blob: 1c6d709f12564d00581fcd4648dea5ae1b9b1cfb [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_ARM)
31
32#include "bootstrapper.h"
33#include "code-stubs.h"
34#include "regexp-macro-assembler.h"
35
36namespace v8 {
37namespace internal {
38
39
40#define __ ACCESS_MASM(masm)
41
42static void EmitIdenticalObjectComparison(MacroAssembler* masm,
43 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +010044 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +010045 bool never_nan_nan);
46static void EmitSmiNonsmiComparison(MacroAssembler* masm,
47 Register lhs,
48 Register rhs,
49 Label* lhs_not_nan,
50 Label* slow,
51 bool strict);
Steve Block1e0659c2011-05-24 12:43:12 +010052static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cond);
Kristian Monsen80d68ea2010-09-08 11:05:35 +010053static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
54 Register lhs,
55 Register rhs);
56
57
Steve Block1e0659c2011-05-24 12:43:12 +010058void ToNumberStub::Generate(MacroAssembler* masm) {
59 // The ToNumber stub takes one argument in eax.
60 Label check_heap_number, call_builtin;
61 __ tst(r0, Operand(kSmiTagMask));
62 __ b(ne, &check_heap_number);
63 __ Ret();
64
65 __ bind(&check_heap_number);
66 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
67 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
68 __ cmp(r1, ip);
69 __ b(ne, &call_builtin);
70 __ Ret();
71
72 __ bind(&call_builtin);
73 __ push(r0);
74 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_JS);
75}
76
77
Kristian Monsen80d68ea2010-09-08 11:05:35 +010078void FastNewClosureStub::Generate(MacroAssembler* masm) {
79 // Create a new closure from the given function info in new
80 // space. Set the context to the current context in cp.
81 Label gc;
82
83 // Pop the function info from the stack.
84 __ pop(r3);
85
86 // Attempt to allocate new JSFunction in new space.
87 __ AllocateInNewSpace(JSFunction::kSize,
88 r0,
89 r1,
90 r2,
91 &gc,
92 TAG_OBJECT);
93
94 // Compute the function map in the current global context and set that
95 // as the map of the allocated object.
96 __ ldr(r2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
97 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
98 __ ldr(r2, MemOperand(r2, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
99 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
100
101 // Initialize the rest of the function. We don't have to update the
102 // write barrier because the allocated object is in new space.
103 __ LoadRoot(r1, Heap::kEmptyFixedArrayRootIndex);
104 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100105 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100106 __ str(r1, FieldMemOperand(r0, JSObject::kPropertiesOffset));
107 __ str(r1, FieldMemOperand(r0, JSObject::kElementsOffset));
108 __ str(r2, FieldMemOperand(r0, JSFunction::kPrototypeOrInitialMapOffset));
109 __ str(r3, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
110 __ str(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
111 __ str(r1, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +0100112 __ str(r4, FieldMemOperand(r0, JSFunction::kNextFunctionLinkOffset));
113
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100114
115 // Initialize the code pointer in the function to be the one
116 // found in the shared function info object.
117 __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kCodeOffset));
118 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
119 __ str(r3, FieldMemOperand(r0, JSFunction::kCodeEntryOffset));
120
121 // Return result. The argument function info has been popped already.
122 __ Ret();
123
124 // Create a new closure through the slower runtime call.
125 __ bind(&gc);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800126 __ LoadRoot(r4, Heap::kFalseValueRootIndex);
127 __ Push(cp, r3, r4);
128 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100129}
130
131
132void FastNewContextStub::Generate(MacroAssembler* masm) {
133 // Try to allocate the context in new space.
134 Label gc;
135 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
136
137 // Attempt to allocate the context in new space.
138 __ AllocateInNewSpace(FixedArray::SizeFor(length),
139 r0,
140 r1,
141 r2,
142 &gc,
143 TAG_OBJECT);
144
145 // Load the function from the stack.
146 __ ldr(r3, MemOperand(sp, 0));
147
148 // Setup the object header.
149 __ LoadRoot(r2, Heap::kContextMapRootIndex);
150 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
151 __ mov(r2, Operand(Smi::FromInt(length)));
152 __ str(r2, FieldMemOperand(r0, FixedArray::kLengthOffset));
153
154 // Setup the fixed slots.
155 __ mov(r1, Operand(Smi::FromInt(0)));
156 __ str(r3, MemOperand(r0, Context::SlotOffset(Context::CLOSURE_INDEX)));
157 __ str(r0, MemOperand(r0, Context::SlotOffset(Context::FCONTEXT_INDEX)));
158 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
159 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::EXTENSION_INDEX)));
160
161 // Copy the global object from the surrounding context.
162 __ ldr(r1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
163 __ str(r1, MemOperand(r0, Context::SlotOffset(Context::GLOBAL_INDEX)));
164
165 // Initialize the rest of the slots to undefined.
166 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
167 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
168 __ str(r1, MemOperand(r0, Context::SlotOffset(i)));
169 }
170
171 // Remove the on-stack argument and return.
172 __ mov(cp, r0);
173 __ pop();
174 __ Ret();
175
176 // Need to collect. Call into runtime system.
177 __ bind(&gc);
178 __ TailCallRuntime(Runtime::kNewContext, 1, 1);
179}
180
181
182void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
183 // Stack layout on entry:
184 //
185 // [sp]: constant elements.
186 // [sp + kPointerSize]: literal index.
187 // [sp + (2 * kPointerSize)]: literals array.
188
189 // All sizes here are multiples of kPointerSize.
190 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
191 int size = JSArray::kSize + elements_size;
192
193 // Load boilerplate object into r3 and check if we need to create a
194 // boilerplate.
195 Label slow_case;
196 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
197 __ ldr(r0, MemOperand(sp, 1 * kPointerSize));
198 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
199 __ ldr(r3, MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
200 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
201 __ cmp(r3, ip);
202 __ b(eq, &slow_case);
203
204 if (FLAG_debug_code) {
205 const char* message;
206 Heap::RootListIndex expected_map_index;
207 if (mode_ == CLONE_ELEMENTS) {
208 message = "Expected (writable) fixed array";
209 expected_map_index = Heap::kFixedArrayMapRootIndex;
210 } else {
211 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
212 message = "Expected copy-on-write fixed array";
213 expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
214 }
215 __ push(r3);
216 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
217 __ ldr(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
218 __ LoadRoot(ip, expected_map_index);
219 __ cmp(r3, ip);
220 __ Assert(eq, message);
221 __ pop(r3);
222 }
223
224 // Allocate both the JS array and the elements array in one big
225 // allocation. This avoids multiple limit checks.
226 __ AllocateInNewSpace(size,
227 r0,
228 r1,
229 r2,
230 &slow_case,
231 TAG_OBJECT);
232
233 // Copy the JS array part.
234 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
235 if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
236 __ ldr(r1, FieldMemOperand(r3, i));
237 __ str(r1, FieldMemOperand(r0, i));
238 }
239 }
240
241 if (length_ > 0) {
242 // Get hold of the elements array of the boilerplate and setup the
243 // elements pointer in the resulting object.
244 __ ldr(r3, FieldMemOperand(r3, JSArray::kElementsOffset));
245 __ add(r2, r0, Operand(JSArray::kSize));
246 __ str(r2, FieldMemOperand(r0, JSArray::kElementsOffset));
247
248 // Copy the elements array.
249 __ CopyFields(r2, r3, r1.bit(), elements_size / kPointerSize);
250 }
251
252 // Return and remove the on-stack parameters.
253 __ add(sp, sp, Operand(3 * kPointerSize));
254 __ Ret();
255
256 __ bind(&slow_case);
257 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
258}
259
260
261// Takes a Smi and converts to an IEEE 64 bit floating point value in two
262// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
263// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
264// scratch register. Destroys the source register. No GC occurs during this
265// stub so you don't have to set up the frame.
266class ConvertToDoubleStub : public CodeStub {
267 public:
268 ConvertToDoubleStub(Register result_reg_1,
269 Register result_reg_2,
270 Register source_reg,
271 Register scratch_reg)
272 : result1_(result_reg_1),
273 result2_(result_reg_2),
274 source_(source_reg),
275 zeros_(scratch_reg) { }
276
277 private:
278 Register result1_;
279 Register result2_;
280 Register source_;
281 Register zeros_;
282
283 // Minor key encoding in 16 bits.
284 class ModeBits: public BitField<OverwriteMode, 0, 2> {};
285 class OpBits: public BitField<Token::Value, 2, 14> {};
286
287 Major MajorKey() { return ConvertToDouble; }
288 int MinorKey() {
289 // Encode the parameters in a unique 16 bit value.
290 return result1_.code() +
291 (result2_.code() << 4) +
292 (source_.code() << 8) +
293 (zeros_.code() << 12);
294 }
295
296 void Generate(MacroAssembler* masm);
297
298 const char* GetName() { return "ConvertToDoubleStub"; }
299
300#ifdef DEBUG
301 void Print() { PrintF("ConvertToDoubleStub\n"); }
302#endif
303};
304
305
306void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
307#ifndef BIG_ENDIAN_FLOATING_POINT
308 Register exponent = result1_;
309 Register mantissa = result2_;
310#else
311 Register exponent = result2_;
312 Register mantissa = result1_;
313#endif
314 Label not_special;
315 // Convert from Smi to integer.
316 __ mov(source_, Operand(source_, ASR, kSmiTagSize));
317 // Move sign bit from source to destination. This works because the sign bit
318 // in the exponent word of the double has the same position and polarity as
319 // the 2's complement sign bit in a Smi.
320 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
321 __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC);
322 // Subtract from 0 if source was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100323 __ rsb(source_, source_, Operand(0, RelocInfo::NONE), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100324
325 // We have -1, 0 or 1, which we treat specially. Register source_ contains
326 // absolute value: it is either equal to 1 (special case of -1 and 1),
327 // greater than 1 (not a special case) or less than 1 (special case of 0).
328 __ cmp(source_, Operand(1));
329 __ b(gt, &not_special);
330
331 // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
332 static const uint32_t exponent_word_for_1 =
333 HeapNumber::kExponentBias << HeapNumber::kExponentShift;
334 __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq);
335 // 1, 0 and -1 all have 0 for the second word.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100336 __ mov(mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100337 __ Ret();
338
339 __ bind(&not_special);
340 // Count leading zeros. Uses mantissa for a scratch register on pre-ARM5.
341 // Gets the wrong answer for 0, but we already checked for that case above.
342 __ CountLeadingZeros(zeros_, source_, mantissa);
343 // Compute exponent and or it into the exponent register.
344 // We use mantissa as a scratch register here. Use a fudge factor to
345 // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts
346 // that fit in the ARM's constant field.
347 int fudge = 0x400;
348 __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge));
349 __ add(mantissa, mantissa, Operand(fudge));
350 __ orr(exponent,
351 exponent,
352 Operand(mantissa, LSL, HeapNumber::kExponentShift));
353 // Shift up the source chopping the top bit off.
354 __ add(zeros_, zeros_, Operand(1));
355 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
356 __ mov(source_, Operand(source_, LSL, zeros_));
357 // Compute lower part of fraction (last 12 bits).
358 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord));
359 // And the top (top 20 bits).
360 __ orr(exponent,
361 exponent,
362 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
363 __ Ret();
364}
365
366
Steve Block1e0659c2011-05-24 12:43:12 +0100367class FloatingPointHelper : public AllStatic {
368 public:
369
370 enum Destination {
371 kVFPRegisters,
372 kCoreRegisters
373 };
374
375
376 // Loads smis from r0 and r1 (right and left in binary operations) into
377 // floating point registers. Depending on the destination the values ends up
378 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
379 // floating point registers VFP3 must be supported. If core registers are
380 // requested when VFP3 is supported d6 and d7 will be scratched.
381 static void LoadSmis(MacroAssembler* masm,
382 Destination destination,
383 Register scratch1,
384 Register scratch2);
385
386 // Loads objects from r0 and r1 (right and left in binary operations) into
387 // floating point registers. Depending on the destination the values ends up
388 // either d7 and d6 or in r2/r3 and r0/r1 respectively. If the destination is
389 // floating point registers VFP3 must be supported. If core registers are
390 // requested when VFP3 is supported d6 and d7 will still be scratched. If
391 // either r0 or r1 is not a number (not smi and not heap number object) the
392 // not_number label is jumped to with r0 and r1 intact.
393 static void LoadOperands(MacroAssembler* masm,
394 FloatingPointHelper::Destination destination,
395 Register heap_number_map,
396 Register scratch1,
397 Register scratch2,
398 Label* not_number);
399
400 // Loads the number from object into dst as a 32-bit integer if possible. If
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100401 // the object cannot be converted to a 32-bit integer control continues at
402 // the label not_int32. If VFP is supported double_scratch is used
403 // but not scratch2.
404 // Floating point value in the 32-bit integer range will be rounded
405 // to an integer.
Steve Block1e0659c2011-05-24 12:43:12 +0100406 static void LoadNumberAsInteger(MacroAssembler* masm,
407 Register object,
408 Register dst,
409 Register heap_number_map,
410 Register scratch1,
411 Register scratch2,
412 DwVfpRegister double_scratch,
413 Label* not_int32);
414
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100415 // Load the number from object into double_dst in the double format.
416 // Control will jump to not_int32 if the value cannot be exactly represented
417 // by a 32-bit integer.
418 // Floating point value in the 32-bit integer range that are not exact integer
419 // won't be loaded.
420 static void LoadNumberAsInt32Double(MacroAssembler* masm,
421 Register object,
422 Destination destination,
423 DwVfpRegister double_dst,
424 Register dst1,
425 Register dst2,
426 Register heap_number_map,
427 Register scratch1,
428 Register scratch2,
429 SwVfpRegister single_scratch,
430 Label* not_int32);
431
432 // Loads the number from object into dst as a 32-bit integer.
433 // Control will jump to not_int32 if the object cannot be exactly represented
434 // by a 32-bit integer.
435 // Floating point value in the 32-bit integer range that are not exact integer
436 // won't be converted.
437 // scratch3 is not used when VFP3 is supported.
438 static void LoadNumberAsInt32(MacroAssembler* masm,
439 Register object,
440 Register dst,
441 Register heap_number_map,
442 Register scratch1,
443 Register scratch2,
444 Register scratch3,
445 DwVfpRegister double_scratch,
446 Label* not_int32);
447
448 // Generate non VFP3 code to check if a double can be exactly represented by a
449 // 32-bit integer. This does not check for 0 or -0, which need
450 // to be checked for separately.
451 // Control jumps to not_int32 if the value is not a 32-bit integer, and falls
452 // through otherwise.
453 // src1 and src2 will be cloberred.
454 //
455 // Expected input:
456 // - src1: higher (exponent) part of the double value.
457 // - src2: lower (mantissa) part of the double value.
458 // Output status:
459 // - dst: 32 higher bits of the mantissa. (mantissa[51:20])
460 // - src2: contains 1.
461 // - other registers are clobbered.
462 static void DoubleIs32BitInteger(MacroAssembler* masm,
463 Register src1,
464 Register src2,
465 Register dst,
466 Register scratch,
467 Label* not_int32);
468
469 // Generates code to call a C function to do a double operation using core
470 // registers. (Used when VFP3 is not supported.)
471 // This code never falls through, but returns with a heap number containing
472 // the result in r0.
473 // Register heapnumber_result must be a heap number in which the
474 // result of the operation will be stored.
475 // Requires the following layout on entry:
476 // r0: Left value (least significant part of mantissa).
477 // r1: Left value (sign, exponent, top of mantissa).
478 // r2: Right value (least significant part of mantissa).
479 // r3: Right value (sign, exponent, top of mantissa).
480 static void CallCCodeForDoubleOperation(MacroAssembler* masm,
481 Token::Value op,
482 Register heap_number_result,
483 Register scratch);
484
Steve Block1e0659c2011-05-24 12:43:12 +0100485 private:
486 static void LoadNumber(MacroAssembler* masm,
487 FloatingPointHelper::Destination destination,
488 Register object,
489 DwVfpRegister dst,
490 Register dst1,
491 Register dst2,
492 Register heap_number_map,
493 Register scratch1,
494 Register scratch2,
495 Label* not_number);
496};
497
498
499void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
500 FloatingPointHelper::Destination destination,
501 Register scratch1,
502 Register scratch2) {
503 if (CpuFeatures::IsSupported(VFP3)) {
504 CpuFeatures::Scope scope(VFP3);
505 __ mov(scratch1, Operand(r0, ASR, kSmiTagSize));
506 __ vmov(d7.high(), scratch1);
507 __ vcvt_f64_s32(d7, d7.high());
508 __ mov(scratch1, Operand(r1, ASR, kSmiTagSize));
509 __ vmov(d6.high(), scratch1);
510 __ vcvt_f64_s32(d6, d6.high());
511 if (destination == kCoreRegisters) {
512 __ vmov(r2, r3, d7);
513 __ vmov(r0, r1, d6);
514 }
515 } else {
516 ASSERT(destination == kCoreRegisters);
517 // Write Smi from r0 to r3 and r2 in double format.
518 __ mov(scratch1, Operand(r0));
519 ConvertToDoubleStub stub1(r3, r2, scratch1, scratch2);
520 __ push(lr);
521 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
522 // Write Smi from r1 to r1 and r0 in double format. r9 is scratch.
523 __ mov(scratch1, Operand(r1));
524 ConvertToDoubleStub stub2(r1, r0, scratch1, scratch2);
525 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
526 __ pop(lr);
527 }
528}
529
530
531void FloatingPointHelper::LoadOperands(
532 MacroAssembler* masm,
533 FloatingPointHelper::Destination destination,
534 Register heap_number_map,
535 Register scratch1,
536 Register scratch2,
537 Label* slow) {
538
539 // Load right operand (r0) to d6 or r2/r3.
540 LoadNumber(masm, destination,
541 r0, d7, r2, r3, heap_number_map, scratch1, scratch2, slow);
542
543 // Load left operand (r1) to d7 or r0/r1.
544 LoadNumber(masm, destination,
545 r1, d6, r0, r1, heap_number_map, scratch1, scratch2, slow);
546}
547
548
549void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
550 Destination destination,
551 Register object,
552 DwVfpRegister dst,
553 Register dst1,
554 Register dst2,
555 Register heap_number_map,
556 Register scratch1,
557 Register scratch2,
558 Label* not_number) {
559 if (FLAG_debug_code) {
560 __ AbortIfNotRootValue(heap_number_map,
561 Heap::kHeapNumberMapRootIndex,
562 "HeapNumberMap register clobbered.");
563 }
564
565 Label is_smi, done;
566
567 __ JumpIfSmi(object, &is_smi);
568 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
569
570 // Handle loading a double from a heap number.
571 if (CpuFeatures::IsSupported(VFP3) && destination == kVFPRegisters) {
572 CpuFeatures::Scope scope(VFP3);
573 // Load the double from tagged HeapNumber to double register.
574 __ sub(scratch1, object, Operand(kHeapObjectTag));
575 __ vldr(dst, scratch1, HeapNumber::kValueOffset);
576 } else {
577 ASSERT(destination == kCoreRegisters);
578 // Load the double from heap number to dst1 and dst2 in double format.
579 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
580 }
581 __ jmp(&done);
582
583 // Handle loading a double from a smi.
584 __ bind(&is_smi);
585 if (CpuFeatures::IsSupported(VFP3)) {
586 CpuFeatures::Scope scope(VFP3);
587 // Convert smi to double using VFP instructions.
588 __ SmiUntag(scratch1, object);
589 __ vmov(dst.high(), scratch1);
590 __ vcvt_f64_s32(dst, dst.high());
591 if (destination == kCoreRegisters) {
592 // Load the converted smi to dst1 and dst2 in double format.
593 __ vmov(dst1, dst2, dst);
594 }
595 } else {
596 ASSERT(destination == kCoreRegisters);
597 // Write smi to dst1 and dst2 double format.
598 __ mov(scratch1, Operand(object));
599 ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
600 __ push(lr);
601 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
602 __ pop(lr);
603 }
604
605 __ bind(&done);
606}
607
608
609void FloatingPointHelper::LoadNumberAsInteger(MacroAssembler* masm,
610 Register object,
611 Register dst,
612 Register heap_number_map,
613 Register scratch1,
614 Register scratch2,
615 DwVfpRegister double_scratch,
616 Label* not_int32) {
617 if (FLAG_debug_code) {
618 __ AbortIfNotRootValue(heap_number_map,
619 Heap::kHeapNumberMapRootIndex,
620 "HeapNumberMap register clobbered.");
621 }
622 Label is_smi, done;
623 __ JumpIfSmi(object, &is_smi);
624 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
625 __ cmp(scratch1, heap_number_map);
626 __ b(ne, not_int32);
627 __ ConvertToInt32(
628 object, dst, scratch1, scratch2, double_scratch, not_int32);
629 __ jmp(&done);
630 __ bind(&is_smi);
631 __ SmiUntag(dst, object);
632 __ bind(&done);
633}
634
635
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100636void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
637 Register object,
638 Destination destination,
639 DwVfpRegister double_dst,
640 Register dst1,
641 Register dst2,
642 Register heap_number_map,
643 Register scratch1,
644 Register scratch2,
645 SwVfpRegister single_scratch,
646 Label* not_int32) {
647 ASSERT(!scratch1.is(object) && !scratch2.is(object));
648 ASSERT(!scratch1.is(scratch2));
649 ASSERT(!heap_number_map.is(object) &&
650 !heap_number_map.is(scratch1) &&
651 !heap_number_map.is(scratch2));
652
653 Label done, obj_is_not_smi;
654
655 __ JumpIfNotSmi(object, &obj_is_not_smi);
656 __ SmiUntag(scratch1, object);
657 if (CpuFeatures::IsSupported(VFP3)) {
658 CpuFeatures::Scope scope(VFP3);
659 __ vmov(single_scratch, scratch1);
660 __ vcvt_f64_s32(double_dst, single_scratch);
661 if (destination == kCoreRegisters) {
662 __ vmov(dst1, dst2, double_dst);
663 }
664 } else {
665 Label fewer_than_20_useful_bits;
666 // Expected output:
667 // | dst1 | dst2 |
668 // | s | exp | mantissa |
669
670 // Check for zero.
671 __ cmp(scratch1, Operand(0));
672 __ mov(dst1, scratch1);
673 __ mov(dst2, scratch1);
674 __ b(eq, &done);
675
676 // Preload the sign of the value.
677 __ and_(dst1, scratch1, Operand(HeapNumber::kSignMask), SetCC);
678 // Get the absolute value of the object (as an unsigned integer).
679 __ rsb(scratch1, scratch1, Operand(0), SetCC, mi);
680
681 // Get mantisssa[51:20].
682
683 // Get the position of the first set bit.
684 __ CountLeadingZeros(dst2, scratch1, scratch2);
685 __ rsb(dst2, dst2, Operand(31));
686
687 // Set the exponent.
688 __ add(scratch2, dst2, Operand(HeapNumber::kExponentBias));
689 __ Bfi(dst1, scratch2, scratch2,
690 HeapNumber::kExponentShift, HeapNumber::kExponentBits);
691
692 // Clear the first non null bit.
693 __ mov(scratch2, Operand(1));
694 __ bic(scratch1, scratch1, Operand(scratch2, LSL, dst2));
695
696 __ cmp(dst2, Operand(HeapNumber::kMantissaBitsInTopWord));
697 // Get the number of bits to set in the lower part of the mantissa.
698 __ sub(scratch2, dst2, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
699 __ b(mi, &fewer_than_20_useful_bits);
700 // Set the higher 20 bits of the mantissa.
701 __ orr(dst1, dst1, Operand(scratch1, LSR, scratch2));
702 __ rsb(scratch2, scratch2, Operand(32));
703 __ mov(dst2, Operand(scratch1, LSL, scratch2));
704 __ b(&done);
705
706 __ bind(&fewer_than_20_useful_bits);
707 __ rsb(scratch2, dst2, Operand(HeapNumber::kMantissaBitsInTopWord));
708 __ mov(scratch2, Operand(scratch1, LSL, scratch2));
709 __ orr(dst1, dst1, scratch2);
710 // Set dst2 to 0.
711 __ mov(dst2, Operand(0));
712 }
713
714 __ b(&done);
715
716 __ bind(&obj_is_not_smi);
717 if (FLAG_debug_code) {
718 __ AbortIfNotRootValue(heap_number_map,
719 Heap::kHeapNumberMapRootIndex,
720 "HeapNumberMap register clobbered.");
721 }
722 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
723
724 // Load the number.
725 if (CpuFeatures::IsSupported(VFP3)) {
726 CpuFeatures::Scope scope(VFP3);
727 // Load the double value.
728 __ sub(scratch1, object, Operand(kHeapObjectTag));
729 __ vldr(double_dst, scratch1, HeapNumber::kValueOffset);
730
731 __ EmitVFPTruncate(kRoundToZero,
732 single_scratch,
733 double_dst,
734 scratch1,
735 scratch2,
736 kCheckForInexactConversion);
737
738 // Jump to not_int32 if the operation did not succeed.
739 __ b(ne, not_int32);
740
741 if (destination == kCoreRegisters) {
742 __ vmov(dst1, dst2, double_dst);
743 }
744
745 } else {
746 ASSERT(!scratch1.is(object) && !scratch2.is(object));
747 // Load the double value in the destination registers..
748 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
749
750 // Check for 0 and -0.
751 __ bic(scratch1, dst1, Operand(HeapNumber::kSignMask));
752 __ orr(scratch1, scratch1, Operand(dst2));
753 __ cmp(scratch1, Operand(0));
754 __ b(eq, &done);
755
756 // Check that the value can be exactly represented by a 32-bit integer.
757 // Jump to not_int32 if that's not the case.
758 DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
759
760 // dst1 and dst2 were trashed. Reload the double value.
761 __ Ldrd(dst1, dst2, FieldMemOperand(object, HeapNumber::kValueOffset));
762 }
763
764 __ bind(&done);
765}
766
767
768void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
769 Register object,
770 Register dst,
771 Register heap_number_map,
772 Register scratch1,
773 Register scratch2,
774 Register scratch3,
775 DwVfpRegister double_scratch,
776 Label* not_int32) {
777 ASSERT(!dst.is(object));
778 ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
779 ASSERT(!scratch1.is(scratch2) &&
780 !scratch1.is(scratch3) &&
781 !scratch2.is(scratch3));
782
783 Label done;
784
785 // Untag the object into the destination register.
786 __ SmiUntag(dst, object);
787 // Just return if the object is a smi.
788 __ JumpIfSmi(object, &done);
789
790 if (FLAG_debug_code) {
791 __ AbortIfNotRootValue(heap_number_map,
792 Heap::kHeapNumberMapRootIndex,
793 "HeapNumberMap register clobbered.");
794 }
795 __ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
796
797 // Object is a heap number.
798 // Convert the floating point value to a 32-bit integer.
799 if (CpuFeatures::IsSupported(VFP3)) {
800 CpuFeatures::Scope scope(VFP3);
801 SwVfpRegister single_scratch = double_scratch.low();
802 // Load the double value.
803 __ sub(scratch1, object, Operand(kHeapObjectTag));
804 __ vldr(double_scratch, scratch1, HeapNumber::kValueOffset);
805
806 __ EmitVFPTruncate(kRoundToZero,
807 single_scratch,
808 double_scratch,
809 scratch1,
810 scratch2,
811 kCheckForInexactConversion);
812
813 // Jump to not_int32 if the operation did not succeed.
814 __ b(ne, not_int32);
815 // Get the result in the destination register.
816 __ vmov(dst, single_scratch);
817
818 } else {
819 // Load the double value in the destination registers.
820 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
821 __ ldr(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
822
823 // Check for 0 and -0.
824 __ bic(dst, scratch1, Operand(HeapNumber::kSignMask));
825 __ orr(dst, scratch2, Operand(dst));
826 __ cmp(dst, Operand(0));
827 __ b(eq, &done);
828
829 DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
830
831 // Registers state after DoubleIs32BitInteger.
832 // dst: mantissa[51:20].
833 // scratch2: 1
834
835 // Shift back the higher bits of the mantissa.
836 __ mov(dst, Operand(dst, LSR, scratch3));
837 // Set the implicit first bit.
838 __ rsb(scratch3, scratch3, Operand(32));
839 __ orr(dst, dst, Operand(scratch2, LSL, scratch3));
840 // Set the sign.
841 __ ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
842 __ tst(scratch1, Operand(HeapNumber::kSignMask));
843 __ rsb(dst, dst, Operand(0), LeaveCC, mi);
844 }
845
846 __ bind(&done);
847}
848
849
850void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
851 Register src1,
852 Register src2,
853 Register dst,
854 Register scratch,
855 Label* not_int32) {
856 // Get exponent alone in scratch.
857 __ Ubfx(scratch,
858 src1,
859 HeapNumber::kExponentShift,
860 HeapNumber::kExponentBits);
861
862 // Substract the bias from the exponent.
863 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias), SetCC);
864
865 // src1: higher (exponent) part of the double value.
866 // src2: lower (mantissa) part of the double value.
867 // scratch: unbiased exponent.
868
869 // Fast cases. Check for obvious non 32-bit integer values.
870 // Negative exponent cannot yield 32-bit integers.
871 __ b(mi, not_int32);
872 // Exponent greater than 31 cannot yield 32-bit integers.
873 // Also, a positive value with an exponent equal to 31 is outside of the
874 // signed 32-bit integer range.
875 // Another way to put it is that if (exponent - signbit) > 30 then the
876 // number cannot be represented as an int32.
877 Register tmp = dst;
878 __ sub(tmp, scratch, Operand(src1, LSR, 31));
879 __ cmp(tmp, Operand(30));
880 __ b(gt, not_int32);
881 // - Bits [21:0] in the mantissa are not null.
882 __ tst(src2, Operand(0x3fffff));
883 __ b(ne, not_int32);
884
885 // Otherwise the exponent needs to be big enough to shift left all the
886 // non zero bits left. So we need the (30 - exponent) last bits of the
887 // 31 higher bits of the mantissa to be null.
888 // Because bits [21:0] are null, we can check instead that the
889 // (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
890
891 // Get the 32 higher bits of the mantissa in dst.
892 __ Ubfx(dst,
893 src2,
894 HeapNumber::kMantissaBitsInTopWord,
895 32 - HeapNumber::kMantissaBitsInTopWord);
896 __ orr(dst,
897 dst,
898 Operand(src1, LSL, HeapNumber::kNonMantissaBitsInTopWord));
899
900 // Create the mask and test the lower bits (of the higher bits).
901 __ rsb(scratch, scratch, Operand(32));
902 __ mov(src2, Operand(1));
903 __ mov(src1, Operand(src2, LSL, scratch));
904 __ sub(src1, src1, Operand(1));
905 __ tst(dst, src1);
906 __ b(ne, not_int32);
907}
908
909
910void FloatingPointHelper::CallCCodeForDoubleOperation(
911 MacroAssembler* masm,
912 Token::Value op,
913 Register heap_number_result,
914 Register scratch) {
915 // Using core registers:
916 // r0: Left value (least significant part of mantissa).
917 // r1: Left value (sign, exponent, top of mantissa).
918 // r2: Right value (least significant part of mantissa).
919 // r3: Right value (sign, exponent, top of mantissa).
920
921 // Assert that heap_number_result is callee-saved.
922 // We currently always use r5 to pass it.
923 ASSERT(heap_number_result.is(r5));
924
925 // Push the current return address before the C call. Return will be
926 // through pop(pc) below.
927 __ push(lr);
928 __ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
929 // Call C routine that may not cause GC or other trouble.
930 __ CallCFunction(ExternalReference::double_fp_operation(op), 4);
931 // Store answer in the overwritable heap number.
932#if !defined(USE_ARM_EABI)
933 // Double returned in fp coprocessor register 0 and 1, encoded as
934 // register cr8. Offsets must be divisible by 4 for coprocessor so we
935 // need to substract the tag from heap_number_result.
936 __ sub(scratch, heap_number_result, Operand(kHeapObjectTag));
937 __ stc(p1, cr8, MemOperand(scratch, HeapNumber::kValueOffset));
938#else
939 // Double returned in registers 0 and 1.
940 __ Strd(r0, r1, FieldMemOperand(heap_number_result,
941 HeapNumber::kValueOffset));
942#endif
943 // Place heap_number_result in r0 and return to the pushed return address.
944 __ mov(r0, Operand(heap_number_result));
945 __ pop(pc);
946}
947
Steve Block1e0659c2011-05-24 12:43:12 +0100948
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100949// See comment for class.
950void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
951 Label max_negative_int;
952 // the_int_ has the answer which is a signed int32 but not a Smi.
953 // We test for the special value that has a different exponent. This test
954 // has the neat side effect of setting the flags according to the sign.
955 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
956 __ cmp(the_int_, Operand(0x80000000u));
957 __ b(eq, &max_negative_int);
958 // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
959 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
960 uint32_t non_smi_exponent =
961 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
962 __ mov(scratch_, Operand(non_smi_exponent));
963 // Set the sign bit in scratch_ if the value was negative.
964 __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs);
965 // Subtract from 0 if the value was negative.
Iain Merrick9ac36c92010-09-13 15:29:50 +0100966 __ rsb(the_int_, the_int_, Operand(0, RelocInfo::NONE), LeaveCC, cs);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100967 // We should be masking the implict first digit of the mantissa away here,
968 // but it just ends up combining harmlessly with the last digit of the
969 // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
970 // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
971 ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
972 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
973 __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance));
974 __ str(scratch_, FieldMemOperand(the_heap_number_,
975 HeapNumber::kExponentOffset));
976 __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance));
977 __ str(scratch_, FieldMemOperand(the_heap_number_,
978 HeapNumber::kMantissaOffset));
979 __ Ret();
980
981 __ bind(&max_negative_int);
982 // The max negative int32 is stored as a positive number in the mantissa of
983 // a double because it uses a sign bit instead of using two's complement.
984 // The actual mantissa bits stored are all 0 because the implicit most
985 // significant 1 bit is not stored.
986 non_smi_exponent += 1 << HeapNumber::kExponentShift;
987 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
988 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
Iain Merrick9ac36c92010-09-13 15:29:50 +0100989 __ mov(ip, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100990 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
991 __ Ret();
992}
993
994
995// Handle the case where the lhs and rhs are the same object.
996// Equality is almost reflexive (everything but NaN), so this is a test
997// for "identity and not NaN".
998static void EmitIdenticalObjectComparison(MacroAssembler* masm,
999 Label* slow,
Steve Block1e0659c2011-05-24 12:43:12 +01001000 Condition cond,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001001 bool never_nan_nan) {
1002 Label not_identical;
1003 Label heap_number, return_equal;
1004 __ cmp(r0, r1);
1005 __ b(ne, &not_identical);
1006
1007 // The two objects are identical. If we know that one of them isn't NaN then
1008 // we now know they test equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001009 if (cond != eq || !never_nan_nan) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001010 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
1011 // so we do the second best thing - test it ourselves.
1012 // They are both equal and they are not both Smis so both of them are not
1013 // Smis. If it's not a heap number, then return equal.
Steve Block1e0659c2011-05-24 12:43:12 +01001014 if (cond == lt || cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001015 __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
1016 __ b(ge, slow);
1017 } else {
1018 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
1019 __ b(eq, &heap_number);
1020 // Comparing JS objects with <=, >= is complicated.
Steve Block1e0659c2011-05-24 12:43:12 +01001021 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001022 __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
1023 __ b(ge, slow);
1024 // Normally here we fall through to return_equal, but undefined is
1025 // special: (undefined == undefined) == true, but
1026 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
Steve Block1e0659c2011-05-24 12:43:12 +01001027 if (cond == le || cond == ge) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001028 __ cmp(r4, Operand(ODDBALL_TYPE));
1029 __ b(ne, &return_equal);
1030 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
1031 __ cmp(r0, r2);
1032 __ b(ne, &return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001033 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001034 // undefined <= undefined should fail.
1035 __ mov(r0, Operand(GREATER));
1036 } else {
1037 // undefined >= undefined should fail.
1038 __ mov(r0, Operand(LESS));
1039 }
1040 __ Ret();
1041 }
1042 }
1043 }
1044 }
1045
1046 __ bind(&return_equal);
Steve Block1e0659c2011-05-24 12:43:12 +01001047 if (cond == lt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001048 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
Steve Block1e0659c2011-05-24 12:43:12 +01001049 } else if (cond == gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001050 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
1051 } else {
1052 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
1053 }
1054 __ Ret();
1055
Steve Block1e0659c2011-05-24 12:43:12 +01001056 if (cond != eq || !never_nan_nan) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001057 // For less and greater we don't have to check for NaN since the result of
1058 // x < x is false regardless. For the others here is some code to check
1059 // for NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001060 if (cond != lt && cond != gt) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001061 __ bind(&heap_number);
1062 // It is a heap number, so return non-equal if it's NaN and equal if it's
1063 // not NaN.
1064
1065 // The representation of NaN values has all exponent bits (52..62) set,
1066 // and not all mantissa bits (0..51) clear.
1067 // Read top bits of double representation (second word of value).
1068 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
1069 // Test that exponent bits are all set.
1070 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
1071 // NaNs have all-one exponents so they sign extend to -1.
1072 __ cmp(r3, Operand(-1));
1073 __ b(ne, &return_equal);
1074
1075 // Shift out flag and all exponent bits, retaining only mantissa.
1076 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
1077 // Or with all low-bits of mantissa.
1078 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
1079 __ orr(r0, r3, Operand(r2), SetCC);
1080 // For equal we already have the right value in r0: Return zero (equal)
1081 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
1082 // not (it's a NaN). For <= and >= we need to load r0 with the failing
1083 // value if it's a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001084 if (cond != eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001085 // All-zero means Infinity means equal.
1086 __ Ret(eq);
Steve Block1e0659c2011-05-24 12:43:12 +01001087 if (cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001088 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
1089 } else {
1090 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
1091 }
1092 }
1093 __ Ret();
1094 }
1095 // No fall through here.
1096 }
1097
1098 __ bind(&not_identical);
1099}
1100
1101
1102// See comment at call site.
1103static void EmitSmiNonsmiComparison(MacroAssembler* masm,
1104 Register lhs,
1105 Register rhs,
1106 Label* lhs_not_nan,
1107 Label* slow,
1108 bool strict) {
1109 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1110 (lhs.is(r1) && rhs.is(r0)));
1111
1112 Label rhs_is_smi;
1113 __ tst(rhs, Operand(kSmiTagMask));
1114 __ b(eq, &rhs_is_smi);
1115
1116 // Lhs is a Smi. Check whether the rhs is a heap number.
1117 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
1118 if (strict) {
1119 // If rhs is not a number and lhs is a Smi then strict equality cannot
1120 // succeed. Return non-equal
1121 // If rhs is r0 then there is already a non zero value in it.
1122 if (!rhs.is(r0)) {
1123 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1124 }
1125 __ Ret(ne);
1126 } else {
1127 // Smi compared non-strictly with a non-Smi non-heap-number. Call
1128 // the runtime.
1129 __ b(ne, slow);
1130 }
1131
1132 // Lhs is a smi, rhs is a number.
1133 if (CpuFeatures::IsSupported(VFP3)) {
1134 // Convert lhs to a double in d7.
1135 CpuFeatures::Scope scope(VFP3);
1136 __ SmiToDoubleVFPRegister(lhs, d7, r7, s15);
1137 // Load the double from rhs, tagged HeapNumber r0, to d6.
1138 __ sub(r7, rhs, Operand(kHeapObjectTag));
1139 __ vldr(d6, r7, HeapNumber::kValueOffset);
1140 } else {
1141 __ push(lr);
1142 // Convert lhs to a double in r2, r3.
1143 __ mov(r7, Operand(lhs));
1144 ConvertToDoubleStub stub1(r3, r2, r7, r6);
1145 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
1146 // Load rhs to a double in r0, r1.
1147 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1148 __ pop(lr);
1149 }
1150
1151 // We now have both loaded as doubles but we can skip the lhs nan check
1152 // since it's a smi.
1153 __ jmp(lhs_not_nan);
1154
1155 __ bind(&rhs_is_smi);
1156 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
1157 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
1158 if (strict) {
1159 // If lhs is not a number and rhs is a smi then strict equality cannot
1160 // succeed. Return non-equal.
1161 // If lhs is r0 then there is already a non zero value in it.
1162 if (!lhs.is(r0)) {
1163 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
1164 }
1165 __ Ret(ne);
1166 } else {
1167 // Smi compared non-strictly with a non-smi non-heap-number. Call
1168 // the runtime.
1169 __ b(ne, slow);
1170 }
1171
1172 // Rhs is a smi, lhs is a heap number.
1173 if (CpuFeatures::IsSupported(VFP3)) {
1174 CpuFeatures::Scope scope(VFP3);
1175 // Load the double from lhs, tagged HeapNumber r1, to d7.
1176 __ sub(r7, lhs, Operand(kHeapObjectTag));
1177 __ vldr(d7, r7, HeapNumber::kValueOffset);
1178 // Convert rhs to a double in d6 .
1179 __ SmiToDoubleVFPRegister(rhs, d6, r7, s13);
1180 } else {
1181 __ push(lr);
1182 // Load lhs to a double in r2, r3.
1183 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1184 // Convert rhs to a double in r0, r1.
1185 __ mov(r7, Operand(rhs));
1186 ConvertToDoubleStub stub2(r1, r0, r7, r6);
1187 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
1188 __ pop(lr);
1189 }
1190 // Fall through to both_loaded_as_doubles.
1191}
1192
1193
Steve Block1e0659c2011-05-24 12:43:12 +01001194void EmitNanCheck(MacroAssembler* masm, Label* lhs_not_nan, Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001195 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1196 Register rhs_exponent = exp_first ? r0 : r1;
1197 Register lhs_exponent = exp_first ? r2 : r3;
1198 Register rhs_mantissa = exp_first ? r1 : r0;
1199 Register lhs_mantissa = exp_first ? r3 : r2;
1200 Label one_is_nan, neither_is_nan;
1201
1202 __ Sbfx(r4,
1203 lhs_exponent,
1204 HeapNumber::kExponentShift,
1205 HeapNumber::kExponentBits);
1206 // NaNs have all-one exponents so they sign extend to -1.
1207 __ cmp(r4, Operand(-1));
1208 __ b(ne, lhs_not_nan);
1209 __ mov(r4,
1210 Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1211 SetCC);
1212 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001213 __ cmp(lhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001214 __ b(ne, &one_is_nan);
1215
1216 __ bind(lhs_not_nan);
1217 __ Sbfx(r4,
1218 rhs_exponent,
1219 HeapNumber::kExponentShift,
1220 HeapNumber::kExponentBits);
1221 // NaNs have all-one exponents so they sign extend to -1.
1222 __ cmp(r4, Operand(-1));
1223 __ b(ne, &neither_is_nan);
1224 __ mov(r4,
1225 Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
1226 SetCC);
1227 __ b(ne, &one_is_nan);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001228 __ cmp(rhs_mantissa, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001229 __ b(eq, &neither_is_nan);
1230
1231 __ bind(&one_is_nan);
1232 // NaN comparisons always fail.
1233 // Load whatever we need in r0 to make the comparison fail.
Steve Block1e0659c2011-05-24 12:43:12 +01001234 if (cond == lt || cond == le) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001235 __ mov(r0, Operand(GREATER));
1236 } else {
1237 __ mov(r0, Operand(LESS));
1238 }
1239 __ Ret();
1240
1241 __ bind(&neither_is_nan);
1242}
1243
1244
1245// See comment at call site.
Steve Block1e0659c2011-05-24 12:43:12 +01001246static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm,
1247 Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001248 bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
1249 Register rhs_exponent = exp_first ? r0 : r1;
1250 Register lhs_exponent = exp_first ? r2 : r3;
1251 Register rhs_mantissa = exp_first ? r1 : r0;
1252 Register lhs_mantissa = exp_first ? r3 : r2;
1253
1254 // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
Steve Block1e0659c2011-05-24 12:43:12 +01001255 if (cond == eq) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001256 // Doubles are not equal unless they have the same bit pattern.
1257 // Exception: 0 and -0.
1258 __ cmp(rhs_mantissa, Operand(lhs_mantissa));
1259 __ orr(r0, rhs_mantissa, Operand(lhs_mantissa), LeaveCC, ne);
1260 // Return non-zero if the numbers are unequal.
1261 __ Ret(ne);
1262
1263 __ sub(r0, rhs_exponent, Operand(lhs_exponent), SetCC);
1264 // If exponents are equal then return 0.
1265 __ Ret(eq);
1266
1267 // Exponents are unequal. The only way we can return that the numbers
1268 // are equal is if one is -0 and the other is 0. We already dealt
1269 // with the case where both are -0 or both are 0.
1270 // We start by seeing if the mantissas (that are equal) or the bottom
1271 // 31 bits of the rhs exponent are non-zero. If so we return not
1272 // equal.
1273 __ orr(r4, lhs_mantissa, Operand(lhs_exponent, LSL, kSmiTagSize), SetCC);
1274 __ mov(r0, Operand(r4), LeaveCC, ne);
1275 __ Ret(ne);
1276 // Now they are equal if and only if the lhs exponent is zero in its
1277 // low 31 bits.
1278 __ mov(r0, Operand(rhs_exponent, LSL, kSmiTagSize));
1279 __ Ret();
1280 } else {
1281 // Call a native function to do a comparison between two non-NaNs.
1282 // Call C routine that may not cause GC or other trouble.
1283 __ push(lr);
1284 __ PrepareCallCFunction(4, r5); // Two doubles count as 4 arguments.
1285 __ CallCFunction(ExternalReference::compare_doubles(), 4);
1286 __ pop(pc); // Return.
1287 }
1288}
1289
1290
1291// See comment at call site.
1292static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
1293 Register lhs,
1294 Register rhs) {
1295 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1296 (lhs.is(r1) && rhs.is(r0)));
1297
1298 // If either operand is a JSObject or an oddball value, then they are
1299 // not equal since their pointers are different.
1300 // There is no test for undetectability in strict equality.
1301 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
1302 Label first_non_object;
1303 // Get the type of the first operand into r2 and compare it with
1304 // FIRST_JS_OBJECT_TYPE.
1305 __ CompareObjectType(rhs, r2, r2, FIRST_JS_OBJECT_TYPE);
1306 __ b(lt, &first_non_object);
1307
1308 // Return non-zero (r0 is not zero)
1309 Label return_not_equal;
1310 __ bind(&return_not_equal);
1311 __ Ret();
1312
1313 __ bind(&first_non_object);
1314 // Check for oddballs: true, false, null, undefined.
1315 __ cmp(r2, Operand(ODDBALL_TYPE));
1316 __ b(eq, &return_not_equal);
1317
1318 __ CompareObjectType(lhs, r3, r3, FIRST_JS_OBJECT_TYPE);
1319 __ b(ge, &return_not_equal);
1320
1321 // Check for oddballs: true, false, null, undefined.
1322 __ cmp(r3, Operand(ODDBALL_TYPE));
1323 __ b(eq, &return_not_equal);
1324
1325 // Now that we have the types we might as well check for symbol-symbol.
1326 // Ensure that no non-strings have the symbol bit set.
1327 STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
1328 STATIC_ASSERT(kSymbolTag != 0);
1329 __ and_(r2, r2, Operand(r3));
1330 __ tst(r2, Operand(kIsSymbolMask));
1331 __ b(ne, &return_not_equal);
1332}
1333
1334
1335// See comment at call site.
1336static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
1337 Register lhs,
1338 Register rhs,
1339 Label* both_loaded_as_doubles,
1340 Label* not_heap_numbers,
1341 Label* slow) {
1342 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1343 (lhs.is(r1) && rhs.is(r0)));
1344
1345 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
1346 __ b(ne, not_heap_numbers);
1347 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
1348 __ cmp(r2, r3);
1349 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
1350
1351 // Both are heap numbers. Load them up then jump to the code we have
1352 // for that.
1353 if (CpuFeatures::IsSupported(VFP3)) {
1354 CpuFeatures::Scope scope(VFP3);
1355 __ sub(r7, rhs, Operand(kHeapObjectTag));
1356 __ vldr(d6, r7, HeapNumber::kValueOffset);
1357 __ sub(r7, lhs, Operand(kHeapObjectTag));
1358 __ vldr(d7, r7, HeapNumber::kValueOffset);
1359 } else {
1360 __ Ldrd(r2, r3, FieldMemOperand(lhs, HeapNumber::kValueOffset));
1361 __ Ldrd(r0, r1, FieldMemOperand(rhs, HeapNumber::kValueOffset));
1362 }
1363 __ jmp(both_loaded_as_doubles);
1364}
1365
1366
1367// Fast negative check for symbol-to-symbol equality.
1368static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
1369 Register lhs,
1370 Register rhs,
1371 Label* possible_strings,
1372 Label* not_both_strings) {
1373 ASSERT((lhs.is(r0) && rhs.is(r1)) ||
1374 (lhs.is(r1) && rhs.is(r0)));
1375
1376 // r2 is object type of rhs.
1377 // Ensure that no non-strings have the symbol bit set.
1378 Label object_test;
1379 STATIC_ASSERT(kSymbolTag != 0);
1380 __ tst(r2, Operand(kIsNotStringMask));
1381 __ b(ne, &object_test);
1382 __ tst(r2, Operand(kIsSymbolMask));
1383 __ b(eq, possible_strings);
1384 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
1385 __ b(ge, not_both_strings);
1386 __ tst(r3, Operand(kIsSymbolMask));
1387 __ b(eq, possible_strings);
1388
1389 // Both are symbols. We already checked they weren't the same pointer
1390 // so they are not equal.
1391 __ mov(r0, Operand(NOT_EQUAL));
1392 __ Ret();
1393
1394 __ bind(&object_test);
1395 __ cmp(r2, Operand(FIRST_JS_OBJECT_TYPE));
1396 __ b(lt, not_both_strings);
1397 __ CompareObjectType(lhs, r2, r3, FIRST_JS_OBJECT_TYPE);
1398 __ b(lt, not_both_strings);
1399 // If both objects are undetectable, they are equal. Otherwise, they
1400 // are not equal, since they are different objects and an object is not
1401 // equal to undefined.
1402 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
1403 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
1404 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
1405 __ and_(r0, r2, Operand(r3));
1406 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
1407 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
1408 __ Ret();
1409}
1410
1411
1412void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
1413 Register object,
1414 Register result,
1415 Register scratch1,
1416 Register scratch2,
1417 Register scratch3,
1418 bool object_is_smi,
1419 Label* not_found) {
1420 // Use of registers. Register result is used as a temporary.
1421 Register number_string_cache = result;
1422 Register mask = scratch3;
1423
1424 // Load the number string cache.
1425 __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
1426
1427 // Make the hash mask from the length of the number string cache. It
1428 // contains two elements (number and string) for each cache entry.
1429 __ ldr(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
1430 // Divide length by two (length is a smi).
1431 __ mov(mask, Operand(mask, ASR, kSmiTagSize + 1));
1432 __ sub(mask, mask, Operand(1)); // Make mask.
1433
1434 // Calculate the entry in the number string cache. The hash value in the
1435 // number string cache for smis is just the smi value, and the hash for
1436 // doubles is the xor of the upper and lower words. See
1437 // Heap::GetNumberStringCache.
1438 Label is_smi;
1439 Label load_result_from_cache;
1440 if (!object_is_smi) {
Steve Block1e0659c2011-05-24 12:43:12 +01001441 __ JumpIfSmi(object, &is_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001442 if (CpuFeatures::IsSupported(VFP3)) {
1443 CpuFeatures::Scope scope(VFP3);
1444 __ CheckMap(object,
1445 scratch1,
1446 Heap::kHeapNumberMapRootIndex,
1447 not_found,
1448 true);
1449
1450 STATIC_ASSERT(8 == kDoubleSize);
1451 __ add(scratch1,
1452 object,
1453 Operand(HeapNumber::kValueOffset - kHeapObjectTag));
1454 __ ldm(ia, scratch1, scratch1.bit() | scratch2.bit());
1455 __ eor(scratch1, scratch1, Operand(scratch2));
1456 __ and_(scratch1, scratch1, Operand(mask));
1457
1458 // Calculate address of entry in string cache: each entry consists
1459 // of two pointer sized fields.
1460 __ add(scratch1,
1461 number_string_cache,
1462 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
1463
1464 Register probe = mask;
1465 __ ldr(probe,
1466 FieldMemOperand(scratch1, FixedArray::kHeaderSize));
Steve Block1e0659c2011-05-24 12:43:12 +01001467 __ JumpIfSmi(probe, not_found);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001468 __ sub(scratch2, object, Operand(kHeapObjectTag));
1469 __ vldr(d0, scratch2, HeapNumber::kValueOffset);
1470 __ sub(probe, probe, Operand(kHeapObjectTag));
1471 __ vldr(d1, probe, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001472 __ VFPCompareAndSetFlags(d0, d1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001473 __ b(ne, not_found); // The cache did not contain this value.
1474 __ b(&load_result_from_cache);
1475 } else {
1476 __ b(not_found);
1477 }
1478 }
1479
1480 __ bind(&is_smi);
1481 Register scratch = scratch1;
1482 __ and_(scratch, mask, Operand(object, ASR, 1));
1483 // Calculate address of entry in string cache: each entry consists
1484 // of two pointer sized fields.
1485 __ add(scratch,
1486 number_string_cache,
1487 Operand(scratch, LSL, kPointerSizeLog2 + 1));
1488
1489 // Check if the entry is the smi we are looking for.
1490 Register probe = mask;
1491 __ ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1492 __ cmp(object, probe);
1493 __ b(ne, not_found);
1494
1495 // Get the result from the cache.
1496 __ bind(&load_result_from_cache);
1497 __ ldr(result,
1498 FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
1499 __ IncrementCounter(&Counters::number_to_string_native,
1500 1,
1501 scratch1,
1502 scratch2);
1503}
1504
1505
1506void NumberToStringStub::Generate(MacroAssembler* masm) {
1507 Label runtime;
1508
1509 __ ldr(r1, MemOperand(sp, 0));
1510
1511 // Generate code to lookup number in the number string cache.
1512 GenerateLookupNumberStringCache(masm, r1, r0, r2, r3, r4, false, &runtime);
1513 __ add(sp, sp, Operand(1 * kPointerSize));
1514 __ Ret();
1515
1516 __ bind(&runtime);
1517 // Handle number to string in the runtime system if not found in the cache.
1518 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
1519}
1520
1521
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001522// On entry lhs_ and rhs_ are the values to be compared.
1523// On exit r0 is 0, positive or negative to indicate the result of
1524// the comparison.
1525void CompareStub::Generate(MacroAssembler* masm) {
1526 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
1527 (lhs_.is(r1) && rhs_.is(r0)));
1528
1529 Label slow; // Call builtin.
1530 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
1531
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001532 if (include_smi_compare_) {
1533 Label not_two_smis, smi_done;
1534 __ orr(r2, r1, r0);
1535 __ tst(r2, Operand(kSmiTagMask));
1536 __ b(ne, &not_two_smis);
Ben Murdochf87a2032010-10-22 12:50:53 +01001537 __ mov(r1, Operand(r1, ASR, 1));
1538 __ sub(r0, r1, Operand(r0, ASR, 1));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001539 __ Ret();
1540 __ bind(&not_two_smis);
1541 } else if (FLAG_debug_code) {
1542 __ orr(r2, r1, r0);
1543 __ tst(r2, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01001544 __ Assert(ne, "CompareStub: unexpected smi operands.");
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001545 }
1546
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001547 // NOTICE! This code is only reached after a smi-fast-case check, so
1548 // it is certain that at least one operand isn't a smi.
1549
1550 // Handle the case where the objects are identical. Either returns the answer
1551 // or goes to slow. Only falls through if the objects were not identical.
1552 EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
1553
1554 // If either is a Smi (we know that not both are), then they can only
1555 // be strictly equal if the other is a HeapNumber.
1556 STATIC_ASSERT(kSmiTag == 0);
1557 ASSERT_EQ(0, Smi::FromInt(0));
1558 __ and_(r2, lhs_, Operand(rhs_));
1559 __ tst(r2, Operand(kSmiTagMask));
1560 __ b(ne, &not_smis);
1561 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
1562 // 1) Return the answer.
1563 // 2) Go to slow.
1564 // 3) Fall through to both_loaded_as_doubles.
1565 // 4) Jump to lhs_not_nan.
1566 // In cases 3 and 4 we have found out we were dealing with a number-number
1567 // comparison. If VFP3 is supported the double values of the numbers have
1568 // been loaded into d7 and d6. Otherwise, the double values have been loaded
1569 // into r0, r1, r2, and r3.
1570 EmitSmiNonsmiComparison(masm, lhs_, rhs_, &lhs_not_nan, &slow, strict_);
1571
1572 __ bind(&both_loaded_as_doubles);
1573 // The arguments have been converted to doubles and stored in d6 and d7, if
1574 // VFP3 is supported, or in r0, r1, r2, and r3.
1575 if (CpuFeatures::IsSupported(VFP3)) {
1576 __ bind(&lhs_not_nan);
1577 CpuFeatures::Scope scope(VFP3);
1578 Label no_nan;
1579 // ARMv7 VFP3 instructions to implement double precision comparison.
Ben Murdochb8e0da22011-05-16 14:20:40 +01001580 __ VFPCompareAndSetFlags(d7, d6);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001581 Label nan;
1582 __ b(vs, &nan);
1583 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
1584 __ mov(r0, Operand(LESS), LeaveCC, lt);
1585 __ mov(r0, Operand(GREATER), LeaveCC, gt);
1586 __ Ret();
1587
1588 __ bind(&nan);
1589 // If one of the sides was a NaN then the v flag is set. Load r0 with
1590 // whatever it takes to make the comparison fail, since comparisons with NaN
1591 // always fail.
1592 if (cc_ == lt || cc_ == le) {
1593 __ mov(r0, Operand(GREATER));
1594 } else {
1595 __ mov(r0, Operand(LESS));
1596 }
1597 __ Ret();
1598 } else {
1599 // Checks for NaN in the doubles we have loaded. Can return the answer or
1600 // fall through if neither is a NaN. Also binds lhs_not_nan.
1601 EmitNanCheck(masm, &lhs_not_nan, cc_);
1602 // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
1603 // answer. Never falls through.
1604 EmitTwoNonNanDoubleComparison(masm, cc_);
1605 }
1606
1607 __ bind(&not_smis);
1608 // At this point we know we are dealing with two different objects,
1609 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
1610 if (strict_) {
1611 // This returns non-equal for some object types, or falls through if it
1612 // was not lucky.
1613 EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
1614 }
1615
1616 Label check_for_symbols;
1617 Label flat_string_check;
1618 // Check for heap-number-heap-number comparison. Can jump to slow case,
1619 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
1620 // that case. If the inputs are not doubles then jumps to check_for_symbols.
1621 // In this case r2 will contain the type of rhs_. Never falls through.
1622 EmitCheckForTwoHeapNumbers(masm,
1623 lhs_,
1624 rhs_,
1625 &both_loaded_as_doubles,
1626 &check_for_symbols,
1627 &flat_string_check);
1628
1629 __ bind(&check_for_symbols);
1630 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
1631 // symbols.
1632 if (cc_ == eq && !strict_) {
1633 // Returns an answer for two symbols or two detectable objects.
1634 // Otherwise jumps to string case or not both strings case.
1635 // Assumes that r2 is the type of rhs_ on entry.
1636 EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
1637 }
1638
1639 // Check for both being sequential ASCII strings, and inline if that is the
1640 // case.
1641 __ bind(&flat_string_check);
1642
1643 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, r2, r3, &slow);
1644
1645 __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
1646 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
1647 lhs_,
1648 rhs_,
1649 r2,
1650 r3,
1651 r4,
1652 r5);
1653 // Never falls through to here.
1654
1655 __ bind(&slow);
1656
1657 __ Push(lhs_, rhs_);
1658 // Figure out which native to call and setup the arguments.
1659 Builtins::JavaScript native;
1660 if (cc_ == eq) {
1661 native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
1662 } else {
1663 native = Builtins::COMPARE;
1664 int ncr; // NaN compare result
1665 if (cc_ == lt || cc_ == le) {
1666 ncr = GREATER;
1667 } else {
1668 ASSERT(cc_ == gt || cc_ == ge); // remaining cases
1669 ncr = LESS;
1670 }
1671 __ mov(r0, Operand(Smi::FromInt(ncr)));
1672 __ push(r0);
1673 }
1674
1675 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
1676 // tagged as a small integer.
1677 __ InvokeBuiltin(native, JUMP_JS);
1678}
1679
1680
1681// This stub does not handle the inlined cases (Smis, Booleans, undefined).
1682// The stub returns zero for false, and a non-zero value for true.
1683void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001684 // This stub uses VFP3 instructions.
1685 ASSERT(CpuFeatures::IsEnabled(VFP3));
1686
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001687 Label false_result;
1688 Label not_heap_number;
Steve Block1e0659c2011-05-24 12:43:12 +01001689 Register scratch = r9.is(tos_) ? r7 : r9;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001690
Ben Murdochb0fe1622011-05-05 13:52:32 +01001691 __ LoadRoot(ip, Heap::kNullValueRootIndex);
1692 __ cmp(tos_, ip);
1693 __ b(eq, &false_result);
1694
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001695 // HeapNumber => false iff +0, -0, or NaN.
1696 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
1697 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
1698 __ cmp(scratch, ip);
1699 __ b(&not_heap_number, ne);
1700
1701 __ sub(ip, tos_, Operand(kHeapObjectTag));
1702 __ vldr(d1, ip, HeapNumber::kValueOffset);
Ben Murdochb8e0da22011-05-16 14:20:40 +01001703 __ VFPCompareAndSetFlags(d1, 0.0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001704 // "tos_" is a register, and contains a non zero value by default.
1705 // Hence we only need to overwrite "tos_" with zero to return false for
1706 // FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
Iain Merrick9ac36c92010-09-13 15:29:50 +01001707 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, eq); // for FP_ZERO
1708 __ mov(tos_, Operand(0, RelocInfo::NONE), LeaveCC, vs); // for FP_NAN
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001709 __ Ret();
1710
1711 __ bind(&not_heap_number);
1712
1713 // Check if the value is 'null'.
1714 // 'null' => false.
1715 __ LoadRoot(ip, Heap::kNullValueRootIndex);
1716 __ cmp(tos_, ip);
1717 __ b(&false_result, eq);
1718
1719 // It can be an undetectable object.
1720 // Undetectable => false.
1721 __ ldr(ip, FieldMemOperand(tos_, HeapObject::kMapOffset));
1722 __ ldrb(scratch, FieldMemOperand(ip, Map::kBitFieldOffset));
1723 __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable));
1724 __ cmp(scratch, Operand(1 << Map::kIsUndetectable));
1725 __ b(&false_result, eq);
1726
1727 // JavaScript object => true.
1728 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
1729 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1730 __ cmp(scratch, Operand(FIRST_JS_OBJECT_TYPE));
1731 // "tos_" is a register and contains a non-zero value.
1732 // Hence we implicitly return true if the greater than
1733 // condition is satisfied.
1734 __ Ret(gt);
1735
1736 // Check for string
1737 __ ldr(scratch, FieldMemOperand(tos_, HeapObject::kMapOffset));
1738 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
1739 __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE));
1740 // "tos_" is a register and contains a non-zero value.
1741 // Hence we implicitly return true if the greater than
1742 // condition is satisfied.
1743 __ Ret(gt);
1744
1745 // String value => false iff empty, i.e., length is zero
1746 __ ldr(tos_, FieldMemOperand(tos_, String::kLengthOffset));
1747 // If length is zero, "tos_" contains zero ==> false.
1748 // If length is not zero, "tos_" contains a non-zero value ==> true.
1749 __ Ret();
1750
1751 // Return 0 in "tos_" for false .
1752 __ bind(&false_result);
Iain Merrick9ac36c92010-09-13 15:29:50 +01001753 __ mov(tos_, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001754 __ Ret();
1755}
1756
1757
1758// We fall into this code if the operands were Smis, but the result was
1759// not (eg. overflow). We branch into this code (to the not_smi label) if
1760// the operands were not both Smi. The operands are in r0 and r1. In order
1761// to call the C-implemented binary fp operation routines we need to end up
1762// with the double precision floating point operands in r0 and r1 (for the
1763// value in r1) and r2 and r3 (for the value in r0).
1764void GenericBinaryOpStub::HandleBinaryOpSlowCases(
1765 MacroAssembler* masm,
1766 Label* not_smi,
1767 Register lhs,
1768 Register rhs,
1769 const Builtins::JavaScript& builtin) {
1770 Label slow, slow_reverse, do_the_call;
1771 bool use_fp_registers = CpuFeatures::IsSupported(VFP3) && Token::MOD != op_;
1772
1773 ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0)));
1774 Register heap_number_map = r6;
1775
1776 if (ShouldGenerateSmiCode()) {
1777 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
1778
1779 // Smi-smi case (overflow).
1780 // Since both are Smis there is no heap number to overwrite, so allocate.
1781 // The new heap number is in r5. r3 and r7 are scratch.
1782 __ AllocateHeapNumber(
1783 r5, r3, r7, heap_number_map, lhs.is(r0) ? &slow_reverse : &slow);
1784
1785 // If we have floating point hardware, inline ADD, SUB, MUL, and DIV,
1786 // using registers d7 and d6 for the double values.
1787 if (CpuFeatures::IsSupported(VFP3)) {
1788 CpuFeatures::Scope scope(VFP3);
1789 __ mov(r7, Operand(rhs, ASR, kSmiTagSize));
1790 __ vmov(s15, r7);
1791 __ vcvt_f64_s32(d7, s15);
1792 __ mov(r7, Operand(lhs, ASR, kSmiTagSize));
1793 __ vmov(s13, r7);
1794 __ vcvt_f64_s32(d6, s13);
1795 if (!use_fp_registers) {
1796 __ vmov(r2, r3, d7);
1797 __ vmov(r0, r1, d6);
1798 }
1799 } else {
1800 // Write Smi from rhs to r3 and r2 in double format. r9 is scratch.
1801 __ mov(r7, Operand(rhs));
1802 ConvertToDoubleStub stub1(r3, r2, r7, r9);
1803 __ push(lr);
1804 __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
1805 // Write Smi from lhs to r1 and r0 in double format. r9 is scratch.
1806 __ mov(r7, Operand(lhs));
1807 ConvertToDoubleStub stub2(r1, r0, r7, r9);
1808 __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
1809 __ pop(lr);
1810 }
1811 __ jmp(&do_the_call); // Tail call. No return.
1812 }
1813
1814 // We branch here if at least one of r0 and r1 is not a Smi.
1815 __ bind(not_smi);
1816 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
1817
1818 // After this point we have the left hand side in r1 and the right hand side
1819 // in r0.
1820 if (lhs.is(r0)) {
1821 __ Swap(r0, r1, ip);
1822 }
1823
1824 // The type transition also calculates the answer.
1825 bool generate_code_to_calculate_answer = true;
1826
1827 if (ShouldGenerateFPCode()) {
Steve Block9fac8402011-05-12 15:51:54 +01001828 // DIV has neither SmiSmi fast code nor specialized slow code.
1829 // So don't try to patch a DIV Stub.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001830 if (runtime_operands_type_ == BinaryOpIC::DEFAULT) {
1831 switch (op_) {
1832 case Token::ADD:
1833 case Token::SUB:
1834 case Token::MUL:
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001835 GenerateTypeTransition(masm); // Tail call.
1836 generate_code_to_calculate_answer = false;
1837 break;
1838
Steve Block9fac8402011-05-12 15:51:54 +01001839 case Token::DIV:
1840 // DIV has neither SmiSmi fast code nor specialized slow code.
1841 // So don't try to patch a DIV Stub.
1842 break;
1843
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001844 default:
1845 break;
1846 }
1847 }
1848
1849 if (generate_code_to_calculate_answer) {
1850 Label r0_is_smi, r1_is_smi, finished_loading_r0, finished_loading_r1;
1851 if (mode_ == NO_OVERWRITE) {
1852 // In the case where there is no chance of an overwritable float we may
1853 // as well do the allocation immediately while r0 and r1 are untouched.
1854 __ AllocateHeapNumber(r5, r3, r7, heap_number_map, &slow);
1855 }
1856
1857 // Move r0 to a double in r2-r3.
1858 __ tst(r0, Operand(kSmiTagMask));
1859 __ b(eq, &r0_is_smi); // It's a Smi so don't check it's a heap number.
1860 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
1861 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
1862 __ cmp(r4, heap_number_map);
1863 __ b(ne, &slow);
1864 if (mode_ == OVERWRITE_RIGHT) {
1865 __ mov(r5, Operand(r0)); // Overwrite this heap number.
1866 }
1867 if (use_fp_registers) {
1868 CpuFeatures::Scope scope(VFP3);
1869 // Load the double from tagged HeapNumber r0 to d7.
1870 __ sub(r7, r0, Operand(kHeapObjectTag));
1871 __ vldr(d7, r7, HeapNumber::kValueOffset);
1872 } else {
1873 // Calling convention says that second double is in r2 and r3.
1874 __ Ldrd(r2, r3, FieldMemOperand(r0, HeapNumber::kValueOffset));
1875 }
1876 __ jmp(&finished_loading_r0);
1877 __ bind(&r0_is_smi);
1878 if (mode_ == OVERWRITE_RIGHT) {
1879 // We can't overwrite a Smi so get address of new heap number into r5.
1880 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
1881 }
1882
1883 if (CpuFeatures::IsSupported(VFP3)) {
1884 CpuFeatures::Scope scope(VFP3);
1885 // Convert smi in r0 to double in d7.
1886 __ mov(r7, Operand(r0, ASR, kSmiTagSize));
1887 __ vmov(s15, r7);
1888 __ vcvt_f64_s32(d7, s15);
1889 if (!use_fp_registers) {
1890 __ vmov(r2, r3, d7);
1891 }
1892 } else {
1893 // Write Smi from r0 to r3 and r2 in double format.
1894 __ mov(r7, Operand(r0));
1895 ConvertToDoubleStub stub3(r3, r2, r7, r4);
1896 __ push(lr);
1897 __ Call(stub3.GetCode(), RelocInfo::CODE_TARGET);
1898 __ pop(lr);
1899 }
1900
1901 // HEAP_NUMBERS stub is slower than GENERIC on a pair of smis.
1902 // r0 is known to be a smi. If r1 is also a smi then switch to GENERIC.
1903 Label r1_is_not_smi;
Steve Block9fac8402011-05-12 15:51:54 +01001904 if ((runtime_operands_type_ == BinaryOpIC::HEAP_NUMBERS) &&
1905 HasSmiSmiFastPath()) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001906 __ tst(r1, Operand(kSmiTagMask));
1907 __ b(ne, &r1_is_not_smi);
1908 GenerateTypeTransition(masm); // Tail call.
1909 }
1910
1911 __ bind(&finished_loading_r0);
1912
1913 // Move r1 to a double in r0-r1.
1914 __ tst(r1, Operand(kSmiTagMask));
1915 __ b(eq, &r1_is_smi); // It's a Smi so don't check it's a heap number.
1916 __ bind(&r1_is_not_smi);
1917 __ ldr(r4, FieldMemOperand(r1, HeapNumber::kMapOffset));
1918 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
1919 __ cmp(r4, heap_number_map);
1920 __ b(ne, &slow);
1921 if (mode_ == OVERWRITE_LEFT) {
1922 __ mov(r5, Operand(r1)); // Overwrite this heap number.
1923 }
1924 if (use_fp_registers) {
1925 CpuFeatures::Scope scope(VFP3);
1926 // Load the double from tagged HeapNumber r1 to d6.
1927 __ sub(r7, r1, Operand(kHeapObjectTag));
1928 __ vldr(d6, r7, HeapNumber::kValueOffset);
1929 } else {
1930 // Calling convention says that first double is in r0 and r1.
1931 __ Ldrd(r0, r1, FieldMemOperand(r1, HeapNumber::kValueOffset));
1932 }
1933 __ jmp(&finished_loading_r1);
1934 __ bind(&r1_is_smi);
1935 if (mode_ == OVERWRITE_LEFT) {
1936 // We can't overwrite a Smi so get address of new heap number into r5.
1937 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
1938 }
1939
1940 if (CpuFeatures::IsSupported(VFP3)) {
1941 CpuFeatures::Scope scope(VFP3);
1942 // Convert smi in r1 to double in d6.
1943 __ mov(r7, Operand(r1, ASR, kSmiTagSize));
1944 __ vmov(s13, r7);
1945 __ vcvt_f64_s32(d6, s13);
1946 if (!use_fp_registers) {
1947 __ vmov(r0, r1, d6);
1948 }
1949 } else {
1950 // Write Smi from r1 to r1 and r0 in double format.
1951 __ mov(r7, Operand(r1));
1952 ConvertToDoubleStub stub4(r1, r0, r7, r9);
1953 __ push(lr);
1954 __ Call(stub4.GetCode(), RelocInfo::CODE_TARGET);
1955 __ pop(lr);
1956 }
1957
1958 __ bind(&finished_loading_r1);
1959 }
1960
1961 if (generate_code_to_calculate_answer || do_the_call.is_linked()) {
1962 __ bind(&do_the_call);
1963 // If we are inlining the operation using VFP3 instructions for
1964 // add, subtract, multiply, or divide, the arguments are in d6 and d7.
1965 if (use_fp_registers) {
1966 CpuFeatures::Scope scope(VFP3);
1967 // ARMv7 VFP3 instructions to implement
1968 // double precision, add, subtract, multiply, divide.
1969
1970 if (Token::MUL == op_) {
1971 __ vmul(d5, d6, d7);
1972 } else if (Token::DIV == op_) {
1973 __ vdiv(d5, d6, d7);
1974 } else if (Token::ADD == op_) {
1975 __ vadd(d5, d6, d7);
1976 } else if (Token::SUB == op_) {
1977 __ vsub(d5, d6, d7);
1978 } else {
1979 UNREACHABLE();
1980 }
1981 __ sub(r0, r5, Operand(kHeapObjectTag));
1982 __ vstr(d5, r0, HeapNumber::kValueOffset);
1983 __ add(r0, r0, Operand(kHeapObjectTag));
Steve Block1e0659c2011-05-24 12:43:12 +01001984 __ Ret();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001985 } else {
1986 // If we did not inline the operation, then the arguments are in:
1987 // r0: Left value (least significant part of mantissa).
1988 // r1: Left value (sign, exponent, top of mantissa).
1989 // r2: Right value (least significant part of mantissa).
1990 // r3: Right value (sign, exponent, top of mantissa).
1991 // r5: Address of heap number for result.
1992
1993 __ push(lr); // For later.
1994 __ PrepareCallCFunction(4, r4); // Two doubles count as 4 arguments.
1995 // Call C routine that may not cause GC or other trouble. r5 is callee
1996 // save.
1997 __ CallCFunction(ExternalReference::double_fp_operation(op_), 4);
1998 // Store answer in the overwritable heap number.
1999 #if !defined(USE_ARM_EABI)
2000 // Double returned in fp coprocessor register 0 and 1, encoded as
2001 // register cr8. Offsets must be divisible by 4 for coprocessor so we
2002 // need to substract the tag from r5.
2003 __ sub(r4, r5, Operand(kHeapObjectTag));
2004 __ stc(p1, cr8, MemOperand(r4, HeapNumber::kValueOffset));
2005 #else
2006 // Double returned in registers 0 and 1.
2007 __ Strd(r0, r1, FieldMemOperand(r5, HeapNumber::kValueOffset));
2008 #endif
2009 __ mov(r0, Operand(r5));
2010 // And we are done.
2011 __ pop(pc);
2012 }
2013 }
2014 }
2015
2016 if (!generate_code_to_calculate_answer &&
2017 !slow_reverse.is_linked() &&
2018 !slow.is_linked()) {
2019 return;
2020 }
2021
2022 if (lhs.is(r0)) {
2023 __ b(&slow);
2024 __ bind(&slow_reverse);
2025 __ Swap(r0, r1, ip);
2026 }
2027
2028 heap_number_map = no_reg; // Don't use this any more from here on.
2029
2030 // We jump to here if something goes wrong (one param is not a number of any
2031 // sort or new-space allocation fails).
2032 __ bind(&slow);
2033
2034 // Push arguments to the stack
2035 __ Push(r1, r0);
2036
2037 if (Token::ADD == op_) {
2038 // Test for string arguments before calling runtime.
2039 // r1 : first argument
2040 // r0 : second argument
2041 // sp[0] : second argument
2042 // sp[4] : first argument
2043
2044 Label not_strings, not_string1, string1, string1_smi2;
2045 __ tst(r1, Operand(kSmiTagMask));
2046 __ b(eq, &not_string1);
2047 __ CompareObjectType(r1, r2, r2, FIRST_NONSTRING_TYPE);
2048 __ b(ge, &not_string1);
2049
2050 // First argument is a a string, test second.
2051 __ tst(r0, Operand(kSmiTagMask));
2052 __ b(eq, &string1_smi2);
2053 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
2054 __ b(ge, &string1);
2055
2056 // First and second argument are strings.
2057 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
2058 __ TailCallStub(&string_add_stub);
2059
2060 __ bind(&string1_smi2);
2061 // First argument is a string, second is a smi. Try to lookup the number
2062 // string for the smi in the number string cache.
2063 NumberToStringStub::GenerateLookupNumberStringCache(
2064 masm, r0, r2, r4, r5, r6, true, &string1);
2065
2066 // Replace second argument on stack and tailcall string add stub to make
2067 // the result.
2068 __ str(r2, MemOperand(sp, 0));
2069 __ TailCallStub(&string_add_stub);
2070
2071 // Only first argument is a string.
2072 __ bind(&string1);
2073 __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_JS);
2074
2075 // First argument was not a string, test second.
2076 __ bind(&not_string1);
2077 __ tst(r0, Operand(kSmiTagMask));
2078 __ b(eq, &not_strings);
2079 __ CompareObjectType(r0, r2, r2, FIRST_NONSTRING_TYPE);
2080 __ b(ge, &not_strings);
2081
2082 // Only second argument is a string.
2083 __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_JS);
2084
2085 __ bind(&not_strings);
2086 }
2087
2088 __ InvokeBuiltin(builtin, JUMP_JS); // Tail call. No return.
2089}
2090
2091
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002092// For bitwise ops where the inputs are not both Smis we here try to determine
2093// whether both inputs are either Smis or at least heap numbers that can be
2094// represented by a 32 bit signed value. We truncate towards zero as required
2095// by the ES spec. If this is the case we do the bitwise op and see if the
2096// result is a Smi. If so, great, otherwise we try to find a heap number to
2097// write the answer into (either by allocating or by overwriting).
2098// On entry the operands are in lhs and rhs. On exit the answer is in r0.
2099void GenericBinaryOpStub::HandleNonSmiBitwiseOp(MacroAssembler* masm,
2100 Register lhs,
2101 Register rhs) {
2102 Label slow, result_not_a_smi;
2103 Label rhs_is_smi, lhs_is_smi;
2104 Label done_checking_rhs, done_checking_lhs;
2105
2106 Register heap_number_map = r6;
2107 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2108
2109 __ tst(lhs, Operand(kSmiTagMask));
2110 __ b(eq, &lhs_is_smi); // It's a Smi so don't check it's a heap number.
2111 __ ldr(r4, FieldMemOperand(lhs, HeapNumber::kMapOffset));
2112 __ cmp(r4, heap_number_map);
2113 __ b(ne, &slow);
Steve Block1e0659c2011-05-24 12:43:12 +01002114 __ ConvertToInt32(lhs, r3, r5, r4, d0, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002115 __ jmp(&done_checking_lhs);
2116 __ bind(&lhs_is_smi);
2117 __ mov(r3, Operand(lhs, ASR, 1));
2118 __ bind(&done_checking_lhs);
2119
2120 __ tst(rhs, Operand(kSmiTagMask));
2121 __ b(eq, &rhs_is_smi); // It's a Smi so don't check it's a heap number.
2122 __ ldr(r4, FieldMemOperand(rhs, HeapNumber::kMapOffset));
2123 __ cmp(r4, heap_number_map);
2124 __ b(ne, &slow);
Steve Block1e0659c2011-05-24 12:43:12 +01002125 __ ConvertToInt32(rhs, r2, r5, r4, d0, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002126 __ jmp(&done_checking_rhs);
2127 __ bind(&rhs_is_smi);
2128 __ mov(r2, Operand(rhs, ASR, 1));
2129 __ bind(&done_checking_rhs);
2130
2131 ASSERT(((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))));
2132
2133 // r0 and r1: Original operands (Smi or heap numbers).
2134 // r2 and r3: Signed int32 operands.
2135 switch (op_) {
2136 case Token::BIT_OR: __ orr(r2, r2, Operand(r3)); break;
2137 case Token::BIT_XOR: __ eor(r2, r2, Operand(r3)); break;
2138 case Token::BIT_AND: __ and_(r2, r2, Operand(r3)); break;
2139 case Token::SAR:
2140 // Use only the 5 least significant bits of the shift count.
2141 __ and_(r2, r2, Operand(0x1f));
2142 __ mov(r2, Operand(r3, ASR, r2));
2143 break;
2144 case Token::SHR:
2145 // Use only the 5 least significant bits of the shift count.
2146 __ and_(r2, r2, Operand(0x1f));
2147 __ mov(r2, Operand(r3, LSR, r2), SetCC);
2148 // SHR is special because it is required to produce a positive answer.
2149 // The code below for writing into heap numbers isn't capable of writing
2150 // the register as an unsigned int so we go to slow case if we hit this
2151 // case.
2152 if (CpuFeatures::IsSupported(VFP3)) {
2153 __ b(mi, &result_not_a_smi);
2154 } else {
2155 __ b(mi, &slow);
2156 }
2157 break;
2158 case Token::SHL:
2159 // Use only the 5 least significant bits of the shift count.
2160 __ and_(r2, r2, Operand(0x1f));
2161 __ mov(r2, Operand(r3, LSL, r2));
2162 break;
2163 default: UNREACHABLE();
2164 }
2165 // check that the *signed* result fits in a smi
2166 __ add(r3, r2, Operand(0x40000000), SetCC);
2167 __ b(mi, &result_not_a_smi);
2168 __ mov(r0, Operand(r2, LSL, kSmiTagSize));
2169 __ Ret();
2170
2171 Label have_to_allocate, got_a_heap_number;
2172 __ bind(&result_not_a_smi);
2173 switch (mode_) {
2174 case OVERWRITE_RIGHT: {
2175 __ tst(rhs, Operand(kSmiTagMask));
2176 __ b(eq, &have_to_allocate);
2177 __ mov(r5, Operand(rhs));
2178 break;
2179 }
2180 case OVERWRITE_LEFT: {
2181 __ tst(lhs, Operand(kSmiTagMask));
2182 __ b(eq, &have_to_allocate);
2183 __ mov(r5, Operand(lhs));
2184 break;
2185 }
2186 case NO_OVERWRITE: {
2187 // Get a new heap number in r5. r4 and r7 are scratch.
2188 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
2189 }
2190 default: break;
2191 }
2192 __ bind(&got_a_heap_number);
2193 // r2: Answer as signed int32.
2194 // r5: Heap number to write answer into.
2195
2196 // Nothing can go wrong now, so move the heap number to r0, which is the
2197 // result.
2198 __ mov(r0, Operand(r5));
2199
2200 if (CpuFeatures::IsSupported(VFP3)) {
2201 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted.
2202 CpuFeatures::Scope scope(VFP3);
2203 __ vmov(s0, r2);
2204 if (op_ == Token::SHR) {
2205 __ vcvt_f64_u32(d0, s0);
2206 } else {
2207 __ vcvt_f64_s32(d0, s0);
2208 }
2209 __ sub(r3, r0, Operand(kHeapObjectTag));
2210 __ vstr(d0, r3, HeapNumber::kValueOffset);
2211 __ Ret();
2212 } else {
2213 // Tail call that writes the int32 in r2 to the heap number in r0, using
2214 // r3 as scratch. r0 is preserved and returned.
2215 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
2216 __ TailCallStub(&stub);
2217 }
2218
2219 if (mode_ != NO_OVERWRITE) {
2220 __ bind(&have_to_allocate);
2221 // Get a new heap number in r5. r4 and r7 are scratch.
2222 __ AllocateHeapNumber(r5, r4, r7, heap_number_map, &slow);
2223 __ jmp(&got_a_heap_number);
2224 }
2225
2226 // If all else failed then we go to the runtime system.
2227 __ bind(&slow);
2228 __ Push(lhs, rhs); // Restore stack.
2229 switch (op_) {
2230 case Token::BIT_OR:
2231 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
2232 break;
2233 case Token::BIT_AND:
2234 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
2235 break;
2236 case Token::BIT_XOR:
2237 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
2238 break;
2239 case Token::SAR:
2240 __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
2241 break;
2242 case Token::SHR:
2243 __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
2244 break;
2245 case Token::SHL:
2246 __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
2247 break;
2248 default:
2249 UNREACHABLE();
2250 }
2251}
2252
2253
2254
2255
2256// This function takes the known int in a register for the cases
2257// where it doesn't know a good trick, and may deliver
2258// a result that needs shifting.
2259static void MultiplyByKnownIntInStub(
2260 MacroAssembler* masm,
2261 Register result,
2262 Register source,
2263 Register known_int_register, // Smi tagged.
2264 int known_int,
2265 int* required_shift) { // Including Smi tag shift
2266 switch (known_int) {
2267 case 3:
2268 __ add(result, source, Operand(source, LSL, 1));
2269 *required_shift = 1;
2270 break;
2271 case 5:
2272 __ add(result, source, Operand(source, LSL, 2));
2273 *required_shift = 1;
2274 break;
2275 case 6:
2276 __ add(result, source, Operand(source, LSL, 1));
2277 *required_shift = 2;
2278 break;
2279 case 7:
2280 __ rsb(result, source, Operand(source, LSL, 3));
2281 *required_shift = 1;
2282 break;
2283 case 9:
2284 __ add(result, source, Operand(source, LSL, 3));
2285 *required_shift = 1;
2286 break;
2287 case 10:
2288 __ add(result, source, Operand(source, LSL, 2));
2289 *required_shift = 2;
2290 break;
2291 default:
2292 ASSERT(!IsPowerOf2(known_int)); // That would be very inefficient.
2293 __ mul(result, source, known_int_register);
2294 *required_shift = 0;
2295 }
2296}
2297
2298
2299// This uses versions of the sum-of-digits-to-see-if-a-number-is-divisible-by-3
2300// trick. See http://en.wikipedia.org/wiki/Divisibility_rule
2301// Takes the sum of the digits base (mask + 1) repeatedly until we have a
2302// number from 0 to mask. On exit the 'eq' condition flags are set if the
2303// answer is exactly the mask.
2304void IntegerModStub::DigitSum(MacroAssembler* masm,
2305 Register lhs,
2306 int mask,
2307 int shift,
2308 Label* entry) {
2309 ASSERT(mask > 0);
2310 ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
2311 Label loop;
2312 __ bind(&loop);
2313 __ and_(ip, lhs, Operand(mask));
2314 __ add(lhs, ip, Operand(lhs, LSR, shift));
2315 __ bind(entry);
2316 __ cmp(lhs, Operand(mask));
2317 __ b(gt, &loop);
2318}
2319
2320
2321void IntegerModStub::DigitSum(MacroAssembler* masm,
2322 Register lhs,
2323 Register scratch,
2324 int mask,
2325 int shift1,
2326 int shift2,
2327 Label* entry) {
2328 ASSERT(mask > 0);
2329 ASSERT(mask <= 0xff); // This ensures we don't need ip to use it.
2330 Label loop;
2331 __ bind(&loop);
2332 __ bic(scratch, lhs, Operand(mask));
2333 __ and_(ip, lhs, Operand(mask));
2334 __ add(lhs, ip, Operand(lhs, LSR, shift1));
2335 __ add(lhs, lhs, Operand(scratch, LSR, shift2));
2336 __ bind(entry);
2337 __ cmp(lhs, Operand(mask));
2338 __ b(gt, &loop);
2339}
2340
2341
2342// Splits the number into two halves (bottom half has shift bits). The top
2343// half is subtracted from the bottom half. If the result is negative then
2344// rhs is added.
2345void IntegerModStub::ModGetInRangeBySubtraction(MacroAssembler* masm,
2346 Register lhs,
2347 int shift,
2348 int rhs) {
2349 int mask = (1 << shift) - 1;
2350 __ and_(ip, lhs, Operand(mask));
2351 __ sub(lhs, ip, Operand(lhs, LSR, shift), SetCC);
2352 __ add(lhs, lhs, Operand(rhs), LeaveCC, mi);
2353}
2354
2355
2356void IntegerModStub::ModReduce(MacroAssembler* masm,
2357 Register lhs,
2358 int max,
2359 int denominator) {
2360 int limit = denominator;
2361 while (limit * 2 <= max) limit *= 2;
2362 while (limit >= denominator) {
2363 __ cmp(lhs, Operand(limit));
2364 __ sub(lhs, lhs, Operand(limit), LeaveCC, ge);
2365 limit >>= 1;
2366 }
2367}
2368
2369
2370void IntegerModStub::ModAnswer(MacroAssembler* masm,
2371 Register result,
2372 Register shift_distance,
2373 Register mask_bits,
2374 Register sum_of_digits) {
2375 __ add(result, mask_bits, Operand(sum_of_digits, LSL, shift_distance));
2376 __ Ret();
2377}
2378
2379
2380// See comment for class.
2381void IntegerModStub::Generate(MacroAssembler* masm) {
2382 __ mov(lhs_, Operand(lhs_, LSR, shift_distance_));
2383 __ bic(odd_number_, odd_number_, Operand(1));
2384 __ mov(odd_number_, Operand(odd_number_, LSL, 1));
2385 // We now have (odd_number_ - 1) * 2 in the register.
2386 // Build a switch out of branches instead of data because it avoids
2387 // having to teach the assembler about intra-code-object pointers
2388 // that are not in relative branch instructions.
2389 Label mod3, mod5, mod7, mod9, mod11, mod13, mod15, mod17, mod19;
2390 Label mod21, mod23, mod25;
2391 { Assembler::BlockConstPoolScope block_const_pool(masm);
2392 __ add(pc, pc, Operand(odd_number_));
2393 // When you read pc it is always 8 ahead, but when you write it you always
2394 // write the actual value. So we put in two nops to take up the slack.
2395 __ nop();
2396 __ nop();
2397 __ b(&mod3);
2398 __ b(&mod5);
2399 __ b(&mod7);
2400 __ b(&mod9);
2401 __ b(&mod11);
2402 __ b(&mod13);
2403 __ b(&mod15);
2404 __ b(&mod17);
2405 __ b(&mod19);
2406 __ b(&mod21);
2407 __ b(&mod23);
2408 __ b(&mod25);
2409 }
2410
2411 // For each denominator we find a multiple that is almost only ones
2412 // when expressed in binary. Then we do the sum-of-digits trick for
2413 // that number. If the multiple is not 1 then we have to do a little
2414 // more work afterwards to get the answer into the 0-denominator-1
2415 // range.
2416 DigitSum(masm, lhs_, 3, 2, &mod3); // 3 = b11.
2417 __ sub(lhs_, lhs_, Operand(3), LeaveCC, eq);
2418 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2419
2420 DigitSum(masm, lhs_, 0xf, 4, &mod5); // 5 * 3 = b1111.
2421 ModGetInRangeBySubtraction(masm, lhs_, 2, 5);
2422 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2423
2424 DigitSum(masm, lhs_, 7, 3, &mod7); // 7 = b111.
2425 __ sub(lhs_, lhs_, Operand(7), LeaveCC, eq);
2426 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2427
2428 DigitSum(masm, lhs_, 0x3f, 6, &mod9); // 7 * 9 = b111111.
2429 ModGetInRangeBySubtraction(masm, lhs_, 3, 9);
2430 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2431
2432 DigitSum(masm, lhs_, r5, 0x3f, 6, 3, &mod11); // 5 * 11 = b110111.
2433 ModReduce(masm, lhs_, 0x3f, 11);
2434 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2435
2436 DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod13); // 19 * 13 = b11110111.
2437 ModReduce(masm, lhs_, 0xff, 13);
2438 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2439
2440 DigitSum(masm, lhs_, 0xf, 4, &mod15); // 15 = b1111.
2441 __ sub(lhs_, lhs_, Operand(15), LeaveCC, eq);
2442 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2443
2444 DigitSum(masm, lhs_, 0xff, 8, &mod17); // 15 * 17 = b11111111.
2445 ModGetInRangeBySubtraction(masm, lhs_, 4, 17);
2446 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2447
2448 DigitSum(masm, lhs_, r5, 0xff, 8, 5, &mod19); // 13 * 19 = b11110111.
2449 ModReduce(masm, lhs_, 0xff, 19);
2450 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2451
2452 DigitSum(masm, lhs_, 0x3f, 6, &mod21); // 3 * 21 = b111111.
2453 ModReduce(masm, lhs_, 0x3f, 21);
2454 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2455
2456 DigitSum(masm, lhs_, r5, 0xff, 8, 7, &mod23); // 11 * 23 = b11111101.
2457 ModReduce(masm, lhs_, 0xff, 23);
2458 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2459
2460 DigitSum(masm, lhs_, r5, 0x7f, 7, 6, &mod25); // 5 * 25 = b1111101.
2461 ModReduce(masm, lhs_, 0x7f, 25);
2462 ModAnswer(masm, result_, shift_distance_, mask_bits_, lhs_);
2463}
2464
2465
2466void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
2467 // lhs_ : x
2468 // rhs_ : y
2469 // r0 : result
2470
2471 Register result = r0;
2472 Register lhs = lhs_;
2473 Register rhs = rhs_;
2474
2475 // This code can't cope with other register allocations yet.
2476 ASSERT(result.is(r0) &&
2477 ((lhs.is(r0) && rhs.is(r1)) ||
2478 (lhs.is(r1) && rhs.is(r0))));
2479
2480 Register smi_test_reg = r7;
2481 Register scratch = r9;
2482
2483 // All ops need to know whether we are dealing with two Smis. Set up
2484 // smi_test_reg to tell us that.
2485 if (ShouldGenerateSmiCode()) {
2486 __ orr(smi_test_reg, lhs, Operand(rhs));
2487 }
2488
2489 switch (op_) {
2490 case Token::ADD: {
2491 Label not_smi;
2492 // Fast path.
2493 if (ShouldGenerateSmiCode()) {
2494 STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
2495 __ tst(smi_test_reg, Operand(kSmiTagMask));
2496 __ b(ne, &not_smi);
2497 __ add(r0, r1, Operand(r0), SetCC); // Add y optimistically.
2498 // Return if no overflow.
2499 __ Ret(vc);
2500 __ sub(r0, r0, Operand(r1)); // Revert optimistic add.
2501 }
2502 HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::ADD);
2503 break;
2504 }
2505
2506 case Token::SUB: {
2507 Label not_smi;
2508 // Fast path.
2509 if (ShouldGenerateSmiCode()) {
2510 STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
2511 __ tst(smi_test_reg, Operand(kSmiTagMask));
2512 __ b(ne, &not_smi);
2513 if (lhs.is(r1)) {
2514 __ sub(r0, r1, Operand(r0), SetCC); // Subtract y optimistically.
2515 // Return if no overflow.
2516 __ Ret(vc);
2517 __ sub(r0, r1, Operand(r0)); // Revert optimistic subtract.
2518 } else {
2519 __ sub(r0, r0, Operand(r1), SetCC); // Subtract y optimistically.
2520 // Return if no overflow.
2521 __ Ret(vc);
2522 __ add(r0, r0, Operand(r1)); // Revert optimistic subtract.
2523 }
2524 }
2525 HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::SUB);
2526 break;
2527 }
2528
2529 case Token::MUL: {
2530 Label not_smi, slow;
2531 if (ShouldGenerateSmiCode()) {
2532 STATIC_ASSERT(kSmiTag == 0); // adjust code below
2533 __ tst(smi_test_reg, Operand(kSmiTagMask));
2534 Register scratch2 = smi_test_reg;
2535 smi_test_reg = no_reg;
2536 __ b(ne, &not_smi);
2537 // Remove tag from one operand (but keep sign), so that result is Smi.
2538 __ mov(ip, Operand(rhs, ASR, kSmiTagSize));
2539 // Do multiplication
2540 // scratch = lower 32 bits of ip * lhs.
2541 __ smull(scratch, scratch2, lhs, ip);
2542 // Go slow on overflows (overflow bit is not set).
2543 __ mov(ip, Operand(scratch, ASR, 31));
2544 // No overflow if higher 33 bits are identical.
2545 __ cmp(ip, Operand(scratch2));
2546 __ b(ne, &slow);
2547 // Go slow on zero result to handle -0.
2548 __ tst(scratch, Operand(scratch));
2549 __ mov(result, Operand(scratch), LeaveCC, ne);
2550 __ Ret(ne);
2551 // We need -0 if we were multiplying a negative number with 0 to get 0.
2552 // We know one of them was zero.
2553 __ add(scratch2, rhs, Operand(lhs), SetCC);
2554 __ mov(result, Operand(Smi::FromInt(0)), LeaveCC, pl);
2555 __ Ret(pl); // Return Smi 0 if the non-zero one was positive.
2556 // Slow case. We fall through here if we multiplied a negative number
2557 // with 0, because that would mean we should produce -0.
2558 __ bind(&slow);
2559 }
2560 HandleBinaryOpSlowCases(masm, &not_smi, lhs, rhs, Builtins::MUL);
2561 break;
2562 }
2563
2564 case Token::DIV:
2565 case Token::MOD: {
2566 Label not_smi;
2567 if (ShouldGenerateSmiCode() && specialized_on_rhs_) {
2568 Label lhs_is_unsuitable;
Steve Block1e0659c2011-05-24 12:43:12 +01002569 __ JumpIfNotSmi(lhs, &not_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002570 if (IsPowerOf2(constant_rhs_)) {
2571 if (op_ == Token::MOD) {
2572 __ and_(rhs,
2573 lhs,
2574 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)),
2575 SetCC);
2576 // We now have the answer, but if the input was negative we also
2577 // have the sign bit. Our work is done if the result is
2578 // positive or zero:
2579 if (!rhs.is(r0)) {
2580 __ mov(r0, rhs, LeaveCC, pl);
2581 }
2582 __ Ret(pl);
2583 // A mod of a negative left hand side must return a negative number.
2584 // Unfortunately if the answer is 0 then we must return -0. And we
2585 // already optimistically trashed rhs so we may need to restore it.
2586 __ eor(rhs, rhs, Operand(0x80000000u), SetCC);
2587 // Next two instructions are conditional on the answer being -0.
2588 __ mov(rhs, Operand(Smi::FromInt(constant_rhs_)), LeaveCC, eq);
2589 __ b(eq, &lhs_is_unsuitable);
2590 // We need to subtract the dividend. Eg. -3 % 4 == -3.
2591 __ sub(result, rhs, Operand(Smi::FromInt(constant_rhs_)));
2592 } else {
2593 ASSERT(op_ == Token::DIV);
2594 __ tst(lhs,
2595 Operand(0x80000000u | ((constant_rhs_ << kSmiTagSize) - 1)));
2596 __ b(ne, &lhs_is_unsuitable); // Go slow on negative or remainder.
2597 int shift = 0;
2598 int d = constant_rhs_;
2599 while ((d & 1) == 0) {
2600 d >>= 1;
2601 shift++;
2602 }
2603 __ mov(r0, Operand(lhs, LSR, shift));
2604 __ bic(r0, r0, Operand(kSmiTagMask));
2605 }
2606 } else {
2607 // Not a power of 2.
2608 __ tst(lhs, Operand(0x80000000u));
2609 __ b(ne, &lhs_is_unsuitable);
2610 // Find a fixed point reciprocal of the divisor so we can divide by
2611 // multiplying.
2612 double divisor = 1.0 / constant_rhs_;
2613 int shift = 32;
2614 double scale = 4294967296.0; // 1 << 32.
2615 uint32_t mul;
2616 // Maximise the precision of the fixed point reciprocal.
2617 while (true) {
2618 mul = static_cast<uint32_t>(scale * divisor);
2619 if (mul >= 0x7fffffff) break;
2620 scale *= 2.0;
2621 shift++;
2622 }
2623 mul++;
2624 Register scratch2 = smi_test_reg;
2625 smi_test_reg = no_reg;
2626 __ mov(scratch2, Operand(mul));
2627 __ umull(scratch, scratch2, scratch2, lhs);
2628 __ mov(scratch2, Operand(scratch2, LSR, shift - 31));
2629 // scratch2 is lhs / rhs. scratch2 is not Smi tagged.
2630 // rhs is still the known rhs. rhs is Smi tagged.
2631 // lhs is still the unkown lhs. lhs is Smi tagged.
2632 int required_scratch_shift = 0; // Including the Smi tag shift of 1.
2633 // scratch = scratch2 * rhs.
2634 MultiplyByKnownIntInStub(masm,
2635 scratch,
2636 scratch2,
2637 rhs,
2638 constant_rhs_,
2639 &required_scratch_shift);
2640 // scratch << required_scratch_shift is now the Smi tagged rhs *
2641 // (lhs / rhs) where / indicates integer division.
2642 if (op_ == Token::DIV) {
2643 __ cmp(lhs, Operand(scratch, LSL, required_scratch_shift));
2644 __ b(ne, &lhs_is_unsuitable); // There was a remainder.
2645 __ mov(result, Operand(scratch2, LSL, kSmiTagSize));
2646 } else {
2647 ASSERT(op_ == Token::MOD);
2648 __ sub(result, lhs, Operand(scratch, LSL, required_scratch_shift));
2649 }
2650 }
2651 __ Ret();
2652 __ bind(&lhs_is_unsuitable);
2653 } else if (op_ == Token::MOD &&
2654 runtime_operands_type_ != BinaryOpIC::HEAP_NUMBERS &&
2655 runtime_operands_type_ != BinaryOpIC::STRINGS) {
2656 // Do generate a bit of smi code for modulus even though the default for
2657 // modulus is not to do it, but as the ARM processor has no coprocessor
2658 // support for modulus checking for smis makes sense. We can handle
2659 // 1 to 25 times any power of 2. This covers over half the numbers from
2660 // 1 to 100 including all of the first 25. (Actually the constants < 10
2661 // are handled above by reciprocal multiplication. We only get here for
2662 // those cases if the right hand side is not a constant or for cases
2663 // like 192 which is 3*2^6 and ends up in the 3 case in the integer mod
2664 // stub.)
2665 Label slow;
2666 Label not_power_of_2;
2667 ASSERT(!ShouldGenerateSmiCode());
2668 STATIC_ASSERT(kSmiTag == 0); // Adjust code below.
2669 // Check for two positive smis.
2670 __ orr(smi_test_reg, lhs, Operand(rhs));
2671 __ tst(smi_test_reg, Operand(0x80000000u | kSmiTagMask));
2672 __ b(ne, &slow);
2673 // Check that rhs is a power of two and not zero.
2674 Register mask_bits = r3;
2675 __ sub(scratch, rhs, Operand(1), SetCC);
2676 __ b(mi, &slow);
2677 __ and_(mask_bits, rhs, Operand(scratch), SetCC);
2678 __ b(ne, &not_power_of_2);
2679 // Calculate power of two modulus.
2680 __ and_(result, lhs, Operand(scratch));
2681 __ Ret();
2682
2683 __ bind(&not_power_of_2);
2684 __ eor(scratch, scratch, Operand(mask_bits));
2685 // At least two bits are set in the modulus. The high one(s) are in
2686 // mask_bits and the low one is scratch + 1.
2687 __ and_(mask_bits, scratch, Operand(lhs));
2688 Register shift_distance = scratch;
2689 scratch = no_reg;
2690
2691 // The rhs consists of a power of 2 multiplied by some odd number.
2692 // The power-of-2 part we handle by putting the corresponding bits
2693 // from the lhs in the mask_bits register, and the power in the
2694 // shift_distance register. Shift distance is never 0 due to Smi
2695 // tagging.
2696 __ CountLeadingZeros(r4, shift_distance, shift_distance);
2697 __ rsb(shift_distance, r4, Operand(32));
2698
2699 // Now we need to find out what the odd number is. The last bit is
2700 // always 1.
2701 Register odd_number = r4;
2702 __ mov(odd_number, Operand(rhs, LSR, shift_distance));
2703 __ cmp(odd_number, Operand(25));
2704 __ b(gt, &slow);
2705
2706 IntegerModStub stub(
2707 result, shift_distance, odd_number, mask_bits, lhs, r5);
2708 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); // Tail call.
2709
2710 __ bind(&slow);
2711 }
2712 HandleBinaryOpSlowCases(
2713 masm,
2714 &not_smi,
2715 lhs,
2716 rhs,
2717 op_ == Token::MOD ? Builtins::MOD : Builtins::DIV);
2718 break;
2719 }
2720
2721 case Token::BIT_OR:
2722 case Token::BIT_AND:
2723 case Token::BIT_XOR:
2724 case Token::SAR:
2725 case Token::SHR:
2726 case Token::SHL: {
2727 Label slow;
2728 STATIC_ASSERT(kSmiTag == 0); // adjust code below
2729 __ tst(smi_test_reg, Operand(kSmiTagMask));
2730 __ b(ne, &slow);
2731 Register scratch2 = smi_test_reg;
2732 smi_test_reg = no_reg;
2733 switch (op_) {
2734 case Token::BIT_OR: __ orr(result, rhs, Operand(lhs)); break;
2735 case Token::BIT_AND: __ and_(result, rhs, Operand(lhs)); break;
2736 case Token::BIT_XOR: __ eor(result, rhs, Operand(lhs)); break;
2737 case Token::SAR:
2738 // Remove tags from right operand.
2739 __ GetLeastBitsFromSmi(scratch2, rhs, 5);
2740 __ mov(result, Operand(lhs, ASR, scratch2));
2741 // Smi tag result.
2742 __ bic(result, result, Operand(kSmiTagMask));
2743 break;
2744 case Token::SHR:
2745 // Remove tags from operands. We can't do this on a 31 bit number
2746 // because then the 0s get shifted into bit 30 instead of bit 31.
2747 __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
2748 __ GetLeastBitsFromSmi(scratch2, rhs, 5);
2749 __ mov(scratch, Operand(scratch, LSR, scratch2));
2750 // Unsigned shift is not allowed to produce a negative number, so
2751 // check the sign bit and the sign bit after Smi tagging.
2752 __ tst(scratch, Operand(0xc0000000));
2753 __ b(ne, &slow);
2754 // Smi tag result.
2755 __ mov(result, Operand(scratch, LSL, kSmiTagSize));
2756 break;
2757 case Token::SHL:
2758 // Remove tags from operands.
2759 __ mov(scratch, Operand(lhs, ASR, kSmiTagSize)); // x
2760 __ GetLeastBitsFromSmi(scratch2, rhs, 5);
2761 __ mov(scratch, Operand(scratch, LSL, scratch2));
2762 // Check that the signed result fits in a Smi.
2763 __ add(scratch2, scratch, Operand(0x40000000), SetCC);
2764 __ b(mi, &slow);
2765 __ mov(result, Operand(scratch, LSL, kSmiTagSize));
2766 break;
2767 default: UNREACHABLE();
2768 }
2769 __ Ret();
2770 __ bind(&slow);
2771 HandleNonSmiBitwiseOp(masm, lhs, rhs);
2772 break;
2773 }
2774
2775 default: UNREACHABLE();
2776 }
2777 // This code should be unreachable.
2778 __ stop("Unreachable");
2779
2780 // Generate an unreachable reference to the DEFAULT stub so that it can be
2781 // found at the end of this stub when clearing ICs at GC.
2782 // TODO(kaznacheev): Check performance impact and get rid of this.
2783 if (runtime_operands_type_ != BinaryOpIC::DEFAULT) {
2784 GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT);
2785 __ CallStub(&uninit);
2786 }
2787}
2788
2789
2790void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2791 Label get_result;
2792
2793 __ Push(r1, r0);
2794
2795 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
2796 __ mov(r1, Operand(Smi::FromInt(op_)));
2797 __ mov(r0, Operand(Smi::FromInt(runtime_operands_type_)));
2798 __ Push(r2, r1, r0);
2799
2800 __ TailCallExternalReference(
2801 ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
2802 5,
2803 1);
2804}
2805
2806
2807Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
2808 GenericBinaryOpStub stub(key, type_info);
2809 return stub.GetCode();
2810}
2811
2812
Ben Murdochb0fe1622011-05-05 13:52:32 +01002813Handle<Code> GetTypeRecordingBinaryOpStub(int key,
2814 TRBinaryOpIC::TypeInfo type_info,
2815 TRBinaryOpIC::TypeInfo result_type_info) {
Steve Block1e0659c2011-05-24 12:43:12 +01002816 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
2817 return stub.GetCode();
2818}
2819
2820
2821void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
2822 Label get_result;
2823
2824 __ Push(r1, r0);
2825
2826 __ mov(r2, Operand(Smi::FromInt(MinorKey())));
2827 __ mov(r1, Operand(Smi::FromInt(op_)));
2828 __ mov(r0, Operand(Smi::FromInt(operands_type_)));
2829 __ Push(r2, r1, r0);
2830
2831 __ TailCallExternalReference(
2832 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)),
2833 5,
2834 1);
2835}
2836
2837
2838void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
2839 MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002840 UNIMPLEMENTED();
Steve Block1e0659c2011-05-24 12:43:12 +01002841}
2842
2843
2844void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
2845 switch (operands_type_) {
2846 case TRBinaryOpIC::UNINITIALIZED:
2847 GenerateTypeTransition(masm);
2848 break;
2849 case TRBinaryOpIC::SMI:
2850 GenerateSmiStub(masm);
2851 break;
2852 case TRBinaryOpIC::INT32:
2853 GenerateInt32Stub(masm);
2854 break;
2855 case TRBinaryOpIC::HEAP_NUMBER:
2856 GenerateHeapNumberStub(masm);
2857 break;
2858 case TRBinaryOpIC::STRING:
2859 GenerateStringStub(masm);
2860 break;
2861 case TRBinaryOpIC::GENERIC:
2862 GenerateGeneric(masm);
2863 break;
2864 default:
2865 UNREACHABLE();
2866 }
2867}
2868
2869
2870const char* TypeRecordingBinaryOpStub::GetName() {
2871 if (name_ != NULL) return name_;
2872 const int kMaxNameLength = 100;
2873 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
2874 if (name_ == NULL) return "OOM";
2875 const char* op_name = Token::Name(op_);
2876 const char* overwrite_name;
2877 switch (mode_) {
2878 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
2879 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
2880 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
2881 default: overwrite_name = "UnknownOverwrite"; break;
2882 }
2883
2884 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
2885 "TypeRecordingBinaryOpStub_%s_%s_%s",
2886 op_name,
2887 overwrite_name,
2888 TRBinaryOpIC::GetName(operands_type_));
2889 return name_;
2890}
2891
2892
2893void TypeRecordingBinaryOpStub::GenerateSmiSmiOperation(
2894 MacroAssembler* masm) {
2895 Register left = r1;
2896 Register right = r0;
2897 Register scratch1 = r7;
2898 Register scratch2 = r9;
2899
2900 ASSERT(right.is(r0));
2901 STATIC_ASSERT(kSmiTag == 0);
2902
2903 Label not_smi_result;
2904 switch (op_) {
2905 case Token::ADD:
2906 __ add(right, left, Operand(right), SetCC); // Add optimistically.
2907 __ Ret(vc);
2908 __ sub(right, right, Operand(left)); // Revert optimistic add.
2909 break;
2910 case Token::SUB:
2911 __ sub(right, left, Operand(right), SetCC); // Subtract optimistically.
2912 __ Ret(vc);
2913 __ sub(right, left, Operand(right)); // Revert optimistic subtract.
2914 break;
2915 case Token::MUL:
2916 // Remove tag from one of the operands. This way the multiplication result
2917 // will be a smi if it fits the smi range.
2918 __ SmiUntag(ip, right);
2919 // Do multiplication
2920 // scratch1 = lower 32 bits of ip * left.
2921 // scratch2 = higher 32 bits of ip * left.
2922 __ smull(scratch1, scratch2, left, ip);
2923 // Check for overflowing the smi range - no overflow if higher 33 bits of
2924 // the result are identical.
2925 __ mov(ip, Operand(scratch1, ASR, 31));
2926 __ cmp(ip, Operand(scratch2));
2927 __ b(ne, &not_smi_result);
2928 // Go slow on zero result to handle -0.
2929 __ tst(scratch1, Operand(scratch1));
2930 __ mov(right, Operand(scratch1), LeaveCC, ne);
2931 __ Ret(ne);
2932 // We need -0 if we were multiplying a negative number with 0 to get 0.
2933 // We know one of them was zero.
2934 __ add(scratch2, right, Operand(left), SetCC);
2935 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2936 __ Ret(pl); // Return smi 0 if the non-zero one was positive.
2937 // We fall through here if we multiplied a negative number with 0, because
2938 // that would mean we should produce -0.
2939 break;
2940 case Token::DIV:
2941 // Check for power of two on the right hand side.
2942 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2943 // Check for positive and no remainder (scratch1 contains right - 1).
2944 __ orr(scratch2, scratch1, Operand(0x80000000u));
2945 __ tst(left, scratch2);
2946 __ b(ne, &not_smi_result);
2947
2948 // Perform division by shifting.
2949 __ CountLeadingZeros(scratch1, scratch1, scratch2);
2950 __ rsb(scratch1, scratch1, Operand(31));
2951 __ mov(right, Operand(left, LSR, scratch1));
2952 __ Ret();
2953 break;
2954 case Token::MOD:
2955 // Check for two positive smis.
2956 __ orr(scratch1, left, Operand(right));
2957 __ tst(scratch1, Operand(0x80000000u | kSmiTagMask));
2958 __ b(ne, &not_smi_result);
2959
2960 // Check for power of two on the right hand side.
2961 __ JumpIfNotPowerOfTwoOrZero(right, scratch1, &not_smi_result);
2962
2963 // Perform modulus by masking.
2964 __ and_(right, left, Operand(scratch1));
2965 __ Ret();
2966 break;
2967 case Token::BIT_OR:
2968 __ orr(right, left, Operand(right));
2969 __ Ret();
2970 break;
2971 case Token::BIT_AND:
2972 __ and_(right, left, Operand(right));
2973 __ Ret();
2974 break;
2975 case Token::BIT_XOR:
2976 __ eor(right, left, Operand(right));
2977 __ Ret();
2978 break;
2979 case Token::SAR:
2980 // Remove tags from right operand.
2981 __ GetLeastBitsFromSmi(scratch1, right, 5);
2982 __ mov(right, Operand(left, ASR, scratch1));
2983 // Smi tag result.
2984 __ bic(right, right, Operand(kSmiTagMask));
2985 __ Ret();
2986 break;
2987 case Token::SHR:
2988 // Remove tags from operands. We can't do this on a 31 bit number
2989 // because then the 0s get shifted into bit 30 instead of bit 31.
2990 __ SmiUntag(scratch1, left);
2991 __ GetLeastBitsFromSmi(scratch2, right, 5);
2992 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2993 // Unsigned shift is not allowed to produce a negative number, so
2994 // check the sign bit and the sign bit after Smi tagging.
2995 __ tst(scratch1, Operand(0xc0000000));
2996 __ b(ne, &not_smi_result);
2997 // Smi tag result.
2998 __ SmiTag(right, scratch1);
2999 __ Ret();
3000 break;
3001 case Token::SHL:
3002 // Remove tags from operands.
3003 __ SmiUntag(scratch1, left);
3004 __ GetLeastBitsFromSmi(scratch2, right, 5);
3005 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
3006 // Check that the signed result fits in a Smi.
3007 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
3008 __ b(mi, &not_smi_result);
3009 __ SmiTag(right, scratch1);
3010 __ Ret();
3011 break;
3012 default:
3013 UNREACHABLE();
3014 }
3015 __ bind(&not_smi_result);
3016}
3017
3018
3019void TypeRecordingBinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
3020 bool smi_operands,
3021 Label* not_numbers,
3022 Label* gc_required) {
3023 Register left = r1;
3024 Register right = r0;
3025 Register scratch1 = r7;
3026 Register scratch2 = r9;
3027
3028 ASSERT(smi_operands || (not_numbers != NULL));
3029 if (smi_operands && FLAG_debug_code) {
3030 __ AbortIfNotSmi(left);
3031 __ AbortIfNotSmi(right);
3032 }
3033
3034 Register heap_number_map = r6;
3035 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3036
3037 switch (op_) {
3038 case Token::ADD:
3039 case Token::SUB:
3040 case Token::MUL:
3041 case Token::DIV:
3042 case Token::MOD: {
3043 // Load left and right operands into d6 and d7 or r0/r1 and r2/r3
3044 // depending on whether VFP3 is available or not.
3045 FloatingPointHelper::Destination destination =
3046 CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD ?
3047 FloatingPointHelper::kVFPRegisters :
3048 FloatingPointHelper::kCoreRegisters;
3049
3050 // Allocate new heap number for result.
3051 Register result = r5;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003052 GenerateHeapResultAllocation(
3053 masm, result, heap_number_map, scratch1, scratch2, gc_required);
Steve Block1e0659c2011-05-24 12:43:12 +01003054
3055 // Load the operands.
3056 if (smi_operands) {
3057 FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
3058 } else {
3059 FloatingPointHelper::LoadOperands(masm,
3060 destination,
3061 heap_number_map,
3062 scratch1,
3063 scratch2,
3064 not_numbers);
3065 }
3066
3067 // Calculate the result.
3068 if (destination == FloatingPointHelper::kVFPRegisters) {
3069 // Using VFP registers:
3070 // d6: Left value
3071 // d7: Right value
3072 CpuFeatures::Scope scope(VFP3);
3073 switch (op_) {
3074 case Token::ADD:
3075 __ vadd(d5, d6, d7);
3076 break;
3077 case Token::SUB:
3078 __ vsub(d5, d6, d7);
3079 break;
3080 case Token::MUL:
3081 __ vmul(d5, d6, d7);
3082 break;
3083 case Token::DIV:
3084 __ vdiv(d5, d6, d7);
3085 break;
3086 default:
3087 UNREACHABLE();
3088 }
3089
3090 __ sub(r0, result, Operand(kHeapObjectTag));
3091 __ vstr(d5, r0, HeapNumber::kValueOffset);
3092 __ add(r0, r0, Operand(kHeapObjectTag));
3093 __ Ret();
3094 } else {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003095 // Call the C function to handle the double operation.
3096 FloatingPointHelper::CallCCodeForDoubleOperation(masm,
3097 op_,
3098 result,
3099 scratch1);
Steve Block1e0659c2011-05-24 12:43:12 +01003100 }
3101 break;
3102 }
3103 case Token::BIT_OR:
3104 case Token::BIT_XOR:
3105 case Token::BIT_AND:
3106 case Token::SAR:
3107 case Token::SHR:
3108 case Token::SHL: {
3109 if (smi_operands) {
3110 __ SmiUntag(r3, left);
3111 __ SmiUntag(r2, right);
3112 } else {
3113 // Convert operands to 32-bit integers. Right in r2 and left in r3.
3114 FloatingPointHelper::LoadNumberAsInteger(masm,
3115 left,
3116 r3,
3117 heap_number_map,
3118 scratch1,
3119 scratch2,
3120 d0,
3121 not_numbers);
3122 FloatingPointHelper::LoadNumberAsInteger(masm,
3123 right,
3124 r2,
3125 heap_number_map,
3126 scratch1,
3127 scratch2,
3128 d0,
3129 not_numbers);
3130 }
3131
3132 Label result_not_a_smi;
3133 switch (op_) {
3134 case Token::BIT_OR:
3135 __ orr(r2, r3, Operand(r2));
3136 break;
3137 case Token::BIT_XOR:
3138 __ eor(r2, r3, Operand(r2));
3139 break;
3140 case Token::BIT_AND:
3141 __ and_(r2, r3, Operand(r2));
3142 break;
3143 case Token::SAR:
3144 // Use only the 5 least significant bits of the shift count.
Steve Block1e0659c2011-05-24 12:43:12 +01003145 __ GetLeastBitsFromInt32(r2, r2, 5);
3146 __ mov(r2, Operand(r3, ASR, r2));
3147 break;
3148 case Token::SHR:
3149 // Use only the 5 least significant bits of the shift count.
3150 __ GetLeastBitsFromInt32(r2, r2, 5);
3151 __ mov(r2, Operand(r3, LSR, r2), SetCC);
3152 // SHR is special because it is required to produce a positive answer.
3153 // The code below for writing into heap numbers isn't capable of
3154 // writing the register as an unsigned int so we go to slow case if we
3155 // hit this case.
3156 if (CpuFeatures::IsSupported(VFP3)) {
3157 __ b(mi, &result_not_a_smi);
3158 } else {
3159 __ b(mi, not_numbers);
3160 }
3161 break;
3162 case Token::SHL:
3163 // Use only the 5 least significant bits of the shift count.
3164 __ GetLeastBitsFromInt32(r2, r2, 5);
3165 __ mov(r2, Operand(r3, LSL, r2));
3166 break;
3167 default:
3168 UNREACHABLE();
3169 }
3170
3171 // Check that the *signed* result fits in a smi.
3172 __ add(r3, r2, Operand(0x40000000), SetCC);
3173 __ b(mi, &result_not_a_smi);
3174 __ SmiTag(r0, r2);
3175 __ Ret();
3176
3177 // Allocate new heap number for result.
3178 __ bind(&result_not_a_smi);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003179 Register result = r5;
3180 if (smi_operands) {
3181 __ AllocateHeapNumber(
3182 result, scratch1, scratch2, heap_number_map, gc_required);
3183 } else {
3184 GenerateHeapResultAllocation(
3185 masm, result, heap_number_map, scratch1, scratch2, gc_required);
3186 }
Steve Block1e0659c2011-05-24 12:43:12 +01003187
3188 // r2: Answer as signed int32.
3189 // r5: Heap number to write answer into.
3190
3191 // Nothing can go wrong now, so move the heap number to r0, which is the
3192 // result.
3193 __ mov(r0, Operand(r5));
3194
3195 if (CpuFeatures::IsSupported(VFP3)) {
3196 // Convert the int32 in r2 to the heap number in r0. r3 is corrupted. As
3197 // mentioned above SHR needs to always produce a positive result.
3198 CpuFeatures::Scope scope(VFP3);
3199 __ vmov(s0, r2);
3200 if (op_ == Token::SHR) {
3201 __ vcvt_f64_u32(d0, s0);
3202 } else {
3203 __ vcvt_f64_s32(d0, s0);
3204 }
3205 __ sub(r3, r0, Operand(kHeapObjectTag));
3206 __ vstr(d0, r3, HeapNumber::kValueOffset);
3207 __ Ret();
3208 } else {
3209 // Tail call that writes the int32 in r2 to the heap number in r0, using
3210 // r3 as scratch. r0 is preserved and returned.
3211 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
3212 __ TailCallStub(&stub);
3213 }
3214 break;
3215 }
3216 default:
3217 UNREACHABLE();
3218 }
3219}
3220
3221
3222// Generate the smi code. If the operation on smis are successful this return is
3223// generated. If the result is not a smi and heap number allocation is not
3224// requested the code falls through. If number allocation is requested but a
3225// heap number cannot be allocated the code jumps to the lable gc_required.
3226void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
3227 Label* gc_required,
3228 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
3229 Label not_smis;
3230
3231 Register left = r1;
3232 Register right = r0;
3233 Register scratch1 = r7;
3234 Register scratch2 = r9;
3235
3236 // Perform combined smi check on both operands.
3237 __ orr(scratch1, left, Operand(right));
3238 STATIC_ASSERT(kSmiTag == 0);
3239 __ tst(scratch1, Operand(kSmiTagMask));
3240 __ b(ne, &not_smis);
3241
3242 // If the smi-smi operation results in a smi return is generated.
3243 GenerateSmiSmiOperation(masm);
3244
3245 // If heap number results are possible generate the result in an allocated
3246 // heap number.
3247 if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
3248 GenerateFPOperation(masm, true, NULL, gc_required);
3249 }
3250 __ bind(&not_smis);
3251}
3252
3253
3254void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
3255 Label not_smis, call_runtime;
3256
3257 if (result_type_ == TRBinaryOpIC::UNINITIALIZED ||
3258 result_type_ == TRBinaryOpIC::SMI) {
3259 // Only allow smi results.
3260 GenerateSmiCode(masm, NULL, NO_HEAPNUMBER_RESULTS);
3261 } else {
3262 // Allow heap number result and don't make a transition if a heap number
3263 // cannot be allocated.
3264 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
3265 }
3266
3267 // Code falls through if the result is not returned as either a smi or heap
3268 // number.
3269 GenerateTypeTransition(masm);
3270
3271 __ bind(&call_runtime);
3272 GenerateCallRuntime(masm);
3273}
3274
3275
3276void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
3277 ASSERT(operands_type_ == TRBinaryOpIC::STRING);
3278 ASSERT(op_ == Token::ADD);
3279 // Try to add arguments as strings, otherwise, transition to the generic
3280 // TRBinaryOpIC type.
3281 GenerateAddStrings(masm);
3282 GenerateTypeTransition(masm);
3283}
3284
3285
3286void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
3287 ASSERT(operands_type_ == TRBinaryOpIC::INT32);
3288
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003289 Register left = r1;
3290 Register right = r0;
3291 Register scratch1 = r7;
3292 Register scratch2 = r9;
3293 DwVfpRegister double_scratch = d0;
3294 SwVfpRegister single_scratch = s3;
3295
3296 Register heap_number_result = no_reg;
3297 Register heap_number_map = r6;
3298 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3299
3300 Label call_runtime;
3301 // Labels for type transition, used for wrong input or output types.
3302 // Both label are currently actually bound to the same position. We use two
3303 // different label to differentiate the cause leading to type transition.
3304 Label transition;
3305
3306 // Smi-smi fast case.
3307 Label skip;
3308 __ orr(scratch1, left, right);
3309 __ JumpIfNotSmi(scratch1, &skip);
3310 GenerateSmiSmiOperation(masm);
3311 // Fall through if the result is not a smi.
3312 __ bind(&skip);
3313
3314 switch (op_) {
3315 case Token::ADD:
3316 case Token::SUB:
3317 case Token::MUL:
3318 case Token::DIV:
3319 case Token::MOD: {
3320 // Load both operands and check that they are 32-bit integer.
3321 // Jump to type transition if they are not. The registers r0 and r1 (right
3322 // and left) are preserved for the runtime call.
3323 FloatingPointHelper::Destination destination =
3324 CpuFeatures::IsSupported(VFP3) && op_ != Token::MOD ?
3325 FloatingPointHelper::kVFPRegisters :
3326 FloatingPointHelper::kCoreRegisters;
3327
3328 FloatingPointHelper::LoadNumberAsInt32Double(masm,
3329 right,
3330 destination,
3331 d7,
3332 r2,
3333 r3,
3334 heap_number_map,
3335 scratch1,
3336 scratch2,
3337 s0,
3338 &transition);
3339 FloatingPointHelper::LoadNumberAsInt32Double(masm,
3340 left,
3341 destination,
3342 d6,
3343 r4,
3344 r5,
3345 heap_number_map,
3346 scratch1,
3347 scratch2,
3348 s0,
3349 &transition);
3350
3351 if (destination == FloatingPointHelper::kVFPRegisters) {
3352 CpuFeatures::Scope scope(VFP3);
3353 Label return_heap_number;
3354 switch (op_) {
3355 case Token::ADD:
3356 __ vadd(d5, d6, d7);
3357 break;
3358 case Token::SUB:
3359 __ vsub(d5, d6, d7);
3360 break;
3361 case Token::MUL:
3362 __ vmul(d5, d6, d7);
3363 break;
3364 case Token::DIV:
3365 __ vdiv(d5, d6, d7);
3366 break;
3367 default:
3368 UNREACHABLE();
3369 }
3370
3371 if (op_ != Token::DIV) {
3372 // These operations produce an integer result.
3373 // Try to return a smi if we can.
3374 // Otherwise return a heap number if allowed, or jump to type
3375 // transition.
3376
3377 __ EmitVFPTruncate(kRoundToZero,
3378 single_scratch,
3379 d5,
3380 scratch1,
3381 scratch2);
3382
3383 if (result_type_ <= TRBinaryOpIC::INT32) {
3384 // If the ne condition is set, result does
3385 // not fit in a 32-bit integer.
3386 __ b(ne, &transition);
3387 }
3388
3389 // Check if the result fits in a smi.
3390 __ vmov(scratch1, single_scratch);
3391 __ add(scratch2, scratch1, Operand(0x40000000), SetCC);
3392 // If not try to return a heap number.
3393 __ b(mi, &return_heap_number);
3394 // Tag the result and return.
3395 __ SmiTag(r0, scratch1);
3396 __ Ret();
3397 }
3398
3399 if (result_type_ >= (op_ == Token::DIV) ? TRBinaryOpIC::HEAP_NUMBER
3400 : TRBinaryOpIC::INT32) {
3401 __ bind(&return_heap_number);
3402 // We are using vfp registers so r5 is available.
3403 heap_number_result = r5;
3404 GenerateHeapResultAllocation(masm,
3405 heap_number_result,
3406 heap_number_map,
3407 scratch1,
3408 scratch2,
3409 &call_runtime);
3410 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3411 __ vstr(d5, r0, HeapNumber::kValueOffset);
3412 __ mov(r0, heap_number_result);
3413 __ Ret();
3414 }
3415
3416 // A DIV operation expecting an integer result falls through
3417 // to type transition.
3418
3419 } else {
3420 // We preserved r0 and r1 to be able to call runtime.
3421 // Save the left value on the stack.
3422 __ Push(r5, r4);
3423
3424 // Allocate a heap number to store the result.
3425 heap_number_result = r5;
3426 GenerateHeapResultAllocation(masm,
3427 heap_number_result,
3428 heap_number_map,
3429 scratch1,
3430 scratch2,
3431 &call_runtime);
3432
3433 // Load the left value from the value saved on the stack.
3434 __ Pop(r1, r0);
3435
3436 // Call the C function to handle the double operation.
3437 FloatingPointHelper::CallCCodeForDoubleOperation(
3438 masm, op_, heap_number_result, scratch1);
3439 }
3440
3441 break;
3442 }
3443
3444 case Token::BIT_OR:
3445 case Token::BIT_XOR:
3446 case Token::BIT_AND:
3447 case Token::SAR:
3448 case Token::SHR:
3449 case Token::SHL: {
3450 Label return_heap_number;
3451 Register scratch3 = r5;
3452 // Convert operands to 32-bit integers. Right in r2 and left in r3. The
3453 // registers r0 and r1 (right and left) are preserved for the runtime
3454 // call.
3455 FloatingPointHelper::LoadNumberAsInt32(masm,
3456 left,
3457 r3,
3458 heap_number_map,
3459 scratch1,
3460 scratch2,
3461 scratch3,
3462 d0,
3463 &transition);
3464 FloatingPointHelper::LoadNumberAsInt32(masm,
3465 right,
3466 r2,
3467 heap_number_map,
3468 scratch1,
3469 scratch2,
3470 scratch3,
3471 d0,
3472 &transition);
3473
3474 // The ECMA-262 standard specifies that, for shift operations, only the
3475 // 5 least significant bits of the shift value should be used.
3476 switch (op_) {
3477 case Token::BIT_OR:
3478 __ orr(r2, r3, Operand(r2));
3479 break;
3480 case Token::BIT_XOR:
3481 __ eor(r2, r3, Operand(r2));
3482 break;
3483 case Token::BIT_AND:
3484 __ and_(r2, r3, Operand(r2));
3485 break;
3486 case Token::SAR:
3487 __ and_(r2, r2, Operand(0x1f));
3488 __ mov(r2, Operand(r3, ASR, r2));
3489 break;
3490 case Token::SHR:
3491 __ and_(r2, r2, Operand(0x1f));
3492 __ mov(r2, Operand(r3, LSR, r2), SetCC);
3493 // SHR is special because it is required to produce a positive answer.
3494 // We only get a negative result if the shift value (r2) is 0.
3495 // This result cannot be respresented as a signed 32-bit integer, try
3496 // to return a heap number if we can.
3497 // The non vfp3 code does not support this special case, so jump to
3498 // runtime if we don't support it.
3499 if (CpuFeatures::IsSupported(VFP3)) {
3500 __ b(mi,
3501 (result_type_ <= TRBinaryOpIC::INT32) ? &transition
3502 : &return_heap_number);
3503 } else {
3504 __ b(mi, (result_type_ <= TRBinaryOpIC::INT32) ? &transition
3505 : &call_runtime);
3506 }
3507 break;
3508 case Token::SHL:
3509 __ and_(r2, r2, Operand(0x1f));
3510 __ mov(r2, Operand(r3, LSL, r2));
3511 break;
3512 default:
3513 UNREACHABLE();
3514 }
3515
3516 // Check if the result fits in a smi.
3517 __ add(scratch1, r2, Operand(0x40000000), SetCC);
3518 // If not try to return a heap number. (We know the result is an int32.)
3519 __ b(mi, &return_heap_number);
3520 // Tag the result and return.
3521 __ SmiTag(r0, r2);
3522 __ Ret();
3523
3524 __ bind(&return_heap_number);
3525 if (CpuFeatures::IsSupported(VFP3)) {
3526 CpuFeatures::Scope scope(VFP3);
3527 heap_number_result = r5;
3528 GenerateHeapResultAllocation(masm,
3529 heap_number_result,
3530 heap_number_map,
3531 scratch1,
3532 scratch2,
3533 &call_runtime);
3534
3535 if (op_ != Token::SHR) {
3536 // Convert the result to a floating point value.
3537 __ vmov(double_scratch.low(), r2);
3538 __ vcvt_f64_s32(double_scratch, double_scratch.low());
3539 } else {
3540 // The result must be interpreted as an unsigned 32-bit integer.
3541 __ vmov(double_scratch.low(), r2);
3542 __ vcvt_f64_u32(double_scratch, double_scratch.low());
3543 }
3544
3545 // Store the result.
3546 __ sub(r0, heap_number_result, Operand(kHeapObjectTag));
3547 __ vstr(double_scratch, r0, HeapNumber::kValueOffset);
3548 __ mov(r0, heap_number_result);
3549 __ Ret();
3550 } else {
3551 // Tail call that writes the int32 in r2 to the heap number in r0, using
3552 // r3 as scratch. r0 is preserved and returned.
3553 WriteInt32ToHeapNumberStub stub(r2, r0, r3);
3554 __ TailCallStub(&stub);
3555 }
3556
3557 break;
3558 }
3559
3560 default:
3561 UNREACHABLE();
3562 }
3563
3564 if (transition.is_linked()) {
3565 __ bind(&transition);
3566 GenerateTypeTransition(masm);
3567 }
3568
3569 __ bind(&call_runtime);
3570 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01003571}
3572
3573
3574void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
3575 Label not_numbers, call_runtime;
3576 ASSERT(operands_type_ == TRBinaryOpIC::HEAP_NUMBER);
3577
3578 GenerateFPOperation(masm, false, &not_numbers, &call_runtime);
3579
3580 __ bind(&not_numbers);
3581 GenerateTypeTransition(masm);
3582
3583 __ bind(&call_runtime);
3584 GenerateCallRuntime(masm);
3585}
3586
3587
3588void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003589 Label call_runtime, call_string_add_or_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01003590
3591 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
3592
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003593 GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003594
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003595 __ bind(&call_string_add_or_runtime);
Steve Block1e0659c2011-05-24 12:43:12 +01003596 if (op_ == Token::ADD) {
3597 GenerateAddStrings(masm);
3598 }
3599
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003600 __ bind(&call_runtime);
3601 GenerateCallRuntime(masm);
Steve Block1e0659c2011-05-24 12:43:12 +01003602}
3603
3604
3605void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
3606 ASSERT(op_ == Token::ADD);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003607 Label left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01003608
3609 Register left = r1;
3610 Register right = r0;
Steve Block1e0659c2011-05-24 12:43:12 +01003611
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003612 // Check if left argument is a string.
3613 __ JumpIfSmi(left, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003614 __ CompareObjectType(left, r2, r2, FIRST_NONSTRING_TYPE);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003615 __ b(ge, &left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003616
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003617 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
3618 GenerateRegisterArgsPush(masm);
3619 __ TailCallStub(&string_add_left_stub);
3620
3621 // Left operand is not a string, test right.
3622 __ bind(&left_not_string);
Steve Block1e0659c2011-05-24 12:43:12 +01003623 __ JumpIfSmi(right, &call_runtime);
3624 __ CompareObjectType(right, r2, r2, FIRST_NONSTRING_TYPE);
3625 __ b(ge, &call_runtime);
3626
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003627 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
Steve Block1e0659c2011-05-24 12:43:12 +01003628 GenerateRegisterArgsPush(masm);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003629 __ TailCallStub(&string_add_right_stub);
Steve Block1e0659c2011-05-24 12:43:12 +01003630
3631 // At least one argument is not a string.
3632 __ bind(&call_runtime);
3633}
3634
3635
3636void TypeRecordingBinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
3637 GenerateRegisterArgsPush(masm);
3638 switch (op_) {
3639 case Token::ADD:
3640 __ InvokeBuiltin(Builtins::ADD, JUMP_JS);
3641 break;
3642 case Token::SUB:
3643 __ InvokeBuiltin(Builtins::SUB, JUMP_JS);
3644 break;
3645 case Token::MUL:
3646 __ InvokeBuiltin(Builtins::MUL, JUMP_JS);
3647 break;
3648 case Token::DIV:
3649 __ InvokeBuiltin(Builtins::DIV, JUMP_JS);
3650 break;
3651 case Token::MOD:
3652 __ InvokeBuiltin(Builtins::MOD, JUMP_JS);
3653 break;
3654 case Token::BIT_OR:
3655 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_JS);
3656 break;
3657 case Token::BIT_AND:
3658 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_JS);
3659 break;
3660 case Token::BIT_XOR:
3661 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_JS);
3662 break;
3663 case Token::SAR:
3664 __ InvokeBuiltin(Builtins::SAR, JUMP_JS);
3665 break;
3666 case Token::SHR:
3667 __ InvokeBuiltin(Builtins::SHR, JUMP_JS);
3668 break;
3669 case Token::SHL:
3670 __ InvokeBuiltin(Builtins::SHL, JUMP_JS);
3671 break;
3672 default:
3673 UNREACHABLE();
3674 }
3675}
3676
3677
3678void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
3679 MacroAssembler* masm,
3680 Register result,
3681 Register heap_number_map,
3682 Register scratch1,
3683 Register scratch2,
3684 Label* gc_required) {
3685
3686 // Code below will scratch result if allocation fails. To keep both arguments
3687 // intact for the runtime call result cannot be one of these.
3688 ASSERT(!result.is(r0) && !result.is(r1));
3689
3690 if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
3691 Label skip_allocation, allocated;
3692 Register overwritable_operand = mode_ == OVERWRITE_LEFT ? r1 : r0;
3693 // If the overwritable operand is already an object, we skip the
3694 // allocation of a heap number.
3695 __ JumpIfNotSmi(overwritable_operand, &skip_allocation);
3696 // Allocate a heap number for the result.
3697 __ AllocateHeapNumber(
3698 result, scratch1, scratch2, heap_number_map, gc_required);
3699 __ b(&allocated);
3700 __ bind(&skip_allocation);
3701 // Use object holding the overwritable operand for result.
3702 __ mov(result, Operand(overwritable_operand));
3703 __ bind(&allocated);
3704 } else {
3705 ASSERT(mode_ == NO_OVERWRITE);
3706 __ AllocateHeapNumber(
3707 result, scratch1, scratch2, heap_number_map, gc_required);
3708 }
3709}
3710
3711
3712void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
3713 __ Push(r1, r0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003714}
3715
3716
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003717void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003718 // Untagged case: double input in d2, double result goes
3719 // into d2.
3720 // Tagged case: tagged input on top of stack and in r0,
3721 // tagged result (heap number) goes into r0.
3722
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003723 Label input_not_smi;
3724 Label loaded;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003725 Label calculate;
3726 Label invalid_cache;
3727 const Register scratch0 = r9;
3728 const Register scratch1 = r7;
3729 const Register cache_entry = r0;
3730 const bool tagged = (argument_type_ == TAGGED);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003731
3732 if (CpuFeatures::IsSupported(VFP3)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003733 CpuFeatures::Scope scope(VFP3);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003734 if (tagged) {
3735 // Argument is a number and is on stack and in r0.
3736 // Load argument and check if it is a smi.
3737 __ JumpIfNotSmi(r0, &input_not_smi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003738
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003739 // Input is a smi. Convert to double and load the low and high words
3740 // of the double into r2, r3.
3741 __ IntegerToDoubleConversionWithVFP3(r0, r3, r2);
3742 __ b(&loaded);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003743
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003744 __ bind(&input_not_smi);
3745 // Check if input is a HeapNumber.
3746 __ CheckMap(r0,
3747 r1,
3748 Heap::kHeapNumberMapRootIndex,
3749 &calculate,
3750 true);
3751 // Input is a HeapNumber. Load it to a double register and store the
3752 // low and high words into r2, r3.
3753 __ vldr(d0, FieldMemOperand(r0, HeapNumber::kValueOffset));
3754 __ vmov(r2, r3, d0);
3755 } else {
3756 // Input is untagged double in d2. Output goes to d2.
3757 __ vmov(r2, r3, d2);
3758 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003759 __ bind(&loaded);
3760 // r2 = low 32 bits of double value
3761 // r3 = high 32 bits of double value
3762 // Compute hash (the shifts are arithmetic):
3763 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
3764 __ eor(r1, r2, Operand(r3));
3765 __ eor(r1, r1, Operand(r1, ASR, 16));
3766 __ eor(r1, r1, Operand(r1, ASR, 8));
3767 ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
3768 __ And(r1, r1, Operand(TranscendentalCache::kCacheSize - 1));
3769
3770 // r2 = low 32 bits of double value.
3771 // r3 = high 32 bits of double value.
3772 // r1 = TranscendentalCache::hash(double value).
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003773 __ mov(cache_entry,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003774 Operand(ExternalReference::transcendental_cache_array_address()));
3775 // r0 points to cache array.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003776 __ ldr(cache_entry, MemOperand(cache_entry,
3777 type_ * sizeof(TranscendentalCache::caches_[0])));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003778 // r0 points to the cache for the type type_.
3779 // If NULL, the cache hasn't been initialized yet, so go through runtime.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003780 __ cmp(cache_entry, Operand(0, RelocInfo::NONE));
3781 __ b(eq, &invalid_cache);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003782
3783#ifdef DEBUG
3784 // Check that the layout of cache elements match expectations.
3785 { TranscendentalCache::Element test_elem[2];
3786 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
3787 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
3788 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
3789 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
3790 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
3791 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
3792 CHECK_EQ(0, elem_in0 - elem_start);
3793 CHECK_EQ(kIntSize, elem_in1 - elem_start);
3794 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
3795 }
3796#endif
3797
3798 // Find the address of the r1'st entry in the cache, i.e., &r0[r1*12].
3799 __ add(r1, r1, Operand(r1, LSL, 1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003800 __ add(cache_entry, cache_entry, Operand(r1, LSL, 2));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003801 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003802 __ ldm(ia, cache_entry, r4.bit() | r5.bit() | r6.bit());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003803 __ cmp(r2, r4);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003804 __ b(ne, &calculate);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003805 __ cmp(r3, r5);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003806 __ b(ne, &calculate);
3807 // Cache hit. Load result, cleanup and return.
3808 if (tagged) {
3809 // Pop input value from stack and load result into r0.
3810 __ pop();
3811 __ mov(r0, Operand(r6));
3812 } else {
3813 // Load result into d2.
3814 __ vldr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3815 }
3816 __ Ret();
3817 } // if (CpuFeatures::IsSupported(VFP3))
3818
3819 __ bind(&calculate);
3820 if (tagged) {
3821 __ bind(&invalid_cache);
3822 __ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
3823 } else {
3824 if (!CpuFeatures::IsSupported(VFP3)) UNREACHABLE();
3825 CpuFeatures::Scope scope(VFP3);
3826
3827 Label no_update;
3828 Label skip_cache;
3829 const Register heap_number_map = r5;
3830
3831 // Call C function to calculate the result and update the cache.
3832 // Register r0 holds precalculated cache entry address; preserve
3833 // it on the stack and pop it into register cache_entry after the
3834 // call.
3835 __ push(cache_entry);
3836 GenerateCallCFunction(masm, scratch0);
3837 __ GetCFunctionDoubleResult(d2);
3838
3839 // Try to update the cache. If we cannot allocate a
3840 // heap number, we return the result without updating.
3841 __ pop(cache_entry);
3842 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3843 __ AllocateHeapNumber(r6, scratch0, scratch1, r5, &no_update);
3844 __ vstr(d2, FieldMemOperand(r6, HeapNumber::kValueOffset));
3845 __ stm(ia, cache_entry, r2.bit() | r3.bit() | r6.bit());
3846 __ Ret();
3847
3848 __ bind(&invalid_cache);
3849 // The cache is invalid. Call runtime which will recreate the
3850 // cache.
3851 __ LoadRoot(r5, Heap::kHeapNumberMapRootIndex);
3852 __ AllocateHeapNumber(r0, scratch0, scratch1, r5, &skip_cache);
3853 __ vstr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3854 __ EnterInternalFrame();
3855 __ push(r0);
3856 __ CallRuntime(RuntimeFunction(), 1);
3857 __ LeaveInternalFrame();
3858 __ vldr(d2, FieldMemOperand(r0, HeapNumber::kValueOffset));
3859 __ Ret();
3860
3861 __ bind(&skip_cache);
3862 // Call C function to calculate the result and answer directly
3863 // without updating the cache.
3864 GenerateCallCFunction(masm, scratch0);
3865 __ GetCFunctionDoubleResult(d2);
3866 __ bind(&no_update);
3867
3868 // We return the value in d2 without adding it to the cache, but
3869 // we cause a scavenging GC so that future allocations will succeed.
3870 __ EnterInternalFrame();
3871
3872 // Allocate an aligned object larger than a HeapNumber.
3873 ASSERT(4 * kPointerSize >= HeapNumber::kSize);
3874 __ mov(scratch0, Operand(4 * kPointerSize));
3875 __ push(scratch0);
3876 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
3877 __ LeaveInternalFrame();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003878 __ Ret();
3879 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003880}
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003881
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003882
3883void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
3884 Register scratch) {
3885 __ push(lr);
3886 __ PrepareCallCFunction(2, scratch);
3887 __ vmov(r0, r1, d2);
3888 switch (type_) {
3889 case TranscendentalCache::SIN:
3890 __ CallCFunction(ExternalReference::math_sin_double_function(), 2);
3891 break;
3892 case TranscendentalCache::COS:
3893 __ CallCFunction(ExternalReference::math_cos_double_function(), 2);
3894 break;
3895 case TranscendentalCache::LOG:
3896 __ CallCFunction(ExternalReference::math_log_double_function(), 2);
3897 break;
3898 default:
3899 UNIMPLEMENTED();
3900 break;
3901 }
3902 __ pop(lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003903}
3904
3905
3906Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
3907 switch (type_) {
3908 // Add more cases when necessary.
3909 case TranscendentalCache::SIN: return Runtime::kMath_sin;
3910 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003911 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003912 default:
3913 UNIMPLEMENTED();
3914 return Runtime::kAbort;
3915 }
3916}
3917
3918
3919void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01003920 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003921}
3922
3923
3924void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
3925 Label slow, done;
3926
3927 Register heap_number_map = r6;
3928 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3929
3930 if (op_ == Token::SUB) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003931 if (include_smi_code_) {
3932 // Check whether the value is a smi.
3933 Label try_float;
3934 __ tst(r0, Operand(kSmiTagMask));
3935 __ b(ne, &try_float);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003936
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003937 // Go slow case if the value of the expression is zero
3938 // to make sure that we switch between 0 and -0.
3939 if (negative_zero_ == kStrictNegativeZero) {
3940 // If we have to check for zero, then we can check for the max negative
3941 // smi while we are at it.
3942 __ bic(ip, r0, Operand(0x80000000), SetCC);
3943 __ b(eq, &slow);
3944 __ rsb(r0, r0, Operand(0, RelocInfo::NONE));
3945 __ Ret();
3946 } else {
3947 // The value of the expression is a smi and 0 is OK for -0. Try
3948 // optimistic subtraction '0 - value'.
3949 __ rsb(r0, r0, Operand(0, RelocInfo::NONE), SetCC);
3950 __ Ret(vc);
3951 // We don't have to reverse the optimistic neg since the only case
3952 // where we fall through is the minimum negative Smi, which is the case
3953 // where the neg leaves the register unchanged.
3954 __ jmp(&slow); // Go slow on max negative Smi.
3955 }
3956 __ bind(&try_float);
3957 } else if (FLAG_debug_code) {
3958 __ tst(r0, Operand(kSmiTagMask));
3959 __ Assert(ne, "Unexpected smi operand.");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003960 }
3961
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003962 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3963 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3964 __ cmp(r1, heap_number_map);
3965 __ b(ne, &slow);
3966 // r0 is a heap number. Get a new heap number in r1.
3967 if (overwrite_ == UNARY_OVERWRITE) {
3968 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3969 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
3970 __ str(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3971 } else {
3972 __ AllocateHeapNumber(r1, r2, r3, r6, &slow);
3973 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
3974 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3975 __ str(r3, FieldMemOperand(r1, HeapNumber::kMantissaOffset));
3976 __ eor(r2, r2, Operand(HeapNumber::kSignMask)); // Flip sign.
3977 __ str(r2, FieldMemOperand(r1, HeapNumber::kExponentOffset));
3978 __ mov(r0, Operand(r1));
3979 }
3980 } else if (op_ == Token::BIT_NOT) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003981 if (include_smi_code_) {
3982 Label non_smi;
Steve Block1e0659c2011-05-24 12:43:12 +01003983 __ JumpIfNotSmi(r0, &non_smi);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003984 __ mvn(r0, Operand(r0));
3985 // Bit-clear inverted smi-tag.
3986 __ bic(r0, r0, Operand(kSmiTagMask));
3987 __ Ret();
3988 __ bind(&non_smi);
3989 } else if (FLAG_debug_code) {
3990 __ tst(r0, Operand(kSmiTagMask));
3991 __ Assert(ne, "Unexpected smi operand.");
3992 }
3993
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003994 // Check if the operand is a heap number.
3995 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3996 __ AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3997 __ cmp(r1, heap_number_map);
3998 __ b(ne, &slow);
3999
4000 // Convert the heap number is r0 to an untagged integer in r1.
Steve Block1e0659c2011-05-24 12:43:12 +01004001 __ ConvertToInt32(r0, r1, r2, r3, d0, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004002
4003 // Do the bitwise operation (move negated) and check if the result
4004 // fits in a smi.
4005 Label try_float;
4006 __ mvn(r1, Operand(r1));
4007 __ add(r2, r1, Operand(0x40000000), SetCC);
4008 __ b(mi, &try_float);
4009 __ mov(r0, Operand(r1, LSL, kSmiTagSize));
4010 __ b(&done);
4011
4012 __ bind(&try_float);
4013 if (!overwrite_ == UNARY_OVERWRITE) {
4014 // Allocate a fresh heap number, but don't overwrite r0 until
4015 // we're sure we can do it without going through the slow case
4016 // that needs the value in r0.
4017 __ AllocateHeapNumber(r2, r3, r4, r6, &slow);
4018 __ mov(r0, Operand(r2));
4019 }
4020
4021 if (CpuFeatures::IsSupported(VFP3)) {
4022 // Convert the int32 in r1 to the heap number in r0. r2 is corrupted.
4023 CpuFeatures::Scope scope(VFP3);
4024 __ vmov(s0, r1);
4025 __ vcvt_f64_s32(d0, s0);
4026 __ sub(r2, r0, Operand(kHeapObjectTag));
4027 __ vstr(d0, r2, HeapNumber::kValueOffset);
4028 } else {
4029 // WriteInt32ToHeapNumberStub does not trigger GC, so we do not
4030 // have to set up a frame.
4031 WriteInt32ToHeapNumberStub stub(r1, r0, r2);
4032 __ push(lr);
4033 __ Call(stub.GetCode(), RelocInfo::CODE_TARGET);
4034 __ pop(lr);
4035 }
4036 } else {
4037 UNIMPLEMENTED();
4038 }
4039
4040 __ bind(&done);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004041 __ Ret();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004042
4043 // Handle the slow case by jumping to the JavaScript builtin.
4044 __ bind(&slow);
4045 __ push(r0);
4046 switch (op_) {
4047 case Token::SUB:
4048 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
4049 break;
4050 case Token::BIT_NOT:
4051 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_JS);
4052 break;
4053 default:
4054 UNREACHABLE();
4055 }
4056}
4057
4058
4059void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004060 __ Throw(r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004061}
4062
4063
4064void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
4065 UncatchableExceptionType type) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004066 __ ThrowUncatchable(type, r0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004067}
4068
4069
4070void CEntryStub::GenerateCore(MacroAssembler* masm,
4071 Label* throw_normal_exception,
4072 Label* throw_termination_exception,
4073 Label* throw_out_of_memory_exception,
4074 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01004075 bool always_allocate) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004076 // r0: result parameter for PerformGC, if any
4077 // r4: number of arguments including receiver (C callee-saved)
4078 // r5: pointer to builtin function (C callee-saved)
4079 // r6: pointer to the first argument (C callee-saved)
4080
4081 if (do_gc) {
4082 // Passing r0.
4083 __ PrepareCallCFunction(1, r1);
4084 __ CallCFunction(ExternalReference::perform_gc_function(), 1);
4085 }
4086
4087 ExternalReference scope_depth =
4088 ExternalReference::heap_always_allocate_scope_depth();
4089 if (always_allocate) {
4090 __ mov(r0, Operand(scope_depth));
4091 __ ldr(r1, MemOperand(r0));
4092 __ add(r1, r1, Operand(1));
4093 __ str(r1, MemOperand(r0));
4094 }
4095
4096 // Call C built-in.
4097 // r0 = argc, r1 = argv
4098 __ mov(r0, Operand(r4));
4099 __ mov(r1, Operand(r6));
4100
Steve Block1e0659c2011-05-24 12:43:12 +01004101#if defined(V8_HOST_ARCH_ARM)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004102 int frame_alignment = MacroAssembler::ActivationFrameAlignment();
4103 int frame_alignment_mask = frame_alignment - 1;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004104 if (FLAG_debug_code) {
4105 if (frame_alignment > kPointerSize) {
4106 Label alignment_as_expected;
4107 ASSERT(IsPowerOf2(frame_alignment));
Steve Block1e0659c2011-05-24 12:43:12 +01004108 __ tst(sp, Operand(frame_alignment_mask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004109 __ b(eq, &alignment_as_expected);
4110 // Don't use Check here, as it will call Runtime_Abort re-entering here.
4111 __ stop("Unexpected alignment");
4112 __ bind(&alignment_as_expected);
4113 }
4114 }
4115#endif
4116
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004117 // TODO(1242173): To let the GC traverse the return address of the exit
4118 // frames, we need to know where the return address is. Right now,
Steve Block1e0659c2011-05-24 12:43:12 +01004119 // we store it on the stack to be able to find it again, but we never
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004120 // restore from it in case of changes, which makes it impossible to
4121 // support moving the C entry code stub. This should be fixed, but currently
4122 // this is OK because the CEntryStub gets generated so early in the V8 boot
4123 // sequence that it is not moving ever.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004124
Steve Block1e0659c2011-05-24 12:43:12 +01004125 // Compute the return address in lr to return to after the jump below. Pc is
4126 // already at '+ 8' from the current instruction but return is after three
4127 // instructions so add another 4 to pc to get the return address.
4128 masm->add(lr, pc, Operand(4));
4129 __ str(lr, MemOperand(sp, 0));
4130 masm->Jump(r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004131
4132 if (always_allocate) {
4133 // It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
4134 // though (contain the result).
4135 __ mov(r2, Operand(scope_depth));
4136 __ ldr(r3, MemOperand(r2));
4137 __ sub(r3, r3, Operand(1));
4138 __ str(r3, MemOperand(r2));
4139 }
4140
4141 // check for failure result
4142 Label failure_returned;
4143 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
4144 // Lower 2 bits of r2 are 0 iff r0 has failure tag.
4145 __ add(r2, r0, Operand(1));
4146 __ tst(r2, Operand(kFailureTagMask));
4147 __ b(eq, &failure_returned);
4148
4149 // Exit C frame and return.
4150 // r0:r1: result
4151 // sp: stack pointer
4152 // fp: frame pointer
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004153 // Callee-saved register r4 still holds argc.
4154 __ LeaveExitFrame(save_doubles_, r4);
4155 __ mov(pc, lr);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004156
4157 // check if we should retry or throw exception
4158 Label retry;
4159 __ bind(&failure_returned);
4160 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
4161 __ tst(r0, Operand(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
4162 __ b(eq, &retry);
4163
4164 // Special handling of out of memory exceptions.
4165 Failure* out_of_memory = Failure::OutOfMemoryException();
4166 __ cmp(r0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
4167 __ b(eq, throw_out_of_memory_exception);
4168
4169 // Retrieve the pending exception and clear the variable.
4170 __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
4171 __ ldr(r3, MemOperand(ip));
4172 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
4173 __ ldr(r0, MemOperand(ip));
4174 __ str(r3, MemOperand(ip));
4175
4176 // Special handling of termination exceptions which are uncatchable
4177 // by javascript code.
4178 __ cmp(r0, Operand(Factory::termination_exception()));
4179 __ b(eq, throw_termination_exception);
4180
4181 // Handle normal exception.
4182 __ jmp(throw_normal_exception);
4183
4184 __ bind(&retry); // pass last failure (r0) as parameter (r0) when retrying
4185}
4186
4187
4188void CEntryStub::Generate(MacroAssembler* masm) {
4189 // Called from JavaScript; parameters are on stack as if calling JS function
4190 // r0: number of arguments including receiver
4191 // r1: pointer to builtin function
4192 // fp: frame pointer (restored after C call)
4193 // sp: stack pointer (restored as callee's sp after C call)
4194 // cp: current context (C callee-saved)
4195
4196 // Result returned in r0 or r0+r1 by default.
4197
4198 // NOTE: Invocations of builtins may return failure objects
4199 // instead of a proper result. The builtin entry handles
4200 // this by performing a garbage collection and retrying the
4201 // builtin once.
4202
Steve Block1e0659c2011-05-24 12:43:12 +01004203 // Compute the argv pointer in a callee-saved register.
4204 __ add(r6, sp, Operand(r0, LSL, kPointerSizeLog2));
4205 __ sub(r6, r6, Operand(kPointerSize));
4206
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004207 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004208 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004209
Steve Block1e0659c2011-05-24 12:43:12 +01004210 // Setup argc and the builtin function in callee-saved registers.
4211 __ mov(r4, Operand(r0));
4212 __ mov(r5, Operand(r1));
4213
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004214 // r4: number of arguments (C callee-saved)
4215 // r5: pointer to builtin function (C callee-saved)
4216 // r6: pointer to first argument (C callee-saved)
4217
4218 Label throw_normal_exception;
4219 Label throw_termination_exception;
4220 Label throw_out_of_memory_exception;
4221
4222 // Call into the runtime system.
4223 GenerateCore(masm,
4224 &throw_normal_exception,
4225 &throw_termination_exception,
4226 &throw_out_of_memory_exception,
4227 false,
Steve Block1e0659c2011-05-24 12:43:12 +01004228 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004229
4230 // Do space-specific GC and retry runtime call.
4231 GenerateCore(masm,
4232 &throw_normal_exception,
4233 &throw_termination_exception,
4234 &throw_out_of_memory_exception,
4235 true,
Steve Block1e0659c2011-05-24 12:43:12 +01004236 false);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004237
4238 // Do full GC and retry runtime call one final time.
4239 Failure* failure = Failure::InternalError();
4240 __ mov(r0, Operand(reinterpret_cast<int32_t>(failure)));
4241 GenerateCore(masm,
4242 &throw_normal_exception,
4243 &throw_termination_exception,
4244 &throw_out_of_memory_exception,
4245 true,
Steve Block1e0659c2011-05-24 12:43:12 +01004246 true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004247
4248 __ bind(&throw_out_of_memory_exception);
4249 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
4250
4251 __ bind(&throw_termination_exception);
4252 GenerateThrowUncatchable(masm, TERMINATION);
4253
4254 __ bind(&throw_normal_exception);
4255 GenerateThrowTOS(masm);
4256}
4257
4258
4259void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
4260 // r0: code entry
4261 // r1: function
4262 // r2: receiver
4263 // r3: argc
4264 // [sp+0]: argv
4265
4266 Label invoke, exit;
4267
4268 // Called from C, so do not pop argc and args on exit (preserve sp)
4269 // No need to save register-passed args
4270 // Save callee-saved registers (incl. cp and fp), sp, and lr
4271 __ stm(db_w, sp, kCalleeSaved | lr.bit());
4272
4273 // Get address of argv, see stm above.
4274 // r0: code entry
4275 // r1: function
4276 // r2: receiver
4277 // r3: argc
4278 __ ldr(r4, MemOperand(sp, (kNumCalleeSaved + 1) * kPointerSize)); // argv
4279
4280 // Push a frame with special values setup to mark it as an entry frame.
4281 // r0: code entry
4282 // r1: function
4283 // r2: receiver
4284 // r3: argc
4285 // r4: argv
4286 __ mov(r8, Operand(-1)); // Push a bad frame pointer to fail if it is used.
4287 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4288 __ mov(r7, Operand(Smi::FromInt(marker)));
4289 __ mov(r6, Operand(Smi::FromInt(marker)));
4290 __ mov(r5, Operand(ExternalReference(Top::k_c_entry_fp_address)));
4291 __ ldr(r5, MemOperand(r5));
4292 __ Push(r8, r7, r6, r5);
4293
4294 // Setup frame pointer for the frame to be pushed.
4295 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4296
Ben Murdochb0fe1622011-05-05 13:52:32 +01004297#ifdef ENABLE_LOGGING_AND_PROFILING
4298 // If this is the outermost JS call, set js_entry_sp value.
4299 ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
4300 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4301 __ ldr(r6, MemOperand(r5));
4302 __ cmp(r6, Operand(0, RelocInfo::NONE));
4303 __ str(fp, MemOperand(r5), eq);
4304#endif
4305
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004306 // Call a faked try-block that does the invoke.
4307 __ bl(&invoke);
4308
4309 // Caught exception: Store result (exception) in the pending
4310 // exception field in the JSEnv and return a failure sentinel.
4311 // Coming in here the fp will be invalid because the PushTryHandler below
4312 // sets it to 0 to signal the existence of the JSEntry frame.
4313 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
4314 __ str(r0, MemOperand(ip));
4315 __ mov(r0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
4316 __ b(&exit);
4317
4318 // Invoke: Link this frame into the handler chain.
4319 __ bind(&invoke);
4320 // Must preserve r0-r4, r5-r7 are available.
4321 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
4322 // If an exception not caught by another handler occurs, this handler
4323 // returns control to the code after the bl(&invoke) above, which
4324 // restores all kCalleeSaved registers (including cp and fp) to their
4325 // saved values before returning a failure to C.
4326
4327 // Clear any pending exceptions.
4328 __ mov(ip, Operand(ExternalReference::the_hole_value_location()));
4329 __ ldr(r5, MemOperand(ip));
4330 __ mov(ip, Operand(ExternalReference(Top::k_pending_exception_address)));
4331 __ str(r5, MemOperand(ip));
4332
4333 // Invoke the function by calling through JS entry trampoline builtin.
4334 // Notice that we cannot store a reference to the trampoline code directly in
4335 // this stub, because runtime stubs are not traversed when doing GC.
4336
4337 // Expected registers by Builtins::JSEntryTrampoline
4338 // r0: code entry
4339 // r1: function
4340 // r2: receiver
4341 // r3: argc
4342 // r4: argv
4343 if (is_construct) {
4344 ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
4345 __ mov(ip, Operand(construct_entry));
4346 } else {
4347 ExternalReference entry(Builtins::JSEntryTrampoline);
4348 __ mov(ip, Operand(entry));
4349 }
4350 __ ldr(ip, MemOperand(ip)); // deref address
4351
4352 // Branch and link to JSEntryTrampoline. We don't use the double underscore
4353 // macro for the add instruction because we don't want the coverage tool
4354 // inserting instructions here after we read the pc.
4355 __ mov(lr, Operand(pc));
4356 masm->add(pc, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
4357
4358 // Unlink this frame from the handler chain. When reading the
4359 // address of the next handler, there is no need to use the address
4360 // displacement since the current stack pointer (sp) points directly
4361 // to the stack handler.
4362 __ ldr(r3, MemOperand(sp, StackHandlerConstants::kNextOffset));
4363 __ mov(ip, Operand(ExternalReference(Top::k_handler_address)));
4364 __ str(r3, MemOperand(ip));
4365 // No need to restore registers
4366 __ add(sp, sp, Operand(StackHandlerConstants::kSize));
4367
Ben Murdochb0fe1622011-05-05 13:52:32 +01004368#ifdef ENABLE_LOGGING_AND_PROFILING
4369 // If current FP value is the same as js_entry_sp value, it means that
4370 // the current function is the outermost.
4371 __ mov(r5, Operand(ExternalReference(js_entry_sp)));
4372 __ ldr(r6, MemOperand(r5));
4373 __ cmp(fp, Operand(r6));
4374 __ mov(r6, Operand(0, RelocInfo::NONE), LeaveCC, eq);
4375 __ str(r6, MemOperand(r5), eq);
4376#endif
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004377
4378 __ bind(&exit); // r0 holds result
4379 // Restore the top frame descriptors from the stack.
4380 __ pop(r3);
4381 __ mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address)));
4382 __ str(r3, MemOperand(ip));
4383
4384 // Reset the stack to the callee saved registers.
4385 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
4386
4387 // Restore callee-saved registers and return.
4388#ifdef DEBUG
4389 if (FLAG_debug_code) {
4390 __ mov(lr, Operand(pc));
4391 }
4392#endif
4393 __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
4394}
4395
4396
Steve Block1e0659c2011-05-24 12:43:12 +01004397// Uses registers r0 to r4.
4398// Expected input (depending on whether args are in registers or on the stack):
4399// * object: r0 or at sp + 1 * kPointerSize.
4400// * function: r1 or at sp.
4401//
4402// An inlined call site may have been generated before calling this stub.
4403// In this case the offset to the inline site to patch is passed on the stack,
4404// in the safepoint slot for register r4.
4405// (See LCodeGen::DoInstanceOfKnownGlobal)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004406void InstanceofStub::Generate(MacroAssembler* masm) {
Steve Block1e0659c2011-05-24 12:43:12 +01004407 // Call site inlining and patching implies arguments in registers.
4408 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4409 // ReturnTrueFalse is only implemented for inlined call sites.
4410 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
4411
Ben Murdochb0fe1622011-05-05 13:52:32 +01004412 // Fixed register usage throughout the stub:
Steve Block9fac8402011-05-12 15:51:54 +01004413 const Register object = r0; // Object (lhs).
Steve Block1e0659c2011-05-24 12:43:12 +01004414 Register map = r3; // Map of the object.
Steve Block9fac8402011-05-12 15:51:54 +01004415 const Register function = r1; // Function (rhs).
Ben Murdochb0fe1622011-05-05 13:52:32 +01004416 const Register prototype = r4; // Prototype of the function.
Steve Block1e0659c2011-05-24 12:43:12 +01004417 const Register inline_site = r9;
Ben Murdochb0fe1622011-05-05 13:52:32 +01004418 const Register scratch = r2;
Steve Block1e0659c2011-05-24 12:43:12 +01004419
4420 const int32_t kDeltaToLoadBoolResult = 3 * kPointerSize;
4421
Ben Murdochb0fe1622011-05-05 13:52:32 +01004422 Label slow, loop, is_instance, is_not_instance, not_js_object;
Steve Block1e0659c2011-05-24 12:43:12 +01004423
Ben Murdoch086aeea2011-05-13 15:57:08 +01004424 if (!HasArgsInRegisters()) {
Steve Block9fac8402011-05-12 15:51:54 +01004425 __ ldr(object, MemOperand(sp, 1 * kPointerSize));
4426 __ ldr(function, MemOperand(sp, 0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01004427 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004428
Ben Murdochb0fe1622011-05-05 13:52:32 +01004429 // Check that the left hand is a JS object and load map.
Steve Block1e0659c2011-05-24 12:43:12 +01004430 __ JumpIfSmi(object, &not_js_object);
Steve Block9fac8402011-05-12 15:51:54 +01004431 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004432
Steve Block1e0659c2011-05-24 12:43:12 +01004433 // If there is a call site cache don't look in the global cache, but do the
4434 // real lookup and update the call site cache.
4435 if (!HasCallSiteInlineCheck()) {
4436 Label miss;
4437 __ LoadRoot(ip, Heap::kInstanceofCacheFunctionRootIndex);
4438 __ cmp(function, ip);
4439 __ b(ne, &miss);
4440 __ LoadRoot(ip, Heap::kInstanceofCacheMapRootIndex);
4441 __ cmp(map, ip);
4442 __ b(ne, &miss);
4443 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4444 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004445
Steve Block1e0659c2011-05-24 12:43:12 +01004446 __ bind(&miss);
4447 }
4448
4449 // Get the prototype of the function.
Steve Block9fac8402011-05-12 15:51:54 +01004450 __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004451
4452 // Check that the function prototype is a JS object.
Steve Block1e0659c2011-05-24 12:43:12 +01004453 __ JumpIfSmi(prototype, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004454 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004455
Steve Block1e0659c2011-05-24 12:43:12 +01004456 // Update the global instanceof or call site inlined cache with the current
4457 // map and function. The cached answer will be set when it is known below.
4458 if (!HasCallSiteInlineCheck()) {
4459 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
4460 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
4461 } else {
4462 ASSERT(HasArgsInRegisters());
4463 // Patch the (relocated) inlined map check.
4464
4465 // The offset was stored in r4 safepoint slot.
4466 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004467 __ LoadFromSafepointRegisterSlot(scratch, r4);
Steve Block1e0659c2011-05-24 12:43:12 +01004468 __ sub(inline_site, lr, scratch);
4469 // Get the map location in scratch and patch it.
4470 __ GetRelocatedValueLocation(inline_site, scratch);
4471 __ str(map, MemOperand(scratch));
4472 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004473
4474 // Register mapping: r3 is object map and r4 is function prototype.
4475 // Get prototype of object into r2.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004476 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004477
Steve Block1e0659c2011-05-24 12:43:12 +01004478 // We don't need map any more. Use it as a scratch register.
4479 Register scratch2 = map;
4480 map = no_reg;
4481
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004482 // Loop through the prototype chain looking for the function prototype.
Steve Block1e0659c2011-05-24 12:43:12 +01004483 __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004484 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004485 __ cmp(scratch, Operand(prototype));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004486 __ b(eq, &is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004487 __ cmp(scratch, scratch2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004488 __ b(eq, &is_not_instance);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004489 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
4490 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004491 __ jmp(&loop);
4492
4493 __ bind(&is_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004494 if (!HasCallSiteInlineCheck()) {
4495 __ mov(r0, Operand(Smi::FromInt(0)));
4496 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4497 } else {
4498 // Patch the call site to return true.
4499 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4500 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4501 // Get the boolean result location in scratch and patch it.
4502 __ GetRelocatedValueLocation(inline_site, scratch);
4503 __ str(r0, MemOperand(scratch));
4504
4505 if (!ReturnTrueFalseObject()) {
4506 __ mov(r0, Operand(Smi::FromInt(0)));
4507 }
4508 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01004509 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004510
4511 __ bind(&is_not_instance);
Steve Block1e0659c2011-05-24 12:43:12 +01004512 if (!HasCallSiteInlineCheck()) {
4513 __ mov(r0, Operand(Smi::FromInt(1)));
4514 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
4515 } else {
4516 // Patch the call site to return false.
4517 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4518 __ add(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
4519 // Get the boolean result location in scratch and patch it.
4520 __ GetRelocatedValueLocation(inline_site, scratch);
4521 __ str(r0, MemOperand(scratch));
4522
4523 if (!ReturnTrueFalseObject()) {
4524 __ mov(r0, Operand(Smi::FromInt(1)));
4525 }
4526 }
Ben Murdoch086aeea2011-05-13 15:57:08 +01004527 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004528
4529 Label object_not_null, object_not_null_or_smi;
4530 __ bind(&not_js_object);
4531 // Before null, smi and string value checks, check that the rhs is a function
4532 // as for a non-function rhs an exception needs to be thrown.
Steve Block1e0659c2011-05-24 12:43:12 +01004533 __ JumpIfSmi(function, &slow);
4534 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004535 __ b(ne, &slow);
4536
4537 // Null is not instance of anything.
4538 __ cmp(scratch, Operand(Factory::null_value()));
4539 __ b(ne, &object_not_null);
4540 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004541 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004542
4543 __ bind(&object_not_null);
4544 // Smi values are not instances of anything.
Steve Block1e0659c2011-05-24 12:43:12 +01004545 __ JumpIfNotSmi(object, &object_not_null_or_smi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004546 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004547 __ Ret(HasArgsInRegisters() ? 0 : 2);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004548
4549 __ bind(&object_not_null_or_smi);
4550 // String values are not instances of anything.
4551 __ IsObjectJSStringType(object, scratch, &slow);
4552 __ mov(r0, Operand(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004553 __ Ret(HasArgsInRegisters() ? 0 : 2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004554
4555 // Slow-case. Tail call builtin.
Ben Murdoch086aeea2011-05-13 15:57:08 +01004556 __ bind(&slow);
Steve Block1e0659c2011-05-24 12:43:12 +01004557 if (!ReturnTrueFalseObject()) {
4558 if (HasArgsInRegisters()) {
4559 __ Push(r0, r1);
4560 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004561 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_JS);
Steve Block1e0659c2011-05-24 12:43:12 +01004562 } else {
4563 __ EnterInternalFrame();
4564 __ Push(r0, r1);
4565 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_JS);
4566 __ LeaveInternalFrame();
4567 __ cmp(r0, Operand(0));
4568 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
4569 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
4570 __ Ret(HasArgsInRegisters() ? 0 : 2);
4571 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004572}
4573
4574
Steve Block1e0659c2011-05-24 12:43:12 +01004575Register InstanceofStub::left() { return r0; }
4576
4577
4578Register InstanceofStub::right() { return r1; }
4579
4580
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004581void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
4582 // The displacement is the offset of the last parameter (if any)
4583 // relative to the frame pointer.
4584 static const int kDisplacement =
4585 StandardFrameConstants::kCallerSPOffset - kPointerSize;
4586
4587 // Check that the key is a smi.
4588 Label slow;
Steve Block1e0659c2011-05-24 12:43:12 +01004589 __ JumpIfNotSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004590
4591 // Check if the calling frame is an arguments adaptor frame.
4592 Label adaptor;
4593 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4594 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4595 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4596 __ b(eq, &adaptor);
4597
4598 // Check index against formal parameters count limit passed in
4599 // through register r0. Use unsigned comparison to get negative
4600 // check for free.
4601 __ cmp(r1, r0);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004602 __ b(hs, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004603
4604 // Read the argument from the stack and return it.
4605 __ sub(r3, r0, r1);
4606 __ add(r3, fp, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4607 __ ldr(r0, MemOperand(r3, kDisplacement));
4608 __ Jump(lr);
4609
4610 // Arguments adaptor case: Check index against actual arguments
4611 // limit found in the arguments adaptor frame. Use unsigned
4612 // comparison to get negative check for free.
4613 __ bind(&adaptor);
4614 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4615 __ cmp(r1, r0);
4616 __ b(cs, &slow);
4617
4618 // Read the argument from the adaptor frame and return it.
4619 __ sub(r3, r0, r1);
4620 __ add(r3, r2, Operand(r3, LSL, kPointerSizeLog2 - kSmiTagSize));
4621 __ ldr(r0, MemOperand(r3, kDisplacement));
4622 __ Jump(lr);
4623
4624 // Slow-case: Handle non-smi or out-of-bounds access to arguments
4625 // by calling the runtime system.
4626 __ bind(&slow);
4627 __ push(r1);
4628 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
4629}
4630
4631
4632void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
4633 // sp[0] : number of parameters
4634 // sp[4] : receiver displacement
4635 // sp[8] : function
4636
4637 // Check if the calling frame is an arguments adaptor frame.
4638 Label adaptor_frame, try_allocate, runtime;
4639 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
4640 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
4641 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
4642 __ b(eq, &adaptor_frame);
4643
4644 // Get the length from the frame.
4645 __ ldr(r1, MemOperand(sp, 0));
4646 __ b(&try_allocate);
4647
4648 // Patch the arguments.length and the parameters pointer.
4649 __ bind(&adaptor_frame);
4650 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
4651 __ str(r1, MemOperand(sp, 0));
4652 __ add(r3, r2, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
4653 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
4654 __ str(r3, MemOperand(sp, 1 * kPointerSize));
4655
4656 // Try the new space allocation. Start out with computing the size
4657 // of the arguments object and the elements array in words.
4658 Label add_arguments_object;
4659 __ bind(&try_allocate);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004660 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004661 __ b(eq, &add_arguments_object);
4662 __ mov(r1, Operand(r1, LSR, kSmiTagSize));
4663 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
4664 __ bind(&add_arguments_object);
4665 __ add(r1, r1, Operand(Heap::kArgumentsObjectSize / kPointerSize));
4666
4667 // Do the allocation of both objects in one go.
4668 __ AllocateInNewSpace(
4669 r1,
4670 r0,
4671 r2,
4672 r3,
4673 &runtime,
4674 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
4675
4676 // Get the arguments boilerplate from the current (global) context.
4677 int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
4678 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
4679 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kGlobalContextOffset));
4680 __ ldr(r4, MemOperand(r4, offset));
4681
4682 // Copy the JS object part.
4683 __ CopyFields(r0, r4, r3.bit(), JSObject::kHeaderSize / kPointerSize);
4684
4685 // Setup the callee in-object property.
4686 STATIC_ASSERT(Heap::arguments_callee_index == 0);
4687 __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
4688 __ str(r3, FieldMemOperand(r0, JSObject::kHeaderSize));
4689
4690 // Get the length (smi tagged) and set that as an in-object property too.
4691 STATIC_ASSERT(Heap::arguments_length_index == 1);
4692 __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
4693 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + kPointerSize));
4694
4695 // If there are no actual arguments, we're done.
4696 Label done;
Iain Merrick9ac36c92010-09-13 15:29:50 +01004697 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004698 __ b(eq, &done);
4699
4700 // Get the parameters pointer from the stack.
4701 __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
4702
4703 // Setup the elements pointer in the allocated arguments object and
4704 // initialize the header in the elements fixed array.
4705 __ add(r4, r0, Operand(Heap::kArgumentsObjectSize));
4706 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
4707 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
4708 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
4709 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
4710 __ mov(r1, Operand(r1, LSR, kSmiTagSize)); // Untag the length for the loop.
4711
4712 // Copy the fixed array slots.
4713 Label loop;
4714 // Setup r4 to point to the first array slot.
4715 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4716 __ bind(&loop);
4717 // Pre-decrement r2 with kPointerSize on each iteration.
4718 // Pre-decrement in order to skip receiver.
4719 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
4720 // Post-increment r4 with kPointerSize on each iteration.
4721 __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
4722 __ sub(r1, r1, Operand(1));
Iain Merrick9ac36c92010-09-13 15:29:50 +01004723 __ cmp(r1, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004724 __ b(ne, &loop);
4725
4726 // Return and remove the on-stack parameters.
4727 __ bind(&done);
4728 __ add(sp, sp, Operand(3 * kPointerSize));
4729 __ Ret();
4730
4731 // Do the runtime call to allocate the arguments object.
4732 __ bind(&runtime);
4733 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
4734}
4735
4736
4737void RegExpExecStub::Generate(MacroAssembler* masm) {
4738 // Just jump directly to runtime if native RegExp is not selected at compile
4739 // time or if regexp entry in generated code is turned off runtime switch or
4740 // at compilation.
4741#ifdef V8_INTERPRETED_REGEXP
4742 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4743#else // V8_INTERPRETED_REGEXP
4744 if (!FLAG_regexp_entry_native) {
4745 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
4746 return;
4747 }
4748
4749 // Stack frame on entry.
4750 // sp[0]: last_match_info (expected JSArray)
4751 // sp[4]: previous index
4752 // sp[8]: subject string
4753 // sp[12]: JSRegExp object
4754
4755 static const int kLastMatchInfoOffset = 0 * kPointerSize;
4756 static const int kPreviousIndexOffset = 1 * kPointerSize;
4757 static const int kSubjectOffset = 2 * kPointerSize;
4758 static const int kJSRegExpOffset = 3 * kPointerSize;
4759
4760 Label runtime, invoke_regexp;
4761
4762 // Allocation of registers for this function. These are in callee save
4763 // registers and will be preserved by the call to the native RegExp code, as
4764 // this code is called using the normal C calling convention. When calling
4765 // directly from generated code the native RegExp code will not do a GC and
4766 // therefore the content of these registers are safe to use after the call.
4767 Register subject = r4;
4768 Register regexp_data = r5;
4769 Register last_match_info_elements = r6;
4770
4771 // Ensure that a RegExp stack is allocated.
4772 ExternalReference address_of_regexp_stack_memory_address =
4773 ExternalReference::address_of_regexp_stack_memory_address();
4774 ExternalReference address_of_regexp_stack_memory_size =
4775 ExternalReference::address_of_regexp_stack_memory_size();
4776 __ mov(r0, Operand(address_of_regexp_stack_memory_size));
4777 __ ldr(r0, MemOperand(r0, 0));
4778 __ tst(r0, Operand(r0));
4779 __ b(eq, &runtime);
4780
4781 // Check that the first argument is a JSRegExp object.
4782 __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
4783 STATIC_ASSERT(kSmiTag == 0);
4784 __ tst(r0, Operand(kSmiTagMask));
4785 __ b(eq, &runtime);
4786 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
4787 __ b(ne, &runtime);
4788
4789 // Check that the RegExp has been compiled (data contains a fixed array).
4790 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
4791 if (FLAG_debug_code) {
4792 __ tst(regexp_data, Operand(kSmiTagMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004793 __ Check(ne, "Unexpected type for RegExp data, FixedArray expected");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004794 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
4795 __ Check(eq, "Unexpected type for RegExp data, FixedArray expected");
4796 }
4797
4798 // regexp_data: RegExp data (FixedArray)
4799 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
4800 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
4801 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
4802 __ b(ne, &runtime);
4803
4804 // regexp_data: RegExp data (FixedArray)
4805 // Check that the number of captures fit in the static offsets vector buffer.
4806 __ ldr(r2,
4807 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
4808 // Calculate number of capture registers (number_of_captures + 1) * 2. This
4809 // uses the asumption that smis are 2 * their untagged value.
4810 STATIC_ASSERT(kSmiTag == 0);
4811 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
4812 __ add(r2, r2, Operand(2)); // r2 was a smi.
4813 // Check that the static offsets vector buffer is large enough.
4814 __ cmp(r2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
4815 __ b(hi, &runtime);
4816
4817 // r2: Number of capture registers
4818 // regexp_data: RegExp data (FixedArray)
4819 // Check that the second argument is a string.
4820 __ ldr(subject, MemOperand(sp, kSubjectOffset));
4821 __ tst(subject, Operand(kSmiTagMask));
4822 __ b(eq, &runtime);
4823 Condition is_string = masm->IsObjectStringType(subject, r0);
4824 __ b(NegateCondition(is_string), &runtime);
4825 // Get the length of the string to r3.
4826 __ ldr(r3, FieldMemOperand(subject, String::kLengthOffset));
4827
4828 // r2: Number of capture registers
4829 // r3: Length of subject string as a smi
4830 // subject: Subject string
4831 // regexp_data: RegExp data (FixedArray)
4832 // Check that the third argument is a positive smi less than the subject
4833 // string length. A negative value will be greater (unsigned comparison).
4834 __ ldr(r0, MemOperand(sp, kPreviousIndexOffset));
4835 __ tst(r0, Operand(kSmiTagMask));
4836 __ b(ne, &runtime);
4837 __ cmp(r3, Operand(r0));
4838 __ b(ls, &runtime);
4839
4840 // r2: Number of capture registers
4841 // subject: Subject string
4842 // regexp_data: RegExp data (FixedArray)
4843 // Check that the fourth object is a JSArray object.
4844 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
4845 __ tst(r0, Operand(kSmiTagMask));
4846 __ b(eq, &runtime);
4847 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
4848 __ b(ne, &runtime);
4849 // Check that the JSArray is in fast case.
4850 __ ldr(last_match_info_elements,
4851 FieldMemOperand(r0, JSArray::kElementsOffset));
4852 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
4853 __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
4854 __ cmp(r0, ip);
4855 __ b(ne, &runtime);
4856 // Check that the last match info has space for the capture registers and the
4857 // additional information.
4858 __ ldr(r0,
4859 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
4860 __ add(r2, r2, Operand(RegExpImpl::kLastMatchOverhead));
4861 __ cmp(r2, Operand(r0, ASR, kSmiTagSize));
4862 __ b(gt, &runtime);
4863
4864 // subject: Subject string
4865 // regexp_data: RegExp data (FixedArray)
4866 // Check the representation and encoding of the subject string.
4867 Label seq_string;
4868 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4869 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4870 // First check for flat string.
4871 __ tst(r0, Operand(kIsNotStringMask | kStringRepresentationMask));
4872 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
4873 __ b(eq, &seq_string);
4874
4875 // subject: Subject string
4876 // regexp_data: RegExp data (FixedArray)
4877 // Check for flat cons string.
4878 // A flat cons string is a cons string where the second part is the empty
4879 // string. In that case the subject string is just the first part of the cons
4880 // string. Also in this case the first part of the cons string is known to be
4881 // a sequential string or an external string.
4882 STATIC_ASSERT(kExternalStringTag !=0);
4883 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
4884 __ tst(r0, Operand(kIsNotStringMask | kExternalStringTag));
4885 __ b(ne, &runtime);
4886 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
4887 __ LoadRoot(r1, Heap::kEmptyStringRootIndex);
4888 __ cmp(r0, r1);
4889 __ b(ne, &runtime);
4890 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
4891 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
4892 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
4893 // Is first part a flat string?
4894 STATIC_ASSERT(kSeqStringTag == 0);
4895 __ tst(r0, Operand(kStringRepresentationMask));
Steve Block1e0659c2011-05-24 12:43:12 +01004896 __ b(ne, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004897
4898 __ bind(&seq_string);
4899 // subject: Subject string
4900 // regexp_data: RegExp data (FixedArray)
4901 // r0: Instance type of subject string
4902 STATIC_ASSERT(4 == kAsciiStringTag);
4903 STATIC_ASSERT(kTwoByteStringTag == 0);
4904 // Find the code object based on the assumptions above.
4905 __ and_(r0, r0, Operand(kStringEncodingMask));
4906 __ mov(r3, Operand(r0, ASR, 2), SetCC);
4907 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
4908 __ ldr(r7, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
4909
4910 // Check that the irregexp code has been generated for the actual string
4911 // encoding. If it has, the field contains a code object otherwise it contains
4912 // the hole.
4913 __ CompareObjectType(r7, r0, r0, CODE_TYPE);
4914 __ b(ne, &runtime);
4915
4916 // r3: encoding of subject string (1 if ascii, 0 if two_byte);
4917 // r7: code
4918 // subject: Subject string
4919 // regexp_data: RegExp data (FixedArray)
4920 // Load used arguments before starting to push arguments for call to native
4921 // RegExp code to avoid handling changing stack height.
4922 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
4923 __ mov(r1, Operand(r1, ASR, kSmiTagSize));
4924
4925 // r1: previous index
4926 // r3: encoding of subject string (1 if ascii, 0 if two_byte);
4927 // r7: code
4928 // subject: Subject string
4929 // regexp_data: RegExp data (FixedArray)
4930 // All checks done. Now push arguments for native regexp code.
4931 __ IncrementCounter(&Counters::regexp_entry_native, 1, r0, r2);
4932
4933 static const int kRegExpExecuteArguments = 7;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004934 static const int kParameterRegisters = 4;
4935 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004936
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004937 // Stack pointer now points to cell where return address is to be written.
4938 // Arguments are before that on the stack or in registers.
4939
4940 // Argument 7 (sp[12]): Indicate that this is a direct call from JavaScript.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004941 __ mov(r0, Operand(1));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004942 __ str(r0, MemOperand(sp, 3 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004943
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004944 // Argument 6 (sp[8]): Start (high end) of backtracking stack memory area.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004945 __ mov(r0, Operand(address_of_regexp_stack_memory_address));
4946 __ ldr(r0, MemOperand(r0, 0));
4947 __ mov(r2, Operand(address_of_regexp_stack_memory_size));
4948 __ ldr(r2, MemOperand(r2, 0));
4949 __ add(r0, r0, Operand(r2));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004950 __ str(r0, MemOperand(sp, 2 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004951
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004952 // Argument 5 (sp[4]): static offsets vector buffer.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004953 __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector()));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004954 __ str(r0, MemOperand(sp, 1 * kPointerSize));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004955
4956 // For arguments 4 and 3 get string length, calculate start of string data and
4957 // calculate the shift of the index (0 for ASCII and 1 for two byte).
4958 __ ldr(r0, FieldMemOperand(subject, String::kLengthOffset));
4959 __ mov(r0, Operand(r0, ASR, kSmiTagSize));
4960 STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
4961 __ add(r9, subject, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
4962 __ eor(r3, r3, Operand(1));
4963 // Argument 4 (r3): End of string data
4964 // Argument 3 (r2): Start of string data
4965 __ add(r2, r9, Operand(r1, LSL, r3));
4966 __ add(r3, r9, Operand(r0, LSL, r3));
4967
4968 // Argument 2 (r1): Previous index.
4969 // Already there
4970
4971 // Argument 1 (r0): Subject string.
4972 __ mov(r0, subject);
4973
4974 // Locate the code entry and call it.
4975 __ add(r7, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004976 DirectCEntryStub stub;
4977 stub.GenerateCall(masm, r7);
4978
4979 __ LeaveExitFrame(false, no_reg);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004980
4981 // r0: result
4982 // subject: subject string (callee saved)
4983 // regexp_data: RegExp data (callee saved)
4984 // last_match_info_elements: Last match info elements (callee saved)
4985
4986 // Check the result.
4987 Label success;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004988
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004989 __ cmp(r0, Operand(NativeRegExpMacroAssembler::SUCCESS));
4990 __ b(eq, &success);
4991 Label failure;
4992 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
4993 __ b(eq, &failure);
4994 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
4995 // If not exception it can only be retry. Handle that in the runtime system.
4996 __ b(ne, &runtime);
4997 // Result must now be exception. If there is no pending exception already a
4998 // stack overflow (on the backtrack stack) was detected in RegExp code but
4999 // haven't created the exception yet. Handle that in the runtime system.
5000 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005001 __ mov(r1, Operand(ExternalReference::the_hole_value_location()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005002 __ ldr(r1, MemOperand(r1, 0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005003 __ mov(r2, Operand(ExternalReference(Top::k_pending_exception_address)));
5004 __ ldr(r0, MemOperand(r2, 0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005005 __ cmp(r0, r1);
5006 __ b(eq, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01005007
5008 __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
5009
5010 // Check if the exception is a termination. If so, throw as uncatchable.
5011 __ LoadRoot(ip, Heap::kTerminationExceptionRootIndex);
5012 __ cmp(r0, ip);
5013 Label termination_exception;
5014 __ b(eq, &termination_exception);
5015
5016 __ Throw(r0); // Expects thrown value in r0.
5017
5018 __ bind(&termination_exception);
5019 __ ThrowUncatchable(TERMINATION, r0); // Expects thrown value in r0.
5020
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005021 __ bind(&failure);
5022 // For failure and exception return null.
5023 __ mov(r0, Operand(Factory::null_value()));
5024 __ add(sp, sp, Operand(4 * kPointerSize));
5025 __ Ret();
5026
5027 // Process the result from the native regexp code.
5028 __ bind(&success);
5029 __ ldr(r1,
5030 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
5031 // Calculate number of capture registers (number_of_captures + 1) * 2.
5032 STATIC_ASSERT(kSmiTag == 0);
5033 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5034 __ add(r1, r1, Operand(2)); // r1 was a smi.
5035
5036 // r1: number of capture registers
5037 // r4: subject string
5038 // Store the capture count.
5039 __ mov(r2, Operand(r1, LSL, kSmiTagSize + kSmiShiftSize)); // To smi.
5040 __ str(r2, FieldMemOperand(last_match_info_elements,
5041 RegExpImpl::kLastCaptureCountOffset));
5042 // Store last subject and last input.
5043 __ mov(r3, last_match_info_elements); // Moved up to reduce latency.
5044 __ str(subject,
5045 FieldMemOperand(last_match_info_elements,
5046 RegExpImpl::kLastSubjectOffset));
5047 __ RecordWrite(r3, Operand(RegExpImpl::kLastSubjectOffset), r2, r7);
5048 __ str(subject,
5049 FieldMemOperand(last_match_info_elements,
5050 RegExpImpl::kLastInputOffset));
5051 __ mov(r3, last_match_info_elements);
5052 __ RecordWrite(r3, Operand(RegExpImpl::kLastInputOffset), r2, r7);
5053
5054 // Get the static offsets vector filled by the native regexp code.
5055 ExternalReference address_of_static_offsets_vector =
5056 ExternalReference::address_of_static_offsets_vector();
5057 __ mov(r2, Operand(address_of_static_offsets_vector));
5058
5059 // r1: number of capture registers
5060 // r2: offsets vector
5061 Label next_capture, done;
5062 // Capture register counter starts from number of capture registers and
5063 // counts down until wraping after zero.
5064 __ add(r0,
5065 last_match_info_elements,
5066 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
5067 __ bind(&next_capture);
5068 __ sub(r1, r1, Operand(1), SetCC);
5069 __ b(mi, &done);
5070 // Read the value from the static offsets vector buffer.
5071 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
5072 // Store the smi value in the last match info.
5073 __ mov(r3, Operand(r3, LSL, kSmiTagSize));
5074 __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
5075 __ jmp(&next_capture);
5076 __ bind(&done);
5077
5078 // Return last match info.
5079 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
5080 __ add(sp, sp, Operand(4 * kPointerSize));
5081 __ Ret();
5082
5083 // Do the runtime call to execute the regexp.
5084 __ bind(&runtime);
5085 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
5086#endif // V8_INTERPRETED_REGEXP
5087}
5088
5089
Ben Murdochb0fe1622011-05-05 13:52:32 +01005090void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
5091 const int kMaxInlineLength = 100;
5092 Label slowcase;
5093 Label done;
5094 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5095 STATIC_ASSERT(kSmiTag == 0);
5096 STATIC_ASSERT(kSmiTagSize == 1);
5097 __ tst(r1, Operand(kSmiTagMask));
5098 __ b(ne, &slowcase);
5099 __ cmp(r1, Operand(Smi::FromInt(kMaxInlineLength)));
5100 __ b(hi, &slowcase);
5101 // Smi-tagging is equivalent to multiplying by 2.
5102 // Allocate RegExpResult followed by FixedArray with size in ebx.
5103 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
5104 // Elements: [Map][Length][..elements..]
5105 // Size of JSArray with two in-object properties and the header of a
5106 // FixedArray.
5107 int objects_size =
5108 (JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
5109 __ mov(r5, Operand(r1, LSR, kSmiTagSize + kSmiShiftSize));
5110 __ add(r2, r5, Operand(objects_size));
5111 __ AllocateInNewSpace(
5112 r2, // In: Size, in words.
5113 r0, // Out: Start of allocation (tagged).
5114 r3, // Scratch register.
5115 r4, // Scratch register.
5116 &slowcase,
5117 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
5118 // r0: Start of allocated area, object-tagged.
5119 // r1: Number of elements in array, as smi.
5120 // r5: Number of elements, untagged.
5121
5122 // Set JSArray map to global.regexp_result_map().
5123 // Set empty properties FixedArray.
5124 // Set elements to point to FixedArray allocated right after the JSArray.
5125 // Interleave operations for better latency.
5126 __ ldr(r2, ContextOperand(cp, Context::GLOBAL_INDEX));
5127 __ add(r3, r0, Operand(JSRegExpResult::kSize));
5128 __ mov(r4, Operand(Factory::empty_fixed_array()));
5129 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
5130 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
5131 __ ldr(r2, ContextOperand(r2, Context::REGEXP_RESULT_MAP_INDEX));
5132 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
5133 __ str(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
5134
5135 // Set input, index and length fields from arguments.
5136 __ ldr(r1, MemOperand(sp, kPointerSize * 0));
5137 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kInputOffset));
5138 __ ldr(r1, MemOperand(sp, kPointerSize * 1));
5139 __ str(r1, FieldMemOperand(r0, JSRegExpResult::kIndexOffset));
5140 __ ldr(r1, MemOperand(sp, kPointerSize * 2));
5141 __ str(r1, FieldMemOperand(r0, JSArray::kLengthOffset));
5142
5143 // Fill out the elements FixedArray.
5144 // r0: JSArray, tagged.
5145 // r3: FixedArray, tagged.
5146 // r5: Number of elements in array, untagged.
5147
5148 // Set map.
5149 __ mov(r2, Operand(Factory::fixed_array_map()));
5150 __ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
5151 // Set FixedArray length.
5152 __ mov(r6, Operand(r5, LSL, kSmiTagSize));
5153 __ str(r6, FieldMemOperand(r3, FixedArray::kLengthOffset));
5154 // Fill contents of fixed-array with the-hole.
5155 __ mov(r2, Operand(Factory::the_hole_value()));
5156 __ add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
5157 // Fill fixed array elements with hole.
5158 // r0: JSArray, tagged.
5159 // r2: the hole.
5160 // r3: Start of elements in FixedArray.
5161 // r5: Number of elements to fill.
5162 Label loop;
5163 __ tst(r5, Operand(r5));
5164 __ bind(&loop);
5165 __ b(le, &done); // Jump if r1 is negative or zero.
5166 __ sub(r5, r5, Operand(1), SetCC);
5167 __ str(r2, MemOperand(r3, r5, LSL, kPointerSizeLog2));
5168 __ jmp(&loop);
5169
5170 __ bind(&done);
5171 __ add(sp, sp, Operand(3 * kPointerSize));
5172 __ Ret();
5173
5174 __ bind(&slowcase);
5175 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
5176}
5177
5178
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005179void CallFunctionStub::Generate(MacroAssembler* masm) {
5180 Label slow;
5181
5182 // If the receiver might be a value (string, number or boolean) check for this
5183 // and box it if it is.
5184 if (ReceiverMightBeValue()) {
5185 // Get the receiver from the stack.
5186 // function, receiver [, arguments]
5187 Label receiver_is_value, receiver_is_js_object;
5188 __ ldr(r1, MemOperand(sp, argc_ * kPointerSize));
5189
5190 // Check if receiver is a smi (which is a number value).
Steve Block1e0659c2011-05-24 12:43:12 +01005191 __ JumpIfSmi(r1, &receiver_is_value);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005192
5193 // Check if the receiver is a valid JS object.
5194 __ CompareObjectType(r1, r2, r2, FIRST_JS_OBJECT_TYPE);
5195 __ b(ge, &receiver_is_js_object);
5196
5197 // Call the runtime to box the value.
5198 __ bind(&receiver_is_value);
5199 __ EnterInternalFrame();
5200 __ push(r1);
5201 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
5202 __ LeaveInternalFrame();
5203 __ str(r0, MemOperand(sp, argc_ * kPointerSize));
5204
5205 __ bind(&receiver_is_js_object);
5206 }
5207
5208 // Get the function to call from the stack.
5209 // function, receiver [, arguments]
5210 __ ldr(r1, MemOperand(sp, (argc_ + 1) * kPointerSize));
5211
5212 // Check that the function is really a JavaScript function.
5213 // r1: pushed function (to be verified)
Steve Block1e0659c2011-05-24 12:43:12 +01005214 __ JumpIfSmi(r1, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005215 // Get the map of the function object.
5216 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
5217 __ b(ne, &slow);
5218
5219 // Fast-case: Invoke the function now.
5220 // r1: pushed function
5221 ParameterCount actual(argc_);
5222 __ InvokeFunction(r1, actual, JUMP_FUNCTION);
5223
5224 // Slow-case: Non-function called.
5225 __ bind(&slow);
5226 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
5227 // of the original receiver from the call site).
5228 __ str(r1, MemOperand(sp, argc_ * kPointerSize));
5229 __ mov(r0, Operand(argc_)); // Setup the number of arguments.
Iain Merrick9ac36c92010-09-13 15:29:50 +01005230 __ mov(r2, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005231 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
5232 __ Jump(Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)),
5233 RelocInfo::CODE_TARGET);
5234}
5235
5236
5237// Unfortunately you have to run without snapshots to see most of these
5238// names in the profile since most compare stubs end up in the snapshot.
5239const char* CompareStub::GetName() {
5240 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5241 (lhs_.is(r1) && rhs_.is(r0)));
5242
5243 if (name_ != NULL) return name_;
5244 const int kMaxNameLength = 100;
5245 name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
5246 if (name_ == NULL) return "OOM";
5247
5248 const char* cc_name;
5249 switch (cc_) {
5250 case lt: cc_name = "LT"; break;
5251 case gt: cc_name = "GT"; break;
5252 case le: cc_name = "LE"; break;
5253 case ge: cc_name = "GE"; break;
5254 case eq: cc_name = "EQ"; break;
5255 case ne: cc_name = "NE"; break;
5256 default: cc_name = "UnknownCondition"; break;
5257 }
5258
5259 const char* lhs_name = lhs_.is(r0) ? "_r0" : "_r1";
5260 const char* rhs_name = rhs_.is(r0) ? "_r0" : "_r1";
5261
5262 const char* strict_name = "";
5263 if (strict_ && (cc_ == eq || cc_ == ne)) {
5264 strict_name = "_STRICT";
5265 }
5266
5267 const char* never_nan_nan_name = "";
5268 if (never_nan_nan_ && (cc_ == eq || cc_ == ne)) {
5269 never_nan_nan_name = "_NO_NAN";
5270 }
5271
5272 const char* include_number_compare_name = "";
5273 if (!include_number_compare_) {
5274 include_number_compare_name = "_NO_NUMBER";
5275 }
5276
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005277 const char* include_smi_compare_name = "";
5278 if (!include_smi_compare_) {
5279 include_smi_compare_name = "_NO_SMI";
5280 }
5281
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005282 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
5283 "CompareStub_%s%s%s%s%s%s",
5284 cc_name,
5285 lhs_name,
5286 rhs_name,
5287 strict_name,
5288 never_nan_nan_name,
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005289 include_number_compare_name,
5290 include_smi_compare_name);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005291 return name_;
5292}
5293
5294
5295int CompareStub::MinorKey() {
5296 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
5297 // stubs the never NaN NaN condition is only taken into account if the
5298 // condition is equals.
5299 ASSERT((static_cast<unsigned>(cc_) >> 28) < (1 << 12));
5300 ASSERT((lhs_.is(r0) && rhs_.is(r1)) ||
5301 (lhs_.is(r1) && rhs_.is(r0)));
5302 return ConditionField::encode(static_cast<unsigned>(cc_) >> 28)
5303 | RegisterField::encode(lhs_.is(r0))
5304 | StrictField::encode(strict_)
5305 | NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005306 | IncludeNumberCompareField::encode(include_number_compare_)
5307 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005308}
5309
5310
5311// StringCharCodeAtGenerator
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005312void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
5313 Label flat_string;
5314 Label ascii_string;
5315 Label got_char_code;
5316
5317 // If the receiver is a smi trigger the non-string case.
Steve Block1e0659c2011-05-24 12:43:12 +01005318 __ JumpIfSmi(object_, receiver_not_string_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005319
5320 // Fetch the instance type of the receiver into result register.
5321 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5322 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5323 // If the receiver is not a string trigger the non-string case.
5324 __ tst(result_, Operand(kIsNotStringMask));
5325 __ b(ne, receiver_not_string_);
5326
5327 // If the index is non-smi trigger the non-smi case.
Steve Block1e0659c2011-05-24 12:43:12 +01005328 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005329
5330 // Put smi-tagged index into scratch register.
5331 __ mov(scratch_, index_);
5332 __ bind(&got_smi_index_);
5333
5334 // Check for index out of range.
5335 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
5336 __ cmp(ip, Operand(scratch_));
5337 __ b(ls, index_out_of_range_);
5338
5339 // We need special handling for non-flat strings.
5340 STATIC_ASSERT(kSeqStringTag == 0);
5341 __ tst(result_, Operand(kStringRepresentationMask));
5342 __ b(eq, &flat_string);
5343
5344 // Handle non-flat strings.
5345 __ tst(result_, Operand(kIsConsStringMask));
5346 __ b(eq, &call_runtime_);
5347
5348 // ConsString.
5349 // Check whether the right hand side is the empty string (i.e. if
5350 // this is really a flat string in a cons string). If that is not
5351 // the case we would rather go to the runtime system now to flatten
5352 // the string.
5353 __ ldr(result_, FieldMemOperand(object_, ConsString::kSecondOffset));
5354 __ LoadRoot(ip, Heap::kEmptyStringRootIndex);
5355 __ cmp(result_, Operand(ip));
5356 __ b(ne, &call_runtime_);
5357 // Get the first of the two strings and load its instance type.
5358 __ ldr(object_, FieldMemOperand(object_, ConsString::kFirstOffset));
5359 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5360 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5361 // If the first cons component is also non-flat, then go to runtime.
5362 STATIC_ASSERT(kSeqStringTag == 0);
5363 __ tst(result_, Operand(kStringRepresentationMask));
Steve Block1e0659c2011-05-24 12:43:12 +01005364 __ b(ne, &call_runtime_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005365
5366 // Check for 1-byte or 2-byte string.
5367 __ bind(&flat_string);
5368 STATIC_ASSERT(kAsciiStringTag != 0);
5369 __ tst(result_, Operand(kStringEncodingMask));
Steve Block1e0659c2011-05-24 12:43:12 +01005370 __ b(ne, &ascii_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005371
5372 // 2-byte string.
5373 // Load the 2-byte character code into the result register. We can
5374 // add without shifting since the smi tag size is the log2 of the
5375 // number of bytes in a two-byte character.
5376 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1 && kSmiShiftSize == 0);
5377 __ add(scratch_, object_, Operand(scratch_));
5378 __ ldrh(result_, FieldMemOperand(scratch_, SeqTwoByteString::kHeaderSize));
5379 __ jmp(&got_char_code);
5380
5381 // ASCII string.
5382 // Load the byte into the result register.
5383 __ bind(&ascii_string);
5384 __ add(scratch_, object_, Operand(scratch_, LSR, kSmiTagSize));
5385 __ ldrb(result_, FieldMemOperand(scratch_, SeqAsciiString::kHeaderSize));
5386
5387 __ bind(&got_char_code);
5388 __ mov(result_, Operand(result_, LSL, kSmiTagSize));
5389 __ bind(&exit_);
5390}
5391
5392
5393void StringCharCodeAtGenerator::GenerateSlow(
5394 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
5395 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
5396
5397 // Index is not a smi.
5398 __ bind(&index_not_smi_);
5399 // If index is a heap number, try converting it to an integer.
5400 __ CheckMap(index_,
5401 scratch_,
5402 Heap::kHeapNumberMapRootIndex,
5403 index_not_number_,
5404 true);
5405 call_helper.BeforeCall(masm);
5406 __ Push(object_, index_);
5407 __ push(index_); // Consumed by runtime conversion function.
5408 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
5409 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
5410 } else {
5411 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
5412 // NumberToSmi discards numbers that are not exact integers.
5413 __ CallRuntime(Runtime::kNumberToSmi, 1);
5414 }
5415 // Save the conversion result before the pop instructions below
5416 // have a chance to overwrite it.
5417 __ Move(scratch_, r0);
5418 __ pop(index_);
5419 __ pop(object_);
5420 // Reload the instance type.
5421 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
5422 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
5423 call_helper.AfterCall(masm);
5424 // If index is still not a smi, it must be out of range.
Steve Block1e0659c2011-05-24 12:43:12 +01005425 __ JumpIfNotSmi(scratch_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005426 // Otherwise, return to the fast path.
5427 __ jmp(&got_smi_index_);
5428
5429 // Call runtime. We get here when the receiver is a string and the
5430 // index is a number, but the code of getting the actual character
5431 // is too complex (e.g., when the string needs to be flattened).
5432 __ bind(&call_runtime_);
5433 call_helper.BeforeCall(masm);
5434 __ Push(object_, index_);
5435 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
5436 __ Move(result_, r0);
5437 call_helper.AfterCall(masm);
5438 __ jmp(&exit_);
5439
5440 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
5441}
5442
5443
5444// -------------------------------------------------------------------------
5445// StringCharFromCodeGenerator
5446
5447void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
5448 // Fast case of Heap::LookupSingleCharacterStringFromCode.
5449 STATIC_ASSERT(kSmiTag == 0);
5450 STATIC_ASSERT(kSmiShiftSize == 0);
5451 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
5452 __ tst(code_,
5453 Operand(kSmiTagMask |
5454 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
Steve Block1e0659c2011-05-24 12:43:12 +01005455 __ b(ne, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005456
5457 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
5458 // At this point code register contains smi tagged ascii char code.
5459 STATIC_ASSERT(kSmiTag == 0);
5460 __ add(result_, result_, Operand(code_, LSL, kPointerSizeLog2 - kSmiTagSize));
5461 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
5462 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
5463 __ cmp(result_, Operand(ip));
5464 __ b(eq, &slow_case_);
5465 __ bind(&exit_);
5466}
5467
5468
5469void StringCharFromCodeGenerator::GenerateSlow(
5470 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
5471 __ Abort("Unexpected fallthrough to CharFromCode slow case");
5472
5473 __ bind(&slow_case_);
5474 call_helper.BeforeCall(masm);
5475 __ push(code_);
5476 __ CallRuntime(Runtime::kCharFromCode, 1);
5477 __ Move(result_, r0);
5478 call_helper.AfterCall(masm);
5479 __ jmp(&exit_);
5480
5481 __ Abort("Unexpected fallthrough from CharFromCode slow case");
5482}
5483
5484
5485// -------------------------------------------------------------------------
5486// StringCharAtGenerator
5487
5488void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
5489 char_code_at_generator_.GenerateFast(masm);
5490 char_from_code_generator_.GenerateFast(masm);
5491}
5492
5493
5494void StringCharAtGenerator::GenerateSlow(
5495 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
5496 char_code_at_generator_.GenerateSlow(masm, call_helper);
5497 char_from_code_generator_.GenerateSlow(masm, call_helper);
5498}
5499
5500
5501class StringHelper : public AllStatic {
5502 public:
5503 // Generate code for copying characters using a simple loop. This should only
5504 // be used in places where the number of characters is small and the
5505 // additional setup and checking in GenerateCopyCharactersLong adds too much
5506 // overhead. Copying of overlapping regions is not supported.
5507 // Dest register ends at the position after the last character written.
5508 static void GenerateCopyCharacters(MacroAssembler* masm,
5509 Register dest,
5510 Register src,
5511 Register count,
5512 Register scratch,
5513 bool ascii);
5514
5515 // Generate code for copying a large number of characters. This function
5516 // is allowed to spend extra time setting up conditions to make copying
5517 // faster. Copying of overlapping regions is not supported.
5518 // Dest register ends at the position after the last character written.
5519 static void GenerateCopyCharactersLong(MacroAssembler* masm,
5520 Register dest,
5521 Register src,
5522 Register count,
5523 Register scratch1,
5524 Register scratch2,
5525 Register scratch3,
5526 Register scratch4,
5527 Register scratch5,
5528 int flags);
5529
5530
5531 // Probe the symbol table for a two character string. If the string is
5532 // not found by probing a jump to the label not_found is performed. This jump
5533 // does not guarantee that the string is not in the symbol table. If the
5534 // string is found the code falls through with the string in register r0.
5535 // Contents of both c1 and c2 registers are modified. At the exit c1 is
5536 // guaranteed to contain halfword with low and high bytes equal to
5537 // initial contents of c1 and c2 respectively.
5538 static void GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5539 Register c1,
5540 Register c2,
5541 Register scratch1,
5542 Register scratch2,
5543 Register scratch3,
5544 Register scratch4,
5545 Register scratch5,
5546 Label* not_found);
5547
5548 // Generate string hash.
5549 static void GenerateHashInit(MacroAssembler* masm,
5550 Register hash,
5551 Register character);
5552
5553 static void GenerateHashAddCharacter(MacroAssembler* masm,
5554 Register hash,
5555 Register character);
5556
5557 static void GenerateHashGetHash(MacroAssembler* masm,
5558 Register hash);
5559
5560 private:
5561 DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
5562};
5563
5564
5565void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5566 Register dest,
5567 Register src,
5568 Register count,
5569 Register scratch,
5570 bool ascii) {
5571 Label loop;
5572 Label done;
5573 // This loop just copies one character at a time, as it is only used for very
5574 // short strings.
5575 if (!ascii) {
5576 __ add(count, count, Operand(count), SetCC);
5577 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005578 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005579 }
5580 __ b(eq, &done);
5581
5582 __ bind(&loop);
5583 __ ldrb(scratch, MemOperand(src, 1, PostIndex));
5584 // Perform sub between load and dependent store to get the load time to
5585 // complete.
5586 __ sub(count, count, Operand(1), SetCC);
5587 __ strb(scratch, MemOperand(dest, 1, PostIndex));
5588 // last iteration.
5589 __ b(gt, &loop);
5590
5591 __ bind(&done);
5592}
5593
5594
5595enum CopyCharactersFlags {
5596 COPY_ASCII = 1,
5597 DEST_ALWAYS_ALIGNED = 2
5598};
5599
5600
5601void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
5602 Register dest,
5603 Register src,
5604 Register count,
5605 Register scratch1,
5606 Register scratch2,
5607 Register scratch3,
5608 Register scratch4,
5609 Register scratch5,
5610 int flags) {
5611 bool ascii = (flags & COPY_ASCII) != 0;
5612 bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
5613
5614 if (dest_always_aligned && FLAG_debug_code) {
5615 // Check that destination is actually word aligned if the flag says
5616 // that it is.
5617 __ tst(dest, Operand(kPointerAlignmentMask));
5618 __ Check(eq, "Destination of copy not aligned.");
5619 }
5620
5621 const int kReadAlignment = 4;
5622 const int kReadAlignmentMask = kReadAlignment - 1;
5623 // Ensure that reading an entire aligned word containing the last character
5624 // of a string will not read outside the allocated area (because we pad up
5625 // to kObjectAlignment).
5626 STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
5627 // Assumes word reads and writes are little endian.
5628 // Nothing to do for zero characters.
5629 Label done;
5630 if (!ascii) {
5631 __ add(count, count, Operand(count), SetCC);
5632 } else {
Iain Merrick9ac36c92010-09-13 15:29:50 +01005633 __ cmp(count, Operand(0, RelocInfo::NONE));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005634 }
5635 __ b(eq, &done);
5636
5637 // Assume that you cannot read (or write) unaligned.
5638 Label byte_loop;
5639 // Must copy at least eight bytes, otherwise just do it one byte at a time.
5640 __ cmp(count, Operand(8));
5641 __ add(count, dest, Operand(count));
5642 Register limit = count; // Read until src equals this.
5643 __ b(lt, &byte_loop);
5644
5645 if (!dest_always_aligned) {
5646 // Align dest by byte copying. Copies between zero and three bytes.
5647 __ and_(scratch4, dest, Operand(kReadAlignmentMask), SetCC);
5648 Label dest_aligned;
5649 __ b(eq, &dest_aligned);
5650 __ cmp(scratch4, Operand(2));
5651 __ ldrb(scratch1, MemOperand(src, 1, PostIndex));
5652 __ ldrb(scratch2, MemOperand(src, 1, PostIndex), le);
5653 __ ldrb(scratch3, MemOperand(src, 1, PostIndex), lt);
5654 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5655 __ strb(scratch2, MemOperand(dest, 1, PostIndex), le);
5656 __ strb(scratch3, MemOperand(dest, 1, PostIndex), lt);
5657 __ bind(&dest_aligned);
5658 }
5659
5660 Label simple_loop;
5661
5662 __ sub(scratch4, dest, Operand(src));
5663 __ and_(scratch4, scratch4, Operand(0x03), SetCC);
5664 __ b(eq, &simple_loop);
5665 // Shift register is number of bits in a source word that
5666 // must be combined with bits in the next source word in order
5667 // to create a destination word.
5668
5669 // Complex loop for src/dst that are not aligned the same way.
5670 {
5671 Label loop;
5672 __ mov(scratch4, Operand(scratch4, LSL, 3));
5673 Register left_shift = scratch4;
5674 __ and_(src, src, Operand(~3)); // Round down to load previous word.
5675 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5676 // Store the "shift" most significant bits of scratch in the least
5677 // signficant bits (i.e., shift down by (32-shift)).
5678 __ rsb(scratch2, left_shift, Operand(32));
5679 Register right_shift = scratch2;
5680 __ mov(scratch1, Operand(scratch1, LSR, right_shift));
5681
5682 __ bind(&loop);
5683 __ ldr(scratch3, MemOperand(src, 4, PostIndex));
5684 __ sub(scratch5, limit, Operand(dest));
5685 __ orr(scratch1, scratch1, Operand(scratch3, LSL, left_shift));
5686 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5687 __ mov(scratch1, Operand(scratch3, LSR, right_shift));
5688 // Loop if four or more bytes left to copy.
5689 // Compare to eight, because we did the subtract before increasing dst.
5690 __ sub(scratch5, scratch5, Operand(8), SetCC);
5691 __ b(ge, &loop);
5692 }
5693 // There is now between zero and three bytes left to copy (negative that
5694 // number is in scratch5), and between one and three bytes already read into
5695 // scratch1 (eight times that number in scratch4). We may have read past
5696 // the end of the string, but because objects are aligned, we have not read
5697 // past the end of the object.
5698 // Find the minimum of remaining characters to move and preloaded characters
5699 // and write those as bytes.
5700 __ add(scratch5, scratch5, Operand(4), SetCC);
5701 __ b(eq, &done);
5702 __ cmp(scratch4, Operand(scratch5, LSL, 3), ne);
5703 // Move minimum of bytes read and bytes left to copy to scratch4.
5704 __ mov(scratch5, Operand(scratch4, LSR, 3), LeaveCC, lt);
5705 // Between one and three (value in scratch5) characters already read into
5706 // scratch ready to write.
5707 __ cmp(scratch5, Operand(2));
5708 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5709 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, ge);
5710 __ strb(scratch1, MemOperand(dest, 1, PostIndex), ge);
5711 __ mov(scratch1, Operand(scratch1, LSR, 8), LeaveCC, gt);
5712 __ strb(scratch1, MemOperand(dest, 1, PostIndex), gt);
5713 // Copy any remaining bytes.
5714 __ b(&byte_loop);
5715
5716 // Simple loop.
5717 // Copy words from src to dst, until less than four bytes left.
5718 // Both src and dest are word aligned.
5719 __ bind(&simple_loop);
5720 {
5721 Label loop;
5722 __ bind(&loop);
5723 __ ldr(scratch1, MemOperand(src, 4, PostIndex));
5724 __ sub(scratch3, limit, Operand(dest));
5725 __ str(scratch1, MemOperand(dest, 4, PostIndex));
5726 // Compare to 8, not 4, because we do the substraction before increasing
5727 // dest.
5728 __ cmp(scratch3, Operand(8));
5729 __ b(ge, &loop);
5730 }
5731
5732 // Copy bytes from src to dst until dst hits limit.
5733 __ bind(&byte_loop);
5734 __ cmp(dest, Operand(limit));
5735 __ ldrb(scratch1, MemOperand(src, 1, PostIndex), lt);
5736 __ b(ge, &done);
5737 __ strb(scratch1, MemOperand(dest, 1, PostIndex));
5738 __ b(&byte_loop);
5739
5740 __ bind(&done);
5741}
5742
5743
5744void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5745 Register c1,
5746 Register c2,
5747 Register scratch1,
5748 Register scratch2,
5749 Register scratch3,
5750 Register scratch4,
5751 Register scratch5,
5752 Label* not_found) {
5753 // Register scratch3 is the general scratch register in this function.
5754 Register scratch = scratch3;
5755
5756 // Make sure that both characters are not digits as such strings has a
5757 // different hash algorithm. Don't try to look for these in the symbol table.
5758 Label not_array_index;
5759 __ sub(scratch, c1, Operand(static_cast<int>('0')));
5760 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5761 __ b(hi, &not_array_index);
5762 __ sub(scratch, c2, Operand(static_cast<int>('0')));
5763 __ cmp(scratch, Operand(static_cast<int>('9' - '0')));
5764
5765 // If check failed combine both characters into single halfword.
5766 // This is required by the contract of the method: code at the
5767 // not_found branch expects this combination in c1 register
5768 __ orr(c1, c1, Operand(c2, LSL, kBitsPerByte), LeaveCC, ls);
5769 __ b(ls, not_found);
5770
5771 __ bind(&not_array_index);
5772 // Calculate the two character string hash.
5773 Register hash = scratch1;
5774 StringHelper::GenerateHashInit(masm, hash, c1);
5775 StringHelper::GenerateHashAddCharacter(masm, hash, c2);
5776 StringHelper::GenerateHashGetHash(masm, hash);
5777
5778 // Collect the two characters in a register.
5779 Register chars = c1;
5780 __ orr(chars, chars, Operand(c2, LSL, kBitsPerByte));
5781
5782 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5783 // hash: hash of two character string.
5784
5785 // Load symbol table
5786 // Load address of first element of the symbol table.
5787 Register symbol_table = c2;
5788 __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
5789
5790 // Load undefined value
5791 Register undefined = scratch4;
5792 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
5793
5794 // Calculate capacity mask from the symbol table capacity.
5795 Register mask = scratch2;
5796 __ ldr(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
5797 __ mov(mask, Operand(mask, ASR, 1));
5798 __ sub(mask, mask, Operand(1));
5799
5800 // Calculate untagged address of the first element of the symbol table.
5801 Register first_symbol_table_element = symbol_table;
5802 __ add(first_symbol_table_element, symbol_table,
5803 Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
5804
5805 // Registers
5806 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5807 // hash: hash of two character string
5808 // mask: capacity mask
5809 // first_symbol_table_element: address of the first element of
5810 // the symbol table
5811 // scratch: -
5812
5813 // Perform a number of probes in the symbol table.
5814 static const int kProbes = 4;
5815 Label found_in_symbol_table;
5816 Label next_probe[kProbes];
5817 for (int i = 0; i < kProbes; i++) {
5818 Register candidate = scratch5; // Scratch register contains candidate.
5819
5820 // Calculate entry in symbol table.
5821 if (i > 0) {
5822 __ add(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
5823 } else {
5824 __ mov(candidate, hash);
5825 }
5826
5827 __ and_(candidate, candidate, Operand(mask));
5828
5829 // Load the entry from the symble table.
5830 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5831 __ ldr(candidate,
5832 MemOperand(first_symbol_table_element,
5833 candidate,
5834 LSL,
5835 kPointerSizeLog2));
5836
5837 // If entry is undefined no string with this hash can be found.
5838 __ cmp(candidate, undefined);
5839 __ b(eq, not_found);
5840
5841 // If length is not 2 the string is not a candidate.
5842 __ ldr(scratch, FieldMemOperand(candidate, String::kLengthOffset));
5843 __ cmp(scratch, Operand(Smi::FromInt(2)));
5844 __ b(ne, &next_probe[i]);
5845
5846 // Check that the candidate is a non-external ascii string.
5847 __ ldr(scratch, FieldMemOperand(candidate, HeapObject::kMapOffset));
5848 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
5849 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch,
5850 &next_probe[i]);
5851
5852 // Check if the two characters match.
5853 // Assumes that word load is little endian.
5854 __ ldrh(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
5855 __ cmp(chars, scratch);
5856 __ b(eq, &found_in_symbol_table);
5857 __ bind(&next_probe[i]);
5858 }
5859
5860 // No matching 2 character string found by probing.
5861 __ jmp(not_found);
5862
5863 // Scratch register contains result when we fall through to here.
5864 Register result = scratch;
5865 __ bind(&found_in_symbol_table);
5866 __ Move(r0, result);
5867}
5868
5869
5870void StringHelper::GenerateHashInit(MacroAssembler* masm,
5871 Register hash,
5872 Register character) {
5873 // hash = character + (character << 10);
5874 __ add(hash, character, Operand(character, LSL, 10));
5875 // hash ^= hash >> 6;
5876 __ eor(hash, hash, Operand(hash, ASR, 6));
5877}
5878
5879
5880void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5881 Register hash,
5882 Register character) {
5883 // hash += character;
5884 __ add(hash, hash, Operand(character));
5885 // hash += hash << 10;
5886 __ add(hash, hash, Operand(hash, LSL, 10));
5887 // hash ^= hash >> 6;
5888 __ eor(hash, hash, Operand(hash, ASR, 6));
5889}
5890
5891
5892void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5893 Register hash) {
5894 // hash += hash << 3;
5895 __ add(hash, hash, Operand(hash, LSL, 3));
5896 // hash ^= hash >> 11;
5897 __ eor(hash, hash, Operand(hash, ASR, 11));
5898 // hash += hash << 15;
5899 __ add(hash, hash, Operand(hash, LSL, 15), SetCC);
5900
5901 // if (hash == 0) hash = 27;
Steve Block1e0659c2011-05-24 12:43:12 +01005902 __ mov(hash, Operand(27), LeaveCC, ne);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005903}
5904
5905
5906void SubStringStub::Generate(MacroAssembler* masm) {
5907 Label runtime;
5908
5909 // Stack frame on entry.
5910 // lr: return address
5911 // sp[0]: to
5912 // sp[4]: from
5913 // sp[8]: string
5914
5915 // This stub is called from the native-call %_SubString(...), so
5916 // nothing can be assumed about the arguments. It is tested that:
5917 // "string" is a sequential string,
5918 // both "from" and "to" are smis, and
5919 // 0 <= from <= to <= string.length.
5920 // If any of these assumptions fail, we call the runtime system.
5921
5922 static const int kToOffset = 0 * kPointerSize;
5923 static const int kFromOffset = 1 * kPointerSize;
5924 static const int kStringOffset = 2 * kPointerSize;
5925
5926
5927 // Check bounds and smi-ness.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005928 Register to = r6;
5929 Register from = r7;
5930 __ Ldrd(to, from, MemOperand(sp, kToOffset));
5931 STATIC_ASSERT(kFromOffset == kToOffset + 4);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005932 STATIC_ASSERT(kSmiTag == 0);
5933 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5934 // I.e., arithmetic shift right by one un-smi-tags.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005935 __ mov(r2, Operand(to, ASR, 1), SetCC);
5936 __ mov(r3, Operand(from, ASR, 1), SetCC, cc);
5937 // If either to or from had the smi tag bit set, then carry is set now.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005938 __ b(cs, &runtime); // Either "from" or "to" is not a smi.
5939 __ b(mi, &runtime); // From is negative.
5940
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005941 // Both to and from are smis.
5942
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005943 __ sub(r2, r2, Operand(r3), SetCC);
5944 __ b(mi, &runtime); // Fail if from > to.
5945 // Special handling of sub-strings of length 1 and 2. One character strings
5946 // are handled in the runtime system (looked up in the single character
5947 // cache). Two character strings are looked for in the symbol cache.
5948 __ cmp(r2, Operand(2));
5949 __ b(lt, &runtime);
5950
5951 // r2: length
5952 // r3: from index (untaged smi)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005953 // r6 (a.k.a. to): to (smi)
5954 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005955
5956 // Make sure first argument is a sequential (or flat) string.
5957 __ ldr(r5, MemOperand(sp, kStringOffset));
5958 STATIC_ASSERT(kSmiTag == 0);
5959 __ tst(r5, Operand(kSmiTagMask));
5960 __ b(eq, &runtime);
5961 Condition is_string = masm->IsObjectStringType(r5, r1);
5962 __ b(NegateCondition(is_string), &runtime);
5963
5964 // r1: instance type
5965 // r2: length
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005966 // r3: from index (untagged smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005967 // r5: string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005968 // r6 (a.k.a. to): to (smi)
5969 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005970 Label seq_string;
5971 __ and_(r4, r1, Operand(kStringRepresentationMask));
5972 STATIC_ASSERT(kSeqStringTag < kConsStringTag);
5973 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
5974 __ cmp(r4, Operand(kConsStringTag));
5975 __ b(gt, &runtime); // External strings go to runtime.
5976 __ b(lt, &seq_string); // Sequential strings are handled directly.
5977
5978 // Cons string. Try to recurse (once) on the first substring.
5979 // (This adds a little more generality than necessary to handle flattened
5980 // cons strings, but not much).
5981 __ ldr(r5, FieldMemOperand(r5, ConsString::kFirstOffset));
5982 __ ldr(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
5983 __ ldrb(r1, FieldMemOperand(r4, Map::kInstanceTypeOffset));
5984 __ tst(r1, Operand(kStringRepresentationMask));
5985 STATIC_ASSERT(kSeqStringTag == 0);
5986 __ b(ne, &runtime); // Cons and External strings go to runtime.
5987
5988 // Definitly a sequential string.
5989 __ bind(&seq_string);
5990
5991 // r1: instance type.
5992 // r2: length
5993 // r3: from index (untaged smi)
5994 // r5: string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005995 // r6 (a.k.a. to): to (smi)
5996 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005997 __ ldr(r4, FieldMemOperand(r5, String::kLengthOffset));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005998 __ cmp(r4, Operand(to));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005999 __ b(lt, &runtime); // Fail if to > length.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006000 to = no_reg;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006001
6002 // r1: instance type.
6003 // r2: result string length.
6004 // r3: from index (untaged smi)
6005 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006006 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006007 // Check for flat ascii string.
6008 Label non_ascii_flat;
6009 __ tst(r1, Operand(kStringEncodingMask));
6010 STATIC_ASSERT(kTwoByteStringTag == 0);
6011 __ b(eq, &non_ascii_flat);
6012
6013 Label result_longer_than_two;
6014 __ cmp(r2, Operand(2));
6015 __ b(gt, &result_longer_than_two);
6016
6017 // Sub string of length 2 requested.
6018 // Get the two characters forming the sub string.
6019 __ add(r5, r5, Operand(r3));
6020 __ ldrb(r3, FieldMemOperand(r5, SeqAsciiString::kHeaderSize));
6021 __ ldrb(r4, FieldMemOperand(r5, SeqAsciiString::kHeaderSize + 1));
6022
6023 // Try to lookup two character string in symbol table.
6024 Label make_two_character_string;
6025 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6026 masm, r3, r4, r1, r5, r6, r7, r9, &make_two_character_string);
6027 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
6028 __ add(sp, sp, Operand(3 * kPointerSize));
6029 __ Ret();
6030
6031 // r2: result string length.
6032 // r3: two characters combined into halfword in little endian byte order.
6033 __ bind(&make_two_character_string);
6034 __ AllocateAsciiString(r0, r2, r4, r5, r9, &runtime);
6035 __ strh(r3, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6036 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
6037 __ add(sp, sp, Operand(3 * kPointerSize));
6038 __ Ret();
6039
6040 __ bind(&result_longer_than_two);
6041
6042 // Allocate the result.
6043 __ AllocateAsciiString(r0, r2, r3, r4, r1, &runtime);
6044
6045 // r0: result string.
6046 // r2: result string length.
6047 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006048 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006049 // Locate first character of result.
6050 __ add(r1, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6051 // Locate 'from' character of string.
6052 __ add(r5, r5, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006053 __ add(r5, r5, Operand(from, ASR, 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006054
6055 // r0: result string.
6056 // r1: first character of result string.
6057 // r2: result string length.
6058 // r5: first character of sub string to copy.
6059 STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
6060 StringHelper::GenerateCopyCharactersLong(masm, r1, r5, r2, r3, r4, r6, r7, r9,
6061 COPY_ASCII | DEST_ALWAYS_ALIGNED);
6062 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
6063 __ add(sp, sp, Operand(3 * kPointerSize));
6064 __ Ret();
6065
6066 __ bind(&non_ascii_flat);
6067 // r2: result string length.
6068 // r5: string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006069 // r7 (a.k.a. from): from offset (smi)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006070 // Check for flat two byte string.
6071
6072 // Allocate the result.
6073 __ AllocateTwoByteString(r0, r2, r1, r3, r4, &runtime);
6074
6075 // r0: result string.
6076 // r2: result string length.
6077 // r5: string.
6078 // Locate first character of result.
6079 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6080 // Locate 'from' character of string.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006081 __ add(r5, r5, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006082 // As "from" is a smi it is 2 times the value which matches the size of a two
6083 // byte character.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006084 __ add(r5, r5, Operand(from));
6085 from = no_reg;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006086
6087 // r0: result string.
6088 // r1: first character of result.
6089 // r2: result length.
6090 // r5: first character of string to copy.
6091 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006092 StringHelper::GenerateCopyCharactersLong(
6093 masm, r1, r5, r2, r3, r4, r6, r7, r9, DEST_ALWAYS_ALIGNED);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006094 __ IncrementCounter(&Counters::sub_string_native, 1, r3, r4);
6095 __ add(sp, sp, Operand(3 * kPointerSize));
6096 __ Ret();
6097
6098 // Just jump to runtime to create the sub string.
6099 __ bind(&runtime);
6100 __ TailCallRuntime(Runtime::kSubString, 3, 1);
6101}
6102
6103
6104void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
6105 Register left,
6106 Register right,
6107 Register scratch1,
6108 Register scratch2,
6109 Register scratch3,
6110 Register scratch4) {
6111 Label compare_lengths;
6112 // Find minimum length and length difference.
6113 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
6114 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
6115 __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
6116 Register length_delta = scratch3;
6117 __ mov(scratch1, scratch2, LeaveCC, gt);
6118 Register min_length = scratch1;
6119 STATIC_ASSERT(kSmiTag == 0);
6120 __ tst(min_length, Operand(min_length));
6121 __ b(eq, &compare_lengths);
6122
6123 // Untag smi.
6124 __ mov(min_length, Operand(min_length, ASR, kSmiTagSize));
6125
6126 // Setup registers so that we only need to increment one register
6127 // in the loop.
6128 __ add(scratch2, min_length,
6129 Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6130 __ add(left, left, Operand(scratch2));
6131 __ add(right, right, Operand(scratch2));
6132 // Registers left and right points to the min_length character of strings.
6133 __ rsb(min_length, min_length, Operand(-1));
6134 Register index = min_length;
6135 // Index starts at -min_length.
6136
6137 {
6138 // Compare loop.
6139 Label loop;
6140 __ bind(&loop);
6141 // Compare characters.
6142 __ add(index, index, Operand(1), SetCC);
6143 __ ldrb(scratch2, MemOperand(left, index), ne);
6144 __ ldrb(scratch4, MemOperand(right, index), ne);
6145 // Skip to compare lengths with eq condition true.
6146 __ b(eq, &compare_lengths);
6147 __ cmp(scratch2, scratch4);
6148 __ b(eq, &loop);
6149 // Fallthrough with eq condition false.
6150 }
6151 // Compare lengths - strings up to min-length are equal.
6152 __ bind(&compare_lengths);
6153 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
6154 // Use zero length_delta as result.
6155 __ mov(r0, Operand(length_delta), SetCC, eq);
6156 // Fall through to here if characters compare not-equal.
6157 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
6158 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
6159 __ Ret();
6160}
6161
6162
6163void StringCompareStub::Generate(MacroAssembler* masm) {
6164 Label runtime;
6165
6166 // Stack frame on entry.
6167 // sp[0]: right string
6168 // sp[4]: left string
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006169 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006170
6171 Label not_same;
6172 __ cmp(r0, r1);
6173 __ b(ne, &not_same);
6174 STATIC_ASSERT(EQUAL == 0);
6175 STATIC_ASSERT(kSmiTag == 0);
6176 __ mov(r0, Operand(Smi::FromInt(EQUAL)));
6177 __ IncrementCounter(&Counters::string_compare_native, 1, r1, r2);
6178 __ add(sp, sp, Operand(2 * kPointerSize));
6179 __ Ret();
6180
6181 __ bind(&not_same);
6182
6183 // Check that both objects are sequential ascii strings.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006184 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006185
6186 // Compare flat ascii strings natively. Remove arguments from stack first.
6187 __ IncrementCounter(&Counters::string_compare_native, 1, r2, r3);
6188 __ add(sp, sp, Operand(2 * kPointerSize));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01006189 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006190
6191 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
6192 // tagged as a small integer.
6193 __ bind(&runtime);
6194 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
6195}
6196
6197
6198void StringAddStub::Generate(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006199 Label string_add_runtime, call_builtin;
6200 Builtins::JavaScript builtin_id = Builtins::ADD;
6201
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006202 // Stack on entry:
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006203 // sp[0]: second argument (right).
6204 // sp[4]: first argument (left).
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006205
6206 // Load the two arguments.
6207 __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); // First argument.
6208 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
6209
6210 // Make sure that both arguments are strings if not known in advance.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006211 if (flags_ == NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006212 __ JumpIfEitherSmi(r0, r1, &string_add_runtime);
6213 // Load instance types.
6214 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6215 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6216 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6217 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6218 STATIC_ASSERT(kStringTag == 0);
6219 // If either is not a string, go to runtime.
6220 __ tst(r4, Operand(kIsNotStringMask));
6221 __ tst(r5, Operand(kIsNotStringMask), eq);
6222 __ b(ne, &string_add_runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006223 } else {
6224 // Here at least one of the arguments is definitely a string.
6225 // We convert the one that is not known to be a string.
6226 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
6227 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
6228 GenerateConvertArgument(
6229 masm, 1 * kPointerSize, r0, r2, r3, r4, r5, &call_builtin);
6230 builtin_id = Builtins::STRING_ADD_RIGHT;
6231 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
6232 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
6233 GenerateConvertArgument(
6234 masm, 0 * kPointerSize, r1, r2, r3, r4, r5, &call_builtin);
6235 builtin_id = Builtins::STRING_ADD_LEFT;
6236 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006237 }
6238
6239 // Both arguments are strings.
6240 // r0: first string
6241 // r1: second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006242 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6243 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006244 {
6245 Label strings_not_empty;
6246 // Check if either of the strings are empty. In that case return the other.
6247 __ ldr(r2, FieldMemOperand(r0, String::kLengthOffset));
6248 __ ldr(r3, FieldMemOperand(r1, String::kLengthOffset));
6249 STATIC_ASSERT(kSmiTag == 0);
6250 __ cmp(r2, Operand(Smi::FromInt(0))); // Test if first string is empty.
6251 __ mov(r0, Operand(r1), LeaveCC, eq); // If first is empty, return second.
6252 STATIC_ASSERT(kSmiTag == 0);
6253 // Else test if second string is empty.
6254 __ cmp(r3, Operand(Smi::FromInt(0)), ne);
6255 __ b(ne, &strings_not_empty); // If either string was empty, return r0.
6256
6257 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
6258 __ add(sp, sp, Operand(2 * kPointerSize));
6259 __ Ret();
6260
6261 __ bind(&strings_not_empty);
6262 }
6263
6264 __ mov(r2, Operand(r2, ASR, kSmiTagSize));
6265 __ mov(r3, Operand(r3, ASR, kSmiTagSize));
6266 // Both strings are non-empty.
6267 // r0: first string
6268 // r1: second string
6269 // r2: length of first string
6270 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006271 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6272 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006273 // Look at the length of the result of adding the two strings.
6274 Label string_add_flat_result, longer_than_two;
6275 // Adding two lengths can't overflow.
6276 STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
6277 __ add(r6, r2, Operand(r3));
6278 // Use the runtime system when adding two one character strings, as it
6279 // contains optimizations for this specific case using the symbol table.
6280 __ cmp(r6, Operand(2));
6281 __ b(ne, &longer_than_two);
6282
6283 // Check that both strings are non-external ascii strings.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006284 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006285 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6286 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6287 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6288 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6289 }
6290 __ JumpIfBothInstanceTypesAreNotSequentialAscii(r4, r5, r6, r7,
6291 &string_add_runtime);
6292
6293 // Get the two characters forming the sub string.
6294 __ ldrb(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6295 __ ldrb(r3, FieldMemOperand(r1, SeqAsciiString::kHeaderSize));
6296
6297 // Try to lookup two character string in symbol table. If it is not found
6298 // just allocate a new one.
6299 Label make_two_character_string;
6300 StringHelper::GenerateTwoCharacterSymbolTableProbe(
6301 masm, r2, r3, r6, r7, r4, r5, r9, &make_two_character_string);
6302 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
6303 __ add(sp, sp, Operand(2 * kPointerSize));
6304 __ Ret();
6305
6306 __ bind(&make_two_character_string);
6307 // Resulting string has length 2 and first chars of two strings
6308 // are combined into single halfword in r2 register.
6309 // So we can fill resulting string without two loops by a single
6310 // halfword store instruction (which assumes that processor is
6311 // in a little endian mode)
6312 __ mov(r6, Operand(2));
6313 __ AllocateAsciiString(r0, r6, r4, r5, r9, &string_add_runtime);
6314 __ strh(r2, FieldMemOperand(r0, SeqAsciiString::kHeaderSize));
6315 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
6316 __ add(sp, sp, Operand(2 * kPointerSize));
6317 __ Ret();
6318
6319 __ bind(&longer_than_two);
6320 // Check if resulting string will be flat.
6321 __ cmp(r6, Operand(String::kMinNonFlatLength));
6322 __ b(lt, &string_add_flat_result);
6323 // Handle exceptionally long strings in the runtime system.
6324 STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
6325 ASSERT(IsPowerOf2(String::kMaxLength + 1));
6326 // kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
6327 __ cmp(r6, Operand(String::kMaxLength + 1));
6328 __ b(hs, &string_add_runtime);
6329
6330 // If result is not supposed to be flat, allocate a cons string object.
6331 // If both strings are ascii the result is an ascii cons string.
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006332 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006333 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6334 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6335 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6336 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6337 }
6338 Label non_ascii, allocated, ascii_data;
6339 STATIC_ASSERT(kTwoByteStringTag == 0);
6340 __ tst(r4, Operand(kStringEncodingMask));
6341 __ tst(r5, Operand(kStringEncodingMask), ne);
6342 __ b(eq, &non_ascii);
6343
6344 // Allocate an ASCII cons string.
6345 __ bind(&ascii_data);
6346 __ AllocateAsciiConsString(r7, r6, r4, r5, &string_add_runtime);
6347 __ bind(&allocated);
6348 // Fill the fields of the cons string.
6349 __ str(r0, FieldMemOperand(r7, ConsString::kFirstOffset));
6350 __ str(r1, FieldMemOperand(r7, ConsString::kSecondOffset));
6351 __ mov(r0, Operand(r7));
6352 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
6353 __ add(sp, sp, Operand(2 * kPointerSize));
6354 __ Ret();
6355
6356 __ bind(&non_ascii);
6357 // At least one of the strings is two-byte. Check whether it happens
6358 // to contain only ascii characters.
6359 // r4: first instance type.
6360 // r5: second instance type.
6361 __ tst(r4, Operand(kAsciiDataHintMask));
6362 __ tst(r5, Operand(kAsciiDataHintMask), ne);
6363 __ b(ne, &ascii_data);
6364 __ eor(r4, r4, Operand(r5));
6365 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
6366 __ and_(r4, r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6367 __ cmp(r4, Operand(kAsciiStringTag | kAsciiDataHintTag));
6368 __ b(eq, &ascii_data);
6369
6370 // Allocate a two byte cons string.
6371 __ AllocateTwoByteConsString(r7, r6, r4, r5, &string_add_runtime);
6372 __ jmp(&allocated);
6373
6374 // Handle creating a flat result. First check that both strings are
6375 // sequential and that they have the same encoding.
6376 // r0: first string
6377 // r1: second string
6378 // r2: length of first string
6379 // r3: length of second string
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006380 // r4: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
6381 // r5: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006382 // r6: sum of lengths.
6383 __ bind(&string_add_flat_result);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006384 if (flags_ != NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006385 __ ldr(r4, FieldMemOperand(r0, HeapObject::kMapOffset));
6386 __ ldr(r5, FieldMemOperand(r1, HeapObject::kMapOffset));
6387 __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
6388 __ ldrb(r5, FieldMemOperand(r5, Map::kInstanceTypeOffset));
6389 }
6390 // Check that both strings are sequential.
6391 STATIC_ASSERT(kSeqStringTag == 0);
6392 __ tst(r4, Operand(kStringRepresentationMask));
6393 __ tst(r5, Operand(kStringRepresentationMask), eq);
6394 __ b(ne, &string_add_runtime);
6395 // Now check if both strings have the same encoding (ASCII/Two-byte).
6396 // r0: first string.
6397 // r1: second string.
6398 // r2: length of first string.
6399 // r3: length of second string.
6400 // r6: sum of lengths..
6401 Label non_ascii_string_add_flat_result;
6402 ASSERT(IsPowerOf2(kStringEncodingMask)); // Just one bit to test.
6403 __ eor(r7, r4, Operand(r5));
6404 __ tst(r7, Operand(kStringEncodingMask));
6405 __ b(ne, &string_add_runtime);
6406 // And see if it's ASCII or two-byte.
6407 __ tst(r4, Operand(kStringEncodingMask));
6408 __ b(eq, &non_ascii_string_add_flat_result);
6409
6410 // Both strings are sequential ASCII strings. We also know that they are
6411 // short (since the sum of the lengths is less than kMinNonFlatLength).
6412 // r6: length of resulting flat string
6413 __ AllocateAsciiString(r7, r6, r4, r5, r9, &string_add_runtime);
6414 // Locate first character of result.
6415 __ add(r6, r7, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6416 // Locate first character of first argument.
6417 __ add(r0, r0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6418 // r0: first character of first string.
6419 // r1: second string.
6420 // r2: length of first string.
6421 // r3: length of second string.
6422 // r6: first character of result.
6423 // r7: result string.
6424 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, true);
6425
6426 // Load second argument and locate first character.
6427 __ add(r1, r1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
6428 // r1: first character of second string.
6429 // r3: length of second string.
6430 // r6: next character of result.
6431 // r7: result string.
6432 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, true);
6433 __ mov(r0, Operand(r7));
6434 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
6435 __ add(sp, sp, Operand(2 * kPointerSize));
6436 __ Ret();
6437
6438 __ bind(&non_ascii_string_add_flat_result);
6439 // Both strings are sequential two byte strings.
6440 // r0: first string.
6441 // r1: second string.
6442 // r2: length of first string.
6443 // r3: length of second string.
6444 // r6: sum of length of strings.
6445 __ AllocateTwoByteString(r7, r6, r4, r5, r9, &string_add_runtime);
6446 // r0: first string.
6447 // r1: second string.
6448 // r2: length of first string.
6449 // r3: length of second string.
6450 // r7: result string.
6451
6452 // Locate first character of result.
6453 __ add(r6, r7, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6454 // Locate first character of first argument.
6455 __ add(r0, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6456
6457 // r0: first character of first string.
6458 // r1: second string.
6459 // r2: length of first string.
6460 // r3: length of second string.
6461 // r6: first character of result.
6462 // r7: result string.
6463 StringHelper::GenerateCopyCharacters(masm, r6, r0, r2, r4, false);
6464
6465 // Locate first character of second argument.
6466 __ add(r1, r1, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
6467
6468 // r1: first character of second string.
6469 // r3: length of second string.
6470 // r6: next character of result (after copy of first string).
6471 // r7: result string.
6472 StringHelper::GenerateCopyCharacters(masm, r6, r1, r3, r4, false);
6473
6474 __ mov(r0, Operand(r7));
6475 __ IncrementCounter(&Counters::string_add_native, 1, r2, r3);
6476 __ add(sp, sp, Operand(2 * kPointerSize));
6477 __ Ret();
6478
6479 // Just jump to runtime to add the two strings.
6480 __ bind(&string_add_runtime);
6481 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006482
6483 if (call_builtin.is_linked()) {
6484 __ bind(&call_builtin);
6485 __ InvokeBuiltin(builtin_id, JUMP_JS);
6486 }
6487}
6488
6489
6490void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
6491 int stack_offset,
6492 Register arg,
6493 Register scratch1,
6494 Register scratch2,
6495 Register scratch3,
6496 Register scratch4,
6497 Label* slow) {
6498 // First check if the argument is already a string.
6499 Label not_string, done;
6500 __ JumpIfSmi(arg, &not_string);
6501 __ CompareObjectType(arg, scratch1, scratch1, FIRST_NONSTRING_TYPE);
6502 __ b(lt, &done);
6503
6504 // Check the number to string cache.
6505 Label not_cached;
6506 __ bind(&not_string);
6507 // Puts the cached result into scratch1.
6508 NumberToStringStub::GenerateLookupNumberStringCache(masm,
6509 arg,
6510 scratch1,
6511 scratch2,
6512 scratch3,
6513 scratch4,
6514 false,
6515 &not_cached);
6516 __ mov(arg, scratch1);
6517 __ str(arg, MemOperand(sp, stack_offset));
6518 __ jmp(&done);
6519
6520 // Check if the argument is a safe string wrapper.
6521 __ bind(&not_cached);
6522 __ JumpIfSmi(arg, slow);
6523 __ CompareObjectType(
6524 arg, scratch1, scratch2, JS_VALUE_TYPE); // map -> scratch1.
6525 __ b(ne, slow);
6526 __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
6527 __ and_(scratch2,
6528 scratch2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6529 __ cmp(scratch2,
6530 Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
6531 __ b(ne, slow);
6532 __ ldr(arg, FieldMemOperand(arg, JSValue::kValueOffset));
6533 __ str(arg, MemOperand(sp, stack_offset));
6534
6535 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006536}
6537
6538
Steve Block1e0659c2011-05-24 12:43:12 +01006539void StringCharAtStub::Generate(MacroAssembler* masm) {
6540 // Expects two arguments (object, index) on the stack:
6541 // lr: return address
6542 // sp[0]: index
6543 // sp[4]: object
6544 Register object = r1;
6545 Register index = r0;
6546 Register scratch1 = r2;
6547 Register scratch2 = r3;
6548 Register result = r0;
6549
6550 // Get object and index from the stack.
6551 __ pop(index);
6552 __ pop(object);
6553
6554 Label need_conversion;
6555 Label index_out_of_range;
6556 Label done;
6557 StringCharAtGenerator generator(object,
6558 index,
6559 scratch1,
6560 scratch2,
6561 result,
6562 &need_conversion,
6563 &need_conversion,
6564 &index_out_of_range,
6565 STRING_INDEX_IS_NUMBER);
6566 generator.GenerateFast(masm);
6567 __ b(&done);
6568
6569 __ bind(&index_out_of_range);
6570 // When the index is out of range, the spec requires us to return
6571 // the empty string.
6572 __ LoadRoot(result, Heap::kEmptyStringRootIndex);
6573 __ jmp(&done);
6574
6575 __ bind(&need_conversion);
6576 // Move smi zero into the result register, which will trigger
6577 // conversion.
6578 __ mov(result, Operand(Smi::FromInt(0)));
6579 __ b(&done);
6580
6581 StubRuntimeCallHelper call_helper;
6582 generator.GenerateSlow(masm, call_helper);
6583
6584 __ bind(&done);
6585 __ Ret();
6586}
6587
6588
Ben Murdochb0fe1622011-05-05 13:52:32 +01006589void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
6590 ASSERT(state_ == CompareIC::SMIS);
6591 Label miss;
6592 __ orr(r2, r1, r0);
6593 __ tst(r2, Operand(kSmiTagMask));
6594 __ b(ne, &miss);
6595
6596 if (GetCondition() == eq) {
6597 // For equality we do not care about the sign of the result.
6598 __ sub(r0, r0, r1, SetCC);
6599 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01006600 // Untag before subtracting to avoid handling overflow.
6601 __ SmiUntag(r1);
6602 __ sub(r0, r1, SmiUntagOperand(r0));
Ben Murdochb0fe1622011-05-05 13:52:32 +01006603 }
6604 __ Ret();
6605
6606 __ bind(&miss);
6607 GenerateMiss(masm);
6608}
6609
6610
6611void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
6612 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
6613
6614 Label generic_stub;
6615 Label unordered;
6616 Label miss;
6617 __ and_(r2, r1, Operand(r0));
6618 __ tst(r2, Operand(kSmiTagMask));
6619 __ b(eq, &generic_stub);
6620
6621 __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
6622 __ b(ne, &miss);
6623 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
6624 __ b(ne, &miss);
6625
6626 // Inlining the double comparison and falling back to the general compare
6627 // stub if NaN is involved or VFP3 is unsupported.
6628 if (CpuFeatures::IsSupported(VFP3)) {
6629 CpuFeatures::Scope scope(VFP3);
6630
6631 // Load left and right operand
6632 __ sub(r2, r1, Operand(kHeapObjectTag));
6633 __ vldr(d0, r2, HeapNumber::kValueOffset);
6634 __ sub(r2, r0, Operand(kHeapObjectTag));
6635 __ vldr(d1, r2, HeapNumber::kValueOffset);
6636
6637 // Compare operands
Ben Murdochb8e0da22011-05-16 14:20:40 +01006638 __ VFPCompareAndSetFlags(d0, d1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006639
6640 // Don't base result on status bits when a NaN is involved.
6641 __ b(vs, &unordered);
6642
6643 // Return a result of -1, 0, or 1, based on status bits.
6644 __ mov(r0, Operand(EQUAL), LeaveCC, eq);
6645 __ mov(r0, Operand(LESS), LeaveCC, lt);
6646 __ mov(r0, Operand(GREATER), LeaveCC, gt);
6647 __ Ret();
6648
6649 __ bind(&unordered);
6650 }
6651
6652 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
6653 __ bind(&generic_stub);
6654 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
6655
6656 __ bind(&miss);
6657 GenerateMiss(masm);
6658}
6659
6660
6661void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6662 ASSERT(state_ == CompareIC::OBJECTS);
6663 Label miss;
6664 __ and_(r2, r1, Operand(r0));
6665 __ tst(r2, Operand(kSmiTagMask));
6666 __ b(eq, &miss);
6667
6668 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
6669 __ b(ne, &miss);
6670 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
6671 __ b(ne, &miss);
6672
6673 ASSERT(GetCondition() == eq);
6674 __ sub(r0, r0, Operand(r1));
6675 __ Ret();
6676
6677 __ bind(&miss);
6678 GenerateMiss(masm);
6679}
6680
6681
6682void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
6683 __ Push(r1, r0);
6684 __ push(lr);
6685
6686 // Call the runtime system in a fresh internal frame.
6687 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss));
6688 __ EnterInternalFrame();
6689 __ Push(r1, r0);
6690 __ mov(ip, Operand(Smi::FromInt(op_)));
6691 __ push(ip);
6692 __ CallExternalReference(miss, 3);
6693 __ LeaveInternalFrame();
6694 // Compute the entry point of the rewritten stub.
6695 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
6696 // Restore registers.
6697 __ pop(lr);
6698 __ pop(r0);
6699 __ pop(r1);
6700 __ Jump(r2);
6701}
6702
6703
Steve Block1e0659c2011-05-24 12:43:12 +01006704void DirectCEntryStub::Generate(MacroAssembler* masm) {
6705 __ ldr(pc, MemOperand(sp, 0));
6706}
6707
6708
6709void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006710 ExternalReference function) {
6711 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
6712 RelocInfo::CODE_TARGET));
6713 __ mov(r2, Operand(function));
6714 // Push return address (accessible to GC through exit frame pc).
6715 __ str(pc, MemOperand(sp, 0));
6716 __ Jump(r2); // Call the api function.
6717}
6718
6719
6720void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
6721 Register target) {
Steve Block1e0659c2011-05-24 12:43:12 +01006722 __ mov(lr, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
6723 RelocInfo::CODE_TARGET));
6724 // Push return address (accessible to GC through exit frame pc).
Steve Block1e0659c2011-05-24 12:43:12 +01006725 __ str(pc, MemOperand(sp, 0));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006726 __ Jump(target); // Call the C++ function.
Steve Block1e0659c2011-05-24 12:43:12 +01006727}
6728
6729
6730void GenerateFastPixelArrayLoad(MacroAssembler* masm,
6731 Register receiver,
6732 Register key,
6733 Register elements_map,
6734 Register elements,
6735 Register scratch1,
6736 Register scratch2,
6737 Register result,
6738 Label* not_pixel_array,
6739 Label* key_not_smi,
6740 Label* out_of_range) {
6741 // Register use:
6742 //
6743 // receiver - holds the receiver on entry.
6744 // Unchanged unless 'result' is the same register.
6745 //
6746 // key - holds the smi key on entry.
6747 // Unchanged unless 'result' is the same register.
6748 //
6749 // elements - set to be the receiver's elements on exit.
6750 //
6751 // elements_map - set to be the map of the receiver's elements
6752 // on exit.
6753 //
6754 // result - holds the result of the pixel array load on exit,
6755 // tagged as a smi if successful.
6756 //
6757 // Scratch registers:
6758 //
6759 // scratch1 - used a scratch register in map check, if map
6760 // check is successful, contains the length of the
6761 // pixel array, the pointer to external elements and
6762 // the untagged result.
6763 //
6764 // scratch2 - holds the untaged key.
6765
6766 // Some callers already have verified that the key is a smi. key_not_smi is
6767 // set to NULL as a sentinel for that case. Otherwise, add an explicit check
6768 // to ensure the key is a smi must be added.
6769 if (key_not_smi != NULL) {
6770 __ JumpIfNotSmi(key, key_not_smi);
6771 } else {
6772 if (FLAG_debug_code) {
6773 __ AbortIfNotSmi(key);
6774 }
6775 }
6776 __ SmiUntag(scratch2, key);
6777
6778 // Verify that the receiver has pixel array elements.
6779 __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
6780 __ CheckMap(elements, scratch1, Heap::kPixelArrayMapRootIndex,
6781 not_pixel_array, true);
6782
6783 // Key must be in range of the pixel array.
6784 __ ldr(scratch1, FieldMemOperand(elements, PixelArray::kLengthOffset));
6785 __ cmp(scratch2, scratch1);
6786 __ b(hs, out_of_range); // unsigned check handles negative keys.
6787
6788 // Perform the indexed load and tag the result as a smi.
6789 __ ldr(scratch1,
6790 FieldMemOperand(elements, PixelArray::kExternalPointerOffset));
6791 __ ldrb(scratch1, MemOperand(scratch1, scratch2));
6792 __ SmiTag(r0, scratch1);
6793 __ Ret();
6794}
6795
6796
Ben Murdoche0cee9b2011-05-25 10:26:03 +01006797void GenerateFastPixelArrayStore(MacroAssembler* masm,
6798 Register receiver,
6799 Register key,
6800 Register value,
6801 Register elements,
6802 Register elements_map,
6803 Register scratch1,
6804 Register scratch2,
6805 bool load_elements_from_receiver,
6806 bool load_elements_map_from_elements,
6807 Label* key_not_smi,
6808 Label* value_not_smi,
6809 Label* not_pixel_array,
6810 Label* out_of_range) {
6811 // Register use:
6812 // receiver - holds the receiver and is unchanged unless the
6813 // store succeeds.
6814 // key - holds the key (must be a smi) and is unchanged.
6815 // value - holds the value (must be a smi) and is unchanged.
6816 // elements - holds the element object of the receiver on entry if
6817 // load_elements_from_receiver is false, otherwise used
6818 // internally to store the pixel arrays elements and
6819 // external array pointer.
6820 // elements_map - holds the map of the element object if
6821 // load_elements_map_from_elements is false, otherwise
6822 // loaded with the element map.
6823 //
6824 Register external_pointer = elements;
6825 Register untagged_key = scratch1;
6826 Register untagged_value = scratch2;
6827
6828 if (load_elements_from_receiver) {
6829 __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
6830 }
6831
6832 // By passing NULL as not_pixel_array, callers signal that they have already
6833 // verified that the receiver has pixel array elements.
6834 if (not_pixel_array != NULL) {
6835 if (load_elements_map_from_elements) {
6836 __ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
6837 }
6838 __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex);
6839 __ cmp(elements_map, ip);
6840 __ b(ne, not_pixel_array);
6841 } else {
6842 if (FLAG_debug_code) {
6843 // Map check should have already made sure that elements is a pixel array.
6844 __ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
6845 __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex);
6846 __ cmp(elements_map, ip);
6847 __ Assert(eq, "Elements isn't a pixel array");
6848 }
6849 }
6850
6851 // Some callers already have verified that the key is a smi. key_not_smi is
6852 // set to NULL as a sentinel for that case. Otherwise, add an explicit check
6853 // to ensure the key is a smi must be added.
6854 if (key_not_smi != NULL) {
6855 __ JumpIfNotSmi(key, key_not_smi);
6856 } else {
6857 if (FLAG_debug_code) {
6858 __ AbortIfNotSmi(key);
6859 }
6860 }
6861
6862 __ SmiUntag(untagged_key, key);
6863
6864 // Perform bounds check.
6865 __ ldr(scratch2, FieldMemOperand(elements, PixelArray::kLengthOffset));
6866 __ cmp(untagged_key, scratch2);
6867 __ b(hs, out_of_range); // unsigned check handles negative keys.
6868
6869 __ JumpIfNotSmi(value, value_not_smi);
6870 __ SmiUntag(untagged_value, value);
6871
6872 // Clamp the value to [0..255].
6873 __ Usat(untagged_value, 8, Operand(untagged_value));
6874 // Get the pointer to the external array. This clobbers elements.
6875 __ ldr(external_pointer,
6876 FieldMemOperand(elements, PixelArray::kExternalPointerOffset));
6877 __ strb(untagged_value, MemOperand(external_pointer, untagged_key));
6878 __ Ret();
6879}
6880
6881
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006882#undef __
6883
6884} } // namespace v8::internal
6885
6886#endif // V8_TARGET_ARCH_ARM