blob: e6033a897770fa1358a1c0372369f8c4797a543b [file] [log] [blame]
Leon Clarked91b9f72010-01-27 17:25:45 +00001// Copyright 2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_ARM_CONSTANTS_ARM_H_
29#define V8_ARM_CONSTANTS_ARM_H_
30
31// The simulator emulates the EABI so we define the USE_ARM_EABI macro if we
32// are not running on real ARM hardware. One reason for this is that the
33// old ABI uses fp registers in the calling convention and the simulator does
34// not simulate fp registers or coroutine instructions.
35#if defined(__ARM_EABI__) || !defined(__arm__)
36# define USE_ARM_EABI 1
37#endif
38
39// This means that interwork-compatible jump instructions are generated. We
40// want to generate them on the simulator too so it makes snapshots that can
41// be used on real hardware.
42#if defined(__THUMB_INTERWORK__) || !defined(__arm__)
43# define USE_THUMB_INTERWORK 1
44#endif
45
Steve Blockd0582a62009-12-15 09:54:21 +000046#if defined(__ARM_ARCH_7A__) || \
47 defined(__ARM_ARCH_7R__) || \
Steve Blocka7e24c12009-10-30 11:49:00 +000048 defined(__ARM_ARCH_7__)
Steve Blockd0582a62009-12-15 09:54:21 +000049# define CAN_USE_ARMV7_INSTRUCTIONS 1
Steve Blocka7e24c12009-10-30 11:49:00 +000050#endif
51
Steve Blockd0582a62009-12-15 09:54:21 +000052#if defined(__ARM_ARCH_6__) || \
53 defined(__ARM_ARCH_6J__) || \
54 defined(__ARM_ARCH_6K__) || \
55 defined(__ARM_ARCH_6Z__) || \
56 defined(__ARM_ARCH_6ZK__) || \
57 defined(__ARM_ARCH_6T2__) || \
58 defined(CAN_USE_ARMV7_INSTRUCTIONS)
Steve Blocka7e24c12009-10-30 11:49:00 +000059# define CAN_USE_ARMV6_INSTRUCTIONS 1
60#endif
61
Steve Blockd0582a62009-12-15 09:54:21 +000062#if defined(__ARM_ARCH_5T__) || \
63 defined(__ARM_ARCH_5TE__) || \
64 defined(CAN_USE_ARMV6_INSTRUCTIONS)
65# define CAN_USE_ARMV5_INSTRUCTIONS 1
66# define CAN_USE_THUMB_INSTRUCTIONS 1
Steve Blocka7e24c12009-10-30 11:49:00 +000067#endif
68
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010069// Simulator should support ARM5 instructions and unaligned access by default.
Steve Blocka7e24c12009-10-30 11:49:00 +000070#if !defined(__arm__)
71# define CAN_USE_ARMV5_INSTRUCTIONS 1
72# define CAN_USE_THUMB_INSTRUCTIONS 1
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010073
74# ifndef CAN_USE_UNALIGNED_ACCESSES
75# define CAN_USE_UNALIGNED_ACCESSES 1
76# endif
77
Steve Blocka7e24c12009-10-30 11:49:00 +000078#endif
79
Kristian Monsen25f61362010-05-21 11:50:48 +010080#if CAN_USE_UNALIGNED_ACCESSES
81#define V8_TARGET_CAN_READ_UNALIGNED 1
82#endif
83
Steve Block6ded16b2010-05-10 14:33:55 +010084// Using blx may yield better code, so use it when required or when available
85#if defined(USE_THUMB_INTERWORK) || defined(CAN_USE_ARMV5_INSTRUCTIONS)
86#define USE_BLX 1
87#endif
88
Steve Block1e0659c2011-05-24 12:43:12 +010089namespace v8 {
90namespace internal {
Steve Blocka7e24c12009-10-30 11:49:00 +000091
92// Number of registers in normal ARM mode.
93static const int kNumRegisters = 16;
94
Steve Blockd0582a62009-12-15 09:54:21 +000095// VFP support.
Steve Block6ded16b2010-05-10 14:33:55 +010096static const int kNumVFPSingleRegisters = 32;
97static const int kNumVFPDoubleRegisters = 16;
98static const int kNumVFPRegisters =
99 kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
Steve Blockd0582a62009-12-15 09:54:21 +0000100
Steve Blocka7e24c12009-10-30 11:49:00 +0000101// PC is register 15.
102static const int kPCRegister = 15;
103static const int kNoRegister = -1;
104
Steve Block1e0659c2011-05-24 12:43:12 +0100105// -----------------------------------------------------------------------------
106// Conditions.
107
Steve Blocka7e24c12009-10-30 11:49:00 +0000108// Defines constants and accessor classes to assemble, disassemble and
109// simulate ARM instructions.
110//
111// Section references in the code refer to the "ARM Architecture Reference
112// Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
113//
114// Constants for specific fields are defined in their respective named enums.
115// General constants are in an anonymous enum in class Instr.
116
Steve Blocka7e24c12009-10-30 11:49:00 +0000117// Values for the condition field as defined in section A3.2
118enum Condition {
Steve Block1e0659c2011-05-24 12:43:12 +0100119 kNoCondition = -1,
120
121 eq = 0 << 28, // Z set Equal.
122 ne = 1 << 28, // Z clear Not equal.
123 cs = 2 << 28, // C set Unsigned higher or same.
124 cc = 3 << 28, // C clear Unsigned lower.
125 mi = 4 << 28, // N set Negative.
126 pl = 5 << 28, // N clear Positive or zero.
127 vs = 6 << 28, // V set Overflow.
128 vc = 7 << 28, // V clear No overflow.
129 hi = 8 << 28, // C set, Z clear Unsigned higher.
130 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
131 ge = 10 << 28, // N == V Greater or equal.
132 lt = 11 << 28, // N != V Less than.
133 gt = 12 << 28, // Z clear, N == V Greater than.
134 le = 13 << 28, // Z set or N != V Less then or equal
135 al = 14 << 28, // Always.
136
137 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
138 kNumberOfConditions = 16,
139
140 // Aliases.
141 hs = cs, // C set Unsigned higher or same.
142 lo = cc // C clear Unsigned lower.
Steve Blocka7e24c12009-10-30 11:49:00 +0000143};
144
145
Steve Block1e0659c2011-05-24 12:43:12 +0100146inline Condition NegateCondition(Condition cond) {
147 ASSERT(cond != al);
148 return static_cast<Condition>(cond ^ ne);
149}
150
151
152// Corresponds to transposing the operands of a comparison.
153inline Condition ReverseCondition(Condition cond) {
154 switch (cond) {
155 case lo:
156 return hi;
157 case hi:
158 return lo;
159 case hs:
160 return ls;
161 case ls:
162 return hs;
163 case lt:
164 return gt;
165 case gt:
166 return lt;
167 case ge:
168 return le;
169 case le:
170 return ge;
171 default:
172 return cond;
173 };
174}
175
176
177// -----------------------------------------------------------------------------
178// Instructions encoding.
179
180// Instr is merely used by the Assembler to distinguish 32bit integers
181// representing instructions from usual 32 bit values.
182// Instruction objects are pointers to 32bit values, and provide methods to
183// access the various ISA fields.
184typedef int32_t Instr;
185
186
Steve Blocka7e24c12009-10-30 11:49:00 +0000187// Opcodes for Data-processing instructions (instructions with a type 0 and 1)
188// as defined in section A3.4
189enum Opcode {
Steve Block1e0659c2011-05-24 12:43:12 +0100190 AND = 0 << 21, // Logical AND.
191 EOR = 1 << 21, // Logical Exclusive OR.
192 SUB = 2 << 21, // Subtract.
193 RSB = 3 << 21, // Reverse Subtract.
194 ADD = 4 << 21, // Add.
195 ADC = 5 << 21, // Add with Carry.
196 SBC = 6 << 21, // Subtract with Carry.
197 RSC = 7 << 21, // Reverse Subtract with Carry.
198 TST = 8 << 21, // Test.
199 TEQ = 9 << 21, // Test Equivalence.
200 CMP = 10 << 21, // Compare.
201 CMN = 11 << 21, // Compare Negated.
202 ORR = 12 << 21, // Logical (inclusive) OR.
203 MOV = 13 << 21, // Move.
204 BIC = 14 << 21, // Bit Clear.
205 MVN = 15 << 21 // Move Not.
Steve Blocka7e24c12009-10-30 11:49:00 +0000206};
207
208
Steve Block6ded16b2010-05-10 14:33:55 +0100209// The bits for bit 7-4 for some type 0 miscellaneous instructions.
210enum MiscInstructionsBits74 {
211 // With bits 22-21 01.
Steve Block1e0659c2011-05-24 12:43:12 +0100212 BX = 1 << 4,
213 BXJ = 2 << 4,
214 BLX = 3 << 4,
215 BKPT = 7 << 4,
Steve Blocka7e24c12009-10-30 11:49:00 +0000216
Steve Block6ded16b2010-05-10 14:33:55 +0100217 // With bits 22-21 11.
Steve Block1e0659c2011-05-24 12:43:12 +0100218 CLZ = 1 << 4
219};
220
221
222// Instruction encoding bits and masks.
223enum {
224 H = 1 << 5, // Halfword (or byte).
225 S6 = 1 << 6, // Signed (or unsigned).
226 L = 1 << 20, // Load (or store).
227 S = 1 << 20, // Set condition code (or leave unchanged).
228 W = 1 << 21, // Writeback base register (or leave unchanged).
229 A = 1 << 21, // Accumulate in multiply instruction (or not).
230 B = 1 << 22, // Unsigned byte (or word).
231 N = 1 << 22, // Long (or short).
232 U = 1 << 23, // Positive (or negative) offset/index.
233 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
234 I = 1 << 25, // Immediate shifter operand (or not).
235
236 B4 = 1 << 4,
237 B5 = 1 << 5,
238 B6 = 1 << 6,
239 B7 = 1 << 7,
240 B8 = 1 << 8,
241 B9 = 1 << 9,
242 B12 = 1 << 12,
243 B16 = 1 << 16,
244 B18 = 1 << 18,
245 B19 = 1 << 19,
246 B20 = 1 << 20,
247 B21 = 1 << 21,
248 B22 = 1 << 22,
249 B23 = 1 << 23,
250 B24 = 1 << 24,
251 B25 = 1 << 25,
252 B26 = 1 << 26,
253 B27 = 1 << 27,
254 B28 = 1 << 28,
255
256 // Instruction bit masks.
257 kCondMask = 15 << 28,
258 kALUMask = 0x6f << 21,
259 kRdMask = 15 << 12, // In str instruction.
260 kCoprocessorMask = 15 << 8,
261 kOpCodeMask = 15 << 21, // In data-processing instructions.
262 kImm24Mask = (1 << 24) - 1,
263 kOff12Mask = (1 << 12) - 1
264};
265
266
267// -----------------------------------------------------------------------------
268// Addressing modes and instruction variants.
269
270// Condition code updating mode.
271enum SBit {
272 SetCC = 1 << 20, // Set condition code.
273 LeaveCC = 0 << 20 // Leave condition code unchanged.
274};
275
276
277// Status register selection.
278enum SRegister {
279 CPSR = 0 << 22,
280 SPSR = 1 << 22
Steve Blocka7e24c12009-10-30 11:49:00 +0000281};
282
283
Steve Blocka7e24c12009-10-30 11:49:00 +0000284// Shifter types for Data-processing operands as defined in section A5.1.2.
Steve Block1e0659c2011-05-24 12:43:12 +0100285enum ShiftOp {
286 LSL = 0 << 5, // Logical shift left.
287 LSR = 1 << 5, // Logical shift right.
288 ASR = 2 << 5, // Arithmetic shift right.
289 ROR = 3 << 5, // Rotate right.
290
291 // RRX is encoded as ROR with shift_imm == 0.
292 // Use a special code to make the distinction. The RRX ShiftOp is only used
293 // as an argument, and will never actually be encoded. The Assembler will
294 // detect it and emit the correct ROR shift operand with shift_imm == 0.
295 RRX = -1,
296 kNumberOfShifts = 4
Steve Blocka7e24c12009-10-30 11:49:00 +0000297};
298
299
Steve Block1e0659c2011-05-24 12:43:12 +0100300// Status register fields.
301enum SRegisterField {
302 CPSR_c = CPSR | 1 << 16,
303 CPSR_x = CPSR | 1 << 17,
304 CPSR_s = CPSR | 1 << 18,
305 CPSR_f = CPSR | 1 << 19,
306 SPSR_c = SPSR | 1 << 16,
307 SPSR_x = SPSR | 1 << 17,
308 SPSR_s = SPSR | 1 << 18,
309 SPSR_f = SPSR | 1 << 19
310};
311
312// Status register field mask (or'ed SRegisterField enum values).
313typedef uint32_t SRegisterFieldMask;
314
315
316// Memory operand addressing mode.
317enum AddrMode {
318 // Bit encoding P U W.
319 Offset = (8|4|0) << 21, // Offset (without writeback to base).
320 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
321 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
322 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
323 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
324 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
325};
326
327
328// Load/store multiple addressing mode.
329enum BlockAddrMode {
330 // Bit encoding P U W .
331 da = (0|0|0) << 21, // Decrement after.
332 ia = (0|4|0) << 21, // Increment after.
333 db = (8|0|0) << 21, // Decrement before.
334 ib = (8|4|0) << 21, // Increment before.
335 da_w = (0|0|1) << 21, // Decrement after with writeback to base.
336 ia_w = (0|4|1) << 21, // Increment after with writeback to base.
337 db_w = (8|0|1) << 21, // Decrement before with writeback to base.
338 ib_w = (8|4|1) << 21, // Increment before with writeback to base.
339
340 // Alias modes for comparison when writeback does not matter.
341 da_x = (0|0|0) << 21, // Decrement after.
342 ia_x = (0|4|0) << 21, // Increment after.
343 db_x = (8|0|0) << 21, // Decrement before.
344 ib_x = (8|4|0) << 21 // Increment before.
345};
346
347
348// Coprocessor load/store operand size.
349enum LFlag {
350 Long = 1 << 22, // Long load/store coprocessor.
351 Short = 0 << 22 // Short load/store coprocessor.
352};
353
354
355// -----------------------------------------------------------------------------
356// Supervisor Call (svc) specific support.
357
Steve Blocka7e24c12009-10-30 11:49:00 +0000358// Special Software Interrupt codes when used in the presence of the ARM
359// simulator.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800360// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
361// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
Steve Blocka7e24c12009-10-30 11:49:00 +0000362enum SoftwareInterruptCodes {
363 // transition to C code
Steve Block1e0659c2011-05-24 12:43:12 +0100364 kCallRtRedirected= 0x10,
Steve Blocka7e24c12009-10-30 11:49:00 +0000365 // break point
Steve Block1e0659c2011-05-24 12:43:12 +0100366 kBreakpoint= 0x20,
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800367 // stop
Steve Block1e0659c2011-05-24 12:43:12 +0100368 kStopCode = 1 << 23
Steve Blocka7e24c12009-10-30 11:49:00 +0000369};
Steve Block1e0659c2011-05-24 12:43:12 +0100370static const uint32_t kStopCodeMask = kStopCode - 1;
371static const uint32_t kMaxStopCode = kStopCode - 1;
372static const int32_t kDefaultStopCode = -1;
Steve Blocka7e24c12009-10-30 11:49:00 +0000373
374
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100375// Type of VFP register. Determines register encoding.
376enum VFPRegPrecision {
377 kSinglePrecision = 0,
378 kDoublePrecision = 1
379};
380
Steve Block1e0659c2011-05-24 12:43:12 +0100381
382// VFP FPSCR constants.
383enum VFPConversionMode {
384 kFPSCRRounding = 0,
385 kDefaultRoundToZero = 1
Russell Brenner90bac252010-11-18 13:33:46 -0800386};
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100387
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100388// This mask does not include the "inexact" or "input denormal" cumulative
389// exceptions flags, because we usually don't want to check for it.
Steve Block1e0659c2011-05-24 12:43:12 +0100390static const uint32_t kVFPExceptionMask = 0xf;
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100391static const uint32_t kVFPInexactExceptionBit = 1 << 4;
Steve Block1e0659c2011-05-24 12:43:12 +0100392static const uint32_t kVFPFlushToZeroMask = 1 << 24;
393static const uint32_t kVFPInvalidExceptionBit = 1;
394
395static const uint32_t kVFPNConditionFlagBit = 1 << 31;
396static const uint32_t kVFPZConditionFlagBit = 1 << 30;
397static const uint32_t kVFPCConditionFlagBit = 1 << 29;
398static const uint32_t kVFPVConditionFlagBit = 1 << 28;
Steve Blocka7e24c12009-10-30 11:49:00 +0000399
400
Steve Block1e0659c2011-05-24 12:43:12 +0100401// VFP rounding modes. See ARM DDI 0406B Page A2-29.
402enum VFPRoundingMode {
403 RN = 0 << 22, // Round to Nearest.
404 RP = 1 << 22, // Round towards Plus Infinity.
405 RM = 2 << 22, // Round towards Minus Infinity.
406 RZ = 3 << 22, // Round towards zero.
407
408 // Aliases.
409 kRoundToNearest = RN,
410 kRoundToPlusInf = RP,
411 kRoundToMinusInf = RM,
412 kRoundToZero = RZ
413};
414
415static const uint32_t kVFPRoundingModeMask = 3 << 22;
416
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100417enum CheckForInexactConversion {
418 kCheckForInexactConversion,
419 kDontCheckForInexactConversion
420};
421
Steve Block1e0659c2011-05-24 12:43:12 +0100422// -----------------------------------------------------------------------------
423// Hints.
424
425// Branch hints are not used on the ARM. They are defined so that they can
426// appear in shared function signatures, but will be ignored in ARM
427// implementations.
428enum Hint { no_hint };
429
430// Hints are not used on the arm. Negating is trivial.
431inline Hint NegateHint(Hint ignored) { return no_hint; }
432
433
434// -----------------------------------------------------------------------------
435// Specific instructions, constants, and masks.
436// These constants are declared in assembler-arm.cc, as they use named registers
437// and other constants.
438
439
440// add(sp, sp, 4) instruction (aka Pop())
441extern const Instr kPopInstruction;
442
443// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
444// register r is not encoded.
445extern const Instr kPushRegPattern;
446
447// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
448// register r is not encoded.
449extern const Instr kPopRegPattern;
450
451// mov lr, pc
452extern const Instr kMovLrPc;
453// ldr rd, [pc, #offset]
454extern const Instr kLdrPCMask;
455extern const Instr kLdrPCPattern;
456// blxcc rm
457extern const Instr kBlxRegMask;
458
459extern const Instr kBlxRegPattern;
460
461extern const Instr kMovMvnMask;
462extern const Instr kMovMvnPattern;
463extern const Instr kMovMvnFlip;
464extern const Instr kMovLeaveCCMask;
465extern const Instr kMovLeaveCCPattern;
466extern const Instr kMovwMask;
467extern const Instr kMovwPattern;
468extern const Instr kMovwLeaveCCFlip;
469extern const Instr kCmpCmnMask;
470extern const Instr kCmpCmnPattern;
471extern const Instr kCmpCmnFlip;
472extern const Instr kAddSubFlip;
473extern const Instr kAndBicFlip;
474
475// A mask for the Rd register for push, pop, ldr, str instructions.
476extern const Instr kLdrRegFpOffsetPattern;
477
478extern const Instr kStrRegFpOffsetPattern;
479
480extern const Instr kLdrRegFpNegOffsetPattern;
481
482extern const Instr kStrRegFpNegOffsetPattern;
483
484extern const Instr kLdrStrInstrTypeMask;
485extern const Instr kLdrStrInstrArgumentMask;
486extern const Instr kLdrStrOffsetMask;
487
488
489// -----------------------------------------------------------------------------
490// Instruction abstraction.
491
492// The class Instruction enables access to individual fields defined in the ARM
Steve Blocka7e24c12009-10-30 11:49:00 +0000493// architecture instruction set encoding as described in figure A3-1.
Steve Block1e0659c2011-05-24 12:43:12 +0100494// Note that the Assembler uses typedef int32_t Instr.
Steve Blocka7e24c12009-10-30 11:49:00 +0000495//
496// Example: Test whether the instruction at ptr does set the condition code
497// bits.
498//
499// bool InstructionSetsConditionCodes(byte* ptr) {
Steve Block1e0659c2011-05-24 12:43:12 +0100500// Instruction* instr = Instruction::At(ptr);
501// int type = instr->TypeValue();
Steve Blocka7e24c12009-10-30 11:49:00 +0000502// return ((type == 0) || (type == 1)) && instr->HasS();
503// }
504//
Steve Block1e0659c2011-05-24 12:43:12 +0100505class Instruction {
Steve Blocka7e24c12009-10-30 11:49:00 +0000506 public:
507 enum {
508 kInstrSize = 4,
509 kInstrSizeLog2 = 2,
510 kPCReadOffset = 8
511 };
512
Steve Block1e0659c2011-05-24 12:43:12 +0100513 // Helper macro to define static accessors.
514 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
515 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
516 static inline return_type Name(Instr instr) { \
517 char* temp = reinterpret_cast<char*>(&instr); \
518 return reinterpret_cast<Instruction*>(temp)->Name(); \
519 }
520
521 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
522
Steve Blocka7e24c12009-10-30 11:49:00 +0000523 // Get the raw instruction bits.
Steve Block1e0659c2011-05-24 12:43:12 +0100524 inline Instr InstructionBits() const {
525 return *reinterpret_cast<const Instr*>(this);
Steve Blocka7e24c12009-10-30 11:49:00 +0000526 }
527
528 // Set the raw instruction bits to value.
Steve Block1e0659c2011-05-24 12:43:12 +0100529 inline void SetInstructionBits(Instr value) {
530 *reinterpret_cast<Instr*>(this) = value;
Steve Blocka7e24c12009-10-30 11:49:00 +0000531 }
532
533 // Read one particular bit out of the instruction bits.
534 inline int Bit(int nr) const {
535 return (InstructionBits() >> nr) & 1;
536 }
537
Steve Block1e0659c2011-05-24 12:43:12 +0100538 // Read a bit field's value out of the instruction bits.
Steve Blocka7e24c12009-10-30 11:49:00 +0000539 inline int Bits(int hi, int lo) const {
540 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
541 }
542
Steve Block1e0659c2011-05-24 12:43:12 +0100543 // Read a bit field out of the instruction bits.
544 inline int BitField(int hi, int lo) const {
545 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
546 }
547
548 // Static support.
549
550 // Read one particular bit out of the instruction bits.
551 static inline int Bit(Instr instr, int nr) {
552 return (instr >> nr) & 1;
553 }
554
555 // Read the value of a bit field out of the instruction bits.
556 static inline int Bits(Instr instr, int hi, int lo) {
557 return (instr >> lo) & ((2 << (hi - lo)) - 1);
558 }
559
560
561 // Read a bit field out of the instruction bits.
562 static inline int BitField(Instr instr, int hi, int lo) {
563 return instr & (((2 << (hi - lo)) - 1) << lo);
564 }
565
Steve Blocka7e24c12009-10-30 11:49:00 +0000566
567 // Accessors for the different named fields used in the ARM encoding.
568 // The naming of these accessor corresponds to figure A3-1.
Steve Block1e0659c2011-05-24 12:43:12 +0100569 //
570 // Two kind of accessors are declared:
571 // - <Name>Field() will return the raw field, ie the field's bits at their
572 // original place in the instruction encoding.
573 // eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
574 // ConditionField(instr) will return 0xC0000000.
575 // - <Name>Value() will return the field value, shifted back to bit 0.
576 // eg. if instr is the 'addgt r0, r1, r2' instruction, encoded as 0xC0810002
577 // ConditionField(instr) will return 0xC.
578
579
Steve Blocka7e24c12009-10-30 11:49:00 +0000580 // Generally applicable fields
Steve Block1e0659c2011-05-24 12:43:12 +0100581 inline Condition ConditionValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000582 return static_cast<Condition>(Bits(31, 28));
583 }
Steve Block1e0659c2011-05-24 12:43:12 +0100584 inline Condition ConditionField() const {
585 return static_cast<Condition>(BitField(31, 28));
586 }
587 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
588 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
Steve Blocka7e24c12009-10-30 11:49:00 +0000589
Steve Block1e0659c2011-05-24 12:43:12 +0100590 inline int TypeValue() const { return Bits(27, 25); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000591
Steve Block1e0659c2011-05-24 12:43:12 +0100592 inline int RnValue() const { return Bits(19, 16); }
593 DECLARE_STATIC_ACCESSOR(RnValue);
594 inline int RdValue() const { return Bits(15, 12); }
595 DECLARE_STATIC_ACCESSOR(RdValue);
596
597 inline int CoprocessorValue() const { return Bits(11, 8); }
Steve Blockd0582a62009-12-15 09:54:21 +0000598 // Support for VFP.
599 // Vn(19-16) | Vd(15-12) | Vm(3-0)
Steve Block1e0659c2011-05-24 12:43:12 +0100600 inline int VnValue() const { return Bits(19, 16); }
601 inline int VmValue() const { return Bits(3, 0); }
602 inline int VdValue() const { return Bits(15, 12); }
603 inline int NValue() const { return Bit(7); }
604 inline int MValue() const { return Bit(5); }
605 inline int DValue() const { return Bit(22); }
606 inline int RtValue() const { return Bits(15, 12); }
607 inline int PValue() const { return Bit(24); }
608 inline int UValue() const { return Bit(23); }
609 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
610 inline int Opc2Value() const { return Bits(19, 16); }
611 inline int Opc3Value() const { return Bits(7, 6); }
612 inline int SzValue() const { return Bit(8); }
613 inline int VLValue() const { return Bit(20); }
614 inline int VCValue() const { return Bit(8); }
615 inline int VAValue() const { return Bits(23, 21); }
616 inline int VBValue() const { return Bits(6, 5); }
617 inline int VFPNRegValue(VFPRegPrecision pre) {
618 return VFPGlueRegValue(pre, 16, 7);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100619 }
Steve Block1e0659c2011-05-24 12:43:12 +0100620 inline int VFPMRegValue(VFPRegPrecision pre) {
621 return VFPGlueRegValue(pre, 0, 5);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100622 }
Steve Block1e0659c2011-05-24 12:43:12 +0100623 inline int VFPDRegValue(VFPRegPrecision pre) {
624 return VFPGlueRegValue(pre, 12, 22);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100625 }
Steve Blockd0582a62009-12-15 09:54:21 +0000626
Steve Blocka7e24c12009-10-30 11:49:00 +0000627 // Fields used in Data processing instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100628 inline int OpcodeValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000629 return static_cast<Opcode>(Bits(24, 21));
630 }
Steve Block1e0659c2011-05-24 12:43:12 +0100631 inline Opcode OpcodeField() const {
632 return static_cast<Opcode>(BitField(24, 21));
633 }
634 inline int SValue() const { return Bit(20); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000635 // with register
Steve Block1e0659c2011-05-24 12:43:12 +0100636 inline int RmValue() const { return Bits(3, 0); }
637 DECLARE_STATIC_ACCESSOR(RmValue);
638 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
639 inline ShiftOp ShiftField() const {
640 return static_cast<ShiftOp>(BitField(6, 5));
641 }
642 inline int RegShiftValue() const { return Bit(4); }
643 inline int RsValue() const { return Bits(11, 8); }
644 inline int ShiftAmountValue() const { return Bits(11, 7); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000645 // with immediate
Steve Block1e0659c2011-05-24 12:43:12 +0100646 inline int RotateValue() const { return Bits(11, 8); }
647 inline int Immed8Value() const { return Bits(7, 0); }
648 inline int Immed4Value() const { return Bits(19, 16); }
649 inline int ImmedMovwMovtValue() const {
650 return Immed4Value() << 12 | Offset12Value(); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000651
652 // Fields used in Load/Store instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100653 inline int PUValue() const { return Bits(24, 23); }
654 inline int PUField() const { return BitField(24, 23); }
655 inline int BValue() const { return Bit(22); }
656 inline int WValue() const { return Bit(21); }
657 inline int LValue() const { return Bit(20); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000658 // with register uses same fields as Data processing instructions above
659 // with immediate
Steve Block1e0659c2011-05-24 12:43:12 +0100660 inline int Offset12Value() const { return Bits(11, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000661 // multiple
Steve Block1e0659c2011-05-24 12:43:12 +0100662 inline int RlistValue() const { return Bits(15, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000663 // extra loads and stores
Steve Block1e0659c2011-05-24 12:43:12 +0100664 inline int SignValue() const { return Bit(6); }
665 inline int HValue() const { return Bit(5); }
666 inline int ImmedHValue() const { return Bits(11, 8); }
667 inline int ImmedLValue() const { return Bits(3, 0); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000668
669 // Fields used in Branch instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100670 inline int LinkValue() const { return Bit(24); }
671 inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
Steve Blocka7e24c12009-10-30 11:49:00 +0000672
673 // Fields used in Software interrupt instructions
Steve Block1e0659c2011-05-24 12:43:12 +0100674 inline SoftwareInterruptCodes SvcValue() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000675 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
676 }
677
678 // Test for special encodings of type 0 instructions (extra loads and stores,
679 // as well as multiplications).
680 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
681
Steve Block6ded16b2010-05-10 14:33:55 +0100682 // Test for miscellaneous instructions encodings of type 0 instructions.
683 inline bool IsMiscType0() const { return (Bit(24) == 1)
684 && (Bit(23) == 0)
685 && (Bit(20) == 0)
686 && ((Bit(7) == 0)); }
687
Steve Block1e0659c2011-05-24 12:43:12 +0100688 // Test for a stop instruction.
689 inline bool IsStop() const {
690 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
691 }
692
Steve Blocka7e24c12009-10-30 11:49:00 +0000693 // Special accessors that test for existence of a value.
Steve Block1e0659c2011-05-24 12:43:12 +0100694 inline bool HasS() const { return SValue() == 1; }
695 inline bool HasB() const { return BValue() == 1; }
696 inline bool HasW() const { return WValue() == 1; }
697 inline bool HasL() const { return LValue() == 1; }
698 inline bool HasU() const { return UValue() == 1; }
699 inline bool HasSign() const { return SignValue() == 1; }
700 inline bool HasH() const { return HValue() == 1; }
701 inline bool HasLink() const { return LinkValue() == 1; }
Steve Blocka7e24c12009-10-30 11:49:00 +0000702
Ben Murdoch3bec4d22010-07-22 14:51:16 +0100703 // Decoding the double immediate in the vmov instruction.
704 double DoubleImmedVmov() const;
705
Steve Blocka7e24c12009-10-30 11:49:00 +0000706 // Instructions are read of out a code stream. The only way to get a
707 // reference to an instruction is to convert a pointer. There is no way
Steve Block1e0659c2011-05-24 12:43:12 +0100708 // to allocate or create instances of class Instruction.
709 // Use the At(pc) function to create references to Instruction.
710 static Instruction* At(byte* pc) {
711 return reinterpret_cast<Instruction*>(pc);
712 }
713
Steve Blocka7e24c12009-10-30 11:49:00 +0000714
715 private:
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100716 // Join split register codes, depending on single or double precision.
717 // four_bit is the position of the least-significant bit of the four
718 // bit specifier. one_bit is the position of the additional single bit
719 // specifier.
Steve Block1e0659c2011-05-24 12:43:12 +0100720 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100721 if (pre == kSinglePrecision) {
722 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
723 }
724 return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
725 }
726
Steve Block1e0659c2011-05-24 12:43:12 +0100727 // We need to prevent the creation of instances of class Instruction.
728 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
Steve Blocka7e24c12009-10-30 11:49:00 +0000729};
730
731
732// Helper functions for converting between register numbers and names.
733class Registers {
734 public:
735 // Return the name of the register.
736 static const char* Name(int reg);
737
738 // Lookup the register number for the name provided.
739 static int Number(const char* name);
740
741 struct RegisterAlias {
742 int reg;
Steve Blockd0582a62009-12-15 09:54:21 +0000743 const char* name;
Steve Blocka7e24c12009-10-30 11:49:00 +0000744 };
745
746 private:
747 static const char* names_[kNumRegisters];
748 static const RegisterAlias aliases_[];
749};
750
Steve Blockd0582a62009-12-15 09:54:21 +0000751// Helper functions for converting between VFP register numbers and names.
752class VFPRegisters {
753 public:
754 // Return the name of the register.
Steve Block6ded16b2010-05-10 14:33:55 +0100755 static const char* Name(int reg, bool is_double);
756
757 // Lookup the register number for the name provided.
758 // Set flag pointed by is_double to true if register
759 // is double-precision.
760 static int Number(const char* name, bool* is_double);
Steve Blockd0582a62009-12-15 09:54:21 +0000761
762 private:
763 static const char* names_[kNumVFPRegisters];
764};
Steve Blocka7e24c12009-10-30 11:49:00 +0000765
766
Steve Block1e0659c2011-05-24 12:43:12 +0100767} } // namespace v8::internal
Steve Blocka7e24c12009-10-30 11:49:00 +0000768
769#endif // V8_ARM_CONSTANTS_ARM_H_