blob: ae7dae3b0833a13f5f1497d12b79686807fee04e [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "codegen-inl.h"
31#include "debug.h"
32#include "runtime.h"
33
34namespace v8 {
35namespace internal {
36
37
38#define __ ACCESS_MASM(masm)
39
40
Leon Clarkee46be812010-01-19 14:06:41 +000041void Builtins::Generate_Adaptor(MacroAssembler* masm,
42 CFunctionId id,
43 BuiltinExtraArguments extra_args) {
44 // ----------- S t a t e -------------
45 // -- r0 : number of arguments excluding receiver
46 // -- r1 : called function (only guaranteed when
47 // extra_args requires it)
48 // -- cp : context
49 // -- sp[0] : last argument
50 // -- ...
51 // -- sp[4 * (argc - 1)] : first argument (argc == r0)
52 // -- sp[4 * argc] : receiver
53 // -----------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +000054
Leon Clarkee46be812010-01-19 14:06:41 +000055 // Insert extra arguments.
56 int num_extra_args = 0;
57 if (extra_args == NEEDS_CALLED_FUNCTION) {
58 num_extra_args = 1;
59 __ push(r1);
60 } else {
61 ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
62 }
63
64 // JumpToRuntime expects r0 to contain the number of arguments
65 // including the receiver and the extra arguments.
66 __ add(r0, r0, Operand(num_extra_args + 1));
Steve Blocka7e24c12009-10-30 11:49:00 +000067 __ JumpToRuntime(ExternalReference(id));
68}
69
70
71// Load the built-in Array function from the current context.
72static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
73 // Load the global context.
74
75 __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
76 __ ldr(result,
77 FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
78 // Load the Array function from the global context.
79 __ ldr(result,
80 MemOperand(result,
81 Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
82}
83
84
85// This constant has the same value as JSArray::kPreallocatedArrayElements and
86// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
87// below should be reconsidered.
88static const int kLoopUnfoldLimit = 4;
89
90
91// Allocate an empty JSArray. The allocated array is put into the result
92// register. An elements backing store is allocated with size initial_capacity
93// and filled with the hole values.
94static void AllocateEmptyJSArray(MacroAssembler* masm,
95 Register array_function,
96 Register result,
97 Register scratch1,
98 Register scratch2,
99 Register scratch3,
100 int initial_capacity,
101 Label* gc_required) {
102 ASSERT(initial_capacity > 0);
103 // Load the initial map from the array function.
104 __ ldr(scratch1, FieldMemOperand(array_function,
105 JSFunction::kPrototypeOrInitialMapOffset));
106
107 // Allocate the JSArray object together with space for a fixed array with the
108 // requested elements.
109 int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
110 __ AllocateInNewSpace(size / kPointerSize,
111 result,
112 scratch2,
113 scratch3,
114 gc_required,
115 TAG_OBJECT);
116
117 // Allocated the JSArray. Now initialize the fields except for the elements
118 // array.
119 // result: JSObject
120 // scratch1: initial map
121 // scratch2: start of next object
122 __ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
123 __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
124 __ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
125 // Field JSArray::kElementsOffset is initialized later.
126 __ mov(scratch3, Operand(0));
127 __ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
128
129 // Calculate the location of the elements array and set elements array member
130 // of the JSArray.
131 // result: JSObject
132 // scratch2: start of next object
133 __ lea(scratch1, MemOperand(result, JSArray::kSize));
134 __ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
135
136 // Clear the heap tag on the elements array.
137 __ and_(scratch1, scratch1, Operand(~kHeapObjectTagMask));
138
139 // Initialize the FixedArray and fill it with holes. FixedArray length is not
140 // stored as a smi.
141 // result: JSObject
142 // scratch1: elements array (untagged)
143 // scratch2: start of next object
144 __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
145 ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
146 __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
147 __ mov(scratch3, Operand(initial_capacity));
148 ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
149 __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
150
151 // Fill the FixedArray with the hole value.
152 ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
153 ASSERT(initial_capacity <= kLoopUnfoldLimit);
154 __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
155 for (int i = 0; i < initial_capacity; i++) {
156 __ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
157 }
158}
159
160// Allocate a JSArray with the number of elements stored in a register. The
161// register array_function holds the built-in Array function and the register
162// array_size holds the size of the array as a smi. The allocated array is put
163// into the result register and beginning and end of the FixedArray elements
164// storage is put into registers elements_array_storage and elements_array_end
165// (see below for when that is not the case). If the parameter fill_with_holes
166// is true the allocated elements backing store is filled with the hole values
167// otherwise it is left uninitialized. When the backing store is filled the
168// register elements_array_storage is scratched.
169static void AllocateJSArray(MacroAssembler* masm,
170 Register array_function, // Array function.
171 Register array_size, // As a smi.
172 Register result,
173 Register elements_array_storage,
174 Register elements_array_end,
175 Register scratch1,
176 Register scratch2,
177 bool fill_with_hole,
178 Label* gc_required) {
179 Label not_empty, allocated;
180
181 // Load the initial map from the array function.
182 __ ldr(elements_array_storage,
183 FieldMemOperand(array_function,
184 JSFunction::kPrototypeOrInitialMapOffset));
185
186 // Check whether an empty sized array is requested.
187 __ tst(array_size, array_size);
188 __ b(nz, &not_empty);
189
190 // If an empty array is requested allocate a small elements array anyway. This
191 // keeps the code below free of special casing for the empty array.
192 int size = JSArray::kSize +
193 FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
194 __ AllocateInNewSpace(size / kPointerSize,
195 result,
196 elements_array_end,
197 scratch1,
198 gc_required,
199 TAG_OBJECT);
200 __ jmp(&allocated);
201
202 // Allocate the JSArray object together with space for a FixedArray with the
203 // requested number of elements.
204 __ bind(&not_empty);
205 ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
206 __ mov(elements_array_end,
207 Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
208 __ add(elements_array_end,
209 elements_array_end,
210 Operand(array_size, ASR, kSmiTagSize));
211 __ AllocateInNewSpace(elements_array_end,
212 result,
213 scratch1,
214 scratch2,
215 gc_required,
216 TAG_OBJECT);
217
218 // Allocated the JSArray. Now initialize the fields except for the elements
219 // array.
220 // result: JSObject
221 // elements_array_storage: initial map
222 // array_size: size of array (smi)
223 __ bind(&allocated);
224 __ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
225 __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
226 __ str(elements_array_storage,
227 FieldMemOperand(result, JSArray::kPropertiesOffset));
228 // Field JSArray::kElementsOffset is initialized later.
229 __ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
230
231 // Calculate the location of the elements array and set elements array member
232 // of the JSArray.
233 // result: JSObject
234 // array_size: size of array (smi)
235 __ add(elements_array_storage, result, Operand(JSArray::kSize));
236 __ str(elements_array_storage,
237 FieldMemOperand(result, JSArray::kElementsOffset));
238
239 // Clear the heap tag on the elements array.
240 __ and_(elements_array_storage,
241 elements_array_storage,
242 Operand(~kHeapObjectTagMask));
243 // Initialize the fixed array and fill it with holes. FixedArray length is not
244 // stored as a smi.
245 // result: JSObject
246 // elements_array_storage: elements array (untagged)
247 // array_size: size of array (smi)
248 ASSERT(kSmiTag == 0);
249 __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
250 ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
251 __ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
252 // Convert array_size from smi to value.
253 __ mov(array_size,
254 Operand(array_size, ASR, kSmiTagSize));
255 __ tst(array_size, array_size);
256 // Length of the FixedArray is the number of pre-allocated elements if
257 // the actual JSArray has length 0 and the size of the JSArray for non-empty
258 // JSArrays. The length of a FixedArray is not stored as a smi.
259 __ mov(array_size, Operand(JSArray::kPreallocatedArrayElements), LeaveCC, eq);
260 ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
261 __ str(array_size,
262 MemOperand(elements_array_storage, kPointerSize, PostIndex));
263
264 // Calculate elements array and elements array end.
265 // result: JSObject
266 // elements_array_storage: elements array element storage
267 // array_size: size of elements array
268 __ add(elements_array_end,
269 elements_array_storage,
270 Operand(array_size, LSL, kPointerSizeLog2));
271
272 // Fill the allocated FixedArray with the hole value if requested.
273 // result: JSObject
274 // elements_array_storage: elements array element storage
275 // elements_array_end: start of next object
276 if (fill_with_hole) {
277 Label loop, entry;
278 __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
279 __ jmp(&entry);
280 __ bind(&loop);
281 __ str(scratch1,
282 MemOperand(elements_array_storage, kPointerSize, PostIndex));
283 __ bind(&entry);
284 __ cmp(elements_array_storage, elements_array_end);
285 __ b(lt, &loop);
286 }
287}
288
289// Create a new array for the built-in Array function. This function allocates
290// the JSArray object and the FixedArray elements array and initializes these.
291// If the Array cannot be constructed in native code the runtime is called. This
292// function assumes the following state:
293// r0: argc
294// r1: constructor (built-in Array function)
295// lr: return address
296// sp[0]: last argument
297// This function is used for both construct and normal calls of Array. The only
298// difference between handling a construct call and a normal call is that for a
299// construct call the constructor function in r1 needs to be preserved for
300// entering the generic code. In both cases argc in r0 needs to be preserved.
301// Both registers are preserved by this code so no need to differentiate between
302// construct call and normal call.
303static void ArrayNativeCode(MacroAssembler* masm,
Steve Blockd0582a62009-12-15 09:54:21 +0000304 Label* call_generic_code) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000305 Label argc_one_or_more, argc_two_or_more;
306
307 // Check for array construction with zero arguments or one.
308 __ cmp(r0, Operand(0));
309 __ b(ne, &argc_one_or_more);
310
311 // Handle construction of an empty array.
312 AllocateEmptyJSArray(masm,
313 r1,
314 r2,
315 r3,
316 r4,
317 r5,
318 JSArray::kPreallocatedArrayElements,
319 call_generic_code);
320 __ IncrementCounter(&Counters::array_function_native, 1, r3, r4);
321 // Setup return value, remove receiver from stack and return.
322 __ mov(r0, r2);
323 __ add(sp, sp, Operand(kPointerSize));
324 __ Jump(lr);
325
326 // Check for one argument. Bail out if argument is not smi or if it is
327 // negative.
328 __ bind(&argc_one_or_more);
329 __ cmp(r0, Operand(1));
330 __ b(ne, &argc_two_or_more);
331 ASSERT(kSmiTag == 0);
332 __ ldr(r2, MemOperand(sp)); // Get the argument from the stack.
333 __ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
334 __ b(ne, call_generic_code);
335
336 // Handle construction of an empty array of a certain size. Bail out if size
337 // is too large to actually allocate an elements array.
338 ASSERT(kSmiTag == 0);
339 __ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
340 __ b(ge, call_generic_code);
341
342 // r0: argc
343 // r1: constructor
344 // r2: array_size (smi)
345 // sp[0]: argument
346 AllocateJSArray(masm,
347 r1,
348 r2,
349 r3,
350 r4,
351 r5,
352 r6,
353 r7,
354 true,
355 call_generic_code);
356 __ IncrementCounter(&Counters::array_function_native, 1, r2, r4);
357 // Setup return value, remove receiver and argument from stack and return.
358 __ mov(r0, r3);
359 __ add(sp, sp, Operand(2 * kPointerSize));
360 __ Jump(lr);
361
362 // Handle construction of an array from a list of arguments.
363 __ bind(&argc_two_or_more);
364 __ mov(r2, Operand(r0, LSL, kSmiTagSize)); // Convet argc to a smi.
365
366 // r0: argc
367 // r1: constructor
368 // r2: array_size (smi)
369 // sp[0]: last argument
370 AllocateJSArray(masm,
371 r1,
372 r2,
373 r3,
374 r4,
375 r5,
376 r6,
377 r7,
378 false,
379 call_generic_code);
380 __ IncrementCounter(&Counters::array_function_native, 1, r2, r6);
381
382 // Fill arguments as array elements. Copy from the top of the stack (last
383 // element) to the array backing store filling it backwards. Note:
384 // elements_array_end points after the backing store therefore PreIndex is
385 // used when filling the backing store.
386 // r0: argc
387 // r3: JSArray
388 // r4: elements_array storage start (untagged)
389 // r5: elements_array_end (untagged)
390 // sp[0]: last argument
391 Label loop, entry;
392 __ jmp(&entry);
393 __ bind(&loop);
394 __ ldr(r2, MemOperand(sp, kPointerSize, PostIndex));
395 __ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
396 __ bind(&entry);
397 __ cmp(r4, r5);
398 __ b(lt, &loop);
399
400 // Remove caller arguments and receiver from the stack, setup return value and
401 // return.
402 // r0: argc
403 // r3: JSArray
404 // sp[0]: receiver
405 __ add(sp, sp, Operand(kPointerSize));
406 __ mov(r0, r3);
407 __ Jump(lr);
408}
409
410
411void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
412 // ----------- S t a t e -------------
413 // -- r0 : number of arguments
414 // -- lr : return address
415 // -- sp[...]: constructor arguments
416 // -----------------------------------
417 Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
418
419 // Get the Array function.
420 GenerateLoadArrayFunction(masm, r1);
421
422 if (FLAG_debug_code) {
423 // Initial map for the builtin Array function shoud be a map.
424 __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
425 __ tst(r2, Operand(kSmiTagMask));
426 __ Assert(ne, "Unexpected initial map for Array function");
427 __ CompareObjectType(r2, r3, r4, MAP_TYPE);
428 __ Assert(eq, "Unexpected initial map for Array function");
429 }
430
431 // Run the native code for the Array function called as a normal function.
432 ArrayNativeCode(masm, &generic_array_code);
433
434 // Jump to the generic array code if the specialized code cannot handle
435 // the construction.
436 __ bind(&generic_array_code);
437 Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
438 Handle<Code> array_code(code);
439 __ Jump(array_code, RelocInfo::CODE_TARGET);
440}
441
442
443void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
444 // ----------- S t a t e -------------
445 // -- r0 : number of arguments
446 // -- r1 : constructor function
447 // -- lr : return address
448 // -- sp[...]: constructor arguments
449 // -----------------------------------
450 Label generic_constructor;
451
452 if (FLAG_debug_code) {
453 // The array construct code is only set for the builtin Array function which
454 // always have a map.
455 GenerateLoadArrayFunction(masm, r2);
456 __ cmp(r1, r2);
457 __ Assert(eq, "Unexpected Array function");
458 // Initial map for the builtin Array function should be a map.
459 __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
460 __ tst(r2, Operand(kSmiTagMask));
461 __ Assert(ne, "Unexpected initial map for Array function");
462 __ CompareObjectType(r2, r3, r4, MAP_TYPE);
463 __ Assert(eq, "Unexpected initial map for Array function");
464 }
465
466 // Run the native code for the Array function called as a constructor.
467 ArrayNativeCode(masm, &generic_constructor);
468
469 // Jump to the generic construct code in case the specialized code cannot
470 // handle the construction.
471 __ bind(&generic_constructor);
472 Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
473 Handle<Code> generic_construct_stub(code);
474 __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
475}
476
477
478void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
479 // ----------- S t a t e -------------
480 // -- r0 : number of arguments
481 // -- r1 : constructor function
482 // -- lr : return address
483 // -- sp[...]: constructor arguments
484 // -----------------------------------
485
486 Label non_function_call;
487 // Check that the function is not a smi.
488 __ tst(r1, Operand(kSmiTagMask));
489 __ b(eq, &non_function_call);
490 // Check that the function is a JSFunction.
491 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
492 __ b(ne, &non_function_call);
493
494 // Jump to the function-specific construct stub.
495 __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
496 __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kConstructStubOffset));
497 __ add(pc, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
498
499 // r0: number of arguments
500 // r1: called object
501 __ bind(&non_function_call);
502
503 // Set expected number of arguments to zero (not changing r0).
504 __ mov(r2, Operand(0));
505 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
506 __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
507 RelocInfo::CODE_TARGET);
508}
509
510
Leon Clarkee46be812010-01-19 14:06:41 +0000511static void Generate_JSConstructStubHelper(MacroAssembler* masm,
512 bool is_api_function) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000513 // Enter a construct frame.
514 __ EnterConstructFrame();
515
516 // Preserve the two incoming parameters on the stack.
517 __ mov(r0, Operand(r0, LSL, kSmiTagSize));
518 __ push(r0); // Smi-tagged arguments count.
519 __ push(r1); // Constructor function.
520
521 // Use r7 for holding undefined which is used in several places below.
522 __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
523
524 // Try to allocate the object without transitioning into C code. If any of the
525 // preconditions is not met, the code bails out to the runtime call.
526 Label rt_call, allocated;
527 if (FLAG_inline_new) {
528 Label undo_allocation;
529#ifdef ENABLE_DEBUGGER_SUPPORT
530 ExternalReference debug_step_in_fp =
531 ExternalReference::debug_step_in_fp_address();
532 __ mov(r2, Operand(debug_step_in_fp));
533 __ ldr(r2, MemOperand(r2));
534 __ tst(r2, r2);
535 __ b(nz, &rt_call);
536#endif
537
538 // Load the initial map and verify that it is in fact a map.
539 // r1: constructor function
540 // r7: undefined
541 __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
542 __ tst(r2, Operand(kSmiTagMask));
543 __ b(eq, &rt_call);
544 __ CompareObjectType(r2, r3, r4, MAP_TYPE);
545 __ b(ne, &rt_call);
546
547 // Check that the constructor is not constructing a JSFunction (see comments
548 // in Runtime_NewObject in runtime.cc). In which case the initial map's
549 // instance type would be JS_FUNCTION_TYPE.
550 // r1: constructor function
551 // r2: initial map
552 // r7: undefined
553 __ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
554 __ b(eq, &rt_call);
555
556 // Now allocate the JSObject on the heap.
557 // r1: constructor function
558 // r2: initial map
559 // r7: undefined
560 __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
561 __ AllocateInNewSpace(r3, r4, r5, r6, &rt_call, NO_ALLOCATION_FLAGS);
562
563 // Allocated the JSObject, now initialize the fields. Map is set to initial
564 // map and properties and elements are set to empty fixed array.
565 // r1: constructor function
566 // r2: initial map
567 // r3: object size
568 // r4: JSObject (not tagged)
569 // r7: undefined
570 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
571 __ mov(r5, r4);
572 ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
573 __ str(r2, MemOperand(r5, kPointerSize, PostIndex));
574 ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
575 __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
576 ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
577 __ str(r6, MemOperand(r5, kPointerSize, PostIndex));
578
579 // Fill all the in-object properties with undefined.
580 // r1: constructor function
581 // r2: initial map
582 // r3: object size (in words)
583 // r4: JSObject (not tagged)
584 // r5: First in-object property of JSObject (not tagged)
585 // r7: undefined
586 __ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
587 ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
588 { Label loop, entry;
589 __ b(&entry);
590 __ bind(&loop);
591 __ str(r7, MemOperand(r5, kPointerSize, PostIndex));
592 __ bind(&entry);
593 __ cmp(r5, Operand(r6));
594 __ b(lt, &loop);
595 }
596
597 // Add the object tag to make the JSObject real, so that we can continue and
598 // jump into the continuation code at any time from now on. Any failures
599 // need to undo the allocation, so that the heap is in a consistent state
600 // and verifiable.
601 __ add(r4, r4, Operand(kHeapObjectTag));
602
603 // Check if a non-empty properties array is needed. Continue with allocated
604 // object if not fall through to runtime call if it is.
605 // r1: constructor function
606 // r4: JSObject
607 // r5: start of next object (not tagged)
608 // r7: undefined
609 __ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
610 // The field instance sizes contains both pre-allocated property fields and
611 // in-object properties.
612 __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
613 __ and_(r6,
614 r0,
615 Operand(0x000000FF << Map::kPreAllocatedPropertyFieldsByte * 8));
616 __ add(r3, r3, Operand(r6, LSR, Map::kPreAllocatedPropertyFieldsByte * 8));
617 __ and_(r6, r0, Operand(0x000000FF << Map::kInObjectPropertiesByte * 8));
618 __ sub(r3, r3, Operand(r6, LSR, Map::kInObjectPropertiesByte * 8), SetCC);
619
620 // Done if no extra properties are to be allocated.
621 __ b(eq, &allocated);
622 __ Assert(pl, "Property allocation count failed.");
623
624 // Scale the number of elements by pointer size and add the header for
625 // FixedArrays to the start of the next object calculation from above.
626 // r1: constructor
627 // r3: number of elements in properties array
628 // r4: JSObject
629 // r5: start of next object
630 // r7: undefined
631 __ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
632 __ AllocateInNewSpace(r0,
633 r5,
634 r6,
635 r2,
636 &undo_allocation,
637 RESULT_CONTAINS_TOP);
638
639 // Initialize the FixedArray.
640 // r1: constructor
641 // r3: number of elements in properties array
642 // r4: JSObject
643 // r5: FixedArray (not tagged)
644 // r7: undefined
645 __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
646 __ mov(r2, r5);
647 ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
648 __ str(r6, MemOperand(r2, kPointerSize, PostIndex));
649 ASSERT_EQ(1 * kPointerSize, Array::kLengthOffset);
650 __ str(r3, MemOperand(r2, kPointerSize, PostIndex));
651
652 // Initialize the fields to undefined.
653 // r1: constructor function
654 // r2: First element of FixedArray (not tagged)
655 // r3: number of elements in properties array
656 // r4: JSObject
657 // r5: FixedArray (not tagged)
658 // r7: undefined
659 __ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
660 ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
661 { Label loop, entry;
662 __ b(&entry);
663 __ bind(&loop);
664 __ str(r7, MemOperand(r2, kPointerSize, PostIndex));
665 __ bind(&entry);
666 __ cmp(r2, Operand(r6));
667 __ b(lt, &loop);
668 }
669
670 // Store the initialized FixedArray into the properties field of
671 // the JSObject
672 // r1: constructor function
673 // r4: JSObject
674 // r5: FixedArray (not tagged)
675 __ add(r5, r5, Operand(kHeapObjectTag)); // Add the heap tag.
676 __ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
677
678 // Continue with JSObject being successfully allocated
679 // r1: constructor function
680 // r4: JSObject
681 __ jmp(&allocated);
682
683 // Undo the setting of the new top so that the heap is verifiable. For
684 // example, the map's unused properties potentially do not match the
685 // allocated objects unused properties.
686 // r4: JSObject (previous new top)
687 __ bind(&undo_allocation);
688 __ UndoAllocationInNewSpace(r4, r5);
689 }
690
691 // Allocate the new receiver object using the runtime call.
692 // r1: constructor function
693 __ bind(&rt_call);
694 __ push(r1); // argument for Runtime_NewObject
695 __ CallRuntime(Runtime::kNewObject, 1);
696 __ mov(r4, r0);
697
698 // Receiver for constructor call allocated.
699 // r4: JSObject
700 __ bind(&allocated);
701 __ push(r4);
702
703 // Push the function and the allocated receiver from the stack.
704 // sp[0]: receiver (newly allocated object)
705 // sp[1]: constructor function
706 // sp[2]: number of arguments (smi-tagged)
707 __ ldr(r1, MemOperand(sp, kPointerSize));
708 __ push(r1); // Constructor function.
709 __ push(r4); // Receiver.
710
711 // Reload the number of arguments from the stack.
712 // r1: constructor function
713 // sp[0]: receiver
714 // sp[1]: constructor function
715 // sp[2]: receiver
716 // sp[3]: constructor function
717 // sp[4]: number of arguments (smi-tagged)
718 __ ldr(r3, MemOperand(sp, 4 * kPointerSize));
719
720 // Setup pointer to last argument.
721 __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
722
723 // Setup number of arguments for function call below
724 __ mov(r0, Operand(r3, LSR, kSmiTagSize));
725
726 // Copy arguments and receiver to the expression stack.
727 // r0: number of arguments
728 // r2: address of last argument (caller sp)
729 // r1: constructor function
730 // r3: number of arguments (smi-tagged)
731 // sp[0]: receiver
732 // sp[1]: constructor function
733 // sp[2]: receiver
734 // sp[3]: constructor function
735 // sp[4]: number of arguments (smi-tagged)
736 Label loop, entry;
737 __ b(&entry);
738 __ bind(&loop);
739 __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
740 __ push(ip);
741 __ bind(&entry);
742 __ sub(r3, r3, Operand(2), SetCC);
743 __ b(ge, &loop);
744
745 // Call the function.
746 // r0: number of arguments
747 // r1: constructor function
Leon Clarkee46be812010-01-19 14:06:41 +0000748 if (is_api_function) {
749 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
750 Handle<Code> code = Handle<Code>(
751 Builtins::builtin(Builtins::HandleApiCallConstruct));
752 ParameterCount expected(0);
753 __ InvokeCode(code, expected, expected,
754 RelocInfo::CODE_TARGET, CALL_FUNCTION);
755 } else {
756 ParameterCount actual(r0);
757 __ InvokeFunction(r1, actual, CALL_FUNCTION);
758 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000759
760 // Pop the function from the stack.
761 // sp[0]: constructor function
762 // sp[2]: receiver
763 // sp[3]: constructor function
764 // sp[4]: number of arguments (smi-tagged)
765 __ pop();
766
767 // Restore context from the frame.
768 // r0: result
769 // sp[0]: receiver
770 // sp[1]: constructor function
771 // sp[2]: number of arguments (smi-tagged)
772 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
773
774 // If the result is an object (in the ECMA sense), we should get rid
775 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
776 // on page 74.
777 Label use_receiver, exit;
778
779 // If the result is a smi, it is *not* an object in the ECMA sense.
780 // r0: result
781 // sp[0]: receiver (newly allocated object)
782 // sp[1]: constructor function
783 // sp[2]: number of arguments (smi-tagged)
784 __ tst(r0, Operand(kSmiTagMask));
785 __ b(eq, &use_receiver);
786
787 // If the type of the result (stored in its map) is less than
788 // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
789 __ CompareObjectType(r0, r3, r3, FIRST_JS_OBJECT_TYPE);
790 __ b(ge, &exit);
791
792 // Throw away the result of the constructor invocation and use the
793 // on-stack receiver as the result.
794 __ bind(&use_receiver);
795 __ ldr(r0, MemOperand(sp));
796
797 // Remove receiver from the stack, remove caller arguments, and
798 // return.
799 __ bind(&exit);
800 // r0: result
801 // sp[0]: receiver (newly allocated object)
802 // sp[1]: constructor function
803 // sp[2]: number of arguments (smi-tagged)
804 __ ldr(r1, MemOperand(sp, 2 * kPointerSize));
805 __ LeaveConstructFrame();
806 __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
807 __ add(sp, sp, Operand(kPointerSize));
808 __ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
809 __ Jump(lr);
810}
811
812
Leon Clarkee46be812010-01-19 14:06:41 +0000813void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
814 Generate_JSConstructStubHelper(masm, false);
815}
816
817
818void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
819 Generate_JSConstructStubHelper(masm, true);
820}
821
822
Steve Blocka7e24c12009-10-30 11:49:00 +0000823static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
824 bool is_construct) {
825 // Called from Generate_JS_Entry
826 // r0: code entry
827 // r1: function
828 // r2: receiver
829 // r3: argc
830 // r4: argv
831 // r5-r7, cp may be clobbered
832
833 // Clear the context before we push it when entering the JS frame.
834 __ mov(cp, Operand(0));
835
836 // Enter an internal frame.
837 __ EnterInternalFrame();
838
839 // Set up the context from the function argument.
840 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
841
842 // Set up the roots register.
843 ExternalReference roots_address = ExternalReference::roots_address();
844 __ mov(r10, Operand(roots_address));
845
846 // Push the function and the receiver onto the stack.
847 __ push(r1);
848 __ push(r2);
849
850 // Copy arguments to the stack in a loop.
851 // r1: function
852 // r3: argc
853 // r4: argv, i.e. points to first arg
854 Label loop, entry;
855 __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
856 // r2 points past last arg.
857 __ b(&entry);
858 __ bind(&loop);
859 __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter
860 __ ldr(r0, MemOperand(r0)); // dereference handle
861 __ push(r0); // push parameter
862 __ bind(&entry);
863 __ cmp(r4, Operand(r2));
864 __ b(ne, &loop);
865
866 // Initialize all JavaScript callee-saved registers, since they will be seen
867 // by the garbage collector as part of handlers.
868 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
869 __ mov(r5, Operand(r4));
870 __ mov(r6, Operand(r4));
871 __ mov(r7, Operand(r4));
872 if (kR9Available == 1) {
873 __ mov(r9, Operand(r4));
874 }
875
876 // Invoke the code and pass argc as r0.
877 __ mov(r0, Operand(r3));
878 if (is_construct) {
879 __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
880 RelocInfo::CODE_TARGET);
881 } else {
882 ParameterCount actual(r0);
883 __ InvokeFunction(r1, actual, CALL_FUNCTION);
884 }
885
886 // Exit the JS frame and remove the parameters (except function), and return.
887 // Respect ABI stack constraint.
888 __ LeaveInternalFrame();
889 __ Jump(lr);
890
891 // r0: result
892}
893
894
895void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
896 Generate_JSEntryTrampolineHelper(masm, false);
897}
898
899
900void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
901 Generate_JSEntryTrampolineHelper(masm, true);
902}
903
904
905void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
906 // 1. Make sure we have at least one argument.
907 // r0: actual number of argument
908 { Label done;
909 __ tst(r0, Operand(r0));
910 __ b(ne, &done);
911 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
912 __ push(r2);
913 __ add(r0, r0, Operand(1));
914 __ bind(&done);
915 }
916
917 // 2. Get the function to call from the stack.
918 // r0: actual number of argument
919 { Label done, non_function, function;
920 __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
921 __ tst(r1, Operand(kSmiTagMask));
922 __ b(eq, &non_function);
923 __ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
924 __ b(eq, &function);
925
926 // Non-function called: Clear the function to force exception.
927 __ bind(&non_function);
928 __ mov(r1, Operand(0));
929 __ b(&done);
930
931 // Change the context eagerly because it will be used below to get the
932 // right global object.
933 __ bind(&function);
934 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
935
936 __ bind(&done);
937 }
938
939 // 3. Make sure first argument is an object; convert if necessary.
940 // r0: actual number of arguments
941 // r1: function
942 { Label call_to_object, use_global_receiver, patch_receiver, done;
943 __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
944 __ ldr(r2, MemOperand(r2, -kPointerSize));
945
946 // r0: actual number of arguments
947 // r1: function
948 // r2: first argument
949 __ tst(r2, Operand(kSmiTagMask));
950 __ b(eq, &call_to_object);
951
952 __ LoadRoot(r3, Heap::kNullValueRootIndex);
953 __ cmp(r2, r3);
954 __ b(eq, &use_global_receiver);
955 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
956 __ cmp(r2, r3);
957 __ b(eq, &use_global_receiver);
958
959 __ CompareObjectType(r2, r3, r3, FIRST_JS_OBJECT_TYPE);
960 __ b(lt, &call_to_object);
961 __ cmp(r3, Operand(LAST_JS_OBJECT_TYPE));
962 __ b(le, &done);
963
964 __ bind(&call_to_object);
965 __ EnterInternalFrame();
966
967 // Store number of arguments and function across the call into the runtime.
968 __ mov(r0, Operand(r0, LSL, kSmiTagSize));
969 __ push(r0);
970 __ push(r1);
971
972 __ push(r2);
973 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
974 __ mov(r2, r0);
975
976 // Restore number of arguments and function.
977 __ pop(r1);
978 __ pop(r0);
979 __ mov(r0, Operand(r0, ASR, kSmiTagSize));
980
981 __ LeaveInternalFrame();
982 __ b(&patch_receiver);
983
984 // Use the global receiver object from the called function as the receiver.
985 __ bind(&use_global_receiver);
986 const int kGlobalIndex =
987 Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
988 __ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
Steve Blockd0582a62009-12-15 09:54:21 +0000989 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalContextOffset));
990 __ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
Steve Blocka7e24c12009-10-30 11:49:00 +0000991 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
992
993 __ bind(&patch_receiver);
994 __ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
995 __ str(r2, MemOperand(r3, -kPointerSize));
996
997 __ bind(&done);
998 }
999
1000 // 4. Shift stuff one slot down the stack
1001 // r0: actual number of arguments (including call() receiver)
1002 // r1: function
1003 { Label loop;
1004 // Calculate the copy start address (destination). Copy end address is sp.
1005 __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1006 __ add(r2, r2, Operand(kPointerSize)); // copy receiver too
1007
1008 __ bind(&loop);
1009 __ ldr(ip, MemOperand(r2, -kPointerSize));
1010 __ str(ip, MemOperand(r2));
1011 __ sub(r2, r2, Operand(kPointerSize));
1012 __ cmp(r2, sp);
1013 __ b(ne, &loop);
1014 }
1015
1016 // 5. Adjust the actual number of arguments and remove the top element.
1017 // r0: actual number of arguments (including call() receiver)
1018 // r1: function
1019 __ sub(r0, r0, Operand(1));
1020 __ add(sp, sp, Operand(kPointerSize));
1021
1022 // 6. Get the code for the function or the non-function builtin.
1023 // If number of expected arguments matches, then call. Otherwise restart
1024 // the arguments adaptor stub.
1025 // r0: actual number of arguments
1026 // r1: function
1027 { Label invoke;
1028 __ tst(r1, r1);
1029 __ b(ne, &invoke);
1030 __ mov(r2, Operand(0)); // expected arguments is 0 for CALL_NON_FUNCTION
1031 __ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
1032 __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1033 RelocInfo::CODE_TARGET);
1034
1035 __ bind(&invoke);
1036 __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
1037 __ ldr(r2,
1038 FieldMemOperand(r3,
1039 SharedFunctionInfo::kFormalParameterCountOffset));
1040 __ ldr(r3,
1041 MemOperand(r3, SharedFunctionInfo::kCodeOffset - kHeapObjectTag));
1042 __ add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
1043 __ cmp(r2, r0); // Check formal and actual parameter counts.
1044 __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
1045 RelocInfo::CODE_TARGET, ne);
1046
1047 // 7. Jump to the code in r3 without checking arguments.
1048 ParameterCount expected(0);
1049 __ InvokeCode(r3, expected, expected, JUMP_FUNCTION);
1050 }
1051}
1052
1053
1054void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1055 const int kIndexOffset = -5 * kPointerSize;
1056 const int kLimitOffset = -4 * kPointerSize;
1057 const int kArgsOffset = 2 * kPointerSize;
1058 const int kRecvOffset = 3 * kPointerSize;
1059 const int kFunctionOffset = 4 * kPointerSize;
1060
1061 __ EnterInternalFrame();
1062
1063 __ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function
1064 __ push(r0);
1065 __ ldr(r0, MemOperand(fp, kArgsOffset)); // get the args array
1066 __ push(r0);
1067 __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_JS);
1068
Steve Blockd0582a62009-12-15 09:54:21 +00001069 // Check the stack for overflow. We are not trying need to catch
1070 // interruptions (e.g. debug break and preemption) here, so the "real stack
1071 // limit" is checked.
Steve Blocka7e24c12009-10-30 11:49:00 +00001072 Label okay;
Steve Blockd0582a62009-12-15 09:54:21 +00001073 __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
1074 // Make r2 the space we have left. The stack might already be overflowed
1075 // here which will cause r2 to become negative.
Steve Blocka7e24c12009-10-30 11:49:00 +00001076 __ sub(r2, sp, r2);
Steve Blockd0582a62009-12-15 09:54:21 +00001077 // Check if the arguments will overflow the stack.
Steve Blocka7e24c12009-10-30 11:49:00 +00001078 __ cmp(r2, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
Steve Blockd0582a62009-12-15 09:54:21 +00001079 __ b(gt, &okay); // Signed comparison.
Steve Blocka7e24c12009-10-30 11:49:00 +00001080
1081 // Out of stack space.
1082 __ ldr(r1, MemOperand(fp, kFunctionOffset));
1083 __ push(r1);
1084 __ push(r0);
1085 __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_JS);
Steve Blockd0582a62009-12-15 09:54:21 +00001086 // End of stack check.
Steve Blocka7e24c12009-10-30 11:49:00 +00001087
1088 // Push current limit and index.
1089 __ bind(&okay);
1090 __ push(r0); // limit
1091 __ mov(r1, Operand(0)); // initial index
1092 __ push(r1);
1093
1094 // Change context eagerly to get the right global object if necessary.
1095 __ ldr(r0, MemOperand(fp, kFunctionOffset));
1096 __ ldr(cp, FieldMemOperand(r0, JSFunction::kContextOffset));
1097
1098 // Compute the receiver.
1099 Label call_to_object, use_global_receiver, push_receiver;
1100 __ ldr(r0, MemOperand(fp, kRecvOffset));
1101 __ tst(r0, Operand(kSmiTagMask));
1102 __ b(eq, &call_to_object);
1103 __ LoadRoot(r1, Heap::kNullValueRootIndex);
1104 __ cmp(r0, r1);
1105 __ b(eq, &use_global_receiver);
1106 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1107 __ cmp(r0, r1);
1108 __ b(eq, &use_global_receiver);
1109
1110 // Check if the receiver is already a JavaScript object.
1111 // r0: receiver
1112 __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE);
1113 __ b(lt, &call_to_object);
1114 __ cmp(r1, Operand(LAST_JS_OBJECT_TYPE));
1115 __ b(le, &push_receiver);
1116
1117 // Convert the receiver to a regular object.
1118 // r0: receiver
1119 __ bind(&call_to_object);
1120 __ push(r0);
1121 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS);
1122 __ b(&push_receiver);
1123
1124 // Use the current global receiver object as the receiver.
1125 __ bind(&use_global_receiver);
1126 const int kGlobalOffset =
1127 Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
1128 __ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
Steve Blockd0582a62009-12-15 09:54:21 +00001129 __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalContextOffset));
1130 __ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
Steve Blocka7e24c12009-10-30 11:49:00 +00001131 __ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
1132
1133 // Push the receiver.
1134 // r0: receiver
1135 __ bind(&push_receiver);
1136 __ push(r0);
1137
1138 // Copy all arguments from the array to the stack.
1139 Label entry, loop;
1140 __ ldr(r0, MemOperand(fp, kIndexOffset));
1141 __ b(&entry);
1142
1143 // Load the current argument from the arguments array and push it to the
1144 // stack.
1145 // r0: current argument index
1146 __ bind(&loop);
1147 __ ldr(r1, MemOperand(fp, kArgsOffset));
1148 __ push(r1);
1149 __ push(r0);
1150
1151 // Call the runtime to access the property in the arguments array.
1152 __ CallRuntime(Runtime::kGetProperty, 2);
1153 __ push(r0);
1154
1155 // Use inline caching to access the arguments.
1156 __ ldr(r0, MemOperand(fp, kIndexOffset));
1157 __ add(r0, r0, Operand(1 << kSmiTagSize));
1158 __ str(r0, MemOperand(fp, kIndexOffset));
1159
1160 // Test if the copy loop has finished copying all the elements from the
1161 // arguments object.
1162 __ bind(&entry);
1163 __ ldr(r1, MemOperand(fp, kLimitOffset));
1164 __ cmp(r0, r1);
1165 __ b(ne, &loop);
1166
1167 // Invoke the function.
1168 ParameterCount actual(r0);
1169 __ mov(r0, Operand(r0, ASR, kSmiTagSize));
1170 __ ldr(r1, MemOperand(fp, kFunctionOffset));
1171 __ InvokeFunction(r1, actual, CALL_FUNCTION);
1172
1173 // Tear down the internal frame and remove function, receiver and args.
1174 __ LeaveInternalFrame();
1175 __ add(sp, sp, Operand(3 * kPointerSize));
1176 __ Jump(lr);
1177}
1178
1179
1180static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1181 __ mov(r0, Operand(r0, LSL, kSmiTagSize));
1182 __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1183 __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
1184 __ add(fp, sp, Operand(3 * kPointerSize));
1185}
1186
1187
1188static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1189 // ----------- S t a t e -------------
1190 // -- r0 : result being passed through
1191 // -----------------------------------
1192 // Get the number of arguments passed (as a smi), tear down the frame and
1193 // then tear down the parameters.
1194 __ ldr(r1, MemOperand(fp, -3 * kPointerSize));
1195 __ mov(sp, fp);
1196 __ ldm(ia_w, sp, fp.bit() | lr.bit());
1197 __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
1198 __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver
1199}
1200
1201
1202void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1203 // ----------- S t a t e -------------
1204 // -- r0 : actual number of arguments
1205 // -- r1 : function (passed through to callee)
1206 // -- r2 : expected number of arguments
1207 // -- r3 : code entry to call
1208 // -----------------------------------
1209
1210 Label invoke, dont_adapt_arguments;
1211
1212 Label enough, too_few;
1213 __ cmp(r0, Operand(r2));
1214 __ b(lt, &too_few);
1215 __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1216 __ b(eq, &dont_adapt_arguments);
1217
1218 { // Enough parameters: actual >= expected
1219 __ bind(&enough);
1220 EnterArgumentsAdaptorFrame(masm);
1221
1222 // Calculate copy start address into r0 and copy end address into r2.
1223 // r0: actual number of arguments as a smi
1224 // r1: function
1225 // r2: expected number of arguments
1226 // r3: code entry to call
1227 __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1228 // adjust for return address and receiver
1229 __ add(r0, r0, Operand(2 * kPointerSize));
1230 __ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
1231
1232 // Copy the arguments (including the receiver) to the new stack frame.
1233 // r0: copy start address
1234 // r1: function
1235 // r2: copy end address
1236 // r3: code entry to call
1237
1238 Label copy;
1239 __ bind(&copy);
1240 __ ldr(ip, MemOperand(r0, 0));
1241 __ push(ip);
1242 __ cmp(r0, r2); // Compare before moving to next argument.
1243 __ sub(r0, r0, Operand(kPointerSize));
1244 __ b(ne, &copy);
1245
1246 __ b(&invoke);
1247 }
1248
1249 { // Too few parameters: Actual < expected
1250 __ bind(&too_few);
1251 EnterArgumentsAdaptorFrame(masm);
1252
1253 // Calculate copy start address into r0 and copy end address is fp.
1254 // r0: actual number of arguments as a smi
1255 // r1: function
1256 // r2: expected number of arguments
1257 // r3: code entry to call
1258 __ add(r0, fp, Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
1259
1260 // Copy the arguments (including the receiver) to the new stack frame.
1261 // r0: copy start address
1262 // r1: function
1263 // r2: expected number of arguments
1264 // r3: code entry to call
1265 Label copy;
1266 __ bind(&copy);
1267 // Adjust load for return address and receiver.
1268 __ ldr(ip, MemOperand(r0, 2 * kPointerSize));
1269 __ push(ip);
1270 __ cmp(r0, fp); // Compare before moving to next argument.
1271 __ sub(r0, r0, Operand(kPointerSize));
1272 __ b(ne, &copy);
1273
1274 // Fill the remaining expected arguments with undefined.
1275 // r1: function
1276 // r2: expected number of arguments
1277 // r3: code entry to call
1278 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1279 __ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
1280 __ sub(r2, r2, Operand(4 * kPointerSize)); // Adjust for frame.
1281
1282 Label fill;
1283 __ bind(&fill);
1284 __ push(ip);
1285 __ cmp(sp, r2);
1286 __ b(ne, &fill);
1287 }
1288
1289 // Call the entry point.
1290 __ bind(&invoke);
1291 __ Call(r3);
1292
1293 // Exit frame and return.
1294 LeaveArgumentsAdaptorFrame(masm);
1295 __ Jump(lr);
1296
1297
1298 // -------------------------------------------
1299 // Dont adapt arguments.
1300 // -------------------------------------------
1301 __ bind(&dont_adapt_arguments);
1302 __ Jump(r3);
1303}
1304
1305
1306#undef __
1307
1308} } // namespace v8::internal