not both are), then they can only
599 // be strictly equal if the other is a HeapNumber.
600 STATIC_ASSERT(kSmiTag == 0);
601 DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
602 __ AndP(r4, lhs, rhs);
603 __ JumpIfNotSmi(r4, &not_smis);
604 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
605 // 1) Return the answer.
606 // 2) Go to slow.
607 // 3) Fall through to both_loaded_as_doubles.
608 // 4) Jump to lhs_not_nan.
609 // In cases 3 and 4 we have found out we were dealing with a number-number
610 // comparison. The double values of the numbers have been loaded
611 // into d7 and d6.
612 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
613
614 __ bind(&both_loaded_as_doubles);
615 // The arguments have been converted to doubles and stored in d6 and d7
616 __ bind(&lhs_not_nan);
617 Label no_nan;
618 __ cdbr(d7, d6);
619
620 Label nan, equal, less_than;
621 __ bunordered(&nan);
622 __ beq(&equal, Label::kNear);
623 __ blt(&less_than, Label::kNear);
624 __ LoadImmP(r2, Operand(GREATER));
625 __ Ret();
626 __ bind(&equal);
627 __ LoadImmP(r2, Operand(EQUAL));
628 __ Ret();
629 __ bind(&less_than);
630 __ LoadImmP(r2, Operand(LESS));
631 __ Ret();
632
633 __ bind(&nan);
634 // If one of the sides was a NaN then the v flag is set. Load r2 with
635 // whatever it takes to make the comparison fail, since comparisons with NaN
636 // always fail.
637 if (cc == lt || cc == le) {
638 __ LoadImmP(r2, Operand(GREATER));
639 } else {
640 __ LoadImmP(r2, Operand(LESS));
641 }
642 __ Ret();
643
644 __ bind(&not_smis);
645 // At this point we know we are dealing with two different objects,
646 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
647 if (strict()) {
648 // This returns non-equal for some object types, or falls through if it
649 // was not lucky.
650 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
651 }
652
653 Label check_for_internalized_strings;
654 Label flat_string_check;
655 // Check for heap-number-heap-number comparison. Can jump to slow case,
656 // or load both doubles into r2, r3, r4, r5 and jump to the code that handles
657 // that case. If the inputs are not doubles then jumps to
658 // check_for_internalized_strings.
659 // In this case r4 will contain the type of rhs_. Never falls through.
660 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
661 &check_for_internalized_strings,
662 &flat_string_check);
663
664 __ bind(&check_for_internalized_strings);
665 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
666 // internalized strings.
667 if (cc == eq && !strict()) {
668 // Returns an answer for two internalized strings or two detectable objects.
669 // Otherwise jumps to string case or not both strings case.
670 // Assumes that r4 is the type of rhs_ on entry.
671 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
672 &slow);
673 }
674
675 // Check for both being sequential one-byte strings,
676 // and inline if that is the case.
677 __ bind(&flat_string_check);
678
679 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r4, r5, &slow);
680
681 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r4,
682 r5);
683 if (cc == eq) {
684 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r4, r5);
685 } else {
686 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r4, r5, r6);
687 }
688 // Never falls through to here.
689
690 __ bind(&slow);
691
692 if (cc == eq) {
693 {
694 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
695 __ Push(lhs, rhs);
696 __ CallRuntime(strict() ? Runtime::kStrictEqual : Runtime::kEqual);
697 }
698 // Turn true into 0 and false into some non-zero value.
699 STATIC_ASSERT(EQUAL == 0);
700 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
701 __ SubP(r2, r2, r3);
702 __ Ret();
703 } else {
704 __ Push(lhs, rhs);
705 int ncr; // NaN compare result
706 if (cc == lt || cc == le) {
707 ncr = GREATER;
708 } else {
709 DCHECK(cc == gt || cc == ge); // remaining cases
710 ncr = LESS;
711 }
712 __ LoadSmiLiteral(r2, Smi::FromInt(ncr));
713 __ push(r2);
714
715 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
716 // tagged as a small integer.
717 __ TailCallRuntime(Runtime::kCompare);
718 }
719
720 __ bind(&miss);
721 GenerateMiss(masm);
722}
723
724void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
725 // We don't allow a GC during a store buffer overflow so there is no need to
726 // store the registers in any particular way, but we do have to store and
727 // restore them.
728 __ MultiPush(kJSCallerSaved | r14.bit());
729 if (save_doubles()) {
730 __ MultiPushDoubles(kCallerSavedDoubles);
731 }
732 const int argument_count = 1;
733 const int fp_argument_count = 0;
734 const Register scratch = r3;
735
736 AllowExternalCallThatCantCauseGC scope(masm);
737 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
738 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
739 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
740 argument_count);
741 if (save_doubles()) {
742 __ MultiPopDoubles(kCallerSavedDoubles);
743 }
744 __ MultiPop(kJSCallerSaved | r14.bit());
745 __ Ret();
746}
747
748void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
749 __ PushSafepointRegisters();
750 __ b(r14);
751}
752
753void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
754 __ PopSafepointRegisters();
755 __ b(r14);
756}
757
758void MathPowStub::Generate(MacroAssembler* masm) {
759 const Register base = r3;
760 const Register exponent = MathPowTaggedDescriptor::exponent();
761 DCHECK(exponent.is(r4));
762 const Register heapnumbermap = r7;
763 const Register heapnumber = r2;
764 const DoubleRegister double_base = d1;
765 const DoubleRegister double_exponent = d2;
766 const DoubleRegister double_result = d3;
767 const DoubleRegister double_scratch = d0;
768 const Register scratch = r1;
769 const Register scratch2 = r9;
770
771 Label call_runtime, done, int_exponent;
772 if (exponent_type() == ON_STACK) {
773 Label base_is_smi, unpack_exponent;
774 // The exponent and base are supplied as arguments on the stack.
775 // This can only happen if the stub is called from non-optimized code.
776 // Load input parameters from stack to double registers.
777 __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
778 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
779
780 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
781
782 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
783 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
784 __ CmpP(scratch, heapnumbermap);
785 __ bne(&call_runtime);
786
787 __ LoadDouble(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
788 __ b(&unpack_exponent, Label::kNear);
789
790 __ bind(&base_is_smi);
791 __ ConvertIntToDouble(scratch, double_base);
792 __ bind(&unpack_exponent);
793
794 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
795 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
796 __ CmpP(scratch, heapnumbermap);
797 __ bne(&call_runtime);
798
799 __ LoadDouble(double_exponent,
800 FieldMemOperand(exponent, HeapNumber::kValueOffset));
801 } else if (exponent_type() == TAGGED) {
802 // Base is already in double_base.
803 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
804
805 __ LoadDouble(double_exponent,
806 FieldMemOperand(exponent, HeapNumber::kValueOffset));
807 }
808
809 if (exponent_type() != INTEGER) {
810 // Detect integer exponents stored as double.
811 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
812 double_scratch);
813 __ beq(&int_exponent, Label::kNear);
814
815 if (exponent_type() == ON_STACK) {
816 // Detect square root case. Crankshaft detects constant +/-0.5 at
817 // compile time and uses DoMathPowHalf instead. We then skip this check
818 // for non-constant cases of +/-0.5 as these hardly occur.
819 Label not_plus_half, not_minus_inf1, not_minus_inf2;
820
821 // Test for 0.5.
822 __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
823 __ cdbr(double_exponent, double_scratch);
824 __ bne(&not_plus_half, Label::kNear);
825
826 // Calculates square root of base. Check for the special case of
827 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
828 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
829 __ cdbr(double_base, double_scratch);
830 __ bne(&not_minus_inf1, Label::kNear);
831 __ lcdbr(double_result, double_scratch);
832 __ b(&done);
833 __ bind(&not_minus_inf1);
834
835 // Add +0 to convert -0 to +0.
836 __ ldr(double_scratch, double_base);
837 __ lzdr(kDoubleRegZero);
838 __ adbr(double_scratch, kDoubleRegZero);
839 __ sqdbr(double_result, double_scratch);
840 __ b(&done);
841
842 __ bind(&not_plus_half);
843 __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
844 __ cdbr(double_exponent, double_scratch);
845 __ bne(&call_runtime);
846
847 // Calculates square root of base. Check for the special case of
848 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
849 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
850 __ cdbr(double_base, double_scratch);
851 __ bne(&not_minus_inf2, Label::kNear);
852 __ ldr(double_result, kDoubleRegZero);
853 __ b(&done);
854 __ bind(&not_minus_inf2);
855
856 // Add +0 to convert -0 to +0.
857 __ ldr(double_scratch, double_base);
858 __ lzdr(kDoubleRegZero);
859 __ adbr(double_scratch, kDoubleRegZero);
860 __ LoadDoubleLiteral(double_result, 1.0, scratch);
861 __ sqdbr(double_scratch, double_scratch);
862 __ ddbr(double_result, double_scratch);
863 __ b(&done);
864 }
865
866 __ push(r14);
867 {
868 AllowExternalCallThatCantCauseGC scope(masm);
869 __ PrepareCallCFunction(0, 2, scratch);
870 __ MovToFloatParameters(double_base, double_exponent);
871 __ CallCFunction(
872 ExternalReference::power_double_double_function(isolate()), 0, 2);
873 }
874 __ pop(r14);
875 __ MovFromFloatResult(double_result);
876 __ b(&done);
877 }
878
879 // Calculate power with integer exponent.
880 __ bind(&int_exponent);
881
882 // Get two copies of exponent in the registers scratch and exponent.
883 if (exponent_type() == INTEGER) {
884 __ LoadRR(scratch, exponent);
885 } else {
886 // Exponent has previously been stored into scratch as untagged integer.
887 __ LoadRR(exponent, scratch);
888 }
889 __ ldr(double_scratch, double_base); // Back up base.
890 __ LoadImmP(scratch2, Operand(1));
891 __ ConvertIntToDouble(scratch2, double_result);
892
893 // Get absolute value of exponent.
894 Label positive_exponent;
895 __ CmpP(scratch, Operand::Zero());
896 __ bge(&positive_exponent, Label::kNear);
897 __ LoadComplementRR(scratch, scratch);
898 __ bind(&positive_exponent);
899
900 Label while_true, no_carry, loop_end;
901 __ bind(&while_true);
902 __ mov(scratch2, Operand(1));
903 __ AndP(scratch2, scratch);
904 __ beq(&no_carry, Label::kNear);
905 __ mdbr(double_result, double_scratch);
906 __ bind(&no_carry);
907 __ ShiftRightArithP(scratch, scratch, Operand(1));
908 __ beq(&loop_end, Label::kNear);
909 __ mdbr(double_scratch, double_scratch);
910 __ b(&while_true);
911 __ bind(&loop_end);
912
913 __ CmpP(exponent, Operand::Zero());
914 __ bge(&done);
915
916 // get 1/double_result:
917 __ ldr(double_scratch, double_result);
918 __ LoadImmP(scratch2, Operand(1));
919 __ ConvertIntToDouble(scratch2, double_result);
920 __ ddbr(double_result, double_scratch);
921
922 // Test whether result is zero. Bail out to check for subnormal result.
923 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
924 __ lzdr(kDoubleRegZero);
925 __ cdbr(double_result, kDoubleRegZero);
926 __ bne(&done, Label::kNear);
927 // double_exponent may not containe the exponent value if the input was a
928 // smi. We set it with exponent value before bailing out.
929 __ ConvertIntToDouble(exponent, double_exponent);
930
931 // Returning or bailing out.
932 if (exponent_type() == ON_STACK) {
933 // The arguments are still on the stack.
934 __ bind(&call_runtime);
935 __ TailCallRuntime(Runtime::kMathPowRT);
936
937 // The stub is called from non-optimized code, which expects the result
938 // as heap number in exponent.
939 __ bind(&done);
940 __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
941 &call_runtime);
942 __ StoreDouble(double_result,
943 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
944 DCHECK(heapnumber.is(r2));
945 __ Ret(2);
946 } else {
947 __ push(r14);
948 {
949 AllowExternalCallThatCantCauseGC scope(masm);
950 __ PrepareCallCFunction(0, 2, scratch);
951 __ MovToFloatParameters(double_base, double_exponent);
952 __ CallCFunction(
953 ExternalReference::power_double_double_function(isolate()), 0, 2);
954 }
955 __ pop(r14);
956 __ MovFromFloatResult(double_result);
957
958 __ bind(&done);
959 __ Ret();
960 }
961}
962
963bool CEntryStub::NeedsImmovableCode() { return true; }
964
965void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
966 CEntryStub::GenerateAheadOfTime(isolate);
967 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
968 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
969 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
970 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
971 CreateWeakCellStub::GenerateAheadOfTime(isolate);
972 BinaryOpICStub::GenerateAheadOfTime(isolate);
973 StoreRegistersStateStub::GenerateAheadOfTime(isolate);
974 RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
975 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
976 StoreFastElementStub::GenerateAheadOfTime(isolate);
977 TypeofStub::GenerateAheadOfTime(isolate);
978}
979
980void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
981 StoreRegistersStateStub stub(isolate);
982 stub.GetCode();
983}
984
985void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
986 RestoreRegistersStateStub stub(isolate);
987 stub.GetCode();
988}
989
990void CodeStub::GenerateFPStubs(Isolate* isolate) {
991 SaveFPRegsMode mode = kSaveFPRegs;
992 CEntryStub(isolate, 1, mode).GetCode();
993 StoreBufferOverflowStub(isolate, mode).GetCode();
994 isolate->set_fp_stubs_generated(true);
995}
996
997void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
998 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
999 stub.GetCode();
1000}
1001
1002void CEntryStub::Generate(MacroAssembler* masm) {
1003 // Called from JavaScript; parameters are on stack as if calling JS function.
1004 // r2: number of arguments including receiver
1005 // r3: pointer to builtin function
1006 // fp: frame pointer (restored after C call)
1007 // sp: stack pointer (restored as callee's sp after C call)
1008 // cp: current context (C callee-saved)
1009 //
1010 // If argv_in_register():
1011 // r4: pointer to the first argument
1012 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1013
1014 __ LoadRR(r7, r3);
1015
1016 if (argv_in_register()) {
1017 // Move argv into the correct register.
1018 __ LoadRR(r3, r4);
1019 } else {
1020 // Compute the argv pointer.
1021 __ ShiftLeftP(r3, r2, Operand(kPointerSizeLog2));
1022 __ lay(r3, MemOperand(r3, sp, -kPointerSize));
1023 }
1024
1025 // Enter the exit frame that transitions from JavaScript to C++.
1026 FrameScope scope(masm, StackFrame::MANUAL);
1027
1028 // Need at least one extra slot for return address location.
1029 int arg_stack_space = 1;
1030
1031 // Pass buffer for return value on stack if necessary
1032 bool needs_return_buffer =
1033 result_size() > 2 ||
1034 (result_size() == 2 && !ABI_RETURNS_OBJECTPAIR_IN_REGS);
1035 if (needs_return_buffer) {
1036 arg_stack_space += result_size();
1037 }
1038
1039#if V8_TARGET_ARCH_S390X
1040 // 64-bit linux pass Argument object by reference not value
1041 arg_stack_space += 2;
1042#endif
1043
1044 __ EnterExitFrame(save_doubles(), arg_stack_space);
1045
1046 // Store a copy of argc, argv in callee-saved registers for later.
1047 __ LoadRR(r6, r2);
1048 __ LoadRR(r8, r3);
1049 // r2, r6: number of arguments including receiver (C callee-saved)
1050 // r3, r8: pointer to the first argument
1051 // r7: pointer to builtin function (C callee-saved)
1052
1053 // Result returned in registers or stack, depending on result size and ABI.
1054
1055 Register isolate_reg = r4;
1056 if (needs_return_buffer) {
1057 // The return value is 16-byte non-scalar value.
1058 // Use frame storage reserved by calling function to pass return
1059 // buffer as implicit first argument in R2. Shfit original parameters
1060 // by one register each.
1061 __ LoadRR(r4, r3);
1062 __ LoadRR(r3, r2);
1063 __ la(r2, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
1064 isolate_reg = r5;
1065 }
1066 // Call C built-in.
1067 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
1068
1069 Register target = r7;
1070
1071 // To let the GC traverse the return address of the exit frames, we need to
1072 // know where the return address is. The CEntryStub is unmovable, so
1073 // we can store the address on the stack to be able to find it again and
1074 // we never have to restore it, because it will not change.
1075 {
1076 Label return_label;
1077 __ larl(r14, &return_label); // Generate the return addr of call later.
1078 __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
1079
1080 // zLinux ABI requires caller's frame to have sufficient space for callee
1081 // preserved regsiter save area.
1082 // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
1083 __ positions_recorder()->WriteRecordedPositions();
1084 __ b(target);
1085 __ bind(&return_label);
1086 // __ la(sp, MemOperand(sp, +kCalleeRegisterSaveAreaSize));
1087 }
1088
1089 // If return value is on the stack, pop it to registers.
1090 if (needs_return_buffer) {
1091 if (result_size() > 2) __ LoadP(r4, MemOperand(r2, 2 * kPointerSize));
1092 __ LoadP(r3, MemOperand(r2, kPointerSize));
1093 __ LoadP(r2, MemOperand(r2));
1094 }
1095
1096 // Check result for exception sentinel.
1097 Label exception_returned;
1098 __ CompareRoot(r2, Heap::kExceptionRootIndex);
1099 __ beq(&exception_returned, Label::kNear);
1100
1101 // Check that there is no pending exception, otherwise we
1102 // should have returned the exception sentinel.
1103 if (FLAG_debug_code) {
1104 Label okay;
1105 ExternalReference pending_exception_address(
1106 Isolate::kPendingExceptionAddress, isolate());
1107 __ mov(r1, Operand(pending_exception_address));
1108 __ LoadP(r1, MemOperand(r1));
1109 __ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
1110 // Cannot use check here as it attempts to generate call into runtime.
1111 __ beq(&okay, Label::kNear);
1112 __ stop("Unexpected pending exception");
1113 __ bind(&okay);
1114 }
1115
1116 // Exit C frame and return.
1117 // r2:r3: result
1118 // sp: stack pointer
1119 // fp: frame pointer
1120 Register argc;
1121 if (argv_in_register()) {
1122 // We don't want to pop arguments so set argc to no_reg.
1123 argc = no_reg;
1124 } else {
1125 // r6: still holds argc (callee-saved).
1126 argc = r6;
1127 }
1128 __ LeaveExitFrame(save_doubles(), argc, true);
1129 __ b(r14);
1130
1131 // Handling of exception.
1132 __ bind(&exception_returned);
1133
1134 ExternalReference pending_handler_context_address(
1135 Isolate::kPendingHandlerContextAddress, isolate());
1136 ExternalReference pending_handler_code_address(
1137 Isolate::kPendingHandlerCodeAddress, isolate());
1138 ExternalReference pending_handler_offset_address(
1139 Isolate::kPendingHandlerOffsetAddress, isolate());
1140 ExternalReference pending_handler_fp_address(
1141 Isolate::kPendingHandlerFPAddress, isolate());
1142 ExternalReference pending_handler_sp_address(
1143 Isolate::kPendingHandlerSPAddress, isolate());
1144
1145 // Ask the runtime for help to determine the handler. This will set r3 to
1146 // contain the current pending exception, don't clobber it.
1147 ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
1148 isolate());
1149 {
1150 FrameScope scope(masm, StackFrame::MANUAL);
1151 __ PrepareCallCFunction(3, 0, r2);
1152 __ LoadImmP(r2, Operand::Zero());
1153 __ LoadImmP(r3, Operand::Zero());
1154 __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
1155 __ CallCFunction(find_handler, 3);
1156 }
1157
1158 // Retrieve the handler context, SP and FP.
1159 __ mov(cp, Operand(pending_handler_context_address));
1160 __ LoadP(cp, MemOperand(cp));
1161 __ mov(sp, Operand(pending_handler_sp_address));
1162 __ LoadP(sp, MemOperand(sp));
1163 __ mov(fp, Operand(pending_handler_fp_address));
1164 __ LoadP(fp, MemOperand(fp));
1165
1166 // If the handler is a JS frame, restore the context to the frame. Note that
1167 // the context will be set to (cp == 0) for non-JS frames.
1168 Label skip;
1169 __ CmpP(cp, Operand::Zero());
1170 __ beq(&skip, Label::kNear);
1171 __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1172 __ bind(&skip);
1173
1174 // Compute the handler entry address and jump to it.
1175 __ mov(r3, Operand(pending_handler_code_address));
1176 __ LoadP(r3, MemOperand(r3));
1177 __ mov(r4, Operand(pending_handler_offset_address));
1178 __ LoadP(r4, MemOperand(r4));
1179 __ AddP(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
1180 __ AddP(ip, r3, r4);
1181 __ Jump(ip);
1182}
1183
1184void JSEntryStub::Generate(MacroAssembler* masm) {
1185 // r2: code entry
1186 // r3: function
1187 // r4: receiver
1188 // r5: argc
1189 // r6: argv
1190
1191 Label invoke, handler_entry, exit;
1192
1193 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1194
1195// saving floating point registers
1196#if V8_TARGET_ARCH_S390X
1197 // 64bit ABI requires f8 to f15 be saved
1198 __ lay(sp, MemOperand(sp, -8 * kDoubleSize));
1199 __ std(d8, MemOperand(sp));
1200 __ std(d9, MemOperand(sp, 1 * kDoubleSize));
1201 __ std(d10, MemOperand(sp, 2 * kDoubleSize));
1202 __ std(d11, MemOperand(sp, 3 * kDoubleSize));
1203 __ std(d12, MemOperand(sp, 4 * kDoubleSize));
1204 __ std(d13, MemOperand(sp, 5 * kDoubleSize));
1205 __ std(d14, MemOperand(sp, 6 * kDoubleSize));
1206 __ std(d15, MemOperand(sp, 7 * kDoubleSize));
1207#else
1208 // 31bit ABI requires you to store f4 and f6:
1209 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
1210 __ lay(sp, MemOperand(sp, -2 * kDoubleSize));
1211 __ std(d4, MemOperand(sp));
1212 __ std(d6, MemOperand(sp, kDoubleSize));
1213#endif
1214
1215 // zLinux ABI
1216 // Incoming parameters:
1217 // r2: code entry
1218 // r3: function
1219 // r4: receiver
1220 // r5: argc
1221 // r6: argv
1222 // Requires us to save the callee-preserved registers r6-r13
1223 // General convention is to also save r14 (return addr) and
1224 // sp/r15 as well in a single STM/STMG
1225 __ lay(sp, MemOperand(sp, -10 * kPointerSize));
1226 __ StoreMultipleP(r6, sp, MemOperand(sp, 0));
1227
1228 // Set up the reserved register for 0.0.
1229 // __ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
1230
1231 // Push a frame with special values setup to mark it as an entry frame.
1232 // Bad FP (-1)
1233 // SMI Marker
1234 // SMI Marker
1235 // kCEntryFPAddress
1236 // Frame type
1237 __ lay(sp, MemOperand(sp, -5 * kPointerSize));
1238 // Push a bad frame pointer to fail if it is used.
1239 __ LoadImmP(r10, Operand(-1));
1240
1241 int marker = type();
1242 __ LoadSmiLiteral(r9, Smi::FromInt(marker));
1243 __ LoadSmiLiteral(r8, Smi::FromInt(marker));
1244 // Save copies of the top frame descriptor on the stack.
1245 __ mov(r7, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1246 __ LoadP(r7, MemOperand(r7));
1247 __ StoreMultipleP(r7, r10, MemOperand(sp, kPointerSize));
1248 // Set up frame pointer for the frame to be pushed.
1249 // Need to add kPointerSize, because sp has one extra
1250 // frame already for the frame type being pushed later.
1251 __ lay(fp,
1252 MemOperand(sp, -EntryFrameConstants::kCallerFPOffset + kPointerSize));
1253
1254 // If this is the outermost JS call, set js_entry_sp value.
1255 Label non_outermost_js;
1256 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1257 __ mov(r7, Operand(ExternalReference(js_entry_sp)));
1258 __ LoadAndTestP(r8, MemOperand(r7));
1259 __ bne(&non_outermost_js, Label::kNear);
1260 __ StoreP(fp, MemOperand(r7));
1261 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1262 Label cont;
1263 __ b(&cont, Label::kNear);
1264 __ bind(&non_outermost_js);
1265 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
1266
1267 __ bind(&cont);
1268 __ StoreP(ip, MemOperand(sp)); // frame-type
1269
1270 // Jump to a faked try block that does the invoke, with a faked catch
1271 // block that sets the pending exception.
1272 __ b(&invoke, Label::kNear);
1273
1274 __ bind(&handler_entry);
1275 handler_offset_ = handler_entry.pos();
1276 // Caught exception: Store result (exception) in the pending exception
1277 // field in the JSEnv and return a failure sentinel. Coming in here the
1278 // fp will be invalid because the PushStackHandler below sets it to 0 to
1279 // signal the existence of the JSEntry frame.
1280 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1281 isolate())));
1282
1283 __ StoreP(r2, MemOperand(ip));
1284 __ LoadRoot(r2, Heap::kExceptionRootIndex);
1285 __ b(&exit, Label::kNear);
1286
1287 // Invoke: Link this frame into the handler chain.
1288 __ bind(&invoke);
1289 // Must preserve r2-r6.
1290 __ PushStackHandler();
1291 // If an exception not caught by another handler occurs, this handler
1292 // returns control to the code after the b(&invoke) above, which
1293 // restores all kCalleeSaved registers (including cp and fp) to their
1294 // saved values before returning a failure to C.
1295
1296 // Clear any pending exceptions.
1297 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1298 isolate())));
1299 __ mov(r7, Operand(isolate()->factory()->the_hole_value()));
1300 __ StoreP(r7, MemOperand(ip));
1301
1302 // Invoke the function by calling through JS entry trampoline builtin.
1303 // Notice that we cannot store a reference to the trampoline code directly in
1304 // this stub, because runtime stubs are not traversed when doing GC.
1305
1306 // Expected registers by Builtins::JSEntryTrampoline
1307 // r2: code entry
1308 // r3: function
1309 // r4: receiver
1310 // r5: argc
1311 // r6: argv
1312 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1313 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1314 isolate());
1315 __ mov(ip, Operand(construct_entry));
1316 } else {
1317 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1318 __ mov(ip, Operand(entry));
1319 }
1320 __ LoadP(ip, MemOperand(ip)); // deref address
1321
1322 // Branch and link to JSEntryTrampoline.
1323 // the address points to the start of the code object, skip the header
1324 __ AddP(ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1325 Label return_addr;
1326 // __ basr(r14, ip);
1327 __ larl(r14, &return_addr);
1328 __ b(ip);
1329 __ bind(&return_addr);
1330
1331 // Unlink this frame from the handler chain.
1332 __ PopStackHandler();
1333
1334 __ bind(&exit); // r2 holds result
1335 // Check if the current stack frame is marked as the outermost JS frame.
1336 Label non_outermost_js_2;
1337 __ pop(r7);
1338 __ CmpSmiLiteral(r7, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
1339 __ bne(&non_outermost_js_2, Label::kNear);
1340 __ mov(r8, Operand::Zero());
1341 __ mov(r7, Operand(ExternalReference(js_entry_sp)));
1342 __ StoreP(r8, MemOperand(r7));
1343 __ bind(&non_outermost_js_2);
1344
1345 // Restore the top frame descriptors from the stack.
1346 __ pop(r5);
1347 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1348 __ StoreP(r5, MemOperand(ip));
1349
1350 // Reset the stack to the callee saved registers.
1351 __ lay(sp, MemOperand(sp, -EntryFrameConstants::kCallerFPOffset));
1352
1353 // Reload callee-saved preserved regs, return address reg (r14) and sp
1354 __ LoadMultipleP(r6, sp, MemOperand(sp, 0));
1355 __ la(sp, MemOperand(sp, 10 * kPointerSize));
1356
1357// saving floating point registers
1358#if V8_TARGET_ARCH_S390X
1359 // 64bit ABI requires f8 to f15 be saved
1360 __ ld(d8, MemOperand(sp));
1361 __ ld(d9, MemOperand(sp, 1 * kDoubleSize));
1362 __ ld(d10, MemOperand(sp, 2 * kDoubleSize));
1363 __ ld(d11, MemOperand(sp, 3 * kDoubleSize));
1364 __ ld(d12, MemOperand(sp, 4 * kDoubleSize));
1365 __ ld(d13, MemOperand(sp, 5 * kDoubleSize));
1366 __ ld(d14, MemOperand(sp, 6 * kDoubleSize));
1367 __ ld(d15, MemOperand(sp, 7 * kDoubleSize));
1368 __ la(sp, MemOperand(sp, 8 * kDoubleSize));
1369#else
1370 // 31bit ABI requires you to store f4 and f6:
1371 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN417
1372 __ ld(d4, MemOperand(sp));
1373 __ ld(d6, MemOperand(sp, kDoubleSize));
1374 __ la(sp, MemOperand(sp, 2 * kDoubleSize));
1375#endif
1376
1377 __ b(r14);
1378}
1379
1380void InstanceOfStub::Generate(MacroAssembler* masm) {
1381 Register const object = r3; // Object (lhs).
1382 Register const function = r2; // Function (rhs).
1383 Register const object_map = r4; // Map of {object}.
1384 Register const function_map = r5; // Map of {function}.
1385 Register const function_prototype = r6; // Prototype of {function}.
1386 Register const scratch = r7;
1387
1388 DCHECK(object.is(InstanceOfDescriptor::LeftRegister()));
1389 DCHECK(function.is(InstanceOfDescriptor::RightRegister()));
1390
1391 // Check if {object} is a smi.
1392 Label object_is_smi;
1393 __ JumpIfSmi(object, &object_is_smi);
1394
1395 // Lookup the {function} and the {object} map in the global instanceof cache.
1396 // Note: This is safe because we clear the global instanceof cache whenever
1397 // we change the prototype of any object.
1398 Label fast_case, slow_case;
1399 __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1400 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1401 __ bne(&fast_case);
1402 __ CompareRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
1403 __ bne(&fast_case);
1404 __ LoadRoot(r2, Heap::kInstanceofCacheAnswerRootIndex);
1405 __ Ret();
1406
1407 // If {object} is a smi we can safely return false if {function} is a JS
1408 // function, otherwise we have to miss to the runtime and throw an exception.
1409 __ bind(&object_is_smi);
1410 __ JumpIfSmi(function, &slow_case);
1411 __ CompareObjectType(function, function_map, scratch, JS_FUNCTION_TYPE);
1412 __ bne(&slow_case);
1413 __ LoadRoot(r2, Heap::kFalseValueRootIndex);
1414 __ Ret();
1415
1416 // Fast-case: The {function} must be a valid JSFunction.
1417 __ bind(&fast_case);
1418 __ JumpIfSmi(function, &slow_case);
1419 __ CompareObjectType(function, function_map, scratch, JS_FUNCTION_TYPE);
1420 __ bne(&slow_case);
1421
1422 // Go to the runtime if the function is not a constructor.
1423 __ LoadlB(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset));
1424 __ TestBit(scratch, Map::kIsConstructor, r0);
1425 __ beq(&slow_case);
1426
1427 // Ensure that {function} has an instance prototype.
1428 __ TestBit(scratch, Map::kHasNonInstancePrototype, r0);
1429 __ bne(&slow_case);
1430
1431 // Get the "prototype" (or initial map) of the {function}.
1432 __ LoadP(function_prototype,
1433 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1434 __ AssertNotSmi(function_prototype);
1435
1436 // Resolve the prototype if the {function} has an initial map. Afterwards the
1437 // {function_prototype} will be either the JSReceiver prototype object or the
1438 // hole value, which means that no instances of the {function} were created so
1439 // far and hence we should return false.
1440 Label function_prototype_valid;
1441 __ CompareObjectType(function_prototype, scratch, scratch, MAP_TYPE);
1442 __ bne(&function_prototype_valid);
1443 __ LoadP(function_prototype,
1444 FieldMemOperand(function_prototype, Map::kPrototypeOffset));
1445 __ bind(&function_prototype_valid);
1446 __ AssertNotSmi(function_prototype);
1447
1448 // Update the global instanceof cache with the current {object} map and
1449 // {function}. The cached answer will be set when it is known below.
1450 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1451 __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex);
1452
1453 // Loop through the prototype chain looking for the {function} prototype.
1454 // Assume true, and change to false if not found.
1455 Register const object_instance_type = function_map;
1456 Register const map_bit_field = function_map;
1457 Register const null = scratch;
1458 Register const result = r2;
1459
1460 Label done, loop, fast_runtime_fallback;
1461 __ LoadRoot(result, Heap::kTrueValueRootIndex);
1462 __ LoadRoot(null, Heap::kNullValueRootIndex);
1463 __ bind(&loop);
1464
1465 // Check if the object needs to be access checked.
1466 __ LoadlB(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset));
1467 __ TestBit(map_bit_field, Map::kIsAccessCheckNeeded, r0);
1468 __ bne(&fast_runtime_fallback);
1469 // Check if the current object is a Proxy.
1470 __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
1471 __ beq(&fast_runtime_fallback);
1472
1473 __ LoadP(object, FieldMemOperand(object_map, Map::kPrototypeOffset));
1474 __ CmpP(object, function_prototype);
1475 __ beq(&done);
1476 __ CmpP(object, null);
1477 __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
1478 __ bne(&loop);
1479 __ LoadRoot(result, Heap::kFalseValueRootIndex);
1480 __ bind(&done);
1481 __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex);
1482 __ Ret();
1483
1484 // Found Proxy or access check needed: Call the runtime
1485 __ bind(&fast_runtime_fallback);
1486 __ Push(object, function_prototype);
1487 // Invalidate the instanceof cache.
1488 __ LoadSmiLiteral(scratch, Smi::FromInt(0));
1489 __ StoreRoot(scratch, Heap::kInstanceofCacheFunctionRootIndex);
1490 __ TailCallRuntime(Runtime::kHasInPrototypeChain);
1491
1492 // Slow-case: Call the %InstanceOf runtime function.
1493 __ bind(&slow_case);
1494 __ Push(object, function);
1495 __ TailCallRuntime(is_es6_instanceof() ? Runtime::kOrdinaryHasInstance
1496 : Runtime::kInstanceOf);
1497}
1498
1499void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1500 Label miss;
1501 Register receiver = LoadDescriptor::ReceiverRegister();
1502 // Ensure that the vector and slot registers won't be clobbered before
1503 // calling the miss handler.
1504 DCHECK(!AreAliased(r6, r7, LoadWithVectorDescriptor::VectorRegister(),
1505 LoadWithVectorDescriptor::SlotRegister()));
1506
1507 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6,
1508 r7, &miss);
1509 __ bind(&miss);
1510 PropertyAccessCompiler::TailCallBuiltin(
1511 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1512}
1513
1514void LoadIndexedStringStub::Generate(MacroAssembler* masm) {
1515 // Return address is in lr.
1516 Label miss;
1517
1518 Register receiver = LoadDescriptor::ReceiverRegister();
1519 Register index = LoadDescriptor::NameRegister();
1520 Register scratch = r7;
1521 Register result = r2;
1522 DCHECK(!scratch.is(receiver) && !scratch.is(index));
1523 DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister()) &&
1524 result.is(LoadWithVectorDescriptor::SlotRegister()));
1525
1526 // StringCharAtGenerator doesn't use the result register until it's passed
1527 // the different miss possibilities. If it did, we would have a conflict
1528 // when FLAG_vector_ics is true.
1529 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
1530 &miss, // When not a string.
1531 &miss, // When not a number.
1532 &miss, // When index out of range.
1533 STRING_INDEX_IS_ARRAY_INDEX,
1534 RECEIVER_IS_STRING);
1535 char_at_generator.GenerateFast(masm);
1536 __ Ret();
1537
1538 StubRuntimeCallHelper call_helper;
1539 char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper);
1540
1541 __ bind(&miss);
1542 PropertyAccessCompiler::TailCallBuiltin(
1543 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1544}
1545
1546void RegExpExecStub::Generate(MacroAssembler* masm) {
1547// Just jump directly to runtime if native RegExp is not selected at compile
1548// time or if regexp entry in generated code is turned off runtime switch or
1549// at compilation.
1550#ifdef V8_INTERPRETED_REGEXP
1551 __ TailCallRuntime(Runtime::kRegExpExec);
1552#else // V8_INTERPRETED_REGEXP
1553
1554 // Stack frame on entry.
1555 // sp[0]: last_match_info (expected JSArray)
1556 // sp[4]: previous index
1557 // sp[8]: subject string
1558 // sp[12]: JSRegExp object
1559
1560 const int kLastMatchInfoOffset = 0 * kPointerSize;
1561 const int kPreviousIndexOffset = 1 * kPointerSize;
1562 const int kSubjectOffset = 2 * kPointerSize;
1563 const int kJSRegExpOffset = 3 * kPointerSize;
1564
1565 Label runtime, br_over, encoding_type_UC16;
1566
1567 // Allocation of registers for this function. These are in callee save
1568 // registers and will be preserved by the call to the native RegExp code, as
1569 // this code is called using the normal C calling convention. When calling
1570 // directly from generated code the native RegExp code will not do a GC and
1571 // therefore the content of these registers are safe to use after the call.
1572 Register subject = r6;
1573 Register regexp_data = r7;
1574 Register last_match_info_elements = r8;
1575 Register code = r9;
1576
1577 __ CleanseP(r14);
1578
1579 // Ensure register assigments are consistent with callee save masks
1580 DCHECK(subject.bit() & kCalleeSaved);
1581 DCHECK(regexp_data.bit() & kCalleeSaved);
1582 DCHECK(last_match_info_elements.bit() & kCalleeSaved);
1583 DCHECK(code.bit() & kCalleeSaved);
1584
1585 // Ensure that a RegExp stack is allocated.
1586 ExternalReference address_of_regexp_stack_memory_address =
1587 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1588 ExternalReference address_of_regexp_stack_memory_size =
1589 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1590 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
1591 __ LoadAndTestP(r2, MemOperand(r2));
1592 __ beq(&runtime);
1593
1594 // Check that the first argument is a JSRegExp object.
1595 __ LoadP(r2, MemOperand(sp, kJSRegExpOffset));
1596 __ JumpIfSmi(r2, &runtime);
1597 __ CompareObjectType(r2, r3, r3, JS_REGEXP_TYPE);
1598 __ bne(&runtime);
1599
1600 // Check that the RegExp has been compiled (data contains a fixed array).
1601 __ LoadP(regexp_data, FieldMemOperand(r2, JSRegExp::kDataOffset));
1602 if (FLAG_debug_code) {
1603 __ TestIfSmi(regexp_data);
1604 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
1605 __ CompareObjectType(regexp_data, r2, r2, FIXED_ARRAY_TYPE);
1606 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1607 }
1608
1609 // regexp_data: RegExp data (FixedArray)
1610 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1611 __ LoadP(r2, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1612 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
1613 __ CmpSmiLiteral(r2, Smi::FromInt(JSRegExp::IRREGEXP), r0);
1614 __ bne(&runtime);
1615
1616 // regexp_data: RegExp data (FixedArray)
1617 // Check that the number of captures fit in the static offsets vector buffer.
1618 __ LoadP(r4,
1619 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1620 // Check (number_of_captures + 1) * 2 <= offsets vector size
1621 // Or number_of_captures * 2 <= offsets vector size - 2
1622 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1623 // SmiUntag (which is a nop for 32-bit).
1624 __ SmiToShortArrayOffset(r4, r4);
1625 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1626 __ CmpLogicalP(r4, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1627 __ bgt(&runtime);
1628
1629 // Reset offset for possibly sliced string.
1630 __ LoadImmP(ip, Operand::Zero());
1631 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1632 __ JumpIfSmi(subject, &runtime);
1633 __ LoadRR(r5, subject); // Make a copy of the original subject string.
1634 // subject: subject string
1635 // r5: subject string
1636 // regexp_data: RegExp data (FixedArray)
1637 // Handle subject string according to its encoding and representation:
1638 // (1) Sequential string? If yes, go to (4).
1639 // (2) Sequential or cons? If not, go to (5).
1640 // (3) Cons string. If the string is flat, replace subject with first string
1641 // and go to (1). Otherwise bail out to runtime.
1642 // (4) Sequential string. Load regexp code according to encoding.
1643 // (E) Carry on.
1644 /// [...]
1645
1646 // Deferred code at the end of the stub:
1647 // (5) Long external string? If not, go to (7).
1648 // (6) External string. Make it, offset-wise, look like a sequential string.
1649 // Go to (4).
1650 // (7) Short external string or not a string? If yes, bail out to runtime.
1651 // (8) Sliced string. Replace subject with parent. Go to (1).
1652
1653 Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
1654 not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
1655
1656 __ bind(&check_underlying);
1657 __ LoadP(r2, FieldMemOperand(subject, HeapObject::kMapOffset));
1658 __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
1659
1660 // (1) Sequential string? If yes, go to (4).
1661
1662 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1663 kShortExternalStringMask) == 0x93);
1664 __ mov(r3, Operand(kIsNotStringMask | kStringRepresentationMask |
1665 kShortExternalStringMask));
1666 __ AndP(r3, r2);
1667 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1668 __ beq(&seq_string, Label::kNear); // Go to (4).
1669
1670 // (2) Sequential or cons? If not, go to (5).
1671 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
1672 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
1673 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
1674 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
1675 STATIC_ASSERT(kExternalStringTag < 0xffffu);
1676 __ CmpP(r3, Operand(kExternalStringTag));
1677 __ bge(&not_seq_nor_cons); // Go to (5).
1678
1679 // (3) Cons string. Check that it's flat.
1680 // Replace subject with first string and reload instance type.
1681 __ LoadP(r2, FieldMemOperand(subject, ConsString::kSecondOffset));
1682 __ CompareRoot(r2, Heap::kempty_stringRootIndex);
1683 __ bne(&runtime);
1684 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
1685 __ b(&check_underlying);
1686
1687 // (4) Sequential string. Load regexp code according to encoding.
1688 __ bind(&seq_string);
1689 // subject: sequential subject string (or look-alike, external string)
1690 // r5: original subject string
1691 // Load previous index and check range before r5 is overwritten. We have to
1692 // use r5 instead of subject here because subject might have been only made
1693 // to look like a sequential string when it actually is an external string.
1694 __ LoadP(r3, MemOperand(sp, kPreviousIndexOffset));
1695 __ JumpIfNotSmi(r3, &runtime);
1696 __ LoadP(r5, FieldMemOperand(r5, String::kLengthOffset));
1697 __ CmpLogicalP(r5, r3);
1698 __ ble(&runtime);
1699 __ SmiUntag(r3);
1700
1701 STATIC_ASSERT(4 == kOneByteStringTag);
1702 STATIC_ASSERT(kTwoByteStringTag == 0);
1703 STATIC_ASSERT(kStringEncodingMask == 4);
1704 __ ExtractBitMask(r5, r2, kStringEncodingMask, SetRC);
1705 __ beq(&encoding_type_UC16, Label::kNear);
1706 __ LoadP(code,
1707 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
1708 __ b(&br_over, Label::kNear);
1709 __ bind(&encoding_type_UC16);
1710 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
1711 __ bind(&br_over);
1712
1713 // (E) Carry on. String handling is done.
1714 // code: irregexp code
1715 // Check that the irregexp code has been generated for the actual string
1716 // encoding. If it has, the field contains a code object otherwise it contains
1717 // a smi (code flushing support).
1718 __ JumpIfSmi(code, &runtime);
1719
1720 // r3: previous index
1721 // r5: encoding of subject string (1 if one_byte, 0 if two_byte);
1722 // code: Address of generated regexp code
1723 // subject: Subject string
1724 // regexp_data: RegExp data (FixedArray)
1725 // All checks done. Now push arguments for native regexp code.
1726 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r2, r4);
1727
1728 // Isolates: note we add an additional parameter here (isolate pointer).
1729 const int kRegExpExecuteArguments = 10;
1730 const int kParameterRegisters = 5;
1731 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
1732
1733 // Stack pointer now points to cell where return address is to be written.
1734 // Arguments are before that on the stack or in registers.
1735
1736 // Argument 10 (in stack parameter area): Pass current isolate address.
1737 __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
1738 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1739 4 * kPointerSize));
1740
1741 // Argument 9 is a dummy that reserves the space used for
1742 // the return address added by the ExitFrame in native calls.
1743 __ mov(r2, Operand::Zero());
1744 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1745 3 * kPointerSize));
1746
1747 // Argument 8: Indicate that this is a direct call from JavaScript.
1748 __ mov(r2, Operand(1));
1749 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1750 2 * kPointerSize));
1751
1752 // Argument 7: Start (high end) of backtracking stack memory area.
1753 __ mov(r2, Operand(address_of_regexp_stack_memory_address));
1754 __ LoadP(r2, MemOperand(r2, 0));
1755 __ mov(r1, Operand(address_of_regexp_stack_memory_size));
1756 __ LoadP(r1, MemOperand(r1, 0));
1757 __ AddP(r2, r1);
1758 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1759 1 * kPointerSize));
1760
1761 // Argument 6: Set the number of capture registers to zero to force
1762 // global egexps to behave as non-global. This does not affect non-global
1763 // regexps.
1764 __ mov(r2, Operand::Zero());
1765 __ StoreP(r2, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize +
1766 0 * kPointerSize));
1767
1768 // Argument 1 (r2): Subject string.
1769 // Load the length from the original subject string from the previous stack
1770 // frame. Therefore we have to use fp, which points exactly to 15 pointer
1771 // sizes below the previous sp. (Because creating a new stack frame pushes
1772 // the previous fp onto the stack and moves up sp by 2 * kPointerSize and
1773 // 13 registers saved on the stack previously)
1774 __ LoadP(r2, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
1775
1776 // Argument 2 (r3): Previous index.
1777 // Already there
1778 __ AddP(r1, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
1779
1780 // Argument 5 (r6): static offsets vector buffer.
1781 __ mov(
1782 r6,
1783 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
1784
1785 // For arguments 4 (r5) and 3 (r4) get string length, calculate start of data
1786 // and calculate the shift of the index (0 for one-byte and 1 for two byte).
1787 __ XorP(r5, Operand(1));
1788 // If slice offset is not 0, load the length from the original sliced string.
1789 // Argument 3, r4: Start of string data
1790 // Prepare start and end index of the input.
1791 __ ShiftLeftP(ip, ip, r5);
1792 __ AddP(ip, r1, ip);
1793 __ ShiftLeftP(r4, r3, r5);
1794 __ AddP(r4, ip, r4);
1795
1796 // Argument 4, r5: End of string data
1797 __ LoadP(r1, FieldMemOperand(r2, String::kLengthOffset));
1798 __ SmiUntag(r1);
1799 __ ShiftLeftP(r0, r1, r5);
1800 __ AddP(r5, ip, r0);
1801
1802 // Locate the code entry and call it.
1803 __ AddP(code, Operand(Code::kHeaderSize - kHeapObjectTag));
1804
1805 DirectCEntryStub stub(isolate());
1806 stub.GenerateCall(masm, code);
1807
1808 __ LeaveExitFrame(false, no_reg, true);
1809
1810 // r2: result (int32)
1811 // subject: subject string -- needed to reload
1812 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1813
1814 // regexp_data: RegExp data (callee saved)
1815 // last_match_info_elements: Last match info elements (callee saved)
1816 // Check the result.
1817 Label success;
1818 __ Cmp32(r2, Operand(1));
1819 // We expect exactly one result since we force the called regexp to behave
1820 // as non-global.
1821 __ beq(&success);
1822 Label failure;
1823 __ Cmp32(r2, Operand(NativeRegExpMacroAssembler::FAILURE));
1824 __ beq(&failure);
1825 __ Cmp32(r2, Operand(NativeRegExpMacroAssembler::EXCEPTION));
1826 // If not exception it can only be retry. Handle that in the runtime system.
1827 __ bne(&runtime);
1828 // Result must now be exception. If there is no pending exception already a
1829 // stack overflow (on the backtrack stack) was detected in RegExp code but
1830 // haven't created the exception yet. Handle that in the runtime system.
1831 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
1832 __ mov(r3, Operand(isolate()->factory()->the_hole_value()));
1833 __ mov(r4, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1834 isolate())));
1835 __ LoadP(r2, MemOperand(r4, 0));
1836 __ CmpP(r2, r3);
1837 __ beq(&runtime);
1838
1839 // For exception, throw the exception again.
1840 __ TailCallRuntime(Runtime::kRegExpExecReThrow);
1841
1842 __ bind(&failure);
1843 // For failure and exception return null.
1844 __ mov(r2, Operand(isolate()->factory()->null_value()));
1845 __ la(sp, MemOperand(sp, (4 * kPointerSize)));
1846 __ Ret();
1847
1848 // Process the result from the native regexp code.
1849 __ bind(&success);
1850 __ LoadP(r3,
1851 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1852 // Calculate number of capture registers (number_of_captures + 1) * 2.
1853 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1854 // SmiUntag (which is a nop for 32-bit).
1855 __ SmiToShortArrayOffset(r3, r3);
1856 __ AddP(r3, Operand(2));
1857
1858 __ LoadP(r2, MemOperand(sp, kLastMatchInfoOffset));
1859 __ JumpIfSmi(r2, &runtime);
1860 __ CompareObjectType(r2, r4, r4, JS_ARRAY_TYPE);
1861 __ bne(&runtime);
1862 // Check that the JSArray is in fast case.
1863 __ LoadP(last_match_info_elements,
1864 FieldMemOperand(r2, JSArray::kElementsOffset));
1865 __ LoadP(r2,
1866 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
1867 __ CompareRoot(r2, Heap::kFixedArrayMapRootIndex);
1868 __ bne(&runtime);
1869 // Check that the last match info has space for the capture registers and the
1870 // additional information.
1871 __ LoadP(
1872 r2, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
1873 __ AddP(r4, r3, Operand(RegExpImpl::kLastMatchOverhead));
1874 __ SmiUntag(r0, r2);
1875 __ CmpP(r4, r0);
1876 __ bgt(&runtime);
1877
1878 // r3: number of capture registers
1879 // subject: subject string
1880 // Store the capture count.
1881 __ SmiTag(r4, r3);
1882 __ StoreP(r4, FieldMemOperand(last_match_info_elements,
1883 RegExpImpl::kLastCaptureCountOffset));
1884 // Store last subject and last input.
1885 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1886 RegExpImpl::kLastSubjectOffset));
1887 __ LoadRR(r4, subject);
1888 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
1889 subject, r9, kLRHasNotBeenSaved, kDontSaveFPRegs);
1890 __ LoadRR(subject, r4);
1891 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
1892 RegExpImpl::kLastInputOffset));
1893 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
1894 subject, r9, kLRHasNotBeenSaved, kDontSaveFPRegs);
1895
1896 // Get the static offsets vector filled by the native regexp code.
1897 ExternalReference address_of_static_offsets_vector =
1898 ExternalReference::address_of_static_offsets_vector(isolate());
1899 __ mov(r4, Operand(address_of_static_offsets_vector));
1900
1901 // r3: number of capture registers
1902 // r4: offsets vector
1903 Label next_capture;
1904 // Capture register counter starts from number of capture registers and
1905 // counts down until wraping after zero.
1906 __ AddP(
1907 r2, last_match_info_elements,
1908 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
1909 __ AddP(r4, Operand(-kIntSize)); // bias down for lwzu
1910 __ bind(&next_capture);
1911 // Read the value from the static offsets vector buffer.
1912 __ ly(r5, MemOperand(r4, kIntSize));
1913 __ lay(r4, MemOperand(r4, kIntSize));
1914 // Store the smi value in the last match info.
1915 __ SmiTag(r5);
1916 __ StoreP(r5, MemOperand(r2, kPointerSize));
1917 __ lay(r2, MemOperand(r2, kPointerSize));
1918 __ BranchOnCount(r3, &next_capture);
1919
1920 // Return last match info.
1921 __ LoadP(r2, MemOperand(sp, kLastMatchInfoOffset));
1922 __ la(sp, MemOperand(sp, (4 * kPointerSize)));
1923 __ Ret();
1924
1925 // Do the runtime call to execute the regexp.
1926 __ bind(&runtime);
1927 __ TailCallRuntime(Runtime::kRegExpExec);
1928
1929 // Deferred code for string handling.
1930 // (5) Long external string? If not, go to (7).
1931 __ bind(&not_seq_nor_cons);
1932 // Compare flags are still set.
1933 __ bgt(&not_long_external, Label::kNear); // Go to (7).
1934
1935 // (6) External string. Make it, offset-wise, look like a sequential string.
1936 __ bind(&external_string);
1937 __ LoadP(r2, FieldMemOperand(subject, HeapObject::kMapOffset));
1938 __ LoadlB(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
1939 if (FLAG_debug_code) {
1940 // Assert that we do not have a cons or slice (indirect strings) here.
1941 // Sequential strings have already been ruled out.
1942 STATIC_ASSERT(kIsIndirectStringMask == 1);
1943 __ tmll(r2, Operand(kIsIndirectStringMask));
1944 __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
1945 }
1946 __ LoadP(subject,
1947 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
1948 // Move the pointer so that offset-wise, it looks like a sequential string.
1949 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1950 __ SubP(subject, subject,
1951 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
1952 __ b(&seq_string); // Go to (4).
1953
1954 // (7) Short external string or not a string? If yes, bail out to runtime.
1955 __ bind(&not_long_external);
1956 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
1957 __ mov(r0, Operand(kIsNotStringMask | kShortExternalStringMask));
1958 __ AndP(r0, r3);
1959 __ bne(&runtime);
1960
1961 // (8) Sliced string. Replace subject with parent. Go to (4).
1962 // Load offset into ip and replace subject string with parent.
1963 __ LoadP(ip, FieldMemOperand(subject, SlicedString::kOffsetOffset));
1964 __ SmiUntag(ip);
1965 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
1966 __ b(&check_underlying); // Go to (4).
1967#endif // V8_INTERPRETED_REGEXP
1968}
1969
1970static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
1971 // r2 : number of arguments to the construct function
1972 // r3 : the function to call
1973 // r4 : feedback vector
1974 // r5 : slot in feedback vector (Smi)
1975 FrameScope scope(masm, StackFrame::INTERNAL);
1976
1977 // Number-of-arguments register must be smi-tagged to call out.
1978 __ SmiTag(r2);
1979 __ Push(r5, r4, r3, r2);
1980
1981 __ CallStub(stub);
1982
1983 __ Pop(r5, r4, r3, r2);
1984 __ SmiUntag(r2);
1985}
1986
1987static void GenerateRecordCallTarget(MacroAssembler* masm) {
1988 // Cache the called function in a feedback vector slot. Cache states
1989 // are uninitialized, monomorphic (indicated by a JSFunction), and
1990 // megamorphic.
1991 // r2 : number of arguments to the construct function
1992 // r3 : the function to call
1993 // r4 : feedback vector
1994 // r5 : slot in feedback vector (Smi)
1995 Label initialize, done, miss, megamorphic, not_array_function;
1996
1997 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
1998 masm->isolate()->heap()->megamorphic_symbol());
1999 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2000 masm->isolate()->heap()->uninitialized_symbol());
2001
2002 // Load the cache state into r7.
2003 __ SmiToPtrArrayOffset(r7, r5);
2004 __ AddP(r7, r4, r7);
2005 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2006
2007 // A monomorphic cache hit or an already megamorphic state: invoke the
2008 // function without changing the state.
2009 // We don't know if r7 is a WeakCell or a Symbol, but it's harmless to read at
2010 // this position in a symbol (see static asserts in type-feedback-vector.h).
2011 Label check_allocation_site;
2012 Register feedback_map = r8;
2013 Register weak_value = r9;
2014 __ LoadP(weak_value, FieldMemOperand(r7, WeakCell::kValueOffset));
2015 __ CmpP(r3, weak_value);
2016 __ beq(&done);
2017 __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex);
2018 __ beq(&done);
2019 __ LoadP(feedback_map, FieldMemOperand(r7, HeapObject::kMapOffset));
2020 __ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
2021 __ bne(&check_allocation_site);
2022
2023 // If the weak cell is cleared, we have a new chance to become monomorphic.
2024 __ JumpIfSmi(weak_value, &initialize);
2025 __ b(&megamorphic);
2026
2027 __ bind(&check_allocation_site);
2028 // If we came here, we need to see if we are the array function.
2029 // If we didn't have a matching function, and we didn't find the megamorph
2030 // sentinel, then we have in the slot either some other function or an
2031 // AllocationSite.
2032 __ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
2033 __ bne(&miss);
2034
2035 // Make sure the function is the Array() function
2036 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
2037 __ CmpP(r3, r7);
2038 __ bne(&megamorphic);
2039 __ b(&done);
2040
2041 __ bind(&miss);
2042
2043 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2044 // megamorphic.
2045 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex);
2046 __ beq(&initialize);
2047 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2048 // write-barrier is needed.
2049 __ bind(&megamorphic);
2050 __ SmiToPtrArrayOffset(r7, r5);
2051 __ AddP(r7, r4, r7);
2052 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2053 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
2054 __ jmp(&done);
2055
2056 // An uninitialized cache is patched with the function
2057 __ bind(&initialize);
2058
2059 // Make sure the function is the Array() function.
2060 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
2061 __ CmpP(r3, r7);
2062 __ bne(&not_array_function);
2063
2064 // The target function is the Array constructor,
2065 // Create an AllocationSite if we don't already have it, store it in the
2066 // slot.
2067 CreateAllocationSiteStub create_stub(masm->isolate());
2068 CallStubInRecordCallTarget(masm, &create_stub);
2069 __ b(&done);
2070
2071 __ bind(&not_array_function);
2072
2073 CreateWeakCellStub weak_cell_stub(masm->isolate());
2074 CallStubInRecordCallTarget(masm, &weak_cell_stub);
2075 __ bind(&done);
2076}
2077
2078void CallConstructStub::Generate(MacroAssembler* masm) {
2079 // r2 : number of arguments
2080 // r3 : the function to call
2081 // r4 : feedback vector
2082 // r5 : slot in feedback vector (Smi, for RecordCallTarget)
2083
2084 Label non_function;
2085 // Check that the function is not a smi.
2086 __ JumpIfSmi(r3, &non_function);
2087 // Check that the function is a JSFunction.
2088 __ CompareObjectType(r3, r7, r7, JS_FUNCTION_TYPE);
2089 __ bne(&non_function);
2090
2091 GenerateRecordCallTarget(masm);
2092
2093 __ SmiToPtrArrayOffset(r7, r5);
2094 __ AddP(r7, r4, r7);
2095 // Put the AllocationSite from the feedback vector into r4, or undefined.
2096 __ LoadP(r4, FieldMemOperand(r7, FixedArray::kHeaderSize));
2097 __ LoadP(r7, FieldMemOperand(r4, AllocationSite::kMapOffset));
2098 __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
2099 Label feedback_register_initialized;
2100 __ beq(&feedback_register_initialized);
2101 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2102 __ bind(&feedback_register_initialized);
2103
2104 __ AssertUndefinedOrAllocationSite(r4, r7);
2105
2106 // Pass function as new target.
2107 __ LoadRR(r5, r3);
2108
2109 // Tail call to the function-specific construct stub (still in the caller
2110 // context at this point).
2111 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
2112 __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset));
2113 __ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
2114 __ JumpToJSEntry(ip);
2115
2116 __ bind(&non_function);
2117 __ LoadRR(r5, r3);
2118 __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
2119}
2120
2121void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) {
2122 // r3 - function
2123 // r5 - slot id
2124 // r4 - vector
2125 // r6 - allocation site (loaded from vector[slot])
2126 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r7);
2127 __ CmpP(r3, r7);
2128 __ bne(miss);
2129
2130 __ mov(r2, Operand(arg_count()));
2131
2132 // Increment the call count for monomorphic function calls.
2133 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
2134 __ SmiToPtrArrayOffset(r7, r5);
2135 __ AddP(r4, r4, r7);
2136 __ LoadP(r5, FieldMemOperand(r4, count_offset));
2137 __ AddSmiLiteral(r5, r5, Smi::FromInt(CallICNexus::kCallCountIncrement), r0);
2138 __ StoreP(r5, FieldMemOperand(r4, count_offset), r0);
2139
2140 __ LoadRR(r4, r6);
2141 __ LoadRR(r5, r3);
2142 ArrayConstructorStub stub(masm->isolate(), arg_count());
2143 __ TailCallStub(&stub);
2144}
2145
2146void CallICStub::Generate(MacroAssembler* masm) {
2147 // r3 - function
2148 // r5 - slot id (Smi)
2149 // r4 - vector
2150 Label extra_checks_or_miss, call, call_function;
2151 int argc = arg_count();
2152 ParameterCount actual(argc);
2153
2154 // The checks. First, does r3 match the recorded monomorphic target?
2155 __ SmiToPtrArrayOffset(r8, r5);
2156 __ AddP(r8, r4, r8);
2157 __ LoadP(r6, FieldMemOperand(r8, FixedArray::kHeaderSize));
2158
2159 // We don't know that we have a weak cell. We might have a private symbol
2160 // or an AllocationSite, but the memory is safe to examine.
2161 // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to
2162 // FixedArray.
2163 // WeakCell::kValueOffset - contains a JSFunction or Smi(0)
2164 // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not
2165 // computed, meaning that it can't appear to be a pointer. If the low bit is
2166 // 0, then hash is computed, but the 0 bit prevents the field from appearing
2167 // to be a pointer.
2168 STATIC_ASSERT(WeakCell::kSize >= kPointerSize);
2169 STATIC_ASSERT(AllocationSite::kTransitionInfoOffset ==
2170 WeakCell::kValueOffset &&
2171 WeakCell::kValueOffset == Symbol::kHashFieldSlot);
2172
2173 __ LoadP(r7, FieldMemOperand(r6, WeakCell::kValueOffset));
2174 __ CmpP(r3, r7);
2175 __ bne(&extra_checks_or_miss, Label::kNear);
2176
2177 // The compare above could have been a SMI/SMI comparison. Guard against this
2178 // convincing us that we have a monomorphic JSFunction.
2179 __ JumpIfSmi(r3, &extra_checks_or_miss);
2180
2181 // Increment the call count for monomorphic function calls.
2182 const int count_offset = FixedArray::kHeaderSize + kPointerSize;
2183 __ LoadP(r5, FieldMemOperand(r8, count_offset));
2184 __ AddSmiLiteral(r5, r5, Smi::FromInt(CallICNexus::kCallCountIncrement), r0);
2185 __ StoreP(r5, FieldMemOperand(r8, count_offset), r0);
2186
2187 __ bind(&call_function);
2188 __ mov(r2, Operand(argc));
2189 __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode(),
2190 tail_call_mode()),
2191 RelocInfo::CODE_TARGET);
2192
2193 __ bind(&extra_checks_or_miss);
2194 Label uninitialized, miss, not_allocation_site;
2195
2196 __ CompareRoot(r6, Heap::kmegamorphic_symbolRootIndex);
2197 __ beq(&call);
2198
2199 // Verify that r6 contains an AllocationSite
2200 __ LoadP(r7, FieldMemOperand(r6, HeapObject::kMapOffset));
2201 __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
2202 __ bne(&not_allocation_site);
2203
2204 // We have an allocation site.
2205 HandleArrayCase(masm, &miss);
2206
2207 __ bind(&not_allocation_site);
2208
2209 // The following cases attempt to handle MISS cases without going to the
2210 // runtime.
2211 if (FLAG_trace_ic) {
2212 __ b(&miss);
2213 }
2214
2215 __ CompareRoot(r6, Heap::kuninitialized_symbolRootIndex);
2216 __ beq(&uninitialized);
2217
2218 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2219 // to handle it here. More complex cases are dealt with in the runtime.
2220 __ AssertNotSmi(r6);
2221 __ CompareObjectType(r6, r7, r7, JS_FUNCTION_TYPE);
2222 __ bne(&miss);
2223 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
2224 __ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
2225
2226 __ bind(&call);
2227 __ mov(r2, Operand(argc));
2228 __ Jump(masm->isolate()->builtins()->Call(convert_mode(), tail_call_mode()),
2229 RelocInfo::CODE_TARGET);
2230
2231 __ bind(&uninitialized);
2232
2233 // We are going monomorphic, provided we actually have a JSFunction.
2234 __ JumpIfSmi(r3, &miss);
2235
2236 // Goto miss case if we do not have a function.
2237 __ CompareObjectType(r3, r6, r6, JS_FUNCTION_TYPE);
2238 __ bne(&miss);
2239
2240 // Make sure the function is not the Array() function, which requires special
2241 // behavior on MISS.
2242 __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r6);
2243 __ CmpP(r3, r6);
2244 __ beq(&miss);
2245
2246 // Make sure the function belongs to the same native context.
2247 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kContextOffset));
2248 __ LoadP(r6, ContextMemOperand(r6, Context::NATIVE_CONTEXT_INDEX));
2249 __ LoadP(ip, NativeContextMemOperand());
2250 __ CmpP(r6, ip);
2251 __ bne(&miss);
2252
2253 // Initialize the call counter.
2254 __ LoadSmiLiteral(r7, Smi::FromInt(CallICNexus::kCallCountIncrement));
2255 __ StoreP(r7, FieldMemOperand(r8, count_offset), r0);
2256
2257 // Store the function. Use a stub since we need a frame for allocation.
2258 // r4 - vector
2259 // r5 - slot
2260 // r3 - function
2261 {
2262 FrameScope scope(masm, StackFrame::INTERNAL);
2263 CreateWeakCellStub create_stub(masm->isolate());
2264 __ Push(r3);
2265 __ CallStub(&create_stub);
2266 __ Pop(r3);
2267 }
2268
2269 __ b(&call_function);
2270
2271 // We are here because tracing is on or we encountered a MISS case we can't
2272 // handle here.
2273 __ bind(&miss);
2274 GenerateMiss(masm);
2275
2276 __ b(&call);
2277}
2278
2279void CallICStub::GenerateMiss(MacroAssembler* masm) {
2280 FrameScope scope(masm, StackFrame::INTERNAL);
2281
2282 // Push the function and feedback info.
2283 __ Push(r3, r4, r5);
2284
2285 // Call the entry.
2286 __ CallRuntime(Runtime::kCallIC_Miss);
2287
2288 // Move result to r3 and exit the internal frame.
2289 __ LoadRR(r3, r2);
2290}
2291
2292// StringCharCodeAtGenerator
2293void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2294 // If the receiver is a smi trigger the non-string case.
2295 if (check_mode_ == RECEIVER_IS_UNKNOWN) {
2296 __ JumpIfSmi(object_, receiver_not_string_);
2297
2298 // Fetch the instance type of the receiver into result register.
2299 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2300 __ LoadlB(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2301 // If the receiver is not a string trigger the non-string case.
2302 __ mov(r0, Operand(kIsNotStringMask));
2303 __ AndP(r0, result_);
2304 __ bne(receiver_not_string_);
2305 }
2306
2307 // If the index is non-smi trigger the non-smi case.
2308 __ JumpIfNotSmi(index_, &index_not_smi_);
2309 __ bind(&got_smi_index_);
2310
2311 // Check for index out of range.
2312 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
2313 __ CmpLogicalP(ip, index_);
2314 __ ble(index_out_of_range_);
2315
2316 __ SmiUntag(index_);
2317
2318 StringCharLoadGenerator::Generate(masm, object_, index_, result_,
2319 &call_runtime_);
2320
2321 __ SmiTag(result_);
2322 __ bind(&exit_);
2323}
2324
2325void StringCharCodeAtGenerator::GenerateSlow(
2326 MacroAssembler* masm, EmbedMode embed_mode,
2327 const RuntimeCallHelper& call_helper) {
2328 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2329
2330 // Index is not a smi.
2331 __ bind(&index_not_smi_);
2332 // If index is a heap number, try converting it to an integer.
2333 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
2334 DONT_DO_SMI_CHECK);
2335 call_helper.BeforeCall(masm);
2336 if (embed_mode == PART_OF_IC_HANDLER) {
2337 __ Push(LoadWithVectorDescriptor::VectorRegister(),
2338 LoadWithVectorDescriptor::SlotRegister(), object_, index_);
2339 } else {
2340 // index_ is consumed by runtime conversion function.
2341 __ Push(object_, index_);
2342 }
2343 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2344 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero);
2345 } else {
2346 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2347 // NumberToSmi discards numbers that are not exact integers.
2348 __ CallRuntime(Runtime::kNumberToSmi);
2349 }
2350 // Save the conversion result before the pop instructions below
2351 // have a chance to overwrite it.
2352 __ Move(index_, r2);
2353 if (embed_mode == PART_OF_IC_HANDLER) {
2354 __ Pop(LoadWithVectorDescriptor::VectorRegister(),
2355 LoadWithVectorDescriptor::SlotRegister(), object_);
2356 } else {
2357 __ pop(object_);
2358 }
2359 // Reload the instance type.
2360 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2361 __ LoadlB(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2362 call_helper.AfterCall(masm);
2363 // If index is still not a smi, it must be out of range.
2364 __ JumpIfNotSmi(index_, index_out_of_range_);
2365 // Otherwise, return to the fast path.
2366 __ b(&got_smi_index_);
2367
2368 // Call runtime. We get here when the receiver is a string and the
2369 // index is a number, but the code of getting the actual character
2370 // is too complex (e.g., when the string needs to be flattened).
2371 __ bind(&call_runtime_);
2372 call_helper.BeforeCall(masm);
2373 __ SmiTag(index_);
2374 __ Push(object_, index_);
2375 __ CallRuntime(Runtime::kStringCharCodeAtRT);
2376 __ Move(result_, r2);
2377 call_helper.AfterCall(masm);
2378 __ b(&exit_);
2379
2380 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2381}
2382
2383// -------------------------------------------------------------------------
2384// StringCharFromCodeGenerator
2385
2386void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2387 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2388 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU + 1));
2389 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCodeU));
2390 __ OrP(r0, r0, Operand(kSmiTagMask));
2391 __ AndP(r0, code_, r0);
2392 __ bne(&slow_case_);
2393
2394 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2395 // At this point code register contains smi tagged one-byte char code.
2396 __ LoadRR(r0, code_);
2397 __ SmiToPtrArrayOffset(code_, code_);
2398 __ AddP(result_, code_);
2399 __ LoadRR(code_, r0);
2400 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2401 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2402 __ beq(&slow_case_);
2403 __ bind(&exit_);
2404}
2405
2406void StringCharFromCodeGenerator::GenerateSlow(
2407 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2408 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2409
2410 __ bind(&slow_case_);
2411 call_helper.BeforeCall(masm);
2412 __ push(code_);
2413 __ CallRuntime(Runtime::kStringCharFromCode);
2414 __ Move(result_, r2);
2415 call_helper.AfterCall(masm);
2416 __ b(&exit_);
2417
2418 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2419}
2420
2421enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 };
2422
2423void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
2424 Register src, Register count,
2425 Register scratch,
2426 String::Encoding encoding) {
2427 if (FLAG_debug_code) {
2428 // Check that destination is word aligned.
2429 __ mov(r0, Operand(kPointerAlignmentMask));
2430 __ AndP(r0, dest);
2431 __ Check(eq, kDestinationOfCopyNotAligned, cr0);
2432 }
2433
2434 // Nothing to do for zero characters.
2435 Label done;
2436 if (encoding == String::TWO_BYTE_ENCODING) {
2437 // double the length
2438 __ AddP(count, count, count);
2439 __ beq(&done, Label::kNear);
2440 } else {
2441 __ CmpP(count, Operand::Zero());
2442 __ beq(&done, Label::kNear);
2443 }
2444
2445 // Copy count bytes from src to dst.
2446 Label byte_loop;
2447 // TODO(joransiu): Convert into MVC loop
2448 __ bind(&byte_loop);
2449 __ LoadlB(scratch, MemOperand(src));
2450 __ la(src, MemOperand(src, 1));
2451 __ stc(scratch, MemOperand(dest));
2452 __ la(dest, MemOperand(dest, 1));
2453 __ BranchOnCount(count, &byte_loop);
2454
2455 __ bind(&done);
2456}
2457
2458void SubStringStub::Generate(MacroAssembler* masm) {
2459 Label runtime;
2460
2461 // Stack frame on entry.
2462 // lr: return address
2463 // sp[0]: to
2464 // sp[4]: from
2465 // sp[8]: string
2466
2467 // This stub is called from the native-call %_SubString(...), so
2468 // nothing can be assumed about the arguments. It is tested that:
2469 // "string" is a sequential string,
2470 // both "from" and "to" are smis, and
2471 // 0 <= from <= to <= string.length.
2472 // If any of these assumptions fail, we call the runtime system.
2473
2474 const int kToOffset = 0 * kPointerSize;
2475 const int kFromOffset = 1 * kPointerSize;
2476 const int kStringOffset = 2 * kPointerSize;
2477
2478 __ LoadP(r4, MemOperand(sp, kToOffset));
2479 __ LoadP(r5, MemOperand(sp, kFromOffset));
2480
2481 // If either to or from had the smi tag bit set, then fail to generic runtime
2482 __ JumpIfNotSmi(r4, &runtime);
2483 __ JumpIfNotSmi(r5, &runtime);
2484 __ SmiUntag(r4);
2485 __ SmiUntag(r5);
2486 // Both r4 and r5 are untagged integers.
2487
2488 // We want to bailout to runtime here if From is negative.
2489 __ blt(&runtime); // From < 0.
2490
2491 __ CmpLogicalP(r5, r4);
2492 __ bgt(&runtime); // Fail if from > to.
2493 __ SubP(r4, r4, r5);
2494
2495 // Make sure first argument is a string.
2496 __ LoadP(r2, MemOperand(sp, kStringOffset));
2497 __ JumpIfSmi(r2, &runtime);
2498 Condition is_string = masm->IsObjectStringType(r2, r3);
2499 __ b(NegateCondition(is_string), &runtime);
2500
2501 Label single_char;
2502 __ CmpP(r4, Operand(1));
2503 __ b(eq, &single_char);
2504
2505 // Short-cut for the case of trivial substring.
2506 Label return_r2;
2507 // r2: original string
2508 // r4: result string length
2509 __ LoadP(r6, FieldMemOperand(r2, String::kLengthOffset));
2510 __ SmiUntag(r0, r6);
2511 __ CmpLogicalP(r4, r0);
2512 // Return original string.
2513 __ beq(&return_r2);
2514 // Longer than original string's length or negative: unsafe arguments.
2515 __ bgt(&runtime);
2516 // Shorter than original string's length: an actual substring.
2517
2518 // Deal with different string types: update the index if necessary
2519 // and put the underlying string into r7.
2520 // r2: original string
2521 // r3: instance type
2522 // r4: length
2523 // r5: from index (untagged)
2524 Label underlying_unpacked, sliced_string, seq_or_external_string;
2525 // If the string is not indirect, it can only be sequential or external.
2526 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2527 STATIC_ASSERT(kIsIndirectStringMask != 0);
2528 __ mov(r0, Operand(kIsIndirectStringMask));
2529 __ AndP(r0, r3);
2530 __ beq(&seq_or_external_string);
2531
2532 __ mov(r0, Operand(kSlicedNotConsMask));
2533 __ AndP(r0, r3);
2534 __ bne(&sliced_string);
2535 // Cons string. Check whether it is flat, then fetch first part.
2536 __ LoadP(r7, FieldMemOperand(r2, ConsString::kSecondOffset));
2537 __ CompareRoot(r7, Heap::kempty_stringRootIndex);
2538 __ bne(&runtime);
2539 __ LoadP(r7, FieldMemOperand(r2, ConsString::kFirstOffset));
2540 // Update instance type.
2541 __ LoadP(r3, FieldMemOperand(r7, HeapObject::kMapOffset));
2542 __ LoadlB(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2543 __ b(&underlying_unpacked);
2544
2545 __ bind(&sliced_string);
2546 // Sliced string. Fetch parent and correct start index by offset.
2547 __ LoadP(r7, FieldMemOperand(r2, SlicedString::kParentOffset));
2548 __ LoadP(r6, FieldMemOperand(r2, SlicedString::kOffsetOffset));
2549 __ SmiUntag(r3, r6);
2550 __ AddP(r5, r3); // Add offset to index.
2551 // Update instance type.
2552 __ LoadP(r3, FieldMemOperand(r7, HeapObject::kMapOffset));
2553 __ LoadlB(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2554 __ b(&underlying_unpacked);
2555
2556 __ bind(&seq_or_external_string);
2557 // Sequential or external string. Just move string to the expected register.
2558 __ LoadRR(r7, r2);
2559
2560 __ bind(&underlying_unpacked);
2561
2562 if (FLAG_string_slices) {
2563 Label copy_routine;
2564 // r7: underlying subject string
2565 // r3: instance type of underlying subject string
2566 // r4: length
2567 // r5: adjusted start index (untagged)
2568 __ CmpP(r4, Operand(SlicedString::kMinLength));
2569 // Short slice. Copy instead of slicing.
2570 __ blt(&copy_routine);
2571 // Allocate new sliced string. At this point we do not reload the instance
2572 // type including the string encoding because we simply rely on the info
2573 // provided by the original string. It does not matter if the original
2574 // string's encoding is wrong because we always have to recheck encoding of
2575 // the newly created string's parent anyways due to externalized strings.
2576 Label two_byte_slice, set_slice_header;
2577 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
2578 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
2579 __ mov(r0, Operand(kStringEncodingMask));
2580 __ AndP(r0, r3);
2581 __ beq(&two_byte_slice);
2582 __ AllocateOneByteSlicedString(r2, r4, r8, r9, &runtime);
2583 __ b(&set_slice_header);
2584 __ bind(&two_byte_slice);
2585 __ AllocateTwoByteSlicedString(r2, r4, r8, r9, &runtime);
2586 __ bind(&set_slice_header);
2587 __ SmiTag(r5);
2588 __ StoreP(r7, FieldMemOperand(r2, SlicedString::kParentOffset));
2589 __ StoreP(r5, FieldMemOperand(r2, SlicedString::kOffsetOffset));
2590 __ b(&return_r2);
2591
2592 __ bind(&copy_routine);
2593 }
2594
2595 // r7: underlying subject string
2596 // r3: instance type of underlying subject string
2597 // r4: length
2598 // r5: adjusted start index (untagged)
2599 Label two_byte_sequential, sequential_string, allocate_result;
2600 STATIC_ASSERT(kExternalStringTag != 0);
2601 STATIC_ASSERT(kSeqStringTag == 0);
2602 __ mov(r0, Operand(kExternalStringTag));
2603 __ AndP(r0, r3);
2604 __ beq(&sequential_string);
2605
2606 // Handle external string.
2607 // Rule out short external strings.
2608 STATIC_ASSERT(kShortExternalStringTag != 0);
2609 __ mov(r0, Operand(kShortExternalStringTag));
2610 __ AndP(r0, r3);
2611 __ bne(&runtime);
2612 __ LoadP(r7, FieldMemOperand(r7, ExternalString::kResourceDataOffset));
2613 // r7 already points to the first character of underlying string.
2614 __ b(&allocate_result);
2615
2616 __ bind(&sequential_string);
2617 // Locate first character of underlying subject string.
2618 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2619 __ AddP(r7, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2620
2621 __ bind(&allocate_result);
2622 // Sequential acii string. Allocate the result.
2623 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
2624 __ mov(r0, Operand(kStringEncodingMask));
2625 __ AndP(r0, r3);
2626 __ beq(&two_byte_sequential);
2627
2628 // Allocate and copy the resulting one-byte string.
2629 __ AllocateOneByteString(r2, r4, r6, r8, r9, &runtime);
2630
2631 // Locate first character of substring to copy.
2632 __ AddP(r7, r5);
2633 // Locate first character of result.
2634 __ AddP(r3, r2, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2635
2636 // r2: result string
2637 // r3: first character of result string
2638 // r4: result string length
2639 // r7: first character of substring to copy
2640 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2641 StringHelper::GenerateCopyCharacters(masm, r3, r7, r4, r5,
2642 String::ONE_BYTE_ENCODING);
2643 __ b(&return_r2);
2644
2645 // Allocate and copy the resulting two-byte string.
2646 __ bind(&two_byte_sequential);
2647 __ AllocateTwoByteString(r2, r4, r6, r8, r9, &runtime);
2648
2649 // Locate first character of substring to copy.
2650 __ ShiftLeftP(r3, r5, Operand(1));
2651 __ AddP(r7, r3);
2652 // Locate first character of result.
2653 __ AddP(r3, r2, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2654
2655 // r2: result string.
2656 // r3: first character of result.
2657 // r4: result length.
2658 // r7: first character of substring to copy.
2659 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2660 StringHelper::GenerateCopyCharacters(masm, r3, r7, r4, r5,
2661 String::TWO_BYTE_ENCODING);
2662
2663 __ bind(&return_r2);
2664 Counters* counters = isolate()->counters();
2665 __ IncrementCounter(counters->sub_string_native(), 1, r5, r6);
2666 __ Drop(3);
2667 __ Ret();
2668
2669 // Just jump to runtime to create the sub string.
2670 __ bind(&runtime);
2671 __ TailCallRuntime(Runtime::kSubString);
2672
2673 __ bind(&single_char);
2674 // r2: original string
2675 // r3: instance type
2676 // r4: length
2677 // r5: from index (untagged)
2678 __ SmiTag(r5, r5);
2679 StringCharAtGenerator generator(r2, r5, r4, r2, &runtime, &runtime, &runtime,
2680 STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING);
2681 generator.GenerateFast(masm);
2682 __ Drop(3);
2683 __ Ret();
2684 generator.SkipSlow(masm, &runtime);
2685}
2686
2687void ToNumberStub::Generate(MacroAssembler* masm) {
2688 // The ToNumber stub takes one argument in r2.
2689 STATIC_ASSERT(kSmiTag == 0);
2690 __ TestIfSmi(r2);
2691 __ Ret(eq);
2692
2693 __ CompareObjectType(r2, r3, r3, HEAP_NUMBER_TYPE);
2694 // r2: receiver
2695 // r3: receiver instance type
2696 Label not_heap_number;
2697 __ bne(&not_heap_number);
2698 __ Ret();
2699 __ bind(&not_heap_number);
2700
2701 NonNumberToNumberStub stub(masm->isolate());
2702 __ TailCallStub(&stub);
2703}
2704
2705void NonNumberToNumberStub::Generate(MacroAssembler* masm) {
2706 // The NonNumberToNumber stub takes one argument in r2.
2707 __ AssertNotNumber(r2);
2708
2709 __ CompareObjectType(r2, r3, r3, FIRST_NONSTRING_TYPE);
2710 // r2: receiver
2711 // r3: receiver instance type
2712 StringToNumberStub stub(masm->isolate());
2713 __ TailCallStub(&stub, lt);
2714
2715 Label not_oddball;
2716 __ CmpP(r3, Operand(ODDBALL_TYPE));
2717 __ bne(&not_oddball, Label::kNear);
2718 __ LoadP(r2, FieldMemOperand(r2, Oddball::kToNumberOffset));
2719 __ b(r14);
2720 __ bind(&not_oddball);
2721
2722 __ push(r2); // Push argument.
2723 __ TailCallRuntime(Runtime::kToNumber);
2724}
2725
2726void StringToNumberStub::Generate(MacroAssembler* masm) {
2727 // The StringToNumber stub takes one argument in r2.
2728 __ AssertString(r2);
2729
2730 // Check if string has a cached array index.
2731 Label runtime;
2732 __ LoadlW(r4, FieldMemOperand(r2, String::kHashFieldOffset));
2733 __ And(r0, r4, Operand(String::kContainsCachedArrayIndexMask));
2734 __ bne(&runtime);
2735 __ IndexFromHash(r4, r2);
2736 __ Ret();
2737
2738 __ bind(&runtime);
2739 __ push(r2); // Push argument.
2740 __ TailCallRuntime(Runtime::kStringToNumber);
2741}
2742
2743void ToStringStub::Generate(MacroAssembler* masm) {
2744 // The ToString stub takes one argument in r2.
2745 Label done;
2746 Label is_number;
2747 __ JumpIfSmi(r2, &is_number);
2748
2749 __ CompareObjectType(r2, r3, r3, FIRST_NONSTRING_TYPE);
2750 // r2: receiver
2751 // r3: receiver instance type
2752 __ blt(&done);
2753
2754 Label not_heap_number;
2755 __ CmpP(r3, Operand(HEAP_NUMBER_TYPE));
2756 __ bne(&not_heap_number);
2757 __ bind(&is_number);
2758 NumberToStringStub stub(isolate());
2759 __ TailCallStub(&stub);
2760 __ bind(&not_heap_number);
2761
2762 Label not_oddball;
2763 __ CmpP(r3, Operand(ODDBALL_TYPE));
2764 __ bne(&not_oddball);
2765 __ LoadP(r2, FieldMemOperand(r2, Oddball::kToStringOffset));
2766 __ Ret();
2767 __ bind(&not_oddball);
2768
2769 __ push(r2); // Push argument.
2770 __ TailCallRuntime(Runtime::kToString);
2771
2772 __ bind(&done);
2773 __ Ret();
2774}
2775
2776void ToNameStub::Generate(MacroAssembler* masm) {
2777 // The ToName stub takes one argument in r2.
2778 Label is_number;
2779 __ JumpIfSmi(r2, &is_number);
2780
2781 STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE);
2782 __ CompareObjectType(r2, r3, r3, LAST_NAME_TYPE);
2783 // r2: receiver
2784 // r3: receiver instance type
2785 __ Ret(le);
2786
2787 Label not_heap_number;
2788 __ CmpP(r3, Operand(HEAP_NUMBER_TYPE));
2789 __ bne(&not_heap_number);
2790 __ bind(&is_number);
2791 NumberToStringStub stub(isolate());
2792 __ TailCallStub(&stub);
2793 __ bind(&not_heap_number);
2794
2795 Label not_oddball;
2796 __ CmpP(r3, Operand(ODDBALL_TYPE));
2797 __ bne(&not_oddball);
2798 __ LoadP(r2, FieldMemOperand(r2, Oddball::kToStringOffset));
2799 __ Ret();
2800 __ bind(&not_oddball);
2801
2802 __ push(r2); // Push argument.
2803 __ TailCallRuntime(Runtime::kToName);
2804}
2805
2806void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
2807 Register left,
2808 Register right,
2809 Register scratch1,
2810 Register scratch2) {
2811 Register length = scratch1;
2812
2813 // Compare lengths.
2814 Label strings_not_equal, check_zero_length;
2815 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
2816 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2817 __ CmpP(length, scratch2);
2818 __ beq(&check_zero_length);
2819 __ bind(&strings_not_equal);
2820 __ LoadSmiLiteral(r2, Smi::FromInt(NOT_EQUAL));
2821 __ Ret();
2822
2823 // Check if the length is zero.
2824 Label compare_chars;
2825 __ bind(&check_zero_length);
2826 STATIC_ASSERT(kSmiTag == 0);
2827 __ CmpP(length, Operand::Zero());
2828 __ bne(&compare_chars);
2829 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2830 __ Ret();
2831
2832 // Compare characters.
2833 __ bind(&compare_chars);
2834 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
2835 &strings_not_equal);
2836
2837 // Characters are equal.
2838 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
2839 __ Ret();
2840}
2841
2842void StringHelper::GenerateCompareFlatOneByteStrings(
2843 MacroAssembler* masm, Register left, Register right, Register scratch1,
2844 Register scratch2, Register scratch3) {
2845 Label skip, result_not_equal, compare_lengths;
2846 // Find minimum length and length difference.
2847 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
2848 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
2849 __ SubP(scratch3, scratch1, scratch2 /*, LeaveOE, SetRC*/);
2850 // Removing RC looks okay here.
2851 Register length_delta = scratch3;
2852 __ ble(&skip, Label::kNear);
2853 __ LoadRR(scratch1, scratch2);
2854 __ bind(&skip);
2855 Register min_length = scratch1;
2856 STATIC_ASSERT(kSmiTag == 0);
2857 __ CmpP(min_length, Operand::Zero());
2858 __ beq(&compare_lengths);
2859
2860 // Compare loop.
2861 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
2862 &result_not_equal);
2863
2864 // Compare lengths - strings up to min-length are equal.
2865 __ bind(&compare_lengths);
2866 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
2867 // Use length_delta as result if it's zero.
2868 __ LoadRR(r2, length_delta);
2869 __ CmpP(length_delta, Operand::Zero());
2870 __ bind(&result_not_equal);
2871 // Conditionally update the result based either on length_delta or
2872 // the last comparion performed in the loop above.
2873 Label less_equal, equal;
2874 __ ble(&less_equal);
2875 __ LoadSmiLiteral(r2, Smi::FromInt(GREATER));
2876 __ Ret();
2877 __ bind(&less_equal);
2878 __ beq(&equal);
2879 __ LoadSmiLiteral(r2, Smi::FromInt(LESS));
2880 __ bind(&equal);
2881 __ Ret();
2882}
2883
2884void StringHelper::GenerateOneByteCharsCompareLoop(
2885 MacroAssembler* masm, Register left, Register right, Register length,
2886 Register scratch1, Label* chars_not_equal) {
2887 // Change index to run from -length to -1 by adding length to string
2888 // start. This means that loop ends when index reaches zero, which
2889 // doesn't need an additional compare.
2890 __ SmiUntag(length);
2891 __ AddP(scratch1, length,
2892 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
2893 __ AddP(left, scratch1);
2894 __ AddP(right, scratch1);
2895 __ LoadComplementRR(length, length);
2896 Register index = length; // index = -length;
2897
2898 // Compare loop.
2899 Label loop;
2900 __ bind(&loop);
2901 __ LoadlB(scratch1, MemOperand(left, index));
2902 __ LoadlB(r0, MemOperand(right, index));
2903 __ CmpP(scratch1, r0);
2904 __ bne(chars_not_equal);
2905 __ AddP(index, Operand(1));
2906 __ CmpP(index, Operand::Zero());
2907 __ bne(&loop);
2908}
2909
2910void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
2911 // ----------- S t a t e -------------
2912 // -- r3 : left
2913 // -- r2 : right
2914 // r3: second string
2915 // -----------------------------------
2916
2917 // Load r4 with the allocation site. We stick an undefined dummy value here
2918 // and replace it with the real allocation site later when we instantiate this
2919 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
2920 __ Move(r4, handle(isolate()->heap()->undefined_value()));
2921
2922 // Make sure that we actually patched the allocation site.
2923 if (FLAG_debug_code) {
2924 __ TestIfSmi(r4);
2925 __ Assert(ne, kExpectedAllocationSite, cr0);
2926 __ push(r4);
2927 __ LoadP(r4, FieldMemOperand(r4, HeapObject::kMapOffset));
2928 __ CompareRoot(r4, Heap::kAllocationSiteMapRootIndex);
2929 __ pop(r4);
2930 __ Assert(eq, kExpectedAllocationSite);
2931 }
2932
2933 // Tail call into the stub that handles binary operations with allocation
2934 // sites.
2935 BinaryOpWithAllocationSiteStub stub(isolate(), state());
2936 __ TailCallStub(&stub);
2937}
2938
2939void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
2940 DCHECK_EQ(CompareICState::BOOLEAN, state());
2941 Label miss;
2942
2943 __ CheckMap(r3, r4, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2944 __ CheckMap(r2, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
2945 if (!Token::IsEqualityOp(op())) {
2946 __ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
2947 __ AssertSmi(r3);
2948 __ LoadP(r2, FieldMemOperand(r2, Oddball::kToNumberOffset));
2949 __ AssertSmi(r2);
2950 }
2951 __ SubP(r2, r3, r2);
2952 __ Ret();
2953
2954 __ bind(&miss);
2955 GenerateMiss(masm);
2956}
2957
2958void CompareICStub::GenerateSmis(MacroAssembler* masm) {
2959 DCHECK(state() == CompareICState::SMI);
2960 Label miss;
2961 __ OrP(r4, r3, r2);
2962 __ JumpIfNotSmi(r4, &miss);
2963
2964 if (GetCondition() == eq) {
2965 // For equality we do not care about the sign of the result.
2966 // __ sub(r2, r2, r3, SetCC);
2967 __ SubP(r2, r2, r3);
2968 } else {
2969 // Untag before subtracting to avoid handling overflow.
2970 __ SmiUntag(r3);
2971 __ SmiUntag(r2);
2972 __ SubP(r2, r3, r2);
2973 }
2974 __ Ret();
2975
2976 __ bind(&miss);
2977 GenerateMiss(masm);
2978}
2979
2980void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
2981 DCHECK(state() == CompareICState::NUMBER);
2982
2983 Label generic_stub;
2984 Label unordered, maybe_undefined1, maybe_undefined2;
2985 Label miss;
2986 Label equal, less_than;
2987
2988 if (left() == CompareICState::SMI) {
2989 __ JumpIfNotSmi(r3, &miss);
2990 }
2991 if (right() == CompareICState::SMI) {
2992 __ JumpIfNotSmi(r2, &miss);
2993 }
2994
2995 // Inlining the double comparison and falling back to the general compare
2996 // stub if NaN is involved.
2997 // Load left and right operand.
2998 Label done, left, left_smi, right_smi;
2999 __ JumpIfSmi(r2, &right_smi);
3000 __ CheckMap(r2, r4, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3001 DONT_DO_SMI_CHECK);
3002 __ LoadDouble(d1, FieldMemOperand(r2, HeapNumber::kValueOffset));
3003 __ b(&left);
3004 __ bind(&right_smi);
3005 __ SmiToDouble(d1, r2);
3006
3007 __ bind(&left);
3008 __ JumpIfSmi(r3, &left_smi);
3009 __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3010 DONT_DO_SMI_CHECK);
3011 __ LoadDouble(d0, FieldMemOperand(r3, HeapNumber::kValueOffset));
3012 __ b(&done);
3013 __ bind(&left_smi);
3014 __ SmiToDouble(d0, r3);
3015
3016 __ bind(&done);
3017
3018 // Compare operands
3019 __ cdbr(d0, d1);
3020
3021 // Don't base result on status bits when a NaN is involved.
3022 __ bunordered(&unordered);
3023
3024 // Return a result of -1, 0, or 1, based on status bits.
3025 __ beq(&equal);
3026 __ blt(&less_than);
3027 // assume greater than
3028 __ LoadImmP(r2, Operand(GREATER));
3029 __ Ret();
3030 __ bind(&equal);
3031 __ LoadImmP(r2, Operand(EQUAL));
3032 __ Ret();
3033 __ bind(&less_than);
3034 __ LoadImmP(r2, Operand(LESS));
3035 __ Ret();
3036
3037 __ bind(&unordered);
3038 __ bind(&generic_stub);
3039 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3040 CompareICState::GENERIC, CompareICState::GENERIC);
3041 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3042
3043 __ bind(&maybe_undefined1);
3044 if (Token::IsOrderedRelationalCompareOp(op())) {
3045 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
3046 __ bne(&miss);
3047 __ JumpIfSmi(r3, &unordered);
3048 __ CompareObjectType(r3, r4, r4, HEAP_NUMBER_TYPE);
3049 __ bne(&maybe_undefined2);
3050 __ b(&unordered);
3051 }
3052
3053 __ bind(&maybe_undefined2);
3054 if (Token::IsOrderedRelationalCompareOp(op())) {
3055 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
3056 __ beq(&unordered);
3057 }
3058
3059 __ bind(&miss);
3060 GenerateMiss(masm);
3061}
3062
3063void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3064 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3065 Label miss, not_equal;
3066
3067 // Registers containing left and right operands respectively.
3068 Register left = r3;
3069 Register right = r2;
3070 Register tmp1 = r4;
3071 Register tmp2 = r5;
3072
3073 // Check that both operands are heap objects.
3074 __ JumpIfEitherSmi(left, right, &miss);
3075
3076 // Check that both operands are symbols.
3077 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3078 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3079 __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3080 __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3081 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3082 __ OrP(tmp1, tmp1, tmp2);
3083 __ AndP(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3084 __ bne(&miss);
3085
3086 // Internalized strings are compared by identity.
3087 __ CmpP(left, right);
3088 __ bne(&not_equal);
3089 // Make sure r2 is non-zero. At this point input operands are
3090 // guaranteed to be non-zero.
3091 DCHECK(right.is(r2));
3092 STATIC_ASSERT(EQUAL == 0);
3093 STATIC_ASSERT(kSmiTag == 0);
3094 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
3095 __ bind(&not_equal);
3096 __ Ret();
3097
3098 __ bind(&miss);
3099 GenerateMiss(masm);
3100}
3101
3102void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3103 DCHECK(state() == CompareICState::UNIQUE_NAME);
3104 DCHECK(GetCondition() == eq);
3105 Label miss;
3106
3107 // Registers containing left and right operands respectively.
3108 Register left = r3;
3109 Register right = r2;
3110 Register tmp1 = r4;
3111 Register tmp2 = r5;
3112
3113 // Check that both operands are heap objects.
3114 __ JumpIfEitherSmi(left, right, &miss);
3115
3116 // Check that both operands are unique names. This leaves the instance
3117 // types loaded in tmp1 and tmp2.
3118 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3119 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3120 __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3121 __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3122
3123 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
3124 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
3125
3126 // Unique names are compared by identity.
3127 __ CmpP(left, right);
3128 __ bne(&miss);
3129 // Make sure r2 is non-zero. At this point input operands are
3130 // guaranteed to be non-zero.
3131 DCHECK(right.is(r2));
3132 STATIC_ASSERT(EQUAL == 0);
3133 STATIC_ASSERT(kSmiTag == 0);
3134 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
3135 __ Ret();
3136
3137 __ bind(&miss);
3138 GenerateMiss(masm);
3139}
3140
3141void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3142 DCHECK(state() == CompareICState::STRING);
3143 Label miss, not_identical, is_symbol;
3144
3145 bool equality = Token::IsEqualityOp(op());
3146
3147 // Registers containing left and right operands respectively.
3148 Register left = r3;
3149 Register right = r2;
3150 Register tmp1 = r4;
3151 Register tmp2 = r5;
3152 Register tmp3 = r6;
3153 Register tmp4 = r7;
3154
3155 // Check that both operands are heap objects.
3156 __ JumpIfEitherSmi(left, right, &miss);
3157
3158 // Check that both operands are strings. This leaves the instance
3159 // types loaded in tmp1 and tmp2.
3160 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3161 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3162 __ LoadlB(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3163 __ LoadlB(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3164 STATIC_ASSERT(kNotStringTag != 0);
3165 __ OrP(tmp3, tmp1, tmp2);
3166 __ AndP(r0, tmp3, Operand(kIsNotStringMask));
3167 __ bne(&miss);
3168
3169 // Fast check for identical strings.
3170 __ CmpP(left, right);
3171 STATIC_ASSERT(EQUAL == 0);
3172 STATIC_ASSERT(kSmiTag == 0);
3173 __ bne(&not_identical);
3174 __ LoadSmiLiteral(r2, Smi::FromInt(EQUAL));
3175 __ Ret();
3176 __ bind(&not_identical);
3177
3178 // Handle not identical strings.
3179
3180 // Check that both strings are internalized strings. If they are, we're done
3181 // because we already know they are not identical. We know they are both
3182 // strings.
3183 if (equality) {
3184 DCHECK(GetCondition() == eq);
3185 STATIC_ASSERT(kInternalizedTag == 0);
3186 __ OrP(tmp3, tmp1, tmp2);
3187 __ AndP(r0, tmp3, Operand(kIsNotInternalizedMask));
3188 __ bne(&is_symbol);
3189 // Make sure r2 is non-zero. At this point input operands are
3190 // guaranteed to be non-zero.
3191 DCHECK(right.is(r2));
3192 __ Ret();
3193 __ bind(&is_symbol);
3194 }
3195
3196 // Check that both strings are sequential one-byte.
3197 Label runtime;
3198 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3199 &runtime);
3200
3201 // Compare flat one-byte strings. Returns when done.
3202 if (equality) {
3203 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3204 tmp2);
3205 } else {
3206 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3207 tmp2, tmp3);
3208 }
3209
3210 // Handle more complex cases in runtime.
3211 __ bind(&runtime);
3212 if (equality) {
3213 {
3214 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3215 __ Push(left, right);
3216 __ CallRuntime(Runtime::kStringEqual);
3217 }
3218 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
3219 __ SubP(r2, r2, r3);
3220 __ Ret();
3221 } else {
3222 __ Push(left, right);
3223 __ TailCallRuntime(Runtime::kStringCompare);
3224 }
3225
3226 __ bind(&miss);
3227 GenerateMiss(masm);
3228}
3229
3230void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
3231 DCHECK_EQ(CompareICState::RECEIVER, state());
3232 Label miss;
3233 __ AndP(r4, r3, r2);
3234 __ JumpIfSmi(r4, &miss);
3235
3236 STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
3237 __ CompareObjectType(r2, r4, r4, FIRST_JS_RECEIVER_TYPE);
3238 __ blt(&miss);
3239 __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
3240 __ blt(&miss);
3241
3242 DCHECK(GetCondition() == eq);
3243 __ SubP(r2, r2, r3);
3244 __ Ret();
3245
3246 __ bind(&miss);
3247 GenerateMiss(masm);
3248}
3249
3250void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
3251 Label miss;
3252 Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
3253 __ AndP(r4, r3, r2);
3254 __ JumpIfSmi(r4, &miss);
3255 __ GetWeakValue(r6, cell);
3256 __ LoadP(r4, FieldMemOperand(r2, HeapObject::kMapOffset));
3257 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
3258 __ CmpP(r4, r6);
3259 __ bne(&miss);
3260 __ CmpP(r5, r6);
3261 __ bne(&miss);
3262
3263 if (Token::IsEqualityOp(op())) {
3264 __ SubP(r2, r2, r3);
3265 __ Ret();
3266 } else {
3267 if (op() == Token::LT || op() == Token::LTE) {
3268 __ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
3269 } else {
3270 __ LoadSmiLiteral(r4, Smi::FromInt(LESS));
3271 }
3272 __ Push(r3, r2, r4);
3273 __ TailCallRuntime(Runtime::kCompare);
3274 }
3275
3276 __ bind(&miss);
3277 GenerateMiss(masm);
3278}
3279
3280void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3281 {
3282 // Call the runtime system in a fresh internal frame.
3283 FrameScope scope(masm, StackFrame::INTERNAL);
3284 __ Push(r3, r2);
3285 __ Push(r3, r2);
3286 __ LoadSmiLiteral(r0, Smi::FromInt(op()));
3287 __ push(r0);
3288 __ CallRuntime(Runtime::kCompareIC_Miss);
3289 // Compute the entry point of the rewritten stub.
3290 __ AddP(r4, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
3291 // Restore registers.
3292 __ Pop(r3, r2);
3293 }
3294
3295 __ JumpToJSEntry(r4);
3296}
3297
3298// This stub is paired with DirectCEntryStub::GenerateCall
3299void DirectCEntryStub::Generate(MacroAssembler* masm) {
3300 __ CleanseP(r14);
3301
3302 // Statement positions are expected to be recorded when the target
3303 // address is loaded.
3304 __ positions_recorder()->WriteRecordedPositions();
3305
3306 __ b(ip); // Callee will return to R14 directly
3307}
3308
3309void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
3310#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
3311 // Native AIX/S390X Linux use a function descriptor.
3312 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
3313 __ LoadP(target, MemOperand(target, 0)); // Instruction address
3314#else
3315 // ip needs to be set for DirectCEentryStub::Generate, and also
3316 // for ABI_CALL_VIA_IP.
3317 __ Move(ip, target);
3318#endif
3319
3320 __ call(GetCode(), RelocInfo::CODE_TARGET); // Call the stub.
3321}
3322
3323void NameDictionaryLookupStub::GenerateNegativeLookup(
3324 MacroAssembler* masm, Label* miss, Label* done, Register receiver,
3325 Register properties, Handle<Name> name, Register scratch0) {
3326 DCHECK(name->IsUniqueName());
3327 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3328 // not equal to the name and kProbes-th slot is not used (its name is the
3329 // undefined value), it guarantees the hash table doesn't contain the
3330 // property. It's true even if some slots represent deleted properties
3331 // (their names are the hole value).
3332 for (int i = 0; i < kInlinedProbes; i++) {
3333 // scratch0 points to properties hash.
3334 // Compute the masked index: (hash + i + i * i) & mask.
3335 Register index = scratch0;
3336 // Capacity is smi 2^n.
3337 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
3338 __ SubP(index, Operand(1));
3339 __ LoadSmiLiteral(
3340 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
3341 __ AndP(index, ip);
3342
3343 // Scale the index by multiplying by the entry size.
3344 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3345 __ ShiftLeftP(ip, index, Operand(1));
3346 __ AddP(index, ip); // index *= 3.
3347
3348 Register entity_name = scratch0;
3349 // Having undefined at this place means the name is not contained.
3350 Register tmp = properties;
3351 __ SmiToPtrArrayOffset(ip, index);
3352 __ AddP(tmp, properties, ip);
3353 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3354
3355 DCHECK(!tmp.is(entity_name));
3356 __ CompareRoot(entity_name, Heap::kUndefinedValueRootIndex);
3357 __ beq(done);
3358
3359 // Stop if found the property.
3360 __ CmpP(entity_name, Operand(Handle<Name>(name)));
3361 __ beq(miss);
3362
3363 Label good;
3364 __ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
3365 __ beq(&good);
3366
3367 // Check if the entry name is not a unique name.
3368 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3369 __ LoadlB(entity_name,
3370 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3371 __ JumpIfNotUniqueNameInstanceType(entity_name, miss);
3372 __ bind(&good);
3373
3374 // Restore the properties.
3375 __ LoadP(properties,
3376 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3377 }
3378
3379 const int spill_mask = (r0.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() |
3380 r4.bit() | r3.bit() | r2.bit());
3381
3382 __ LoadRR(r0, r14);
3383 __ MultiPush(spill_mask);
3384
3385 __ LoadP(r2, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3386 __ mov(r3, Operand(Handle<Name>(name)));
3387 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3388 __ CallStub(&stub);
3389 __ CmpP(r2, Operand::Zero());
3390
3391 __ MultiPop(spill_mask); // MultiPop does not touch condition flags
3392 __ LoadRR(r14, r0);
3393
3394 __ beq(done);
3395 __ bne(miss);
3396}
3397
3398// Probe the name dictionary in the |elements| register. Jump to the
3399// |done| label if a property with the given name is found. Jump to
3400// the |miss| label otherwise.
3401// If lookup was successful |scratch2| will be equal to elements + 4 * index.
3402void NameDictionaryLookupStub::GeneratePositiveLookup(
3403 MacroAssembler* masm, Label* miss, Label* done, Register elements,
3404 Register name, Register scratch1, Register scratch2) {
3405 DCHECK(!elements.is(scratch1));
3406 DCHECK(!elements.is(scratch2));
3407 DCHECK(!name.is(scratch1));
3408 DCHECK(!name.is(scratch2));
3409
3410 __ AssertName(name);
3411
3412 // Compute the capacity mask.
3413 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
3414 __ SmiUntag(scratch1); // convert smi to int
3415 __ SubP(scratch1, Operand(1));
3416
3417 // Generate an unrolled loop that performs a few probes before
3418 // giving up. Measurements done on Gmail indicate that 2 probes
3419 // cover ~93% of loads from dictionaries.
3420 for (int i = 0; i < kInlinedProbes; i++) {
3421 // Compute the masked index: (hash + i + i * i) & mask.
3422 __ LoadlW(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
3423 if (i > 0) {
3424 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3425 // the hash in a separate instruction. The value hash + i + i * i is right
3426 // shifted in the following and instruction.
3427 DCHECK(NameDictionary::GetProbeOffset(i) <
3428 1 << (32 - Name::kHashFieldOffset));
3429 __ AddP(scratch2,
3430 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3431 }
3432 __ srl(scratch2, Operand(String::kHashShift));
3433 __ AndP(scratch2, scratch1);
3434
3435 // Scale the index by multiplying by the entry size.
3436 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3437 // scratch2 = scratch2 * 3.
3438 __ ShiftLeftP(ip, scratch2, Operand(1));
3439 __ AddP(scratch2, ip);
3440
3441 // Check if the key is identical to the name.
3442 __ ShiftLeftP(ip, scratch2, Operand(kPointerSizeLog2));
3443 __ AddP(scratch2, elements, ip);
3444 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3445 __ CmpP(name, ip);
3446 __ beq(done);
3447 }
3448
3449 const int spill_mask = (r0.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() |
3450 r4.bit() | r3.bit() | r2.bit()) &
3451 ~(scratch1.bit() | scratch2.bit());
3452
3453 __ LoadRR(r0, r14);
3454 __ MultiPush(spill_mask);
3455 if (name.is(r2)) {
3456 DCHECK(!elements.is(r3));
3457 __ LoadRR(r3, name);
3458 __ LoadRR(r2, elements);
3459 } else {
3460 __ LoadRR(r2, elements);
3461 __ LoadRR(r3, name);
3462 }
3463 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3464 __ CallStub(&stub);
3465 __ LoadRR(r1, r2);
3466 __ LoadRR(scratch2, r4);
3467 __ MultiPop(spill_mask);
3468 __ LoadRR(r14, r0);
3469
3470 __ CmpP(r1, Operand::Zero());
3471 __ bne(done);
3472 __ beq(miss);
3473}
3474
3475void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3476 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3477 // we cannot call anything that could cause a GC from this stub.
3478 // Registers:
3479 // result: NameDictionary to probe
3480 // r3: key
3481 // dictionary: NameDictionary to probe.
3482 // index: will hold an index of entry if lookup is successful.
3483 // might alias with result_.
3484 // Returns:
3485 // result_ is zero if lookup failed, non zero otherwise.
3486
3487 Register result = r2;
3488 Register dictionary = r2;
3489 Register key = r3;
3490 Register index = r4;
3491 Register mask = r5;
3492 Register hash = r6;
3493 Register undefined = r7;
3494 Register entry_key = r8;
3495 Register scratch = r8;
3496
3497 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3498
3499 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
3500 __ SmiUntag(mask);
3501 __ SubP(mask, Operand(1));
3502
3503 __ LoadlW(hash, FieldMemOperand(key, String::kHashFieldOffset));
3504
3505 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3506
3507 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3508 // Compute the masked index: (hash + i + i * i) & mask.
3509 // Capacity is smi 2^n.
3510 if (i > 0) {
3511 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3512 // the hash in a separate instruction. The value hash + i + i * i is right
3513 // shifted in the following and instruction.
3514 DCHECK(NameDictionary::GetProbeOffset(i) <
3515 1 << (32 - Name::kHashFieldOffset));
3516 __ AddP(index, hash,
3517 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3518 } else {
3519 __ LoadRR(index, hash);
3520 }
3521 __ ShiftRight(r0, index, Operand(String::kHashShift));
3522 __ AndP(index, r0, mask);
3523
3524 // Scale the index by multiplying by the entry size.
3525 STATIC_ASSERT(NameDictionary::kEntrySize == 3);
3526 __ ShiftLeftP(scratch, index, Operand(1));
3527 __ AddP(index, scratch); // index *= 3.
3528
3529 __ ShiftLeftP(scratch, index, Operand(kPointerSizeLog2));
3530 __ AddP(index, dictionary, scratch);
3531 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
3532
3533 // Having undefined at this place means the name is not contained.
3534 __ CmpP(entry_key, undefined);
3535 __ beq(&not_in_dictionary);
3536
3537 // Stop if found the property.
3538 __ CmpP(entry_key, key);
3539 __ beq(&in_dictionary);
3540
3541 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3542 // Check if the entry name is not a unique name.
3543 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3544 __ LoadlB(entry_key,
3545 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3546 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
3547 }
3548 }
3549
3550 __ bind(&maybe_in_dictionary);
3551 // If we are doing negative lookup then probing failure should be
3552 // treated as a lookup success. For positive lookup probing failure
3553 // should be treated as lookup failure.
3554 if (mode() == POSITIVE_LOOKUP) {
3555 __ LoadImmP(result, Operand::Zero());
3556 __ Ret();
3557 }
3558
3559 __ bind(&in_dictionary);
3560 __ LoadImmP(result, Operand(1));
3561 __ Ret();
3562
3563 __ bind(&not_in_dictionary);
3564 __ LoadImmP(result, Operand::Zero());
3565 __ Ret();
3566}
3567
3568void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3569 Isolate* isolate) {
3570 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3571 stub1.GetCode();
3572 // Hydrogen code stubs need stub2 at snapshot time.
3573 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3574 stub2.GetCode();
3575}
3576
3577// Takes the input in 3 registers: address_ value_ and object_. A pointer to
3578// the value has just been written into the object, now this stub makes sure
3579// we keep the GC informed. The word in the object where the value has been
3580// written is in the address register.
3581void RecordWriteStub::Generate(MacroAssembler* masm) {
3582 Label skip_to_incremental_noncompacting;
3583 Label skip_to_incremental_compacting;
3584
3585 // The first two branch instructions are generated with labels so as to
3586 // get the offset fixed up correctly by the bind(Label*) call. We patch
3587 // it back and forth between branch condition True and False
3588 // when we start and stop incremental heap marking.
3589 // See RecordWriteStub::Patch for details.
3590
3591 // Clear the bit, branch on True for NOP action initially
3592 __ b(CC_NOP, &skip_to_incremental_noncompacting);
3593 __ b(CC_NOP, &skip_to_incremental_compacting);
3594
3595 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3596 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3597 MacroAssembler::kReturnAtEnd);
3598 }
3599 __ Ret();
3600
3601 __ bind(&skip_to_incremental_noncompacting);
3602 GenerateIncremental(masm, INCREMENTAL);
3603
3604 __ bind(&skip_to_incremental_compacting);
3605 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3606
3607 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3608 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3609 // patching not required on S390 as the initial path is effectively NOP
3610}
3611
3612void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3613 regs_.Save(masm);
3614
3615 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3616 Label dont_need_remembered_set;
3617
3618 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3619 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3620 regs_.scratch0(), &dont_need_remembered_set);
3621
3622 __ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
3623 &dont_need_remembered_set);
3624
3625 // First notify the incremental marker if necessary, then update the
3626 // remembered set.
3627 CheckNeedsToInformIncrementalMarker(
3628 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3629 InformIncrementalMarker(masm);
3630 regs_.Restore(masm);
3631 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3632 MacroAssembler::kReturnAtEnd);
3633
3634 __ bind(&dont_need_remembered_set);
3635 }
3636
3637 CheckNeedsToInformIncrementalMarker(
3638 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3639 InformIncrementalMarker(masm);
3640 regs_.Restore(masm);
3641 __ Ret();
3642}
3643
3644void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3645 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3646 int argument_count = 3;
3647 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3648 Register address =
3649 r2.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3650 DCHECK(!address.is(regs_.object()));
3651 DCHECK(!address.is(r2));
3652 __ LoadRR(address, regs_.address());
3653 __ LoadRR(r2, regs_.object());
3654 __ LoadRR(r3, address);
3655 __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
3656
3657 AllowExternalCallThatCantCauseGC scope(masm);
3658 __ CallCFunction(
3659 ExternalReference::incremental_marking_record_write_function(isolate()),
3660 argument_count);
3661 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3662}
3663
3664void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3665 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
3666 Mode mode) {
3667 Label on_black;
3668 Label need_incremental;
3669 Label need_incremental_pop_scratch;
3670
3671 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
3672 __ AndP(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
3673 __ LoadP(
3674 regs_.scratch1(),
3675 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3676 __ SubP(regs_.scratch1(), regs_.scratch1(), Operand(1));
3677 __ StoreP(
3678 regs_.scratch1(),
3679 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3680 __ CmpP(regs_.scratch1(), Operand::Zero()); // S390, we could do better here
3681 __ blt(&need_incremental);
3682
3683 // Let's look at the color of the object: If it is not black we don't have
3684 // to inform the incremental marker.
3685 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3686
3687 regs_.Restore(masm);
3688 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3689 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3690 MacroAssembler::kReturnAtEnd);
3691 } else {
3692 __ Ret();
3693 }
3694
3695 __ bind(&on_black);
3696
3697 // Get the value from the slot.
3698 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3699
3700 if (mode == INCREMENTAL_COMPACTION) {
3701 Label ensure_not_white;
3702
3703 __ CheckPageFlag(regs_.scratch0(), // Contains value.
3704 regs_.scratch1(), // Scratch.
3705 MemoryChunk::kEvacuationCandidateMask, eq,
3706 &ensure_not_white);
3707
3708 __ CheckPageFlag(regs_.object(),
3709 regs_.scratch1(), // Scratch.
3710 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
3711 &need_incremental);
3712
3713 __ bind(&ensure_not_white);
3714 }
3715
3716 // We need extra registers for this, so we push the object and the address
3717 // register temporarily.
3718 __ Push(regs_.object(), regs_.address());
3719 __ JumpIfWhite(regs_.scratch0(), // The value.
3720 regs_.scratch1(), // Scratch.
3721 regs_.object(), // Scratch.
3722 regs_.address(), // Scratch.
3723 &need_incremental_pop_scratch);
3724 __ Pop(regs_.object(), regs_.address());
3725
3726 regs_.Restore(masm);
3727 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3728 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3729 MacroAssembler::kReturnAtEnd);
3730 } else {
3731 __ Ret();
3732 }
3733
3734 __ bind(&need_incremental_pop_scratch);
3735 __ Pop(regs_.object(), regs_.address());
3736
3737 __ bind(&need_incremental);
3738
3739 // Fall through when we need to inform the incremental marker.
3740}
3741
3742void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
3743 CEntryStub ces(isolate(), 1, kSaveFPRegs);
3744 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
3745 int parameter_count_offset =
3746 StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
3747 __ LoadP(r3, MemOperand(fp, parameter_count_offset));
3748 if (function_mode() == JS_FUNCTION_STUB_MODE) {
3749 __ AddP(r3, Operand(1));
3750 }
3751 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
3752 __ ShiftLeftP(r3, r3, Operand(kPointerSizeLog2));
3753 __ la(sp, MemOperand(r3, sp));
3754 __ Ret();
3755}
3756
3757void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
3758 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3759 LoadICStub stub(isolate(), state());
3760 stub.GenerateForTrampoline(masm);
3761}
3762
3763void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
3764 __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister());
3765 KeyedLoadICStub stub(isolate(), state());
3766 stub.GenerateForTrampoline(masm);
3767}
3768
3769void CallICTrampolineStub::Generate(MacroAssembler* masm) {
3770 __ EmitLoadTypeFeedbackVector(r4);
3771 CallICStub stub(isolate(), state());
3772 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3773}
3774
3775void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); }
3776
3777void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3778 GenerateImpl(masm, true);
3779}
3780
3781static void HandleArrayCases(MacroAssembler* masm, Register feedback,
3782 Register receiver_map, Register scratch1,
3783 Register scratch2, bool is_polymorphic,
3784 Label* miss) {
3785 // feedback initially contains the feedback array
3786 Label next_loop, prepare_next;
3787 Label start_polymorphic;
3788
3789 Register cached_map = scratch1;
3790
3791 __ LoadP(cached_map,
3792 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0)));
3793 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3794 __ CmpP(receiver_map, cached_map);
3795 __ bne(&start_polymorphic, Label::kNear);
3796 // found, now call handler.
3797 Register handler = feedback;
3798 __ LoadP(handler,
3799 FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1)));
3800 __ AddP(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3801 __ Jump(ip);
3802
3803 Register length = scratch2;
3804 __ bind(&start_polymorphic);
3805 __ LoadP(length, FieldMemOperand(feedback, FixedArray::kLengthOffset));
3806 if (!is_polymorphic) {
3807 // If the IC could be monomorphic we have to make sure we don't go past the
3808 // end of the feedback array.
3809 __ CmpSmiLiteral(length, Smi::FromInt(2), r0);
3810 __ beq(miss);
3811 }
3812
3813 Register too_far = length;
3814 Register pointer_reg = feedback;
3815
3816 // +-----+------+------+-----+-----+ ... ----+
3817 // | map | len | wm0 | h0 | wm1 | hN |
3818 // +-----+------+------+-----+-----+ ... ----+
3819 // 0 1 2 len-1
3820 // ^ ^
3821 // | |
3822 // pointer_reg too_far
3823 // aka feedback scratch2
3824 // also need receiver_map
3825 // use cached_map (scratch1) to look in the weak map values.
3826 __ SmiToPtrArrayOffset(r0, length);
3827 __ AddP(too_far, feedback, r0);
3828 __ AddP(too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3829 __ AddP(pointer_reg, feedback,
3830 Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag));
3831
3832 __ bind(&next_loop);
3833 __ LoadP(cached_map, MemOperand(pointer_reg));
3834 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
3835 __ CmpP(receiver_map, cached_map);
3836 __ bne(&prepare_next, Label::kNear);
3837 __ LoadP(handler, MemOperand(pointer_reg, kPointerSize));
3838 __ AddP(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3839 __ Jump(ip);
3840
3841 __ bind(&prepare_next);
3842 __ AddP(pointer_reg, Operand(kPointerSize * 2));
3843 __ CmpP(pointer_reg, too_far);
3844 __ blt(&next_loop, Label::kNear);
3845
3846 // We exhausted our array of map handler pairs.
3847 __ b(miss);
3848}
3849
3850static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver,
3851 Register receiver_map, Register feedback,
3852 Register vector, Register slot,
3853 Register scratch, Label* compare_map,
3854 Label* load_smi_map, Label* try_array) {
3855 __ JumpIfSmi(receiver, load_smi_map);
3856 __ LoadP(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
3857 __ bind(compare_map);
3858 Register cached_map = scratch;
3859 // Move the weak map into the weak_cell register.
3860 __ LoadP(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset));
3861 __ CmpP(cached_map, receiver_map);
3862 __ bne(try_array);
3863 Register handler = feedback;
3864 __ SmiToPtrArrayOffset(r1, slot);
3865 __ LoadP(handler,
3866 FieldMemOperand(r1, vector, FixedArray::kHeaderSize + kPointerSize));
3867 __ AddP(ip, handler, Operand(Code::kHeaderSize - kHeapObjectTag));
3868 __ Jump(ip);
3869}
3870
3871void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3872 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r3
3873 Register name = LoadWithVectorDescriptor::NameRegister(); // r4
3874 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r5
3875 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r2
3876 Register feedback = r6;
3877 Register receiver_map = r7;
3878 Register scratch1 = r8;
3879
3880 __ SmiToPtrArrayOffset(r1, slot);
3881 __ LoadP(feedback, FieldMemOperand(r1, vector, FixedArray::kHeaderSize));
3882
3883 // Try to quickly handle the monomorphic case without knowing for sure
3884 // if we have a weak cell in feedback. We do know it's safe to look
3885 // at WeakCell::kValueOffset.
3886 Label try_array, load_smi_map, compare_map;
3887 Label not_array, miss;
3888 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3889 scratch1, &compare_map, &load_smi_map, &try_array);
3890
3891 // Is it a fixed array?
3892 __ bind(&try_array);
3893 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3894 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3895 __ bne(&not_array, Label::kNear);
3896 HandleArrayCases(masm, feedback, receiver_map, scratch1, r9, true, &miss);
3897
3898 __ bind(&not_array);
3899 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3900 __ bne(&miss);
3901 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
3902 Code::ComputeHandlerFlags(Code::LOAD_IC));
3903 masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags,
3904 receiver, name, feedback,
3905 receiver_map, scratch1, r9);
3906
3907 __ bind(&miss);
3908 LoadIC::GenerateMiss(masm);
3909
3910 __ bind(&load_smi_map);
3911 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3912 __ b(&compare_map);
3913}
3914
3915void KeyedLoadICStub::Generate(MacroAssembler* masm) {
3916 GenerateImpl(masm, false);
3917}
3918
3919void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) {
3920 GenerateImpl(masm, true);
3921}
3922
3923void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
3924 Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // r3
3925 Register key = LoadWithVectorDescriptor::NameRegister(); // r4
3926 Register vector = LoadWithVectorDescriptor::VectorRegister(); // r5
3927 Register slot = LoadWithVectorDescriptor::SlotRegister(); // r2
3928 Register feedback = r6;
3929 Register receiver_map = r7;
3930 Register scratch1 = r8;
3931
3932 __ SmiToPtrArrayOffset(r1, slot);
3933 __ LoadP(feedback, FieldMemOperand(r1, vector, FixedArray::kHeaderSize));
3934
3935 // Try to quickly handle the monomorphic case without knowing for sure
3936 // if we have a weak cell in feedback. We do know it's safe to look
3937 // at WeakCell::kValueOffset.
3938 Label try_array, load_smi_map, compare_map;
3939 Label not_array, miss;
3940 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
3941 scratch1, &compare_map, &load_smi_map, &try_array);
3942
3943 __ bind(&try_array);
3944 // Is it a fixed array?
3945 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
3946 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
3947 __ bne(&not_array);
3948
3949 // We have a polymorphic element handler.
3950 Label polymorphic, try_poly_name;
3951 __ bind(&polymorphic);
3952 HandleArrayCases(masm, feedback, receiver_map, scratch1, r9, true, &miss);
3953
3954 __ bind(&not_array);
3955 // Is it generic?
3956 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
3957 __ bne(&try_poly_name);
3958 Handle<Code> megamorphic_stub =
3959 KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
3960 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
3961
3962 __ bind(&try_poly_name);
3963 // We might have a name in feedback, and a fixed array in the next slot.
3964 __ CmpP(key, feedback);
3965 __ bne(&miss);
3966 // If the name comparison succeeded, we know we have a fixed array with
3967 // at least one map/handler pair.
3968 __ SmiToPtrArrayOffset(r1, slot);
3969 __ LoadP(feedback,
3970 FieldMemOperand(r1, vector, FixedArray::kHeaderSize + kPointerSize));
3971 HandleArrayCases(masm, feedback, receiver_map, scratch1, r9, false, &miss);
3972
3973 __ bind(&miss);
3974 KeyedLoadIC::GenerateMiss(masm);
3975
3976 __ bind(&load_smi_map);
3977 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
3978 __ b(&compare_map);
3979}
3980
3981void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3982 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3983 VectorStoreICStub stub(isolate(), state());
3984 stub.GenerateForTrampoline(masm);
3985}
3986
3987void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) {
3988 __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister());
3989 VectorKeyedStoreICStub stub(isolate(), state());
3990 stub.GenerateForTrampoline(masm);
3991}
3992
3993void VectorStoreICStub::Generate(MacroAssembler* masm) {
3994 GenerateImpl(masm, false);
3995}
3996
3997void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
3998 GenerateImpl(masm, true);
3999}
4000
4001void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4002 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // r3
4003 Register key = VectorStoreICDescriptor::NameRegister(); // r4
4004 Register vector = VectorStoreICDescriptor::VectorRegister(); // r5
4005 Register slot = VectorStoreICDescriptor::SlotRegister(); // r6
4006 DCHECK(VectorStoreICDescriptor::ValueRegister().is(r2)); // r2
4007 Register feedback = r7;
4008 Register receiver_map = r8;
4009 Register scratch1 = r9;
4010
4011 __ SmiToPtrArrayOffset(r0, slot);
4012 __ AddP(feedback, vector, r0);
4013 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4014
4015 // Try to quickly handle the monomorphic case without knowing for sure
4016 // if we have a weak cell in feedback. We do know it's safe to look
4017 // at WeakCell::kValueOffset.
4018 Label try_array, load_smi_map, compare_map;
4019 Label not_array, miss;
4020 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4021 scratch1, &compare_map, &load_smi_map, &try_array);
4022
4023 // Is it a fixed array?
4024 __ bind(&try_array);
4025 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4026 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
4027 __ bne(&not_array);
4028
4029 Register scratch2 = ip;
4030 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true,
4031 &miss);
4032
4033 __ bind(&not_array);
4034 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4035 __ bne(&miss);
4036 Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags(
4037 Code::ComputeHandlerFlags(Code::STORE_IC));
4038 masm->isolate()->stub_cache()->GenerateProbe(
4039 masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map,
4040 scratch1, scratch2);
4041
4042 __ bind(&miss);
4043 StoreIC::GenerateMiss(masm);
4044
4045 __ bind(&load_smi_map);
4046 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4047 __ b(&compare_map);
4048}
4049
4050void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) {
4051 GenerateImpl(masm, false);
4052}
4053
4054void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) {
4055 GenerateImpl(masm, true);
4056}
4057
4058static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback,
4059 Register receiver_map, Register scratch1,
4060 Register scratch2, Label* miss) {
4061 // feedback initially contains the feedback array
4062 Label next_loop, prepare_next;
4063 Label start_polymorphic;
4064 Label transition_call;
4065
4066 Register cached_map = scratch1;
4067 Register too_far = scratch2;
4068 Register pointer_reg = feedback;
4069 __ LoadP(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset));
4070
4071 // +-----+------+------+-----+-----+-----+ ... ----+
4072 // | map | len | wm0 | wt0 | h0 | wm1 | hN |
4073 // +-----+------+------+-----+-----+ ----+ ... ----+
4074 // 0 1 2 len-1
4075 // ^ ^
4076 // | |
4077 // pointer_reg too_far
4078 // aka feedback scratch2
4079 // also need receiver_map
4080 // use cached_map (scratch1) to look in the weak map values.
4081 __ SmiToPtrArrayOffset(r0, too_far);
4082 __ AddP(too_far, feedback, r0);
4083 __ AddP(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4084 __ AddP(pointer_reg, feedback,
4085 Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag));
4086
4087 __ bind(&next_loop);
4088 __ LoadP(cached_map, MemOperand(pointer_reg));
4089 __ LoadP(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset));
4090 __ CmpP(receiver_map, cached_map);
4091 __ bne(&prepare_next);
4092 // Is it a transitioning store?
4093 __ LoadP(too_far, MemOperand(pointer_reg, kPointerSize));
4094 __ CompareRoot(too_far, Heap::kUndefinedValueRootIndex);
4095 __ bne(&transition_call);
4096 __ LoadP(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2));
4097 __ AddP(ip, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
4098 __ Jump(ip);
4099
4100 __ bind(&transition_call);
4101 __ LoadP(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset));
4102 __ JumpIfSmi(too_far, miss);
4103
4104 __ LoadP(receiver_map, MemOperand(pointer_reg, kPointerSize * 2));
4105
4106 // Load the map into the correct register.
4107 DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister()));
4108 __ LoadRR(feedback, too_far);
4109
4110 __ AddP(ip, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag));
4111 __ Jump(ip);
4112
4113 __ bind(&prepare_next);
4114 __ AddP(pointer_reg, pointer_reg, Operand(kPointerSize * 3));
4115 __ CmpLogicalP(pointer_reg, too_far);
4116 __ blt(&next_loop);
4117
4118 // We exhausted our array of map handler pairs.
4119 __ b(miss);
4120}
4121
4122void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) {
4123 Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // r3
4124 Register key = VectorStoreICDescriptor::NameRegister(); // r4
4125 Register vector = VectorStoreICDescriptor::VectorRegister(); // r5
4126 Register slot = VectorStoreICDescriptor::SlotRegister(); // r6
4127 DCHECK(VectorStoreICDescriptor::ValueRegister().is(r2)); // r2
4128 Register feedback = r7;
4129 Register receiver_map = r8;
4130 Register scratch1 = r9;
4131
4132 __ SmiToPtrArrayOffset(r0, slot);
4133 __ AddP(feedback, vector, r0);
4134 __ LoadP(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
4135
4136 // Try to quickly handle the monomorphic case without knowing for sure
4137 // if we have a weak cell in feedback. We do know it's safe to look
4138 // at WeakCell::kValueOffset.
4139 Label try_array, load_smi_map, compare_map;
4140 Label not_array, miss;
4141 HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot,
4142 scratch1, &compare_map, &load_smi_map, &try_array);
4143
4144 __ bind(&try_array);
4145 // Is it a fixed array?
4146 __ LoadP(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset));
4147 __ CompareRoot(scratch1, Heap::kFixedArrayMapRootIndex);
4148 __ bne(&not_array);
4149
4150 // We have a polymorphic element handler.
4151 Label polymorphic, try_poly_name;
4152 __ bind(&polymorphic);
4153
4154 Register scratch2 = ip;
4155
4156 HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2,
4157 &miss);
4158
4159 __ bind(&not_array);
4160 // Is it generic?
4161 __ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
4162 __ bne(&try_poly_name);
4163 Handle<Code> megamorphic_stub =
4164 KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState());
4165 __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET);
4166
4167 __ bind(&try_poly_name);
4168 // We might have a name in feedback, and a fixed array in the next slot.
4169 __ CmpP(key, feedback);
4170 __ bne(&miss);
4171 // If the name comparison succeeded, we know we have a fixed array with
4172 // at least one map/handler pair.
4173 __ SmiToPtrArrayOffset(r0, slot);
4174 __ AddP(feedback, vector, r0);
4175 __ LoadP(feedback,
4176 FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize));
4177 HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false,
4178 &miss);
4179
4180 __ bind(&miss);
4181 KeyedStoreIC::GenerateMiss(masm);
4182
4183 __ bind(&load_smi_map);
4184 __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex);
4185 __ b(&compare_map);
4186}
4187
4188void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4189 if (masm->isolate()->function_entry_hook() != NULL) {
4190 PredictableCodeSizeScope predictable(masm,
4191#if V8_TARGET_ARCH_S390X
4192 40);
4193#elif V8_HOST_ARCH_S390
4194 36);
4195#else
4196 32);
4197#endif
4198 ProfileEntryHookStub stub(masm->isolate());
4199 __ CleanseP(r14);
4200 __ Push(r14, ip);
4201 __ CallStub(&stub); // BRASL
4202 __ Pop(r14, ip);
4203 }
4204}
4205
4206void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4207// The entry hook is a "push lr" instruction (LAY+ST/STG), followed by a call.
4208#if V8_TARGET_ARCH_S390X
4209 const int32_t kReturnAddressDistanceFromFunctionStart =
4210 Assembler::kCallTargetAddressOffset + 18; // LAY + STG * 2
4211#elif V8_HOST_ARCH_S390
4212 const int32_t kReturnAddressDistanceFromFunctionStart =
4213 Assembler::kCallTargetAddressOffset + 18; // NILH + LAY + ST * 2
4214#else
4215 const int32_t kReturnAddressDistanceFromFunctionStart =
4216 Assembler::kCallTargetAddressOffset + 14; // LAY + ST * 2
4217#endif
4218
4219 // This should contain all kJSCallerSaved registers.
4220 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
4221 r7.bit(); // Saved stack pointer.
4222
4223 // We also save r14+ip, so count here is one higher than the mask indicates.
4224 const int32_t kNumSavedRegs = kNumJSCallerSaved + 3;
4225
4226 // Save all caller-save registers as this may be called from anywhere.
4227 __ CleanseP(r14);
4228 __ LoadRR(ip, r14);
4229 __ MultiPush(kSavedRegs | ip.bit());
4230
4231 // Compute the function's address for the first argument.
4232
4233 __ SubP(r2, ip, Operand(kReturnAddressDistanceFromFunctionStart));
4234
4235 // The caller's return address is two slots above the saved temporaries.
4236 // Grab that for the second argument to the hook.
4237 __ lay(r3, MemOperand(sp, kNumSavedRegs * kPointerSize));
4238
4239 // Align the stack if necessary.
4240 int frame_alignment = masm->ActivationFrameAlignment();
4241 if (frame_alignment > kPointerSize) {
4242 __ LoadRR(r7, sp);
4243 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4244 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
4245 }
4246
4247#if !defined(USE_SIMULATOR)
4248 uintptr_t entry_hook =
4249 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4250 __ mov(ip, Operand(entry_hook));
4251
4252#if ABI_USES_FUNCTION_DESCRIPTORS
4253 // Function descriptor
4254 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
4255 __ LoadP(ip, MemOperand(ip, 0));
4256// ip already set.
4257#endif
4258#endif
4259
4260 // zLinux ABI requires caller's frame to have sufficient space for callee
4261 // preserved regsiter save area.
4262 __ LoadImmP(r0, Operand::Zero());
4263 __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize -
4264 kNumRequiredStackFrameSlots * kPointerSize));
4265 __ StoreP(r0, MemOperand(sp));
4266#if defined(USE_SIMULATOR)
4267 // Under the simulator we need to indirect the entry hook through a
4268 // trampoline function at a known address.
4269 // It additionally takes an isolate as a third parameter
4270 __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
4271
4272 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4273 __ mov(ip, Operand(ExternalReference(
4274 &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
4275#endif
4276 __ Call(ip);
4277
4278 // zLinux ABI requires caller's frame to have sufficient space for callee
4279 // preserved regsiter save area.
4280 __ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize +
4281 kNumRequiredStackFrameSlots * kPointerSize));
4282
4283 // Restore the stack pointer if needed.
4284 if (frame_alignment > kPointerSize) {
4285 __ LoadRR(sp, r7);
4286 }
4287
4288 // Also pop lr to get Ret(0).
4289 __ MultiPop(kSavedRegs | ip.bit());
4290 __ LoadRR(r14, ip);
4291 __ Ret();
4292}
4293
4294template <class T>
4295static void CreateArrayDispatch(MacroAssembler* masm,
4296 AllocationSiteOverrideMode mode) {
4297 if (mode == DISABLE_ALLOCATION_SITES) {
4298 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4299 __ TailCallStub(&stub);
4300 } else if (mode == DONT_OVERRIDE) {
4301 int last_index =
4302 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4303 for (int i = 0; i <= last_index; ++i) {
4304 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4305 __ CmpP(r5, Operand(kind));
4306 T stub(masm->isolate(), kind);
4307 __ TailCallStub(&stub, eq);
4308 }
4309
4310 // If we reached this point there is a problem.
4311 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4312 } else {
4313 UNREACHABLE();
4314 }
4315}
4316
4317static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4318 AllocationSiteOverrideMode mode) {
4319 // r4 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4320 // r5 - kind (if mode != DISABLE_ALLOCATION_SITES)
4321 // r2 - number of arguments
4322 // r3 - constructor?
4323 // sp[0] - last argument
4324 Label normal_sequence;
4325 if (mode == DONT_OVERRIDE) {
4326 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
4327 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
4328 STATIC_ASSERT(FAST_ELEMENTS == 2);
4329 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
4330 STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
4331 STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4332
4333 // is the low bit set? If so, we are holey and that is good.
4334 __ AndP(r0, r5, Operand(1));
4335 __ bne(&normal_sequence);
4336 }
4337
4338 // look at the first argument
4339 __ LoadP(r7, MemOperand(sp, 0));
4340 __ CmpP(r7, Operand::Zero());
4341 __ beq(&normal_sequence);
4342
4343 if (mode == DISABLE_ALLOCATION_SITES) {
4344 ElementsKind initial = GetInitialFastElementsKind();
4345 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4346
4347 ArraySingleArgumentConstructorStub stub_holey(
4348 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
4349 __ TailCallStub(&stub_holey);
4350
4351 __ bind(&normal_sequence);
4352 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
4353 DISABLE_ALLOCATION_SITES);
4354 __ TailCallStub(&stub);
4355 } else if (mode == DONT_OVERRIDE) {
4356 // We are going to create a holey array, but our kind is non-holey.
4357 // Fix kind and retry (only if we have an allocation site in the slot).
4358 __ AddP(r5, r5, Operand(1));
4359 if (FLAG_debug_code) {
4360 __ LoadP(r7, FieldMemOperand(r4, 0));
4361 __ CompareRoot(r7, Heap::kAllocationSiteMapRootIndex);
4362 __ Assert(eq, kExpectedAllocationSite);
4363 }
4364
4365 // Save the resulting elements kind in type info. We can't just store r5
4366 // in the AllocationSite::transition_info field because elements kind is
4367 // restricted to a portion of the field...upper bits need to be left alone.
4368 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4369 __ LoadP(r6, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
4370 __ AddSmiLiteral(r6, r6, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
4371 __ StoreP(r6, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
4372
4373 __ bind(&normal_sequence);
4374 int last_index =
4375 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4376 for (int i = 0; i <= last_index; ++i) {
4377 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4378 __ CmpP(r5, Operand(kind));
4379 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4380 __ TailCallStub(&stub, eq);
4381 }
4382
4383 // If we reached this point there is a problem.
4384 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4385 } else {
4386 UNREACHABLE();
4387 }
4388}
4389
4390template <class T>
4391static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4392 int to_index =
4393 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4394 for (int i = 0; i <= to_index; ++i) {
4395 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4396 T stub(isolate, kind);
4397 stub.GetCode();
4398 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4399 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4400 stub1.GetCode();
4401 }
4402 }
4403}
4404
4405void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4406 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4407 isolate);
4408 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4409 isolate);
4410 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4411 isolate);
4412}
4413
4414void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4415 Isolate* isolate) {
4416 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
4417 for (int i = 0; i < 2; i++) {
4418 // For internal arrays we only need a few things
4419 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4420 stubh1.GetCode();
4421 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4422 stubh2.GetCode();
4423 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4424 stubh3.GetCode();
4425 }
4426}
4427
4428void ArrayConstructorStub::GenerateDispatchToArrayStub(
4429 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
4430 if (argument_count() == ANY) {
4431 Label not_zero_case, not_one_case;
4432 __ CmpP(r2, Operand::Zero());
4433 __ bne(&not_zero_case);
4434 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4435
4436 __ bind(&not_zero_case);
4437 __ CmpP(r2, Operand(1));
4438 __ bgt(&not_one_case);
4439 CreateArrayDispatchOneArgument(masm, mode);
4440
4441 __ bind(&not_one_case);
4442 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4443 } else if (argument_count() == NONE) {
4444 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4445 } else if (argument_count() == ONE) {
4446 CreateArrayDispatchOneArgument(masm, mode);
4447 } else if (argument_count() == MORE_THAN_ONE) {
4448 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4449 } else {
4450 UNREACHABLE();
4451 }
4452}
4453
4454void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4455 // ----------- S t a t e -------------
4456 // -- r2 : argc (only if argument_count() == ANY)
4457 // -- r3 : constructor
4458 // -- r4 : AllocationSite or undefined
4459 // -- r5 : new target
4460 // -- sp[0] : return address
4461 // -- sp[4] : last argument
4462 // -----------------------------------
4463
4464 if (FLAG_debug_code) {
4465 // The array construct code is only set for the global and natives
4466 // builtin Array functions which always have maps.
4467
4468 // Initial map for the builtin Array function should be a map.
4469 __ LoadP(r6, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
4470 // Will both indicate a NULL and a Smi.
4471 __ TestIfSmi(r6);
4472 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4473 __ CompareObjectType(r6, r6, r7, MAP_TYPE);
4474 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4475
4476 // We should either have undefined in r4 or a valid AllocationSite
4477 __ AssertUndefinedOrAllocationSite(r4, r6);
4478 }
4479
4480 // Enter the context of the Array function.
4481 __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
4482
4483 Label subclassing;
4484 __ CmpP(r5, r3);
4485 __ bne(&subclassing, Label::kNear);
4486
4487 Label no_info;
4488 // Get the elements kind and case on that.
4489 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
4490 __ beq(&no_info);
4491
4492 __ LoadP(r5, FieldMemOperand(r4, AllocationSite::kTransitionInfoOffset));
4493 __ SmiUntag(r5);
4494 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4495 __ AndP(r5, Operand(AllocationSite::ElementsKindBits::kMask));
4496 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4497
4498 __ bind(&no_info);
4499 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4500
4501 __ bind(&subclassing);
4502 switch (argument_count()) {
4503 case ANY:
4504 case MORE_THAN_ONE:
4505 __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2));
4506 __ StoreP(r3, MemOperand(sp, r1));
4507 __ AddP(r2, r2, Operand(3));
4508 break;
4509 case NONE:
4510 __ StoreP(r3, MemOperand(sp, 0 * kPointerSize));
4511 __ LoadImmP(r2, Operand(3));
4512 break;
4513 case ONE:
4514 __ StoreP(r3, MemOperand(sp, 1 * kPointerSize));
4515 __ LoadImmP(r2, Operand(4));
4516 break;
4517 }
4518
4519 __ Push(r5, r4);
4520 __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
4521}
4522
4523void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
4524 ElementsKind kind) {
4525 __ CmpLogicalP(r2, Operand(1));
4526
4527 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4528 __ TailCallStub(&stub0, lt);
4529
4530 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4531 __ TailCallStub(&stubN, gt);
4532
4533 if (IsFastPackedElementsKind(kind)) {
4534 // We might need to create a holey array
4535 // look at the first argument
4536 __ LoadP(r5, MemOperand(sp, 0));
4537 __ CmpP(r5, Operand::Zero());
4538
4539 InternalArraySingleArgumentConstructorStub stub1_holey(
4540 isolate(), GetHoleyElementsKind(kind));
4541 __ TailCallStub(&stub1_holey, ne);
4542 }
4543
4544 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4545 __ TailCallStub(&stub1);
4546}
4547
4548void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4549 // ----------- S t a t e -------------
4550 // -- r2 : argc
4551 // -- r3 : constructor
4552 // -- sp[0] : return address
4553 // -- sp[4] : last argument
4554 // -----------------------------------
4555
4556 if (FLAG_debug_code) {
4557 // The array construct code is only set for the global and natives
4558 // builtin Array functions which always have maps.
4559
4560 // Initial map for the builtin Array function should be a map.
4561 __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
4562 // Will both indicate a NULL and a Smi.
4563 __ TestIfSmi(r5);
4564 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4565 __ CompareObjectType(r5, r5, r6, MAP_TYPE);
4566 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4567 }
4568
4569 // Figure out the right elements kind
4570 __ LoadP(r5, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset));
4571 // Load the map's "bit field 2" into |result|.
4572 __ LoadlB(r5, FieldMemOperand(r5, Map::kBitField2Offset));
4573 // Retrieve elements_kind from bit field 2.
4574 __ DecodeField<Map::ElementsKindBits>(r5);
4575
4576 if (FLAG_debug_code) {
4577 Label done;
4578 __ CmpP(r5, Operand(FAST_ELEMENTS));
4579 __ beq(&done);
4580 __ CmpP(r5, Operand(FAST_HOLEY_ELEMENTS));
4581 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4582 __ bind(&done);
4583 }
4584
4585 Label fast_elements_case;
4586 __ CmpP(r5, Operand(FAST_ELEMENTS));
4587 __ beq(&fast_elements_case);
4588 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4589
4590 __ bind(&fast_elements_case);
4591 GenerateCase(masm, FAST_ELEMENTS);
4592}
4593
4594void FastNewObjectStub::Generate(MacroAssembler* masm) {
4595 // ----------- S t a t e -------------
4596 // -- r3 : target
4597 // -- r5 : new target
4598 // -- cp : context
4599 // -- lr : return address
4600 // -----------------------------------
4601 __ AssertFunction(r3);
4602 __ AssertReceiver(r5);
4603
4604 // Verify that the new target is a JSFunction.
4605 Label new_object;
4606 __ CompareObjectType(r5, r4, r4, JS_FUNCTION_TYPE);
4607 __ bne(&new_object);
4608
4609 // Load the initial map and verify that it's in fact a map.
4610 __ LoadP(r4, FieldMemOperand(r5, JSFunction::kPrototypeOrInitialMapOffset));
4611 __ JumpIfSmi(r4, &new_object);
4612 __ CompareObjectType(r4, r2, r2, MAP_TYPE);
4613 __ bne(&new_object);
4614
4615 // Fall back to runtime if the target differs from the new target's
4616 // initial map constructor.
4617 __ LoadP(r2, FieldMemOperand(r4, Map::kConstructorOrBackPointerOffset));
4618 __ CmpP(r2, r3);
4619 __ bne(&new_object);
4620
4621 // Allocate the JSObject on the heap.
4622 Label allocate, done_allocate;
4623 __ LoadlB(r6, FieldMemOperand(r4, Map::kInstanceSizeOffset));
4624 __ Allocate(r6, r2, r7, r8, &allocate, SIZE_IN_WORDS);
4625 __ bind(&done_allocate);
4626
4627 // Initialize the JSObject fields.
4628 __ StoreP(r4, MemOperand(r2, JSObject::kMapOffset));
4629 __ LoadRoot(r5, Heap::kEmptyFixedArrayRootIndex);
4630 __ StoreP(r5, MemOperand(r2, JSObject::kPropertiesOffset));
4631 __ StoreP(r5, MemOperand(r2, JSObject::kElementsOffset));
4632 STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
4633 __ AddP(r3, r2, Operand(JSObject::kHeaderSize));
4634
4635 // ----------- S t a t e -------------
4636 // -- r2 : result (untagged)
4637 // -- r3 : result fields (untagged)
4638 // -- r7 : result end (untagged)
4639 // -- r4 : initial map
4640 // -- cp : context
4641 // -- lr : return address
4642 // -----------------------------------
4643
4644 // Perform in-object slack tracking if requested.
4645 Label slack_tracking;
4646 STATIC_ASSERT(Map::kNoSlackTracking == 0);
4647 __ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
4648 __ LoadlW(r5, FieldMemOperand(r4, Map::kBitField3Offset));
4649 __ DecodeField<Map::ConstructionCounter>(r9, r5);
4650 __ LoadAndTestP(r9, r9);
4651 __ bne(&slack_tracking);
4652 {
4653 // Initialize all in-object fields with undefined.
4654 __ InitializeFieldsWithFiller(r3, r7, r8);
4655
4656 // Add the object tag to make the JSObject real.
4657 __ AddP(r2, r2, Operand(kHeapObjectTag));
4658 __ Ret();
4659 }
4660 __ bind(&slack_tracking);
4661 {
4662 // Decrease generous allocation count.
4663 STATIC_ASSERT(Map::ConstructionCounter::kNext == 32);
4664 __ Add32(r5, r5, Operand(-(1 << Map::ConstructionCounter::kShift)));
4665 __ StoreW(r5, FieldMemOperand(r4, Map::kBitField3Offset));
4666
4667 // Initialize the in-object fields with undefined.
4668 __ LoadlB(r6, FieldMemOperand(r4, Map::kUnusedPropertyFieldsOffset));
4669 __ ShiftLeftP(r6, r6, Operand(kPointerSizeLog2));
4670 __ SubP(r6, r7, r6);
4671 __ InitializeFieldsWithFiller(r3, r6, r8);
4672
4673 // Initialize the remaining (reserved) fields with one pointer filler map.
4674 __ LoadRoot(r8, Heap::kOnePointerFillerMapRootIndex);
4675 __ InitializeFieldsWithFiller(r3, r7, r8);
4676
4677 // Add the object tag to make the JSObject real.
4678 __ AddP(r2, r2, Operand(kHeapObjectTag));
4679
4680 // Check if we can finalize the instance size.
4681 __ CmpP(r9, Operand(Map::kSlackTrackingCounterEnd));
4682 __ Ret(ne);
4683
4684 // Finalize the instance size.
4685 {
4686 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4687 __ Push(r2, r4);
4688 __ CallRuntime(Runtime::kFinalizeInstanceSize);
4689 __ Pop(r2);
4690 }
4691 __ Ret();
4692 }
4693
4694 // Fall back to %AllocateInNewSpace.
4695 __ bind(&allocate);
4696 {
4697 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4698 STATIC_ASSERT(kSmiTag == 0);
4699 __ ShiftLeftP(r6, r6,
4700 Operand(kPointerSizeLog2 + kSmiTagSize + kSmiShiftSize));
4701 __ Push(r4, r6);
4702 __ CallRuntime(Runtime::kAllocateInNewSpace);
4703 __ Pop(r4);
4704 }
4705 __ SubP(r2, r2, Operand(kHeapObjectTag));
4706 __ LoadlB(r7, FieldMemOperand(r4, Map::kInstanceSizeOffset));
4707 __ ShiftLeftP(r7, r7, Operand(kPointerSizeLog2));
4708 __ AddP(r7, r2, r7);
4709 __ b(&done_allocate);
4710
4711 // Fall back to %NewObject.
4712 __ bind(&new_object);
4713 __ Push(r3, r5);
4714 __ TailCallRuntime(Runtime::kNewObject);
4715}
4716
4717void FastNewRestParameterStub::Generate(MacroAssembler* masm) {
4718 // ----------- S t a t e -------------
4719 // -- r3 : function
4720 // -- cp : context
4721 // -- fp : frame pointer
4722 // -- lr : return address
4723 // -----------------------------------
4724 __ AssertFunction(r3);
4725
4726 // For Ignition we need to skip all possible handler/stub frames until
4727 // we reach the JavaScript frame for the function (similar to what the
4728 // runtime fallback implementation does). So make r4 point to that
4729 // JavaScript frame.
4730 {
4731 Label loop, loop_entry;
4732 __ LoadRR(r4, fp);
4733 __ b(&loop_entry);
4734 __ bind(&loop);
4735 __ LoadP(r4, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
4736 __ bind(&loop_entry);
4737 __ LoadP(ip, MemOperand(r4, StandardFrameConstants::kFunctionOffset));
4738 __ CmpP(ip, r3);
4739 __ bne(&loop);
4740 }
4741
4742 // Check if we have rest parameters (only possible if we have an
4743 // arguments adaptor frame below the function frame).
4744 Label no_rest_parameters;
4745 __ LoadP(r4, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
4746 __ LoadP(ip, MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset));
4747 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4748 __ bne(&no_rest_parameters);
4749
4750 // Check if the arguments adaptor frame contains more arguments than
4751 // specified by the function's internal formal parameter count.
4752 Label rest_parameters;
4753 __ LoadP(r2, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset));
4754 __ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
4755 __ LoadW(
4756 r3, FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
4757#if V8_TARGET_ARCH_S390X
4758 __ SmiTag(r3);
4759#endif
4760 __ SubP(r2, r2, r3);
4761 __ bgt(&rest_parameters);
4762
4763 // Return an empty rest parameter array.
4764 __ bind(&no_rest_parameters);
4765 {
4766 // ----------- S t a t e -------------
4767 // -- cp : context
4768 // -- lr : return address
4769 // -----------------------------------
4770
4771 // Allocate an empty rest parameter array.
4772 Label allocate, done_allocate;
4773 __ Allocate(JSArray::kSize, r2, r3, r4, &allocate, TAG_OBJECT);
4774 __ bind(&done_allocate);
4775
4776 // Setup the rest parameter array in r0.
4777 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r3);
4778 __ StoreP(r3, FieldMemOperand(r2, JSArray::kMapOffset), r0);
4779 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
4780 __ StoreP(r3, FieldMemOperand(r2, JSArray::kPropertiesOffset), r0);
4781 __ StoreP(r3, FieldMemOperand(r2, JSArray::kElementsOffset), r0);
4782 __ LoadImmP(r3, Operand::Zero());
4783 __ StoreP(r3, FieldMemOperand(r2, JSArray::kLengthOffset), r0);
4784 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4785 __ Ret();
4786
4787 // Fall back to %AllocateInNewSpace.
4788 __ bind(&allocate);
4789 {
4790 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4791 __ Push(Smi::FromInt(JSArray::kSize));
4792 __ CallRuntime(Runtime::kAllocateInNewSpace);
4793 }
4794 __ b(&done_allocate);
4795 }
4796
4797 __ bind(&rest_parameters);
4798 {
4799 // Compute the pointer to the first rest parameter (skippping the receiver).
4800 __ SmiToPtrArrayOffset(r8, r2);
4801 __ AddP(r4, r4, r8);
4802 __ AddP(r4, r4, Operand(StandardFrameConstants::kCallerSPOffset));
4803
4804 // ----------- S t a t e -------------
4805 // -- cp : context
4806 // -- r2 : number of rest parameters (tagged)
4807 // -- r4 : pointer just past first rest parameters
4808 // -- r8 : size of rest parameters
4809 // -- lr : return address
4810 // -----------------------------------
4811
4812 // Allocate space for the rest parameter array plus the backing store.
4813 Label allocate, done_allocate;
4814 __ mov(r3, Operand(JSArray::kSize + FixedArray::kHeaderSize));
4815 __ AddP(r3, r3, r8);
4816 __ Allocate(r3, r5, r6, r7, &allocate, TAG_OBJECT);
4817 __ bind(&done_allocate);
4818
4819 // Setup the elements array in r5.
4820 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4821 __ StoreP(r3, FieldMemOperand(r5, FixedArray::kMapOffset), r0);
4822 __ StoreP(r2, FieldMemOperand(r5, FixedArray::kLengthOffset), r0);
4823 __ AddP(r6, r5,
4824 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
4825 {
4826 Label loop;
4827 __ SmiUntag(r1, r2);
4828 // __ mtctr(r0);
4829 __ bind(&loop);
4830 __ lay(r4, MemOperand(r4, -kPointerSize));
4831 __ LoadP(ip, MemOperand(r4));
4832 __ la(r6, MemOperand(r6, kPointerSize));
4833 __ StoreP(ip, MemOperand(r6));
4834 // __ bdnz(&loop);
4835 __ BranchOnCount(r1, &loop);
4836 __ AddP(r6, r6, Operand(kPointerSize));
4837 }
4838
4839 // Setup the rest parameter array in r6.
4840 __ LoadNativeContextSlot(Context::JS_ARRAY_FAST_ELEMENTS_MAP_INDEX, r3);
4841 __ StoreP(r3, MemOperand(r6, JSArray::kMapOffset));
4842 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
4843 __ StoreP(r3, MemOperand(r6, JSArray::kPropertiesOffset));
4844 __ StoreP(r5, MemOperand(r6, JSArray::kElementsOffset));
4845 __ StoreP(r2, MemOperand(r6, JSArray::kLengthOffset));
4846 STATIC_ASSERT(JSArray::kSize == 4 * kPointerSize);
4847 __ AddP(r2, r6, Operand(kHeapObjectTag));
4848 __ Ret();
4849
4850 // Fall back to %AllocateInNewSpace.
4851 __ bind(&allocate);
4852 {
4853 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
4854 __ SmiTag(r3);
4855 __ Push(r2, r4, r3);
4856 __ CallRuntime(Runtime::kAllocateInNewSpace);
4857 __ LoadRR(r5, r2);
4858 __ Pop(r2, r4);
4859 }
4860 __ b(&done_allocate);
4861 }
4862}
4863
4864void FastNewSloppyArgumentsStub::Generate(MacroAssembler* masm) {
4865 // ----------- S t a t e -------------
4866 // -- r3 : function
4867 // -- cp : context
4868 // -- fp : frame pointer
4869 // -- lr : return address
4870 // -----------------------------------
4871 __ AssertFunction(r3);
4872
4873 // TODO(bmeurer): Cleanup to match the FastNewStrictArgumentsStub.
4874 __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
4875 __ LoadW(
4876 r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset));
4877#if V8_TARGET_ARCH_S390X
4878 __ SmiTag(r4);
4879#endif
4880 __ SmiToPtrArrayOffset(r5, r4);
4881 __ AddP(r5, fp, r5);
4882 __ AddP(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
4883
4884 // r3 : function
4885 // r4 : number of parameters (tagged)
4886 // r5 : parameters pointer
4887 // Registers used over whole function:
4888 // r7 : arguments count (tagged)
4889 // r8 : mapped parameter count (tagged)
4890
4891 // Check if the calling frame is an arguments adaptor frame.
4892 Label adaptor_frame, try_allocate, runtime;
4893 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4894 __ LoadP(r2, MemOperand(r6, CommonFrameConstants::kContextOrFrameTypeOffset));
4895 __ CmpSmiLiteral(r2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
4896 __ beq(&adaptor_frame);
4897
4898 // No adaptor, parameter count = argument count.
4899 __ LoadRR(r7, r4);
4900 __ LoadRR(r8, r4);
4901 __ b(&try_allocate);
4902
4903 // We have an adaptor frame. Patch the parameters pointer.
4904 __ bind(&adaptor_frame);
4905 __ LoadP(r7, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
4906 __ SmiToPtrArrayOffset(r5, r7);
4907 __ AddP(r5, r5, r6);
4908 __ AddP(r5, r5, Operand(StandardFrameConstants::kCallerSPOffset));
4909
4910 // r7 = argument count (tagged)
4911 // r8 = parameter count (tagged)
4912 // Compute the mapped parameter count = min(r4, r7) in r8.
4913 __ CmpP(r4, r7);
4914 Label skip;
4915 __ LoadRR(r8, r4);
4916 __ blt(&skip);
4917 __ LoadRR(r8, r7);
4918 __ bind(&skip);
4919
4920 __ bind(&try_allocate);
4921
4922 // Compute the sizes of backing store, parameter map, and arguments object.
4923 // 1. Parameter map, has 2 extra words containing context and backing store.
4924 const int kParameterMapHeaderSize =
4925 FixedArray::kHeaderSize + 2 * kPointerSize;
4926 // If there are no mapped parameters, we do not need the parameter_map.
4927 __ CmpSmiLiteral(r8, Smi::FromInt(0), r0);
4928 Label skip2, skip3;
4929 __ bne(&skip2);
4930 __ LoadImmP(r1, Operand::Zero());
4931 __ b(&skip3);
4932 __ bind(&skip2);
4933 __ SmiToPtrArrayOffset(r1, r8);
4934 __ AddP(r1, r1, Operand(kParameterMapHeaderSize));
4935 __ bind(&skip3);
4936
4937 // 2. Backing store.
4938 __ SmiToPtrArrayOffset(r6, r7);
4939 __ AddP(r1, r1, r6);
4940 __ AddP(r1, r1, Operand(FixedArray::kHeaderSize));
4941
4942 // 3. Arguments object.
4943 __ AddP(r1, r1, Operand(JSSloppyArgumentsObject::kSize));
4944
4945 // Do the allocation of all three objects in one go.
4946 __ Allocate(r1, r2, r1, r6, &runtime, TAG_OBJECT);
4947
4948 // r2 = address of new object(s) (tagged)
4949 // r4 = argument count (smi-tagged)
4950 // Get the arguments boilerplate from the current native context into r3.
4951 const int kNormalOffset =
4952 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
4953 const int kAliasedOffset =
4954 Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX);
4955
4956 __ LoadP(r6, NativeContextMemOperand());
4957 __ CmpP(r8, Operand::Zero());
4958 Label skip4, skip5;
4959 __ bne(&skip4);
4960 __ LoadP(r6, MemOperand(r6, kNormalOffset));
4961 __ b(&skip5);
4962 __ bind(&skip4);
4963 __ LoadP(r6, MemOperand(r6, kAliasedOffset));
4964 __ bind(&skip5);
4965
4966 // r2 = address of new object (tagged)
4967 // r4 = argument count (smi-tagged)
4968 // r6 = address of arguments map (tagged)
4969 // r8 = mapped parameter count (tagged)
4970 __ StoreP(r6, FieldMemOperand(r2, JSObject::kMapOffset), r0);
4971 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
4972 __ StoreP(r1, FieldMemOperand(r2, JSObject::kPropertiesOffset), r0);
4973 __ StoreP(r1, FieldMemOperand(r2, JSObject::kElementsOffset), r0);
4974
4975 // Set up the callee in-object property.
4976 __ AssertNotSmi(r3);
4977 __ StoreP(r3, FieldMemOperand(r2, JSSloppyArgumentsObject::kCalleeOffset),
4978 r0);
4979
4980 // Use the length (smi tagged) and set that as an in-object property too.
4981 __ AssertSmi(r7);
4982 __ StoreP(r7, FieldMemOperand(r2, JSSloppyArgumentsObject::kLengthOffset),
4983 r0);
4984
4985 // Set up the elements pointer in the allocated arguments object.
4986 // If we allocated a parameter map, r6 will point there, otherwise
4987 // it will point to the backing store.
4988 __ AddP(r6, r2, Operand(JSSloppyArgumentsObject::kSize));
4989 __ StoreP(r6, FieldMemOperand(r2, JSObject::kElementsOffset), r0);
4990
4991 // r2 = address of new object (tagged)
4992 // r4 = argument count (tagged)
4993 // r6 = address of parameter map or backing store (tagged)
4994 // r8 = mapped parameter count (tagged)
4995 // Initialize parameter map. If there are no mapped arguments, we're done.
4996 Label skip_parameter_map;
4997 __ CmpSmiLiteral(r8, Smi::FromInt(0), r0);
4998 Label skip6;
4999 __ bne(&skip6);
5000 // Move backing store address to r3, because it is
5001 // expected there when filling in the unmapped arguments.
5002 __ LoadRR(r3, r6);
5003 __ b(&skip_parameter_map);
5004 __ bind(&skip6);
5005
5006 __ LoadRoot(r7, Heap::kSloppyArgumentsElementsMapRootIndex);
5007 __ StoreP(r7, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
5008 __ AddSmiLiteral(r7, r8, Smi::FromInt(2), r0);
5009 __ StoreP(r7, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
5010 __ StoreP(cp, FieldMemOperand(r6, FixedArray::kHeaderSize + 0 * kPointerSize),
5011 r0);
5012 __ SmiToPtrArrayOffset(r7, r8);
5013 __ AddP(r7, r7, r6);
5014 __ AddP(r7, r7, Operand(kParameterMapHeaderSize));
5015 __ StoreP(r7, FieldMemOperand(r6, FixedArray::kHeaderSize + 1 * kPointerSize),
5016 r0);
5017
5018 // Copy the parameter slots and the holes in the arguments.
5019 // We need to fill in mapped_parameter_count slots. They index the context,
5020 // where parameters are stored in reverse order, at
5021 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
5022 // The mapped parameter thus need to get indices
5023 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
5024 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
5025 // We loop from right to left.
5026 Label parameters_loop;
5027 __ LoadRR(r7, r8);
5028 __ AddSmiLiteral(r1, r4, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
5029 __ SubP(r1, r1, r8);
5030 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
5031 __ SmiToPtrArrayOffset(r3, r7);
5032 __ AddP(r3, r3, r6);
5033 __ AddP(r3, r3, Operand(kParameterMapHeaderSize));
5034
5035 // r3 = address of backing store (tagged)
5036 // r6 = address of parameter map (tagged)
5037 // r7 = temporary scratch (a.o., for address calculation)
5038 // r9 = temporary scratch (a.o., for address calculation)
5039 // ip = the hole value
5040 __ SmiUntag(r7);
5041 __ push(r4);
5042 __ LoadRR(r4, r7);
5043 __ ShiftLeftP(r7, r7, Operand(kPointerSizeLog2));
5044 __ AddP(r9, r3, r7);
5045 __ AddP(r7, r6, r7);
5046 __ AddP(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5047 __ AddP(r7, r7, Operand(kParameterMapHeaderSize - kHeapObjectTag));
5048
5049 __ bind(&parameters_loop);
5050 __ StoreP(r1, MemOperand(r7, -kPointerSize));
5051 __ lay(r7, MemOperand(r7, -kPointerSize));
5052 __ StoreP(ip, MemOperand(r9, -kPointerSize));
5053 __ lay(r9, MemOperand(r9, -kPointerSize));
5054 __ AddSmiLiteral(r1, r1, Smi::FromInt(1), r0);
5055 __ BranchOnCount(r4, &parameters_loop);
5056 __ pop(r4);
5057
5058 // Restore r7 = argument count (tagged).
5059 __ LoadP(r7, FieldMemOperand(r2, JSSloppyArgumentsObject::kLengthOffset));
5060
5061 __ bind(&skip_parameter_map);
5062 // r2 = address of new object (tagged)
5063 // r3 = address of backing store (tagged)
5064 // r7 = argument count (tagged)
5065 // r8 = mapped parameter count (tagged)
5066 // r1 = scratch
5067 // Copy arguments header and remaining slots (if there are any).
5068 __ LoadRoot(r1, Heap::kFixedArrayMapRootIndex);
5069 __ StoreP(r1, FieldMemOperand(r3, FixedArray::kMapOffset), r0);
5070 __ StoreP(r7, FieldMemOperand(r3, FixedArray::kLengthOffset), r0);
5071 __ SubP(r1, r7, r8);
5072 __ Ret(eq);
5073
5074 Label arguments_loop;
5075 __ SmiUntag(r1);
5076 __ LoadRR(r4, r1);
5077
5078 __ SmiToPtrArrayOffset(r0, r8);
5079 __ SubP(r5, r5, r0);
5080 __ AddP(r1, r3, r0);
5081 __ AddP(r1, r1,
5082 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
5083
5084 __ bind(&arguments_loop);
5085 __ LoadP(r6, MemOperand(r5, -kPointerSize));
5086 __ lay(r5, MemOperand(r5, -kPointerSize));
5087 __ StoreP(r6, MemOperand(r1, kPointerSize));
5088 __ la(r1, MemOperand(r1, kPointerSize));
5089 __ BranchOnCount(r4, &arguments_loop);
5090
5091 // Return.
5092 __ Ret();
5093
5094 // Do the runtime call to allocate the arguments object.
5095 // r7 = argument count (tagged)
5096 __ bind(&runtime);
5097 __ Push(r3, r5, r7);
5098 __ TailCallRuntime(Runtime::kNewSloppyArguments);
5099}
5100
5101void FastNewStrictArgumentsStub::Generate(MacroAssembler* masm) {
5102 // ----------- S t a t e -------------
5103 // -- r3 : function
5104 // -- cp : context
5105 // -- fp : frame pointer
5106 // -- lr : return address
5107 // -----------------------------------
5108 __ AssertFunction(r3);
5109
5110 // For Ignition we need to skip all possible handler/stub frames until
5111 // we reach the JavaScript frame for the function (similar to what the
5112 // runtime fallback implementation does). So make r4 point to that
5113 // JavaScript frame.
5114 {
5115 Label loop, loop_entry;
5116 __ LoadRR(r4, fp);
5117 __ b(&loop_entry);
5118 __ bind(&loop);
5119 __ LoadP(r4, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
5120 __ bind(&loop_entry);
5121 __ LoadP(ip, MemOperand(r4, StandardFrameConstants::kFunctionOffset));
5122 __ CmpP(ip, r3);
5123 __ bne(&loop);
5124 }
5125
5126 // Check if we have an arguments adaptor frame below the function frame.
5127 Label arguments_adaptor, arguments_done;
5128 __ LoadP(r5, MemOperand(r4, StandardFrameConstants::kCallerFPOffset));
5129 __ LoadP(ip, MemOperand(r5, CommonFrameConstants::kContextOrFrameTypeOffset));
5130 __ CmpSmiLiteral(ip, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
5131 __ beq(&arguments_adaptor);
5132 {
5133 __ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
5134 __ LoadW(r2, FieldMemOperand(
5135 r3, SharedFunctionInfo::kFormalParameterCountOffset));
5136#if V8_TARGET_ARCH_S390X
5137 __ SmiTag(r2);
5138#endif
5139 __ SmiToPtrArrayOffset(r8, r2);
5140 __ AddP(r4, r4, r8);
5141 }
5142 __ b(&arguments_done);
5143 __ bind(&arguments_adaptor);
5144 {
5145 __ LoadP(r2, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
5146 __ SmiToPtrArrayOffset(r8, r2);
5147 __ AddP(r4, r5, r8);
5148 }
5149 __ bind(&arguments_done);
5150 __ AddP(r4, r4, Operand(StandardFrameConstants::kCallerSPOffset));
5151
5152 // ----------- S t a t e -------------
5153 // -- cp : context
5154 // -- r2 : number of rest parameters (tagged)
5155 // -- r4 : pointer just past first rest parameters
5156 // -- r8 : size of rest parameters
5157 // -- lr : return address
5158 // -----------------------------------
5159
5160 // Allocate space for the strict arguments object plus the backing store.
5161 Label allocate, done_allocate;
5162 __ mov(r3, Operand(JSStrictArgumentsObject::kSize + FixedArray::kHeaderSize));
5163 __ AddP(r3, r3, r8);
5164 __ Allocate(r3, r5, r6, r7, &allocate, TAG_OBJECT);
5165 __ bind(&done_allocate);
5166
5167 // Setup the elements array in r5.
5168 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
5169 __ StoreP(r3, FieldMemOperand(r5, FixedArray::kMapOffset), r0);
5170 __ StoreP(r2, FieldMemOperand(r5, FixedArray::kLengthOffset), r0);
5171 __ AddP(r6, r5,
5172 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
5173 {
5174 Label loop, done_loop;
5175 __ SmiUntag(r1, r2);
5176 __ LoadAndTestP(r1, r1);
5177 __ beq(&done_loop);
5178 __ bind(&loop);
5179 __ lay(r4, MemOperand(r4, -kPointerSize));
5180 __ LoadP(ip, MemOperand(r4));
5181 __ la(r6, MemOperand(r6, kPointerSize));
5182 __ StoreP(ip, MemOperand(r6));
5183 __ BranchOnCount(r1, &loop);
5184 __ bind(&done_loop);
5185 __ AddP(r6, r6, Operand(kPointerSize));
5186 }
5187
5188 // Setup the rest parameter array in r6.
5189 __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, r3);
5190 __ StoreP(r3, MemOperand(r6, JSStrictArgumentsObject::kMapOffset));
5191 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
5192 __ StoreP(r3, MemOperand(r6, JSStrictArgumentsObject::kPropertiesOffset));
5193 __ StoreP(r5, MemOperand(r6, JSStrictArgumentsObject::kElementsOffset));
5194 __ StoreP(r2, MemOperand(r6, JSStrictArgumentsObject::kLengthOffset));
5195 STATIC_ASSERT(JSStrictArgumentsObject::kSize == 4 * kPointerSize);
5196 __ AddP(r2, r6, Operand(kHeapObjectTag));
5197 __ Ret();
5198
5199 // Fall back to %AllocateInNewSpace.
5200 __ bind(&allocate);
5201 {
5202 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
5203 __ SmiTag(r3);
5204 __ Push(r2, r4, r3);
5205 __ CallRuntime(Runtime::kAllocateInNewSpace);
5206 __ LoadRR(r5, r2);
5207 __ Pop(r2, r4);
5208 }
5209 __ b(&done_allocate);
5210}
5211
5212void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) {
5213 Register context = cp;
5214 Register result = r2;
5215 Register slot = r4;
5216
5217 // Go up the context chain to the script context.
5218 for (int i = 0; i < depth(); ++i) {
5219 __ LoadP(result, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5220 context = result;
5221 }
5222
5223 // Load the PropertyCell value at the specified slot.
5224 __ ShiftLeftP(r0, slot, Operand(kPointerSizeLog2));
5225 __ AddP(result, context, r0);
5226 __ LoadP(result, ContextMemOperand(result));
5227 __ LoadP(result, FieldMemOperand(result, PropertyCell::kValueOffset));
5228
5229 // If the result is not the_hole, return. Otherwise, handle in the runtime.
5230 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
5231 Label runtime;
5232 __ beq(&runtime);
5233 __ Ret();
5234 __ bind(&runtime);
5235
5236 // Fallback to runtime.
5237 __ SmiTag(slot);
5238 __ Push(slot);
5239 __ TailCallRuntime(Runtime::kLoadGlobalViaContext);
5240}
5241
5242void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) {
5243 Register value = r2;
5244 Register slot = r4;
5245
5246 Register cell = r3;
5247 Register cell_details = r5;
5248 Register cell_value = r6;
5249 Register cell_value_map = r7;
5250 Register scratch = r8;
5251
5252 Register context = cp;
5253 Register context_temp = cell;
5254
5255 Label fast_heapobject_case, fast_smi_case, slow_case;
5256
5257 if (FLAG_debug_code) {
5258 __ CompareRoot(value, Heap::kTheHoleValueRootIndex);
5259 __ Check(ne, kUnexpectedValue);
5260 }
5261
5262 // Go up the context chain to the script context.
5263 for (int i = 0; i < depth(); i++) {
5264 __ LoadP(context_temp, ContextMemOperand(context, Context::PREVIOUS_INDEX));
5265 context = context_temp;
5266 }
5267
5268 // Load the PropertyCell at the specified slot.
5269 __ ShiftLeftP(r0, slot, Operand(kPointerSizeLog2));
5270 __ AddP(cell, context, r0);
5271 __ LoadP(cell, ContextMemOperand(cell));
5272
5273 // Load PropertyDetails for the cell (actually only the cell_type and kind).
5274 __ LoadP(cell_details, FieldMemOperand(cell, PropertyCell::kDetailsOffset));
5275 __ SmiUntag(cell_details);
5276 __ AndP(cell_details, cell_details,
5277 Operand(PropertyDetails::PropertyCellTypeField::kMask |
5278 PropertyDetails::KindField::kMask |
5279 PropertyDetails::kAttributesReadOnlyMask));
5280
5281 // Check if PropertyCell holds mutable data.
5282 Label not_mutable_data;
5283 __ CmpP(cell_details, Operand(PropertyDetails::PropertyCellTypeField::encode(
5284 PropertyCellType::kMutable) |
5285 PropertyDetails::KindField::encode(kData)));
5286 __ bne(&not_mutable_data);
5287 __ JumpIfSmi(value, &fast_smi_case);
5288
5289 __ bind(&fast_heapobject_case);
5290 __ StoreP(value, FieldMemOperand(cell, PropertyCell::kValueOffset), r0);
5291 // RecordWriteField clobbers the value register, so we copy it before the
5292 // call.
5293 __ LoadRR(r5, value);
5294 __ RecordWriteField(cell, PropertyCell::kValueOffset, r5, scratch,
5295 kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
5296 OMIT_SMI_CHECK);
5297 __ Ret();
5298
5299 __ bind(&not_mutable_data);
5300 // Check if PropertyCell value matches the new value (relevant for Constant,
5301 // ConstantType and Undefined cells).
5302 Label not_same_value;
5303 __ LoadP(cell_value, FieldMemOperand(cell, PropertyCell::kValueOffset));
5304 __ CmpP(cell_value, value);
5305 __ bne(&not_same_value);
5306
5307 // Make sure the PropertyCell is not marked READ_ONLY.
5308 __ AndP(r0, cell_details, Operand(PropertyDetails::kAttributesReadOnlyMask));
5309 __ bne(&slow_case);
5310
5311 if (FLAG_debug_code) {
5312 Label done;
5313 // This can only be true for Constant, ConstantType and Undefined cells,
5314 // because we never store the_hole via this stub.
5315 __ CmpP(cell_details,
5316 Operand(PropertyDetails::PropertyCellTypeField::encode(
5317 PropertyCellType::kConstant) |
5318 PropertyDetails::KindField::encode(kData)));
5319 __ beq(&done);
5320 __ CmpP(cell_details,
5321 Operand(PropertyDetails::PropertyCellTypeField::encode(
5322 PropertyCellType::kConstantType) |
5323 PropertyDetails::KindField::encode(kData)));
5324 __ beq(&done);
5325 __ CmpP(cell_details,
5326 Operand(PropertyDetails::PropertyCellTypeField::encode(
5327 PropertyCellType::kUndefined) |
5328 PropertyDetails::KindField::encode(kData)));
5329 __ Check(eq, kUnexpectedValue);
5330 __ bind(&done);
5331 }
5332 __ Ret();
5333 __ bind(&not_same_value);
5334
5335 // Check if PropertyCell contains data with constant type (and is not
5336 // READ_ONLY).
5337 __ CmpP(cell_details, Operand(PropertyDetails::PropertyCellTypeField::encode(
5338 PropertyCellType::kConstantType) |
5339 PropertyDetails::KindField::encode(kData)));
5340 __ bne(&slow_case);
5341
5342 // Now either both old and new values must be smis or both must be heap
5343 // objects with same map.
5344 Label value_is_heap_object;
5345 __ JumpIfNotSmi(value, &value_is_heap_object);
5346 __ JumpIfNotSmi(cell_value, &slow_case);
5347 // Old and new values are smis, no need for a write barrier here.
5348 __ bind(&fast_smi_case);
5349 __ StoreP(value, FieldMemOperand(cell, PropertyCell::kValueOffset), r0);
5350 __ Ret();
5351
5352 __ bind(&value_is_heap_object);
5353 __ JumpIfSmi(cell_value, &slow_case);
5354
5355 __ LoadP(cell_value_map, FieldMemOperand(cell_value, HeapObject::kMapOffset));
5356 __ LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5357 __ CmpP(cell_value_map, scratch);
5358 __ beq(&fast_heapobject_case);
5359
5360 // Fallback to runtime.
5361 __ bind(&slow_case);
5362 __ SmiTag(slot);
5363 __ Push(slot, value);
5364 __ TailCallRuntime(is_strict(language_mode())
5365 ? Runtime::kStoreGlobalViaContext_Strict
5366 : Runtime::kStoreGlobalViaContext_Sloppy);
5367}
5368
5369static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
5370 return ref0.address() - ref1.address();
5371}
5372
5373// Calls an API function. Allocates HandleScope, extracts returned value
5374// from handle and propagates exceptions. Restores context. stack_space
5375// - space to be unwound on exit (includes the call JS arguments space and
5376// the additional space allocated for the fast call).
5377static void CallApiFunctionAndReturn(MacroAssembler* masm,
5378 Register function_address,
5379 ExternalReference thunk_ref,
5380 int stack_space,
5381 MemOperand* stack_space_operand,
5382 MemOperand return_value_operand,
5383 MemOperand* context_restore_operand) {
5384 Isolate* isolate = masm->isolate();
5385 ExternalReference next_address =
5386 ExternalReference::handle_scope_next_address(isolate);
5387 const int kNextOffset = 0;
5388 const int kLimitOffset = AddressOffset(
5389 ExternalReference::handle_scope_limit_address(isolate), next_address);
5390 const int kLevelOffset = AddressOffset(
5391 ExternalReference::handle_scope_level_address(isolate), next_address);
5392
5393 // Additional parameter is the address of the actual callback.
5394 DCHECK(function_address.is(r3) || function_address.is(r4));
5395 Register scratch = r5;
5396
5397 __ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
5398 __ LoadlB(scratch, MemOperand(scratch, 0));
5399 __ CmpP(scratch, Operand::Zero());
5400
5401 Label profiler_disabled;
5402 Label end_profiler_check;
5403 __ beq(&profiler_disabled, Label::kNear);
5404 __ mov(scratch, Operand(thunk_ref));
5405 __ b(&end_profiler_check, Label::kNear);
5406 __ bind(&profiler_disabled);
5407 __ LoadRR(scratch, function_address);
5408 __ bind(&end_profiler_check);
5409
5410 // Allocate HandleScope in callee-save registers.
5411 // r9 - next_address
5412 // r6 - next_address->kNextOffset
5413 // r7 - next_address->kLimitOffset
5414 // r8 - next_address->kLevelOffset
5415 __ mov(r9, Operand(next_address));
5416 __ LoadP(r6, MemOperand(r9, kNextOffset));
5417 __ LoadP(r7, MemOperand(r9, kLimitOffset));
5418 __ LoadlW(r8, MemOperand(r9, kLevelOffset));
5419 __ AddP(r8, Operand(1));
5420 __ StoreW(r8, MemOperand(r9, kLevelOffset));
5421
5422 if (FLAG_log_timer_events) {
5423 FrameScope frame(masm, StackFrame::MANUAL);
5424 __ PushSafepointRegisters();
5425 __ PrepareCallCFunction(1, r2);
5426 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
5427 __ CallCFunction(ExternalReference::log_enter_external_function(isolate),
5428 1);
5429 __ PopSafepointRegisters();
5430 }
5431
5432 // Native call returns to the DirectCEntry stub which redirects to the
5433 // return address pushed on stack (could have moved after GC).
5434 // DirectCEntry stub itself is generated early and never moves.
5435 DirectCEntryStub stub(isolate);
5436 stub.GenerateCall(masm, scratch);
5437
5438 if (FLAG_log_timer_events) {
5439 FrameScope frame(masm, StackFrame::MANUAL);
5440 __ PushSafepointRegisters();
5441 __ PrepareCallCFunction(1, r2);
5442 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
5443 __ CallCFunction(ExternalReference::log_leave_external_function(isolate),
5444 1);
5445 __ PopSafepointRegisters();
5446 }
5447
5448 Label promote_scheduled_exception;
5449 Label delete_allocated_handles;
5450 Label leave_exit_frame;
5451 Label return_value_loaded;
5452
5453 // load value from ReturnValue
5454 __ LoadP(r2, return_value_operand);
5455 __ bind(&return_value_loaded);
5456 // No more valid handles (the result handle was the last one). Restore
5457 // previous handle scope.
5458 __ StoreP(r6, MemOperand(r9, kNextOffset));
5459 if (__ emit_debug_code()) {
5460 __ LoadlW(r3, MemOperand(r9, kLevelOffset));
5461 __ CmpP(r3, r8);
5462 __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
5463 }
5464 __ SubP(r8, Operand(1));
5465 __ StoreW(r8, MemOperand(r9, kLevelOffset));
5466 __ CmpP(r7, MemOperand(r9, kLimitOffset));
5467 __ bne(&delete_allocated_handles, Label::kNear);
5468
5469 // Leave the API exit frame.
5470 __ bind(&leave_exit_frame);
5471 bool restore_context = context_restore_operand != NULL;
5472 if (restore_context) {
5473 __ LoadP(cp, *context_restore_operand);
5474 }
5475 // LeaveExitFrame expects unwind space to be in a register.
5476 if (stack_space_operand != NULL) {
5477 __ l(r6, *stack_space_operand);
5478 } else {
5479 __ mov(r6, Operand(stack_space));
5480 }
5481 __ LeaveExitFrame(false, r6, !restore_context, stack_space_operand != NULL);
5482
5483 // Check if the function scheduled an exception.
5484 __ mov(r7, Operand(ExternalReference::scheduled_exception_address(isolate)));
5485 __ LoadP(r7, MemOperand(r7));
5486 __ CompareRoot(r7, Heap::kTheHoleValueRootIndex);
5487 __ bne(&promote_scheduled_exception, Label::kNear);
5488
5489 __ b(r14);
5490
5491 // Re-throw by promoting a scheduled exception.
5492 __ bind(&promote_scheduled_exception);
5493 __ TailCallRuntime(Runtime::kPromoteScheduledException);
5494
5495 // HandleScope limit has changed. Delete allocated extensions.
5496 __ bind(&delete_allocated_handles);
5497 __ StoreP(r7, MemOperand(r9, kLimitOffset));
5498 __ LoadRR(r6, r2);
5499 __ PrepareCallCFunction(1, r7);
5500 __ mov(r2, Operand(ExternalReference::isolate_address(isolate)));
5501 __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
5502 1);
5503 __ LoadRR(r2, r6);
5504 __ b(&leave_exit_frame, Label::kNear);
5505}
5506
5507void CallApiCallbackStub::Generate(MacroAssembler* masm) {
5508 // ----------- S t a t e -------------
5509 // -- r2 : callee
5510 // -- r6 : call_data
5511 // -- r4 : holder
5512 // -- r3 : api_function_address
5513 // -- cp : context
5514 // --
5515 // -- sp[0] : last argument
5516 // -- ...
5517 // -- sp[(argc - 1)* 4] : first argument
5518 // -- sp[argc * 4] : receiver
5519 // -----------------------------------
5520
5521 Register callee = r2;
5522 Register call_data = r6;
5523 Register holder = r4;
5524 Register api_function_address = r3;
5525 Register context = cp;
5526
5527 typedef FunctionCallbackArguments FCA;
5528
5529 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
5530 STATIC_ASSERT(FCA::kCalleeIndex == 5);
5531 STATIC_ASSERT(FCA::kDataIndex == 4);
5532 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
5533 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
5534 STATIC_ASSERT(FCA::kIsolateIndex == 1);
5535 STATIC_ASSERT(FCA::kHolderIndex == 0);
5536 STATIC_ASSERT(FCA::kArgsLength == 7);
5537
5538 // context save
5539 __ push(context);
5540 if (!is_lazy()) {
5541 // load context from callee
5542 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
5543 }
5544
5545 // callee
5546 __ push(callee);
5547
5548 // call data
5549 __ push(call_data);
5550
5551 Register scratch = call_data;
5552 if (!call_data_undefined()) {
5553 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
5554 }
5555 // return value
5556 __ push(scratch);
5557 // return value default
5558 __ push(scratch);
5559 // isolate
5560 __ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
5561 __ push(scratch);
5562 // holder
5563 __ push(holder);
5564
5565 // Prepare arguments.
5566 __ LoadRR(scratch, sp);
5567
5568 // Allocate the v8::Arguments structure in the arguments' space since
5569 // it's not controlled by GC.
5570 // S390 LINUX ABI:
5571 //
5572 // Create 5 extra slots on stack:
5573 // [0] space for DirectCEntryStub's LR save
5574 // [1-4] FunctionCallbackInfo
5575 const int kApiStackSpace = 5;
5576 const int kFunctionCallbackInfoOffset =
5577 (kStackFrameExtraParamSlot + 1) * kPointerSize;
5578
5579 FrameScope frame_scope(masm, StackFrame::MANUAL);
5580 __ EnterExitFrame(false, kApiStackSpace);
5581
5582 DCHECK(!api_function_address.is(r2) && !scratch.is(r2));
5583 // r2 = FunctionCallbackInfo&
5584 // Arguments is after the return address.
5585 __ AddP(r2, sp, Operand(kFunctionCallbackInfoOffset));
5586 // FunctionCallbackInfo::implicit_args_
5587 __ StoreP(scratch, MemOperand(r2, 0 * kPointerSize));
5588 // FunctionCallbackInfo::values_
5589 __ AddP(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
5590 __ StoreP(ip, MemOperand(r2, 1 * kPointerSize));
5591 // FunctionCallbackInfo::length_ = argc
5592 __ LoadImmP(ip, Operand(argc()));
5593 __ StoreW(ip, MemOperand(r2, 2 * kPointerSize));
5594 // FunctionCallbackInfo::is_construct_call_ = 0
5595 __ LoadImmP(ip, Operand::Zero());
5596 __ StoreW(ip, MemOperand(r2, 2 * kPointerSize + kIntSize));
5597
5598 ExternalReference thunk_ref =
5599 ExternalReference::invoke_function_callback(masm->isolate());
5600
5601 AllowExternalCallThatCantCauseGC scope(masm);
5602 MemOperand context_restore_operand(
5603 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
5604 // Stores return the first js argument
5605 int return_value_offset = 0;
5606 if (is_store()) {
5607 return_value_offset = 2 + FCA::kArgsLength;
5608 } else {
5609 return_value_offset = 2 + FCA::kReturnValueOffset;
5610 }
5611 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
5612 int stack_space = 0;
5613 MemOperand is_construct_call_operand =
5614 MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize + kIntSize);
5615 MemOperand* stack_space_operand = &is_construct_call_operand;
5616 stack_space = argc() + FCA::kArgsLength + 1;
5617 stack_space_operand = NULL;
5618 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
5619 stack_space_operand, return_value_operand,
5620 &context_restore_operand);
5621}
5622
5623void CallApiGetterStub::Generate(MacroAssembler* masm) {
5624 // ----------- S t a t e -------------
5625 // -- sp[0] : name
5626 // -- sp[4 .. (4 + kArgsLength*4)] : v8::PropertyCallbackInfo::args_
5627 // -- ...
5628 // -- r4 : api_function_address
5629 // -----------------------------------
5630
5631 Register api_function_address = ApiGetterDescriptor::function_address();
5632 int arg0Slot = 0;
5633 int accessorInfoSlot = 0;
5634 int apiStackSpace = 0;
5635 DCHECK(api_function_address.is(r4));
5636
5637 // v8::PropertyCallbackInfo::args_ array and name handle.
5638 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
5639
5640 // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
5641 __ LoadRR(r2, sp); // r2 = Handle<Name>
5642 __ AddP(r3, r2, Operand(1 * kPointerSize)); // r3 = v8::PCI::args_
5643
5644 // If ABI passes Handles (pointer-sized struct) in a register:
5645 //
5646 // Create 2 extra slots on stack:
5647 // [0] space for DirectCEntryStub's LR save
5648 // [1] AccessorInfo&
5649 //
5650 // Otherwise:
5651 //
5652 // Create 3 extra slots on stack:
5653 // [0] space for DirectCEntryStub's LR save
5654 // [1] copy of Handle (first arg)
5655 // [2] AccessorInfo&
5656 if (ABI_PASSES_HANDLES_IN_REGS) {
5657 accessorInfoSlot = kStackFrameExtraParamSlot + 1;
5658 apiStackSpace = 2;
5659 } else {
5660 arg0Slot = kStackFrameExtraParamSlot + 1;
5661 accessorInfoSlot = arg0Slot + 1;
5662 apiStackSpace = 3;
5663 }
5664
5665 FrameScope frame_scope(masm, StackFrame::MANUAL);
5666 __ EnterExitFrame(false, apiStackSpace);
5667
5668 if (!ABI_PASSES_HANDLES_IN_REGS) {
5669 // pass 1st arg by reference
5670 __ StoreP(r2, MemOperand(sp, arg0Slot * kPointerSize));
5671 __ AddP(r2, sp, Operand(arg0Slot * kPointerSize));
5672 }
5673
5674 // Create v8::PropertyCallbackInfo object on the stack and initialize
5675 // it's args_ field.
5676 __ StoreP(r3, MemOperand(sp, accessorInfoSlot * kPointerSize));
5677 __ AddP(r3, sp, Operand(accessorInfoSlot * kPointerSize));
5678 // r3 = v8::PropertyCallbackInfo&
5679
5680 ExternalReference thunk_ref =
5681 ExternalReference::invoke_accessor_getter_callback(isolate());
5682
5683 // +3 is to skip prolog, return address and name handle.
5684 MemOperand return_value_operand(
5685 fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
5686 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
5687 kStackUnwindSpace, NULL, return_value_operand, NULL);
5688}
5689
5690#undef __
5691
5692} // namespace internal
5693} // namespace v8
5694
5695#endif // V8_TARGET_ARCH_S390