blob: 65a408b48bc3d466a72217d48d500a9cf559d3ed [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "bootstrapper.h"
31#include "codegen-inl.h"
32#include "assembler-x64.h"
33#include "macro-assembler-x64.h"
34#include "serialize.h"
35#include "debug.h"
36
37namespace v8 {
38namespace internal {
39
40MacroAssembler::MacroAssembler(void* buffer, int size)
Steve Block3ce2e202009-11-05 08:53:23 +000041 : Assembler(buffer, size),
42 unresolved_(0),
43 generating_stub_(false),
44 allow_stub_calls_(true),
45 code_object_(Heap::undefined_value()) {
Steve Blocka7e24c12009-10-30 11:49:00 +000046}
47
48
Steve Block3ce2e202009-11-05 08:53:23 +000049void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
Steve Blocka7e24c12009-10-30 11:49:00 +000050 movq(destination, Operand(r13, index << kPointerSizeLog2));
51}
52
53
54void MacroAssembler::PushRoot(Heap::RootListIndex index) {
55 push(Operand(r13, index << kPointerSizeLog2));
56}
57
58
Steve Block3ce2e202009-11-05 08:53:23 +000059void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
Steve Blocka7e24c12009-10-30 11:49:00 +000060 cmpq(with, Operand(r13, index << kPointerSizeLog2));
61}
62
63
Steve Block3ce2e202009-11-05 08:53:23 +000064void MacroAssembler::CompareRoot(Operand with, Heap::RootListIndex index) {
Steve Blocka7e24c12009-10-30 11:49:00 +000065 LoadRoot(kScratchRegister, index);
66 cmpq(with, kScratchRegister);
67}
68
69
Steve Blockd0582a62009-12-15 09:54:21 +000070void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) {
71 CompareRoot(rsp, Heap::kStackLimitRootIndex);
72 j(below, on_stack_overflow);
73}
74
75
Steve Blocka7e24c12009-10-30 11:49:00 +000076static void RecordWriteHelper(MacroAssembler* masm,
77 Register object,
78 Register addr,
79 Register scratch) {
80 Label fast;
81
82 // Compute the page start address from the heap object pointer, and reuse
83 // the 'object' register for it.
84 ASSERT(is_int32(~Page::kPageAlignmentMask));
85 masm->and_(object,
86 Immediate(static_cast<int32_t>(~Page::kPageAlignmentMask)));
87 Register page_start = object;
88
89 // Compute the bit addr in the remembered set/index of the pointer in the
90 // page. Reuse 'addr' as pointer_offset.
91 masm->subq(addr, page_start);
92 masm->shr(addr, Immediate(kPointerSizeLog2));
93 Register pointer_offset = addr;
94
95 // If the bit offset lies beyond the normal remembered set range, it is in
96 // the extra remembered set area of a large object.
97 masm->cmpq(pointer_offset, Immediate(Page::kPageSize / kPointerSize));
98 masm->j(less, &fast);
99
100 // Adjust 'page_start' so that addressing using 'pointer_offset' hits the
101 // extra remembered set after the large object.
102
103 // Load the array length into 'scratch'.
104 masm->movl(scratch,
105 Operand(page_start,
106 Page::kObjectStartOffset + FixedArray::kLengthOffset));
107 Register array_length = scratch;
108
109 // Extra remembered set starts right after the large object (a FixedArray), at
110 // page_start + kObjectStartOffset + objectSize
111 // where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length.
112 // Add the delta between the end of the normal RSet and the start of the
113 // extra RSet to 'page_start', so that addressing the bit using
114 // 'pointer_offset' hits the extra RSet words.
115 masm->lea(page_start,
116 Operand(page_start, array_length, times_pointer_size,
117 Page::kObjectStartOffset + FixedArray::kHeaderSize
118 - Page::kRSetEndOffset));
119
120 // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
121 // to limit code size. We should probably evaluate this decision by
122 // measuring the performance of an equivalent implementation using
123 // "simpler" instructions
124 masm->bind(&fast);
125 masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset);
126}
127
128
129class RecordWriteStub : public CodeStub {
130 public:
131 RecordWriteStub(Register object, Register addr, Register scratch)
132 : object_(object), addr_(addr), scratch_(scratch) { }
133
134 void Generate(MacroAssembler* masm);
135
136 private:
137 Register object_;
138 Register addr_;
139 Register scratch_;
140
141#ifdef DEBUG
142 void Print() {
143 PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n",
144 object_.code(), addr_.code(), scratch_.code());
145 }
146#endif
147
148 // Minor key encoding in 12 bits of three registers (object, address and
149 // scratch) OOOOAAAASSSS.
Steve Block3ce2e202009-11-05 08:53:23 +0000150 class ScratchBits : public BitField<uint32_t, 0, 4> {};
151 class AddressBits : public BitField<uint32_t, 4, 4> {};
152 class ObjectBits : public BitField<uint32_t, 8, 4> {};
Steve Blocka7e24c12009-10-30 11:49:00 +0000153
154 Major MajorKey() { return RecordWrite; }
155
156 int MinorKey() {
157 // Encode the registers.
158 return ObjectBits::encode(object_.code()) |
159 AddressBits::encode(addr_.code()) |
160 ScratchBits::encode(scratch_.code());
161 }
162};
163
164
165void RecordWriteStub::Generate(MacroAssembler* masm) {
166 RecordWriteHelper(masm, object_, addr_, scratch_);
167 masm->ret(0);
168}
169
170
171// Set the remembered set bit for [object+offset].
172// object is the object being stored into, value is the object being stored.
Steve Block3ce2e202009-11-05 08:53:23 +0000173// If offset is zero, then the smi_index register contains the array index into
174// the elements array represented as a smi. Otherwise it can be used as a
175// scratch register.
Steve Blocka7e24c12009-10-30 11:49:00 +0000176// All registers are clobbered by the operation.
177void MacroAssembler::RecordWrite(Register object,
178 int offset,
179 Register value,
Steve Block3ce2e202009-11-05 08:53:23 +0000180 Register smi_index) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000181 // First, check if a remembered set write is even needed. The tests below
182 // catch stores of Smis and stores into young gen (which does not have space
183 // for the remembered set bits.
184 Label done;
Steve Block3ce2e202009-11-05 08:53:23 +0000185 JumpIfSmi(value, &done);
Steve Blocka7e24c12009-10-30 11:49:00 +0000186
Steve Block3ce2e202009-11-05 08:53:23 +0000187 RecordWriteNonSmi(object, offset, value, smi_index);
188 bind(&done);
189}
190
191
192void MacroAssembler::RecordWriteNonSmi(Register object,
193 int offset,
194 Register scratch,
195 Register smi_index) {
196 Label done;
Steve Blocka7e24c12009-10-30 11:49:00 +0000197 // Test that the object address is not in the new space. We cannot
198 // set remembered set bits in the new space.
Steve Block3ce2e202009-11-05 08:53:23 +0000199 movq(scratch, object);
Steve Blocka7e24c12009-10-30 11:49:00 +0000200 ASSERT(is_int32(static_cast<int64_t>(Heap::NewSpaceMask())));
Steve Block3ce2e202009-11-05 08:53:23 +0000201 and_(scratch, Immediate(static_cast<int32_t>(Heap::NewSpaceMask())));
Steve Blocka7e24c12009-10-30 11:49:00 +0000202 movq(kScratchRegister, ExternalReference::new_space_start());
Steve Block3ce2e202009-11-05 08:53:23 +0000203 cmpq(scratch, kScratchRegister);
Steve Blocka7e24c12009-10-30 11:49:00 +0000204 j(equal, &done);
205
206 if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) {
207 // Compute the bit offset in the remembered set, leave it in 'value'.
Steve Block3ce2e202009-11-05 08:53:23 +0000208 lea(scratch, Operand(object, offset));
Steve Blocka7e24c12009-10-30 11:49:00 +0000209 ASSERT(is_int32(Page::kPageAlignmentMask));
Steve Block3ce2e202009-11-05 08:53:23 +0000210 and_(scratch, Immediate(static_cast<int32_t>(Page::kPageAlignmentMask)));
211 shr(scratch, Immediate(kObjectAlignmentBits));
Steve Blocka7e24c12009-10-30 11:49:00 +0000212
213 // Compute the page address from the heap object pointer, leave it in
214 // 'object' (immediate value is sign extended).
215 and_(object, Immediate(~Page::kPageAlignmentMask));
216
217 // NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
218 // to limit code size. We should probably evaluate this decision by
219 // measuring the performance of an equivalent implementation using
220 // "simpler" instructions
Steve Block3ce2e202009-11-05 08:53:23 +0000221 bts(Operand(object, Page::kRSetOffset), scratch);
Steve Blocka7e24c12009-10-30 11:49:00 +0000222 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000223 Register dst = smi_index;
Steve Blocka7e24c12009-10-30 11:49:00 +0000224 if (offset != 0) {
225 lea(dst, Operand(object, offset));
226 } else {
227 // array access: calculate the destination address in the same manner as
Steve Block3ce2e202009-11-05 08:53:23 +0000228 // KeyedStoreIC::GenerateGeneric.
229 SmiIndex index = SmiToIndex(smi_index, smi_index, kPointerSizeLog2);
230 lea(dst, Operand(object,
231 index.reg,
232 index.scale,
Steve Blocka7e24c12009-10-30 11:49:00 +0000233 FixedArray::kHeaderSize - kHeapObjectTag));
234 }
235 // If we are already generating a shared stub, not inlining the
236 // record write code isn't going to save us any memory.
237 if (generating_stub()) {
Steve Block3ce2e202009-11-05 08:53:23 +0000238 RecordWriteHelper(this, object, dst, scratch);
Steve Blocka7e24c12009-10-30 11:49:00 +0000239 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000240 RecordWriteStub stub(object, dst, scratch);
Steve Blocka7e24c12009-10-30 11:49:00 +0000241 CallStub(&stub);
242 }
243 }
244
245 bind(&done);
246}
247
248
249void MacroAssembler::Assert(Condition cc, const char* msg) {
250 if (FLAG_debug_code) Check(cc, msg);
251}
252
253
254void MacroAssembler::Check(Condition cc, const char* msg) {
255 Label L;
256 j(cc, &L);
257 Abort(msg);
258 // will not return here
259 bind(&L);
260}
261
262
263void MacroAssembler::NegativeZeroTest(Register result,
264 Register op,
265 Label* then_label) {
266 Label ok;
267 testl(result, result);
268 j(not_zero, &ok);
269 testl(op, op);
270 j(sign, then_label);
271 bind(&ok);
272}
273
274
275void MacroAssembler::Abort(const char* msg) {
276 // We want to pass the msg string like a smi to avoid GC
277 // problems, however msg is not guaranteed to be aligned
278 // properly. Instead, we pass an aligned pointer that is
279 // a proper v8 smi, but also pass the alignment difference
280 // from the real pointer as a smi.
281 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
282 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
283 // Note: p0 might not be a valid Smi *value*, but it has a valid Smi tag.
284 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
285#ifdef DEBUG
286 if (msg != NULL) {
287 RecordComment("Abort message: ");
288 RecordComment(msg);
289 }
290#endif
Steve Blockd0582a62009-12-15 09:54:21 +0000291 // Disable stub call restrictions to always allow calls to abort.
292 set_allow_stub_calls(true);
293
Steve Blocka7e24c12009-10-30 11:49:00 +0000294 push(rax);
295 movq(kScratchRegister, p0, RelocInfo::NONE);
296 push(kScratchRegister);
297 movq(kScratchRegister,
Steve Blockd0582a62009-12-15 09:54:21 +0000298 reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(p1 - p0))),
Steve Blocka7e24c12009-10-30 11:49:00 +0000299 RelocInfo::NONE);
300 push(kScratchRegister);
301 CallRuntime(Runtime::kAbort, 2);
302 // will not return here
Steve Blockd0582a62009-12-15 09:54:21 +0000303 int3();
Steve Blocka7e24c12009-10-30 11:49:00 +0000304}
305
306
307void MacroAssembler::CallStub(CodeStub* stub) {
308 ASSERT(allow_stub_calls()); // calls are not allowed in some stubs
309 Call(stub->GetCode(), RelocInfo::CODE_TARGET);
310}
311
312
Leon Clarkee46be812010-01-19 14:06:41 +0000313void MacroAssembler::TailCallStub(CodeStub* stub) {
314 ASSERT(allow_stub_calls()); // calls are not allowed in some stubs
315 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
316}
317
318
Steve Blocka7e24c12009-10-30 11:49:00 +0000319void MacroAssembler::StubReturn(int argc) {
320 ASSERT(argc >= 1 && generating_stub());
321 ret((argc - 1) * kPointerSize);
322}
323
324
325void MacroAssembler::IllegalOperation(int num_arguments) {
326 if (num_arguments > 0) {
327 addq(rsp, Immediate(num_arguments * kPointerSize));
328 }
329 LoadRoot(rax, Heap::kUndefinedValueRootIndex);
330}
331
332
333void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
334 CallRuntime(Runtime::FunctionForId(id), num_arguments);
335}
336
337
338void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
339 // If the expected number of arguments of the runtime function is
340 // constant, we check that the actual number of arguments match the
341 // expectation.
342 if (f->nargs >= 0 && f->nargs != num_arguments) {
343 IllegalOperation(num_arguments);
344 return;
345 }
346
347 Runtime::FunctionId function_id =
348 static_cast<Runtime::FunctionId>(f->stub_id);
349 RuntimeStub stub(function_id, num_arguments);
350 CallStub(&stub);
351}
352
353
354void MacroAssembler::TailCallRuntime(ExternalReference const& ext,
355 int num_arguments,
356 int result_size) {
357 // ----------- S t a t e -------------
358 // -- rsp[0] : return address
359 // -- rsp[8] : argument num_arguments - 1
360 // ...
361 // -- rsp[8 * num_arguments] : argument 0 (receiver)
362 // -----------------------------------
363
364 // TODO(1236192): Most runtime routines don't need the number of
365 // arguments passed in because it is constant. At some point we
366 // should remove this need and make the runtime routine entry code
367 // smarter.
368 movq(rax, Immediate(num_arguments));
369 JumpToRuntime(ext, result_size);
370}
371
372
373void MacroAssembler::JumpToRuntime(const ExternalReference& ext,
374 int result_size) {
375 // Set the entry point and jump to the C entry runtime stub.
376 movq(rbx, ext);
377 CEntryStub ces(result_size);
Steve Block3ce2e202009-11-05 08:53:23 +0000378 jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
Steve Blocka7e24c12009-10-30 11:49:00 +0000379}
380
381
382void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
383 bool resolved;
384 Handle<Code> code = ResolveBuiltin(id, &resolved);
385
386 const char* name = Builtins::GetName(id);
387 int argc = Builtins::GetArgumentsCount(id);
388
389 movq(target, code, RelocInfo::EMBEDDED_OBJECT);
390 if (!resolved) {
391 uint32_t flags =
392 Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
Steve Blocka7e24c12009-10-30 11:49:00 +0000393 Bootstrapper::FixupFlagsUseCodeObject::encode(true);
394 Unresolved entry = { pc_offset() - sizeof(intptr_t), flags, name };
395 unresolved_.Add(entry);
396 }
397 addq(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
398}
399
Steve Blocka7e24c12009-10-30 11:49:00 +0000400Handle<Code> MacroAssembler::ResolveBuiltin(Builtins::JavaScript id,
401 bool* resolved) {
402 // Move the builtin function into the temporary function slot by
403 // reading it from the builtins object. NOTE: We should be able to
404 // reduce this to two instructions by putting the function table in
405 // the global object instead of the "builtins" object and by using a
406 // real register for the function.
407 movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
408 movq(rdx, FieldOperand(rdx, GlobalObject::kBuiltinsOffset));
409 int builtins_offset =
410 JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
411 movq(rdi, FieldOperand(rdx, builtins_offset));
412
Steve Blocka7e24c12009-10-30 11:49:00 +0000413 return Builtins::GetCode(id, resolved);
414}
415
416
417void MacroAssembler::Set(Register dst, int64_t x) {
418 if (x == 0) {
419 xor_(dst, dst);
420 } else if (is_int32(x)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000421 movq(dst, Immediate(static_cast<int32_t>(x)));
Steve Blocka7e24c12009-10-30 11:49:00 +0000422 } else if (is_uint32(x)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000423 movl(dst, Immediate(static_cast<uint32_t>(x)));
Steve Blocka7e24c12009-10-30 11:49:00 +0000424 } else {
425 movq(dst, x, RelocInfo::NONE);
426 }
427}
428
429
430void MacroAssembler::Set(const Operand& dst, int64_t x) {
431 if (x == 0) {
432 xor_(kScratchRegister, kScratchRegister);
433 movq(dst, kScratchRegister);
434 } else if (is_int32(x)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000435 movq(dst, Immediate(static_cast<int32_t>(x)));
Steve Blocka7e24c12009-10-30 11:49:00 +0000436 } else if (is_uint32(x)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000437 movl(dst, Immediate(static_cast<uint32_t>(x)));
Steve Blocka7e24c12009-10-30 11:49:00 +0000438 } else {
439 movq(kScratchRegister, x, RelocInfo::NONE);
440 movq(dst, kScratchRegister);
441 }
442}
443
Steve Blocka7e24c12009-10-30 11:49:00 +0000444// ----------------------------------------------------------------------------
445// Smi tagging, untagging and tag detection.
446
Steve Block3ce2e202009-11-05 08:53:23 +0000447static int kSmiShift = kSmiTagSize + kSmiShiftSize;
Steve Blocka7e24c12009-10-30 11:49:00 +0000448
449void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000450 ASSERT_EQ(0, kSmiTag);
Steve Block3ce2e202009-11-05 08:53:23 +0000451 if (!dst.is(src)) {
452 movl(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000453 }
Steve Block3ce2e202009-11-05 08:53:23 +0000454 shl(dst, Immediate(kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +0000455}
456
457
458void MacroAssembler::Integer32ToSmi(Register dst,
459 Register src,
460 Label* on_overflow) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000461 ASSERT_EQ(0, kSmiTag);
Steve Block3ce2e202009-11-05 08:53:23 +0000462 // 32-bit integer always fits in a long smi.
Steve Blocka7e24c12009-10-30 11:49:00 +0000463 if (!dst.is(src)) {
464 movl(dst, src);
465 }
Steve Block3ce2e202009-11-05 08:53:23 +0000466 shl(dst, Immediate(kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +0000467}
468
469
Steve Block3ce2e202009-11-05 08:53:23 +0000470void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
471 Register src,
472 int constant) {
473 if (dst.is(src)) {
474 addq(dst, Immediate(constant));
475 } else {
476 lea(dst, Operand(src, constant));
477 }
478 shl(dst, Immediate(kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +0000479}
480
481
482void MacroAssembler::SmiToInteger32(Register dst, Register src) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000483 ASSERT_EQ(0, kSmiTag);
484 if (!dst.is(src)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000485 movq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000486 }
Steve Block3ce2e202009-11-05 08:53:23 +0000487 shr(dst, Immediate(kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +0000488}
489
490
491void MacroAssembler::SmiToInteger64(Register dst, Register src) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000492 ASSERT_EQ(0, kSmiTag);
Steve Block3ce2e202009-11-05 08:53:23 +0000493 if (!dst.is(src)) {
494 movq(dst, src);
495 }
496 sar(dst, Immediate(kSmiShift));
497}
498
499
500void MacroAssembler::SmiTest(Register src) {
501 testq(src, src);
502}
503
504
505void MacroAssembler::SmiCompare(Register dst, Register src) {
506 cmpq(dst, src);
507}
508
509
510void MacroAssembler::SmiCompare(Register dst, Smi* src) {
511 ASSERT(!dst.is(kScratchRegister));
512 if (src->value() == 0) {
513 testq(dst, dst);
514 } else {
515 Move(kScratchRegister, src);
516 cmpq(dst, kScratchRegister);
517 }
518}
519
520
521void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
522 cmpq(dst, src);
523}
524
525
526void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
527 if (src->value() == 0) {
528 // Only tagged long smi to have 32-bit representation.
529 cmpq(dst, Immediate(0));
530 } else {
531 Move(kScratchRegister, src);
532 cmpq(dst, kScratchRegister);
533 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000534}
535
536
537void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
538 Register src,
539 int power) {
540 ASSERT(power >= 0);
541 ASSERT(power < 64);
542 if (power == 0) {
543 SmiToInteger64(dst, src);
544 return;
545 }
Steve Block3ce2e202009-11-05 08:53:23 +0000546 if (!dst.is(src)) {
547 movq(dst, src);
548 }
549 if (power < kSmiShift) {
550 sar(dst, Immediate(kSmiShift - power));
551 } else if (power > kSmiShift) {
552 shl(dst, Immediate(power - kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +0000553 }
554}
555
556
Steve Blocka7e24c12009-10-30 11:49:00 +0000557Condition MacroAssembler::CheckSmi(Register src) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000558 ASSERT_EQ(0, kSmiTag);
559 testb(src, Immediate(kSmiTagMask));
Steve Block3ce2e202009-11-05 08:53:23 +0000560 return zero;
Steve Blocka7e24c12009-10-30 11:49:00 +0000561}
562
563
564Condition MacroAssembler::CheckPositiveSmi(Register src) {
565 ASSERT_EQ(0, kSmiTag);
Steve Block3ce2e202009-11-05 08:53:23 +0000566 movq(kScratchRegister, src);
567 rol(kScratchRegister, Immediate(1));
568 testl(kScratchRegister, Immediate(0x03));
Steve Blocka7e24c12009-10-30 11:49:00 +0000569 return zero;
570}
571
572
Steve Blocka7e24c12009-10-30 11:49:00 +0000573Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
574 if (first.is(second)) {
575 return CheckSmi(first);
576 }
577 movl(kScratchRegister, first);
578 orl(kScratchRegister, second);
Steve Block3ce2e202009-11-05 08:53:23 +0000579 testb(kScratchRegister, Immediate(kSmiTagMask));
580 return zero;
Steve Blocka7e24c12009-10-30 11:49:00 +0000581}
582
583
Leon Clarkee46be812010-01-19 14:06:41 +0000584Condition MacroAssembler::CheckEitherSmi(Register first, Register second) {
585 if (first.is(second)) {
586 return CheckSmi(first);
587 }
588 movl(kScratchRegister, first);
589 andl(kScratchRegister, second);
590 testb(kScratchRegister, Immediate(kSmiTagMask));
591 return zero;
592}
593
594
Steve Blocka7e24c12009-10-30 11:49:00 +0000595Condition MacroAssembler::CheckIsMinSmi(Register src) {
596 ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
Steve Block3ce2e202009-11-05 08:53:23 +0000597 movq(kScratchRegister, src);
598 rol(kScratchRegister, Immediate(1));
599 cmpq(kScratchRegister, Immediate(1));
Steve Blocka7e24c12009-10-30 11:49:00 +0000600 return equal;
601}
602
Steve Blocka7e24c12009-10-30 11:49:00 +0000603
604Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
Steve Block3ce2e202009-11-05 08:53:23 +0000605 // A 32-bit integer value can always be converted to a smi.
606 return always;
Steve Blocka7e24c12009-10-30 11:49:00 +0000607}
608
609
Steve Block3ce2e202009-11-05 08:53:23 +0000610Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
611 // An unsigned 32-bit integer value is valid as long as the high bit
612 // is not set.
613 testq(src, Immediate(0x80000000));
614 return zero;
615}
616
617
618void MacroAssembler::SmiNeg(Register dst, Register src, Label* on_smi_result) {
619 if (dst.is(src)) {
620 ASSERT(!dst.is(kScratchRegister));
621 movq(kScratchRegister, src);
622 neg(dst); // Low 32 bits are retained as zero by negation.
623 // Test if result is zero or Smi::kMinValue.
624 cmpq(dst, kScratchRegister);
625 j(not_equal, on_smi_result);
626 movq(src, kScratchRegister);
627 } else {
628 movq(dst, src);
629 neg(dst);
630 cmpq(dst, src);
631 // If the result is zero or Smi::kMinValue, negation failed to create a smi.
632 j(not_equal, on_smi_result);
Steve Blocka7e24c12009-10-30 11:49:00 +0000633 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000634}
635
636
637void MacroAssembler::SmiAdd(Register dst,
638 Register src1,
639 Register src2,
640 Label* on_not_smi_result) {
641 ASSERT(!dst.is(src2));
Steve Block3ce2e202009-11-05 08:53:23 +0000642 if (dst.is(src1)) {
643 addq(dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000644 Label smi_result;
645 j(no_overflow, &smi_result);
646 // Restore src1.
Steve Block3ce2e202009-11-05 08:53:23 +0000647 subq(src1, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000648 jmp(on_not_smi_result);
649 bind(&smi_result);
Steve Block3ce2e202009-11-05 08:53:23 +0000650 } else {
651 movq(dst, src1);
652 addq(dst, src2);
653 j(overflow, on_not_smi_result);
Steve Blocka7e24c12009-10-30 11:49:00 +0000654 }
655}
656
657
Steve Blocka7e24c12009-10-30 11:49:00 +0000658void MacroAssembler::SmiSub(Register dst,
659 Register src1,
660 Register src2,
661 Label* on_not_smi_result) {
662 ASSERT(!dst.is(src2));
Steve Block3ce2e202009-11-05 08:53:23 +0000663 if (dst.is(src1)) {
664 subq(dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000665 Label smi_result;
666 j(no_overflow, &smi_result);
667 // Restore src1.
Steve Block3ce2e202009-11-05 08:53:23 +0000668 addq(src1, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000669 jmp(on_not_smi_result);
670 bind(&smi_result);
Steve Block3ce2e202009-11-05 08:53:23 +0000671 } else {
672 movq(dst, src1);
673 subq(dst, src2);
674 j(overflow, on_not_smi_result);
Steve Blocka7e24c12009-10-30 11:49:00 +0000675 }
676}
677
678
679void MacroAssembler::SmiMul(Register dst,
680 Register src1,
681 Register src2,
682 Label* on_not_smi_result) {
683 ASSERT(!dst.is(src2));
Steve Block3ce2e202009-11-05 08:53:23 +0000684 ASSERT(!dst.is(kScratchRegister));
685 ASSERT(!src1.is(kScratchRegister));
686 ASSERT(!src2.is(kScratchRegister));
Steve Blocka7e24c12009-10-30 11:49:00 +0000687
688 if (dst.is(src1)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000689 Label failure, zero_correct_result;
690 movq(kScratchRegister, src1); // Create backup for later testing.
691 SmiToInteger64(dst, src1);
692 imul(dst, src2);
693 j(overflow, &failure);
694
695 // Check for negative zero result. If product is zero, and one
696 // argument is negative, go to slow case.
697 Label correct_result;
698 testq(dst, dst);
699 j(not_zero, &correct_result);
700
701 movq(dst, kScratchRegister);
702 xor_(dst, src2);
703 j(positive, &zero_correct_result); // Result was positive zero.
704
705 bind(&failure); // Reused failure exit, restores src1.
706 movq(src1, kScratchRegister);
707 jmp(on_not_smi_result);
708
709 bind(&zero_correct_result);
710 xor_(dst, dst);
711
712 bind(&correct_result);
713 } else {
714 SmiToInteger64(dst, src1);
715 imul(dst, src2);
716 j(overflow, on_not_smi_result);
717 // Check for negative zero result. If product is zero, and one
718 // argument is negative, go to slow case.
719 Label correct_result;
720 testq(dst, dst);
721 j(not_zero, &correct_result);
722 // One of src1 and src2 is zero, the check whether the other is
723 // negative.
Steve Blocka7e24c12009-10-30 11:49:00 +0000724 movq(kScratchRegister, src1);
Steve Block3ce2e202009-11-05 08:53:23 +0000725 xor_(kScratchRegister, src2);
726 j(negative, on_not_smi_result);
727 bind(&correct_result);
Steve Blocka7e24c12009-10-30 11:49:00 +0000728 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000729}
730
731
732void MacroAssembler::SmiTryAddConstant(Register dst,
733 Register src,
Steve Block3ce2e202009-11-05 08:53:23 +0000734 Smi* constant,
Steve Blocka7e24c12009-10-30 11:49:00 +0000735 Label* on_not_smi_result) {
736 // Does not assume that src is a smi.
Steve Block3ce2e202009-11-05 08:53:23 +0000737 ASSERT_EQ(static_cast<int>(1), static_cast<int>(kSmiTagMask));
Steve Blocka7e24c12009-10-30 11:49:00 +0000738 ASSERT_EQ(0, kSmiTag);
Steve Block3ce2e202009-11-05 08:53:23 +0000739 ASSERT(!dst.is(kScratchRegister));
740 ASSERT(!src.is(kScratchRegister));
Steve Blocka7e24c12009-10-30 11:49:00 +0000741
Steve Block3ce2e202009-11-05 08:53:23 +0000742 JumpIfNotSmi(src, on_not_smi_result);
743 Register tmp = (dst.is(src) ? kScratchRegister : dst);
744 Move(tmp, constant);
745 addq(tmp, src);
746 j(overflow, on_not_smi_result);
747 if (dst.is(src)) {
748 movq(dst, tmp);
749 }
750}
751
752
753void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
754 if (constant->value() == 0) {
755 if (!dst.is(src)) {
756 movq(dst, src);
757 }
758 } else if (dst.is(src)) {
759 ASSERT(!dst.is(kScratchRegister));
760
761 Move(kScratchRegister, constant);
762 addq(dst, kScratchRegister);
Steve Blocka7e24c12009-10-30 11:49:00 +0000763 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000764 Move(dst, constant);
765 addq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000766 }
767}
768
769
770void MacroAssembler::SmiAddConstant(Register dst,
771 Register src,
Steve Block3ce2e202009-11-05 08:53:23 +0000772 Smi* constant,
Steve Blocka7e24c12009-10-30 11:49:00 +0000773 Label* on_not_smi_result) {
Steve Block3ce2e202009-11-05 08:53:23 +0000774 if (constant->value() == 0) {
775 if (!dst.is(src)) {
776 movq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000777 }
Steve Block3ce2e202009-11-05 08:53:23 +0000778 } else if (dst.is(src)) {
779 ASSERT(!dst.is(kScratchRegister));
780
781 Move(kScratchRegister, constant);
782 addq(dst, kScratchRegister);
783 Label result_ok;
784 j(no_overflow, &result_ok);
785 subq(dst, kScratchRegister);
786 jmp(on_not_smi_result);
787 bind(&result_ok);
Steve Blocka7e24c12009-10-30 11:49:00 +0000788 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000789 Move(dst, constant);
790 addq(dst, src);
791 j(overflow, on_not_smi_result);
792 }
793}
794
795
796void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
797 if (constant->value() == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000798 if (!dst.is(src)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000799 movq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000800 }
Steve Block3ce2e202009-11-05 08:53:23 +0000801 } else if (dst.is(src)) {
802 ASSERT(!dst.is(kScratchRegister));
803
804 Move(kScratchRegister, constant);
805 subq(dst, kScratchRegister);
806 } else {
807 // Subtract by adding the negative, to do it in two operations.
808 if (constant->value() == Smi::kMinValue) {
809 Move(kScratchRegister, constant);
810 movq(dst, src);
811 subq(dst, kScratchRegister);
Steve Blocka7e24c12009-10-30 11:49:00 +0000812 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000813 Move(dst, Smi::FromInt(-constant->value()));
814 addq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000815 }
816 }
817}
818
819
820void MacroAssembler::SmiSubConstant(Register dst,
821 Register src,
Steve Block3ce2e202009-11-05 08:53:23 +0000822 Smi* constant,
Steve Blocka7e24c12009-10-30 11:49:00 +0000823 Label* on_not_smi_result) {
Steve Block3ce2e202009-11-05 08:53:23 +0000824 if (constant->value() == 0) {
825 if (!dst.is(src)) {
826 movq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000827 }
Steve Block3ce2e202009-11-05 08:53:23 +0000828 } else if (dst.is(src)) {
829 ASSERT(!dst.is(kScratchRegister));
830
831 Move(kScratchRegister, constant);
832 subq(dst, kScratchRegister);
833 Label sub_success;
834 j(no_overflow, &sub_success);
835 addq(src, kScratchRegister);
836 jmp(on_not_smi_result);
837 bind(&sub_success);
Steve Blocka7e24c12009-10-30 11:49:00 +0000838 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000839 if (constant->value() == Smi::kMinValue) {
840 Move(kScratchRegister, constant);
841 movq(dst, src);
842 subq(dst, kScratchRegister);
843 j(overflow, on_not_smi_result);
844 } else {
845 Move(dst, Smi::FromInt(-(constant->value())));
846 addq(dst, src);
847 j(overflow, on_not_smi_result);
848 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000849 }
850}
851
852
853void MacroAssembler::SmiDiv(Register dst,
854 Register src1,
855 Register src2,
856 Label* on_not_smi_result) {
Steve Block3ce2e202009-11-05 08:53:23 +0000857 ASSERT(!src1.is(kScratchRegister));
858 ASSERT(!src2.is(kScratchRegister));
859 ASSERT(!dst.is(kScratchRegister));
Steve Blocka7e24c12009-10-30 11:49:00 +0000860 ASSERT(!src2.is(rax));
861 ASSERT(!src2.is(rdx));
862 ASSERT(!src1.is(rdx));
863
864 // Check for 0 divisor (result is +/-Infinity).
865 Label positive_divisor;
Steve Block3ce2e202009-11-05 08:53:23 +0000866 testq(src2, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000867 j(zero, on_not_smi_result);
Steve Blocka7e24c12009-10-30 11:49:00 +0000868
Steve Block3ce2e202009-11-05 08:53:23 +0000869 if (src1.is(rax)) {
870 movq(kScratchRegister, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000871 }
Steve Block3ce2e202009-11-05 08:53:23 +0000872 SmiToInteger32(rax, src1);
873 // We need to rule out dividing Smi::kMinValue by -1, since that would
874 // overflow in idiv and raise an exception.
875 // We combine this with negative zero test (negative zero only happens
876 // when dividing zero by a negative number).
Steve Blocka7e24c12009-10-30 11:49:00 +0000877
Steve Block3ce2e202009-11-05 08:53:23 +0000878 // We overshoot a little and go to slow case if we divide min-value
879 // by any negative value, not just -1.
880 Label safe_div;
881 testl(rax, Immediate(0x7fffffff));
882 j(not_zero, &safe_div);
883 testq(src2, src2);
884 if (src1.is(rax)) {
885 j(positive, &safe_div);
886 movq(src1, kScratchRegister);
887 jmp(on_not_smi_result);
888 } else {
889 j(negative, on_not_smi_result);
890 }
891 bind(&safe_div);
892
893 SmiToInteger32(src2, src2);
894 // Sign extend src1 into edx:eax.
895 cdq();
Steve Blocka7e24c12009-10-30 11:49:00 +0000896 idivl(src2);
Steve Block3ce2e202009-11-05 08:53:23 +0000897 Integer32ToSmi(src2, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000898 // Check that the remainder is zero.
899 testl(rdx, rdx);
Steve Block3ce2e202009-11-05 08:53:23 +0000900 if (src1.is(rax)) {
901 Label smi_result;
902 j(zero, &smi_result);
903 movq(src1, kScratchRegister);
904 jmp(on_not_smi_result);
905 bind(&smi_result);
906 } else {
907 j(not_zero, on_not_smi_result);
908 }
909 if (!dst.is(src1) && src1.is(rax)) {
910 movq(src1, kScratchRegister);
911 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000912 Integer32ToSmi(dst, rax);
913}
914
915
916void MacroAssembler::SmiMod(Register dst,
917 Register src1,
918 Register src2,
919 Label* on_not_smi_result) {
920 ASSERT(!dst.is(kScratchRegister));
921 ASSERT(!src1.is(kScratchRegister));
922 ASSERT(!src2.is(kScratchRegister));
923 ASSERT(!src2.is(rax));
924 ASSERT(!src2.is(rdx));
925 ASSERT(!src1.is(rdx));
Steve Block3ce2e202009-11-05 08:53:23 +0000926 ASSERT(!src1.is(src2));
Steve Blocka7e24c12009-10-30 11:49:00 +0000927
Steve Block3ce2e202009-11-05 08:53:23 +0000928 testq(src2, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000929 j(zero, on_not_smi_result);
930
931 if (src1.is(rax)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000932 movq(kScratchRegister, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000933 }
Steve Block3ce2e202009-11-05 08:53:23 +0000934 SmiToInteger32(rax, src1);
935 SmiToInteger32(src2, src2);
936
937 // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
938 Label safe_div;
939 cmpl(rax, Immediate(Smi::kMinValue));
940 j(not_equal, &safe_div);
941 cmpl(src2, Immediate(-1));
942 j(not_equal, &safe_div);
943 // Retag inputs and go slow case.
944 Integer32ToSmi(src2, src2);
945 if (src1.is(rax)) {
946 movq(src1, kScratchRegister);
947 }
948 jmp(on_not_smi_result);
949 bind(&safe_div);
950
Steve Blocka7e24c12009-10-30 11:49:00 +0000951 // Sign extend eax into edx:eax.
952 cdq();
953 idivl(src2);
Steve Block3ce2e202009-11-05 08:53:23 +0000954 // Restore smi tags on inputs.
955 Integer32ToSmi(src2, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +0000956 if (src1.is(rax)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000957 movq(src1, kScratchRegister);
Steve Blocka7e24c12009-10-30 11:49:00 +0000958 }
Steve Block3ce2e202009-11-05 08:53:23 +0000959 // Check for a negative zero result. If the result is zero, and the
960 // dividend is negative, go slow to return a floating point negative zero.
961 Label smi_result;
962 testl(rdx, rdx);
963 j(not_zero, &smi_result);
964 testq(src1, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000965 j(negative, on_not_smi_result);
Steve Block3ce2e202009-11-05 08:53:23 +0000966 bind(&smi_result);
967 Integer32ToSmi(dst, rdx);
Steve Blocka7e24c12009-10-30 11:49:00 +0000968}
969
970
971void MacroAssembler::SmiNot(Register dst, Register src) {
Steve Block3ce2e202009-11-05 08:53:23 +0000972 ASSERT(!dst.is(kScratchRegister));
973 ASSERT(!src.is(kScratchRegister));
974 // Set tag and padding bits before negating, so that they are zero afterwards.
975 movl(kScratchRegister, Immediate(~0));
Steve Blocka7e24c12009-10-30 11:49:00 +0000976 if (dst.is(src)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000977 xor_(dst, kScratchRegister);
Steve Blocka7e24c12009-10-30 11:49:00 +0000978 } else {
Steve Block3ce2e202009-11-05 08:53:23 +0000979 lea(dst, Operand(src, kScratchRegister, times_1, 0));
Steve Blocka7e24c12009-10-30 11:49:00 +0000980 }
Steve Block3ce2e202009-11-05 08:53:23 +0000981 not_(dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000982}
983
984
985void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
Steve Block3ce2e202009-11-05 08:53:23 +0000986 ASSERT(!dst.is(src2));
Steve Blocka7e24c12009-10-30 11:49:00 +0000987 if (!dst.is(src1)) {
Steve Block3ce2e202009-11-05 08:53:23 +0000988 movq(dst, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000989 }
990 and_(dst, src2);
991}
992
993
Steve Block3ce2e202009-11-05 08:53:23 +0000994void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
995 if (constant->value() == 0) {
996 xor_(dst, dst);
997 } else if (dst.is(src)) {
998 ASSERT(!dst.is(kScratchRegister));
999 Move(kScratchRegister, constant);
1000 and_(dst, kScratchRegister);
1001 } else {
1002 Move(dst, constant);
1003 and_(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001004 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001005}
1006
1007
1008void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
1009 if (!dst.is(src1)) {
Steve Block3ce2e202009-11-05 08:53:23 +00001010 movq(dst, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +00001011 }
1012 or_(dst, src2);
1013}
1014
1015
Steve Block3ce2e202009-11-05 08:53:23 +00001016void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
1017 if (dst.is(src)) {
1018 ASSERT(!dst.is(kScratchRegister));
1019 Move(kScratchRegister, constant);
1020 or_(dst, kScratchRegister);
1021 } else {
1022 Move(dst, constant);
1023 or_(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001024 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001025}
1026
Steve Block3ce2e202009-11-05 08:53:23 +00001027
Steve Blocka7e24c12009-10-30 11:49:00 +00001028void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
1029 if (!dst.is(src1)) {
Steve Block3ce2e202009-11-05 08:53:23 +00001030 movq(dst, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +00001031 }
1032 xor_(dst, src2);
1033}
1034
1035
Steve Block3ce2e202009-11-05 08:53:23 +00001036void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
1037 if (dst.is(src)) {
1038 ASSERT(!dst.is(kScratchRegister));
1039 Move(kScratchRegister, constant);
1040 xor_(dst, kScratchRegister);
1041 } else {
1042 Move(dst, constant);
1043 xor_(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001044 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001045}
1046
1047
Steve Blocka7e24c12009-10-30 11:49:00 +00001048void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
1049 Register src,
1050 int shift_value) {
Steve Block3ce2e202009-11-05 08:53:23 +00001051 ASSERT(is_uint5(shift_value));
Steve Blocka7e24c12009-10-30 11:49:00 +00001052 if (shift_value > 0) {
1053 if (dst.is(src)) {
Steve Block3ce2e202009-11-05 08:53:23 +00001054 sar(dst, Immediate(shift_value + kSmiShift));
1055 shl(dst, Immediate(kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +00001056 } else {
1057 UNIMPLEMENTED(); // Not used.
1058 }
1059 }
1060}
1061
1062
1063void MacroAssembler::SmiShiftLogicalRightConstant(Register dst,
1064 Register src,
1065 int shift_value,
1066 Label* on_not_smi_result) {
1067 // Logic right shift interprets its result as an *unsigned* number.
1068 if (dst.is(src)) {
1069 UNIMPLEMENTED(); // Not used.
1070 } else {
Steve Block3ce2e202009-11-05 08:53:23 +00001071 movq(dst, src);
1072 if (shift_value == 0) {
1073 testq(dst, dst);
Steve Blocka7e24c12009-10-30 11:49:00 +00001074 j(negative, on_not_smi_result);
1075 }
Steve Block3ce2e202009-11-05 08:53:23 +00001076 shr(dst, Immediate(shift_value + kSmiShift));
1077 shl(dst, Immediate(kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +00001078 }
1079}
1080
1081
1082void MacroAssembler::SmiShiftLeftConstant(Register dst,
1083 Register src,
1084 int shift_value,
1085 Label* on_not_smi_result) {
Steve Block3ce2e202009-11-05 08:53:23 +00001086 if (!dst.is(src)) {
1087 movq(dst, src);
1088 }
1089 if (shift_value > 0) {
1090 shl(dst, Immediate(shift_value));
Steve Blocka7e24c12009-10-30 11:49:00 +00001091 }
1092}
1093
1094
1095void MacroAssembler::SmiShiftLeft(Register dst,
1096 Register src1,
1097 Register src2,
1098 Label* on_not_smi_result) {
1099 ASSERT(!dst.is(rcx));
1100 Label result_ok;
Steve Block3ce2e202009-11-05 08:53:23 +00001101 // Untag shift amount.
1102 if (!dst.is(src1)) {
1103 movq(dst, src1);
Steve Blocka7e24c12009-10-30 11:49:00 +00001104 }
Steve Block3ce2e202009-11-05 08:53:23 +00001105 SmiToInteger32(rcx, src2);
1106 // Shift amount specified by lower 5 bits, not six as the shl opcode.
1107 and_(rcx, Immediate(0x1f));
Steve Blockd0582a62009-12-15 09:54:21 +00001108 shl_cl(dst);
Steve Blocka7e24c12009-10-30 11:49:00 +00001109}
1110
1111
1112void MacroAssembler::SmiShiftLogicalRight(Register dst,
1113 Register src1,
1114 Register src2,
1115 Label* on_not_smi_result) {
Steve Block3ce2e202009-11-05 08:53:23 +00001116 ASSERT(!dst.is(kScratchRegister));
1117 ASSERT(!src1.is(kScratchRegister));
1118 ASSERT(!src2.is(kScratchRegister));
Steve Blocka7e24c12009-10-30 11:49:00 +00001119 ASSERT(!dst.is(rcx));
1120 Label result_ok;
Steve Block3ce2e202009-11-05 08:53:23 +00001121 if (src1.is(rcx) || src2.is(rcx)) {
1122 movq(kScratchRegister, rcx);
Steve Blocka7e24c12009-10-30 11:49:00 +00001123 }
Steve Block3ce2e202009-11-05 08:53:23 +00001124 if (!dst.is(src1)) {
1125 movq(dst, src1);
1126 }
1127 SmiToInteger32(rcx, src2);
1128 orl(rcx, Immediate(kSmiShift));
Steve Blockd0582a62009-12-15 09:54:21 +00001129 shr_cl(dst); // Shift is rcx modulo 0x1f + 32.
Steve Block3ce2e202009-11-05 08:53:23 +00001130 shl(dst, Immediate(kSmiShift));
1131 testq(dst, dst);
1132 if (src1.is(rcx) || src2.is(rcx)) {
1133 Label positive_result;
1134 j(positive, &positive_result);
1135 if (src1.is(rcx)) {
1136 movq(src1, kScratchRegister);
1137 } else {
1138 movq(src2, kScratchRegister);
1139 }
1140 jmp(on_not_smi_result);
1141 bind(&positive_result);
1142 } else {
1143 j(negative, on_not_smi_result); // src2 was zero and src1 negative.
1144 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001145}
1146
1147
1148void MacroAssembler::SmiShiftArithmeticRight(Register dst,
1149 Register src1,
1150 Register src2) {
Steve Block3ce2e202009-11-05 08:53:23 +00001151 ASSERT(!dst.is(kScratchRegister));
1152 ASSERT(!src1.is(kScratchRegister));
1153 ASSERT(!src2.is(kScratchRegister));
Steve Blocka7e24c12009-10-30 11:49:00 +00001154 ASSERT(!dst.is(rcx));
Steve Block3ce2e202009-11-05 08:53:23 +00001155 if (src1.is(rcx)) {
1156 movq(kScratchRegister, src1);
1157 } else if (src2.is(rcx)) {
1158 movq(kScratchRegister, src2);
1159 }
1160 if (!dst.is(src1)) {
1161 movq(dst, src1);
1162 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001163 SmiToInteger32(rcx, src2);
Steve Block3ce2e202009-11-05 08:53:23 +00001164 orl(rcx, Immediate(kSmiShift));
Steve Blockd0582a62009-12-15 09:54:21 +00001165 sar_cl(dst); // Shift 32 + original rcx & 0x1f.
Steve Block3ce2e202009-11-05 08:53:23 +00001166 shl(dst, Immediate(kSmiShift));
1167 if (src1.is(rcx)) {
1168 movq(src1, kScratchRegister);
1169 } else if (src2.is(rcx)) {
1170 movq(src2, kScratchRegister);
1171 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001172}
1173
1174
1175void MacroAssembler::SelectNonSmi(Register dst,
1176 Register src1,
1177 Register src2,
1178 Label* on_not_smis) {
Steve Block3ce2e202009-11-05 08:53:23 +00001179 ASSERT(!dst.is(kScratchRegister));
1180 ASSERT(!src1.is(kScratchRegister));
1181 ASSERT(!src2.is(kScratchRegister));
Steve Blocka7e24c12009-10-30 11:49:00 +00001182 ASSERT(!dst.is(src1));
1183 ASSERT(!dst.is(src2));
1184 // Both operands must not be smis.
1185#ifdef DEBUG
Steve Block3ce2e202009-11-05 08:53:23 +00001186 if (allow_stub_calls()) { // Check contains a stub call.
1187 Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
1188 Check(not_both_smis, "Both registers were smis in SelectNonSmi.");
1189 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001190#endif
1191 ASSERT_EQ(0, kSmiTag);
1192 ASSERT_EQ(0, Smi::FromInt(0));
Steve Block3ce2e202009-11-05 08:53:23 +00001193 movl(kScratchRegister, Immediate(kSmiTagMask));
Steve Blocka7e24c12009-10-30 11:49:00 +00001194 and_(kScratchRegister, src1);
1195 testl(kScratchRegister, src2);
Steve Block3ce2e202009-11-05 08:53:23 +00001196 // If non-zero then both are smis.
Steve Blocka7e24c12009-10-30 11:49:00 +00001197 j(not_zero, on_not_smis);
Steve Blocka7e24c12009-10-30 11:49:00 +00001198
Steve Block3ce2e202009-11-05 08:53:23 +00001199 // Exactly one operand is a smi.
Steve Blocka7e24c12009-10-30 11:49:00 +00001200 ASSERT_EQ(1, static_cast<int>(kSmiTagMask));
1201 // kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
1202 subq(kScratchRegister, Immediate(1));
1203 // If src1 is a smi, then scratch register all 1s, else it is all 0s.
1204 movq(dst, src1);
1205 xor_(dst, src2);
1206 and_(dst, kScratchRegister);
1207 // If src1 is a smi, dst holds src1 ^ src2, else it is zero.
1208 xor_(dst, src1);
Steve Block3ce2e202009-11-05 08:53:23 +00001209 // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
Steve Blocka7e24c12009-10-30 11:49:00 +00001210}
1211
Steve Block3ce2e202009-11-05 08:53:23 +00001212SmiIndex MacroAssembler::SmiToIndex(Register dst,
1213 Register src,
1214 int shift) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001215 ASSERT(is_uint6(shift));
Steve Block3ce2e202009-11-05 08:53:23 +00001216 // There is a possible optimization if shift is in the range 60-63, but that
1217 // will (and must) never happen.
1218 if (!dst.is(src)) {
1219 movq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001220 }
Steve Block3ce2e202009-11-05 08:53:23 +00001221 if (shift < kSmiShift) {
1222 sar(dst, Immediate(kSmiShift - shift));
1223 } else {
1224 shl(dst, Immediate(shift - kSmiShift));
Steve Blocka7e24c12009-10-30 11:49:00 +00001225 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001226 return SmiIndex(dst, times_1);
1227}
1228
Steve Blocka7e24c12009-10-30 11:49:00 +00001229SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
1230 Register src,
1231 int shift) {
1232 // Register src holds a positive smi.
1233 ASSERT(is_uint6(shift));
Steve Block3ce2e202009-11-05 08:53:23 +00001234 if (!dst.is(src)) {
1235 movq(dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001236 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001237 neg(dst);
Steve Block3ce2e202009-11-05 08:53:23 +00001238 if (shift < kSmiShift) {
1239 sar(dst, Immediate(kSmiShift - shift));
1240 } else {
1241 shl(dst, Immediate(shift - kSmiShift));
1242 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001243 return SmiIndex(dst, times_1);
1244}
1245
1246
Steve Block3ce2e202009-11-05 08:53:23 +00001247void MacroAssembler::JumpIfSmi(Register src, Label* on_smi) {
1248 ASSERT_EQ(0, kSmiTag);
1249 Condition smi = CheckSmi(src);
1250 j(smi, on_smi);
Steve Blocka7e24c12009-10-30 11:49:00 +00001251}
1252
Steve Block3ce2e202009-11-05 08:53:23 +00001253
1254void MacroAssembler::JumpIfNotSmi(Register src, Label* on_not_smi) {
1255 Condition smi = CheckSmi(src);
1256 j(NegateCondition(smi), on_not_smi);
1257}
1258
1259
1260void MacroAssembler::JumpIfNotPositiveSmi(Register src,
1261 Label* on_not_positive_smi) {
1262 Condition positive_smi = CheckPositiveSmi(src);
1263 j(NegateCondition(positive_smi), on_not_positive_smi);
1264}
1265
1266
1267void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
1268 Smi* constant,
1269 Label* on_equals) {
1270 SmiCompare(src, constant);
1271 j(equal, on_equals);
1272}
1273
1274
1275void MacroAssembler::JumpIfNotValidSmiValue(Register src, Label* on_invalid) {
1276 Condition is_valid = CheckInteger32ValidSmiValue(src);
1277 j(NegateCondition(is_valid), on_invalid);
1278}
1279
1280
1281void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
1282 Label* on_invalid) {
1283 Condition is_valid = CheckUInteger32ValidSmiValue(src);
1284 j(NegateCondition(is_valid), on_invalid);
1285}
1286
1287
1288void MacroAssembler::JumpIfNotBothSmi(Register src1, Register src2,
1289 Label* on_not_both_smi) {
1290 Condition both_smi = CheckBothSmi(src1, src2);
1291 j(NegateCondition(both_smi), on_not_both_smi);
Steve Blocka7e24c12009-10-30 11:49:00 +00001292}
1293
1294
Leon Clarkee46be812010-01-19 14:06:41 +00001295void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object,
1296 Register second_object,
1297 Register scratch1,
1298 Register scratch2,
1299 Label* on_fail) {
1300 // Check that both objects are not smis.
1301 Condition either_smi = CheckEitherSmi(first_object, second_object);
1302 j(either_smi, on_fail);
1303
1304 // Load instance type for both strings.
1305 movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
1306 movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
1307 movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
1308 movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
1309
1310 // Check that both are flat ascii strings.
1311 ASSERT(kNotStringTag != 0);
1312 const int kFlatAsciiStringMask =
1313 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
1314 const int kFlatAsciiStringBits =
1315 kNotStringTag | kSeqStringTag | kAsciiStringTag;
1316
1317 andl(scratch1, Immediate(kFlatAsciiStringMask));
1318 andl(scratch2, Immediate(kFlatAsciiStringMask));
1319 // Interleave the bits to check both scratch1 and scratch2 in one test.
1320 ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
1321 lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
1322 cmpl(scratch1,
1323 Immediate(kFlatAsciiStringBits + (kFlatAsciiStringBits << 3)));
1324 j(not_equal, on_fail);
1325}
1326
1327
Steve Blocka7e24c12009-10-30 11:49:00 +00001328void MacroAssembler::Move(Register dst, Handle<Object> source) {
1329 ASSERT(!source->IsFailure());
1330 if (source->IsSmi()) {
Steve Block3ce2e202009-11-05 08:53:23 +00001331 Move(dst, Smi::cast(*source));
Steve Blocka7e24c12009-10-30 11:49:00 +00001332 } else {
1333 movq(dst, source, RelocInfo::EMBEDDED_OBJECT);
1334 }
1335}
1336
1337
1338void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
Steve Block3ce2e202009-11-05 08:53:23 +00001339 ASSERT(!source->IsFailure());
Steve Blocka7e24c12009-10-30 11:49:00 +00001340 if (source->IsSmi()) {
Steve Block3ce2e202009-11-05 08:53:23 +00001341 Move(dst, Smi::cast(*source));
Steve Blocka7e24c12009-10-30 11:49:00 +00001342 } else {
1343 movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
1344 movq(dst, kScratchRegister);
1345 }
1346}
1347
1348
1349void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
Steve Block3ce2e202009-11-05 08:53:23 +00001350 if (source->IsSmi()) {
1351 SmiCompare(dst, Smi::cast(*source));
1352 } else {
1353 Move(kScratchRegister, source);
1354 cmpq(dst, kScratchRegister);
1355 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001356}
1357
1358
1359void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
1360 if (source->IsSmi()) {
Steve Block3ce2e202009-11-05 08:53:23 +00001361 SmiCompare(dst, Smi::cast(*source));
Steve Blocka7e24c12009-10-30 11:49:00 +00001362 } else {
1363 ASSERT(source->IsHeapObject());
1364 movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
1365 cmpq(dst, kScratchRegister);
1366 }
1367}
1368
1369
1370void MacroAssembler::Push(Handle<Object> source) {
1371 if (source->IsSmi()) {
Steve Block3ce2e202009-11-05 08:53:23 +00001372 Push(Smi::cast(*source));
Steve Blocka7e24c12009-10-30 11:49:00 +00001373 } else {
1374 ASSERT(source->IsHeapObject());
1375 movq(kScratchRegister, source, RelocInfo::EMBEDDED_OBJECT);
1376 push(kScratchRegister);
1377 }
1378}
1379
1380
1381void MacroAssembler::Push(Smi* source) {
Steve Block3ce2e202009-11-05 08:53:23 +00001382 intptr_t smi = reinterpret_cast<intptr_t>(source);
1383 if (is_int32(smi)) {
1384 push(Immediate(static_cast<int32_t>(smi)));
Steve Blocka7e24c12009-10-30 11:49:00 +00001385 } else {
Steve Block3ce2e202009-11-05 08:53:23 +00001386 Set(kScratchRegister, smi);
1387 push(kScratchRegister);
1388 }
1389}
1390
1391
Leon Clarkee46be812010-01-19 14:06:41 +00001392void MacroAssembler::Drop(int stack_elements) {
1393 if (stack_elements > 0) {
1394 addq(rsp, Immediate(stack_elements * kPointerSize));
1395 }
1396}
1397
1398
Steve Block3ce2e202009-11-05 08:53:23 +00001399void MacroAssembler::Test(const Operand& src, Smi* source) {
1400 intptr_t smi = reinterpret_cast<intptr_t>(source);
1401 if (is_int32(smi)) {
1402 testl(src, Immediate(static_cast<int32_t>(smi)));
1403 } else {
1404 Move(kScratchRegister, source);
1405 testq(src, kScratchRegister);
Steve Blocka7e24c12009-10-30 11:49:00 +00001406 }
1407}
1408
1409
1410void MacroAssembler::Jump(ExternalReference ext) {
1411 movq(kScratchRegister, ext);
1412 jmp(kScratchRegister);
1413}
1414
1415
1416void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
1417 movq(kScratchRegister, destination, rmode);
1418 jmp(kScratchRegister);
1419}
1420
1421
1422void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
Steve Block3ce2e202009-11-05 08:53:23 +00001423 // TODO(X64): Inline this
1424 jmp(code_object, rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001425}
1426
1427
1428void MacroAssembler::Call(ExternalReference ext) {
1429 movq(kScratchRegister, ext);
1430 call(kScratchRegister);
1431}
1432
1433
1434void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
1435 movq(kScratchRegister, destination, rmode);
1436 call(kScratchRegister);
1437}
1438
1439
1440void MacroAssembler::Call(Handle<Code> code_object, RelocInfo::Mode rmode) {
1441 ASSERT(RelocInfo::IsCodeTarget(rmode));
1442 WriteRecordedPositions();
Steve Block3ce2e202009-11-05 08:53:23 +00001443 call(code_object, rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001444}
1445
1446
1447void MacroAssembler::PushTryHandler(CodeLocation try_location,
1448 HandlerType type) {
1449 // Adjust this code if not the case.
1450 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1451
1452 // The pc (return address) is already on TOS. This code pushes state,
1453 // frame pointer and current handler. Check that they are expected
1454 // next on the stack, in that order.
1455 ASSERT_EQ(StackHandlerConstants::kStateOffset,
1456 StackHandlerConstants::kPCOffset - kPointerSize);
1457 ASSERT_EQ(StackHandlerConstants::kFPOffset,
1458 StackHandlerConstants::kStateOffset - kPointerSize);
1459 ASSERT_EQ(StackHandlerConstants::kNextOffset,
1460 StackHandlerConstants::kFPOffset - kPointerSize);
1461
1462 if (try_location == IN_JAVASCRIPT) {
1463 if (type == TRY_CATCH_HANDLER) {
1464 push(Immediate(StackHandler::TRY_CATCH));
1465 } else {
1466 push(Immediate(StackHandler::TRY_FINALLY));
1467 }
1468 push(rbp);
1469 } else {
1470 ASSERT(try_location == IN_JS_ENTRY);
1471 // The frame pointer does not point to a JS frame so we save NULL
1472 // for rbp. We expect the code throwing an exception to check rbp
1473 // before dereferencing it to restore the context.
1474 push(Immediate(StackHandler::ENTRY));
1475 push(Immediate(0)); // NULL frame pointer.
1476 }
1477 // Save the current handler.
1478 movq(kScratchRegister, ExternalReference(Top::k_handler_address));
1479 push(Operand(kScratchRegister, 0));
1480 // Link this handler.
1481 movq(Operand(kScratchRegister, 0), rsp);
1482}
1483
1484
Leon Clarkee46be812010-01-19 14:06:41 +00001485void MacroAssembler::PopTryHandler() {
1486 ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
1487 // Unlink this handler.
1488 movq(kScratchRegister, ExternalReference(Top::k_handler_address));
1489 pop(Operand(kScratchRegister, 0));
1490 // Remove the remaining fields.
1491 addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1492}
1493
1494
Steve Blocka7e24c12009-10-30 11:49:00 +00001495void MacroAssembler::Ret() {
1496 ret(0);
1497}
1498
1499
1500void MacroAssembler::FCmp() {
Steve Block3ce2e202009-11-05 08:53:23 +00001501 fucomip();
1502 ffree(0);
1503 fincstp();
Steve Blocka7e24c12009-10-30 11:49:00 +00001504}
1505
1506
1507void MacroAssembler::CmpObjectType(Register heap_object,
1508 InstanceType type,
1509 Register map) {
1510 movq(map, FieldOperand(heap_object, HeapObject::kMapOffset));
1511 CmpInstanceType(map, type);
1512}
1513
1514
1515void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
1516 cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
1517 Immediate(static_cast<int8_t>(type)));
1518}
1519
1520
1521void MacroAssembler::TryGetFunctionPrototype(Register function,
1522 Register result,
1523 Label* miss) {
1524 // Check that the receiver isn't a smi.
1525 testl(function, Immediate(kSmiTagMask));
1526 j(zero, miss);
1527
1528 // Check that the function really is a function.
1529 CmpObjectType(function, JS_FUNCTION_TYPE, result);
1530 j(not_equal, miss);
1531
1532 // Make sure that the function has an instance prototype.
1533 Label non_instance;
1534 testb(FieldOperand(result, Map::kBitFieldOffset),
1535 Immediate(1 << Map::kHasNonInstancePrototype));
1536 j(not_zero, &non_instance);
1537
1538 // Get the prototype or initial map from the function.
1539 movq(result,
1540 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
1541
1542 // If the prototype or initial map is the hole, don't return it and
1543 // simply miss the cache instead. This will allow us to allocate a
1544 // prototype object on-demand in the runtime system.
1545 CompareRoot(result, Heap::kTheHoleValueRootIndex);
1546 j(equal, miss);
1547
1548 // If the function does not have an initial map, we're done.
1549 Label done;
1550 CmpObjectType(result, MAP_TYPE, kScratchRegister);
1551 j(not_equal, &done);
1552
1553 // Get the prototype from the initial map.
1554 movq(result, FieldOperand(result, Map::kPrototypeOffset));
1555 jmp(&done);
1556
1557 // Non-instance prototype: Fetch prototype from constructor field
1558 // in initial map.
1559 bind(&non_instance);
1560 movq(result, FieldOperand(result, Map::kConstructorOffset));
1561
1562 // All done.
1563 bind(&done);
1564}
1565
1566
1567void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
1568 if (FLAG_native_code_counters && counter->Enabled()) {
1569 movq(kScratchRegister, ExternalReference(counter));
1570 movl(Operand(kScratchRegister, 0), Immediate(value));
1571 }
1572}
1573
1574
1575void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
1576 ASSERT(value > 0);
1577 if (FLAG_native_code_counters && counter->Enabled()) {
1578 movq(kScratchRegister, ExternalReference(counter));
1579 Operand operand(kScratchRegister, 0);
1580 if (value == 1) {
1581 incl(operand);
1582 } else {
1583 addl(operand, Immediate(value));
1584 }
1585 }
1586}
1587
1588
1589void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
1590 ASSERT(value > 0);
1591 if (FLAG_native_code_counters && counter->Enabled()) {
1592 movq(kScratchRegister, ExternalReference(counter));
1593 Operand operand(kScratchRegister, 0);
1594 if (value == 1) {
1595 decl(operand);
1596 } else {
1597 subl(operand, Immediate(value));
1598 }
1599 }
1600}
1601
Steve Blocka7e24c12009-10-30 11:49:00 +00001602#ifdef ENABLE_DEBUGGER_SUPPORT
1603
1604void MacroAssembler::PushRegistersFromMemory(RegList regs) {
1605 ASSERT((regs & ~kJSCallerSaved) == 0);
1606 // Push the content of the memory location to the stack.
1607 for (int i = 0; i < kNumJSCallerSaved; i++) {
1608 int r = JSCallerSavedCode(i);
1609 if ((regs & (1 << r)) != 0) {
1610 ExternalReference reg_addr =
1611 ExternalReference(Debug_Address::Register(i));
1612 movq(kScratchRegister, reg_addr);
1613 push(Operand(kScratchRegister, 0));
1614 }
1615 }
1616}
1617
Steve Block3ce2e202009-11-05 08:53:23 +00001618
Steve Blocka7e24c12009-10-30 11:49:00 +00001619void MacroAssembler::SaveRegistersToMemory(RegList regs) {
1620 ASSERT((regs & ~kJSCallerSaved) == 0);
1621 // Copy the content of registers to memory location.
1622 for (int i = 0; i < kNumJSCallerSaved; i++) {
1623 int r = JSCallerSavedCode(i);
1624 if ((regs & (1 << r)) != 0) {
1625 Register reg = { r };
1626 ExternalReference reg_addr =
1627 ExternalReference(Debug_Address::Register(i));
1628 movq(kScratchRegister, reg_addr);
1629 movq(Operand(kScratchRegister, 0), reg);
1630 }
1631 }
1632}
1633
1634
1635void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
1636 ASSERT((regs & ~kJSCallerSaved) == 0);
1637 // Copy the content of memory location to registers.
1638 for (int i = kNumJSCallerSaved - 1; i >= 0; i--) {
1639 int r = JSCallerSavedCode(i);
1640 if ((regs & (1 << r)) != 0) {
1641 Register reg = { r };
1642 ExternalReference reg_addr =
1643 ExternalReference(Debug_Address::Register(i));
1644 movq(kScratchRegister, reg_addr);
1645 movq(reg, Operand(kScratchRegister, 0));
1646 }
1647 }
1648}
1649
1650
1651void MacroAssembler::PopRegistersToMemory(RegList regs) {
1652 ASSERT((regs & ~kJSCallerSaved) == 0);
1653 // Pop the content from the stack to the memory location.
1654 for (int i = kNumJSCallerSaved - 1; i >= 0; i--) {
1655 int r = JSCallerSavedCode(i);
1656 if ((regs & (1 << r)) != 0) {
1657 ExternalReference reg_addr =
1658 ExternalReference(Debug_Address::Register(i));
1659 movq(kScratchRegister, reg_addr);
1660 pop(Operand(kScratchRegister, 0));
1661 }
1662 }
1663}
1664
1665
1666void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
1667 Register scratch,
1668 RegList regs) {
1669 ASSERT(!scratch.is(kScratchRegister));
1670 ASSERT(!base.is(kScratchRegister));
1671 ASSERT(!base.is(scratch));
1672 ASSERT((regs & ~kJSCallerSaved) == 0);
1673 // Copy the content of the stack to the memory location and adjust base.
1674 for (int i = kNumJSCallerSaved - 1; i >= 0; i--) {
1675 int r = JSCallerSavedCode(i);
1676 if ((regs & (1 << r)) != 0) {
1677 movq(scratch, Operand(base, 0));
1678 ExternalReference reg_addr =
1679 ExternalReference(Debug_Address::Register(i));
1680 movq(kScratchRegister, reg_addr);
1681 movq(Operand(kScratchRegister, 0), scratch);
1682 lea(base, Operand(base, kPointerSize));
1683 }
1684 }
1685}
1686
1687#endif // ENABLE_DEBUGGER_SUPPORT
1688
1689
1690void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) {
1691 bool resolved;
1692 Handle<Code> code = ResolveBuiltin(id, &resolved);
1693
1694 // Calls are not allowed in some stubs.
1695 ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());
1696
1697 // Rely on the assertion to check that the number of provided
1698 // arguments match the expected number of arguments. Fake a
1699 // parameter count to avoid emitting code to do the check.
1700 ParameterCount expected(0);
Steve Block3ce2e202009-11-05 08:53:23 +00001701 InvokeCode(Handle<Code>(code),
1702 expected,
1703 expected,
1704 RelocInfo::CODE_TARGET,
1705 flag);
Steve Blocka7e24c12009-10-30 11:49:00 +00001706
1707 const char* name = Builtins::GetName(id);
1708 int argc = Builtins::GetArgumentsCount(id);
1709 // The target address for the jump is stored as an immediate at offset
1710 // kInvokeCodeAddressOffset.
1711 if (!resolved) {
1712 uint32_t flags =
1713 Bootstrapper::FixupFlagsArgumentsCount::encode(argc) |
Steve Blocka7e24c12009-10-30 11:49:00 +00001714 Bootstrapper::FixupFlagsUseCodeObject::encode(false);
1715 Unresolved entry =
1716 { pc_offset() - kCallTargetAddressOffset, flags, name };
1717 unresolved_.Add(entry);
1718 }
1719}
1720
1721
1722void MacroAssembler::InvokePrologue(const ParameterCount& expected,
1723 const ParameterCount& actual,
1724 Handle<Code> code_constant,
1725 Register code_register,
1726 Label* done,
1727 InvokeFlag flag) {
1728 bool definitely_matches = false;
1729 Label invoke;
1730 if (expected.is_immediate()) {
1731 ASSERT(actual.is_immediate());
1732 if (expected.immediate() == actual.immediate()) {
1733 definitely_matches = true;
1734 } else {
1735 movq(rax, Immediate(actual.immediate()));
1736 if (expected.immediate() ==
Steve Block3ce2e202009-11-05 08:53:23 +00001737 SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001738 // Don't worry about adapting arguments for built-ins that
1739 // don't want that done. Skip adaption code by making it look
1740 // like we have a match between expected and actual number of
1741 // arguments.
1742 definitely_matches = true;
1743 } else {
1744 movq(rbx, Immediate(expected.immediate()));
1745 }
1746 }
1747 } else {
1748 if (actual.is_immediate()) {
1749 // Expected is in register, actual is immediate. This is the
1750 // case when we invoke function values without going through the
1751 // IC mechanism.
1752 cmpq(expected.reg(), Immediate(actual.immediate()));
1753 j(equal, &invoke);
1754 ASSERT(expected.reg().is(rbx));
1755 movq(rax, Immediate(actual.immediate()));
1756 } else if (!expected.reg().is(actual.reg())) {
1757 // Both expected and actual are in (different) registers. This
1758 // is the case when we invoke functions using call and apply.
1759 cmpq(expected.reg(), actual.reg());
1760 j(equal, &invoke);
1761 ASSERT(actual.reg().is(rax));
1762 ASSERT(expected.reg().is(rbx));
1763 }
1764 }
1765
1766 if (!definitely_matches) {
1767 Handle<Code> adaptor =
1768 Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
1769 if (!code_constant.is_null()) {
1770 movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT);
1771 addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1772 } else if (!code_register.is(rdx)) {
1773 movq(rdx, code_register);
1774 }
1775
1776 if (flag == CALL_FUNCTION) {
1777 Call(adaptor, RelocInfo::CODE_TARGET);
1778 jmp(done);
1779 } else {
1780 Jump(adaptor, RelocInfo::CODE_TARGET);
1781 }
1782 bind(&invoke);
1783 }
1784}
1785
1786
1787void MacroAssembler::InvokeCode(Register code,
1788 const ParameterCount& expected,
1789 const ParameterCount& actual,
1790 InvokeFlag flag) {
1791 Label done;
1792 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
1793 if (flag == CALL_FUNCTION) {
1794 call(code);
1795 } else {
1796 ASSERT(flag == JUMP_FUNCTION);
1797 jmp(code);
1798 }
1799 bind(&done);
1800}
1801
1802
1803void MacroAssembler::InvokeCode(Handle<Code> code,
1804 const ParameterCount& expected,
1805 const ParameterCount& actual,
1806 RelocInfo::Mode rmode,
1807 InvokeFlag flag) {
1808 Label done;
1809 Register dummy = rax;
1810 InvokePrologue(expected, actual, code, dummy, &done, flag);
1811 if (flag == CALL_FUNCTION) {
1812 Call(code, rmode);
1813 } else {
1814 ASSERT(flag == JUMP_FUNCTION);
1815 Jump(code, rmode);
1816 }
1817 bind(&done);
1818}
1819
1820
1821void MacroAssembler::InvokeFunction(Register function,
1822 const ParameterCount& actual,
1823 InvokeFlag flag) {
1824 ASSERT(function.is(rdi));
1825 movq(rdx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
1826 movq(rsi, FieldOperand(function, JSFunction::kContextOffset));
1827 movsxlq(rbx,
1828 FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
1829 movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
1830 // Advances rdx to the end of the Code object header, to the start of
1831 // the executable code.
1832 lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
1833
1834 ParameterCount expected(rbx);
1835 InvokeCode(rdx, expected, actual, flag);
1836}
1837
1838
1839void MacroAssembler::EnterFrame(StackFrame::Type type) {
1840 push(rbp);
1841 movq(rbp, rsp);
1842 push(rsi); // Context.
Steve Block3ce2e202009-11-05 08:53:23 +00001843 Push(Smi::FromInt(type));
Steve Blocka7e24c12009-10-30 11:49:00 +00001844 movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
1845 push(kScratchRegister);
1846 if (FLAG_debug_code) {
1847 movq(kScratchRegister,
1848 Factory::undefined_value(),
1849 RelocInfo::EMBEDDED_OBJECT);
1850 cmpq(Operand(rsp, 0), kScratchRegister);
1851 Check(not_equal, "code object not properly patched");
1852 }
1853}
1854
1855
1856void MacroAssembler::LeaveFrame(StackFrame::Type type) {
1857 if (FLAG_debug_code) {
Steve Block3ce2e202009-11-05 08:53:23 +00001858 Move(kScratchRegister, Smi::FromInt(type));
Steve Blocka7e24c12009-10-30 11:49:00 +00001859 cmpq(Operand(rbp, StandardFrameConstants::kMarkerOffset), kScratchRegister);
1860 Check(equal, "stack frame types must match");
1861 }
1862 movq(rsp, rbp);
1863 pop(rbp);
1864}
1865
1866
Steve Blockd0582a62009-12-15 09:54:21 +00001867void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode, int result_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001868 // Setup the frame structure on the stack.
1869 // All constants are relative to the frame pointer of the exit frame.
1870 ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
1871 ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
1872 ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
1873 push(rbp);
1874 movq(rbp, rsp);
1875
1876 // Reserve room for entry stack pointer and push the debug marker.
Steve Block3ce2e202009-11-05 08:53:23 +00001877 ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
Steve Blocka7e24c12009-10-30 11:49:00 +00001878 push(Immediate(0)); // saved entry sp, patched before call
Steve Blockd0582a62009-12-15 09:54:21 +00001879 if (mode == ExitFrame::MODE_DEBUG) {
1880 push(Immediate(0));
1881 } else {
1882 movq(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
1883 push(kScratchRegister);
1884 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001885
1886 // Save the frame pointer and the context in top.
1887 ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
1888 ExternalReference context_address(Top::k_context_address);
1889 movq(r14, rax); // Backup rax before we use it.
1890
1891 movq(rax, rbp);
1892 store_rax(c_entry_fp_address);
1893 movq(rax, rsi);
1894 store_rax(context_address);
1895
1896 // Setup argv in callee-saved register r15. It is reused in LeaveExitFrame,
1897 // so it must be retained across the C-call.
1898 int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
1899 lea(r15, Operand(rbp, r14, times_pointer_size, offset));
1900
1901#ifdef ENABLE_DEBUGGER_SUPPORT
1902 // Save the state of all registers to the stack from the memory
1903 // location. This is needed to allow nested break points.
Steve Blockd0582a62009-12-15 09:54:21 +00001904 if (mode == ExitFrame::MODE_DEBUG) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001905 // TODO(1243899): This should be symmetric to
1906 // CopyRegistersFromStackToMemory() but it isn't! esp is assumed
1907 // correct here, but computed for the other call. Very error
1908 // prone! FIX THIS. Actually there are deeper problems with
1909 // register saving than this asymmetry (see the bug report
1910 // associated with this issue).
1911 PushRegistersFromMemory(kJSCallerSaved);
1912 }
1913#endif
1914
1915#ifdef _WIN64
1916 // Reserve space on stack for result and argument structures, if necessary.
1917 int result_stack_space = (result_size < 2) ? 0 : result_size * kPointerSize;
1918 // Reserve space for the Arguments object. The Windows 64-bit ABI
1919 // requires us to pass this structure as a pointer to its location on
1920 // the stack. The structure contains 2 values.
1921 int argument_stack_space = 2 * kPointerSize;
1922 // We also need backing space for 4 parameters, even though
1923 // we only pass one or two parameter, and it is in a register.
1924 int argument_mirror_space = 4 * kPointerSize;
1925 int total_stack_space =
1926 argument_mirror_space + argument_stack_space + result_stack_space;
1927 subq(rsp, Immediate(total_stack_space));
1928#endif
1929
1930 // Get the required frame alignment for the OS.
1931 static const int kFrameAlignment = OS::ActivationFrameAlignment();
1932 if (kFrameAlignment > 0) {
1933 ASSERT(IsPowerOf2(kFrameAlignment));
1934 movq(kScratchRegister, Immediate(-kFrameAlignment));
1935 and_(rsp, kScratchRegister);
1936 }
1937
1938 // Patch the saved entry sp.
1939 movq(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
1940}
1941
1942
Steve Blockd0582a62009-12-15 09:54:21 +00001943void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode, int result_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001944 // Registers:
1945 // r15 : argv
1946#ifdef ENABLE_DEBUGGER_SUPPORT
1947 // Restore the memory copy of the registers by digging them out from
1948 // the stack. This is needed to allow nested break points.
Steve Blockd0582a62009-12-15 09:54:21 +00001949 if (mode == ExitFrame::MODE_DEBUG) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001950 // It's okay to clobber register rbx below because we don't need
1951 // the function pointer after this.
1952 const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
Steve Blockd0582a62009-12-15 09:54:21 +00001953 int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00001954 lea(rbx, Operand(rbp, kOffset));
1955 CopyRegistersFromStackToMemory(rbx, rcx, kJSCallerSaved);
1956 }
1957#endif
1958
1959 // Get the return address from the stack and restore the frame pointer.
1960 movq(rcx, Operand(rbp, 1 * kPointerSize));
1961 movq(rbp, Operand(rbp, 0 * kPointerSize));
1962
Steve Blocka7e24c12009-10-30 11:49:00 +00001963 // Pop everything up to and including the arguments and the receiver
1964 // from the caller stack.
1965 lea(rsp, Operand(r15, 1 * kPointerSize));
1966
1967 // Restore current context from top and clear it in debug mode.
1968 ExternalReference context_address(Top::k_context_address);
1969 movq(kScratchRegister, context_address);
1970 movq(rsi, Operand(kScratchRegister, 0));
1971#ifdef DEBUG
1972 movq(Operand(kScratchRegister, 0), Immediate(0));
1973#endif
1974
1975 // Push the return address to get ready to return.
1976 push(rcx);
1977
1978 // Clear the top frame.
1979 ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
1980 movq(kScratchRegister, c_entry_fp_address);
1981 movq(Operand(kScratchRegister, 0), Immediate(0));
1982}
1983
1984
Steve Block3ce2e202009-11-05 08:53:23 +00001985Register MacroAssembler::CheckMaps(JSObject* object,
1986 Register object_reg,
1987 JSObject* holder,
1988 Register holder_reg,
Steve Blocka7e24c12009-10-30 11:49:00 +00001989 Register scratch,
1990 Label* miss) {
1991 // Make sure there's no overlap between scratch and the other
1992 // registers.
1993 ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));
1994
1995 // Keep track of the current object in register reg. On the first
1996 // iteration, reg is an alias for object_reg, on later iterations,
1997 // it is an alias for holder_reg.
1998 Register reg = object_reg;
1999 int depth = 1;
2000
2001 // Check the maps in the prototype chain.
2002 // Traverse the prototype chain from the object and do map checks.
2003 while (object != holder) {
2004 depth++;
2005
2006 // Only global objects and objects that do not require access
2007 // checks are allowed in stubs.
2008 ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
2009
2010 JSObject* prototype = JSObject::cast(object->GetPrototype());
2011 if (Heap::InNewSpace(prototype)) {
2012 // Get the map of the current object.
2013 movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
2014 Cmp(scratch, Handle<Map>(object->map()));
2015 // Branch on the result of the map check.
2016 j(not_equal, miss);
2017 // Check access rights to the global object. This has to happen
2018 // after the map check so that we know that the object is
2019 // actually a global object.
2020 if (object->IsJSGlobalProxy()) {
2021 CheckAccessGlobalProxy(reg, scratch, miss);
2022
2023 // Restore scratch register to be the map of the object.
2024 // We load the prototype from the map in the scratch register.
2025 movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
2026 }
2027 // The prototype is in new space; we cannot store a reference
2028 // to it in the code. Load it from the map.
2029 reg = holder_reg; // from now the object is in holder_reg
2030 movq(reg, FieldOperand(scratch, Map::kPrototypeOffset));
2031
2032 } else {
2033 // Check the map of the current object.
2034 Cmp(FieldOperand(reg, HeapObject::kMapOffset),
2035 Handle<Map>(object->map()));
2036 // Branch on the result of the map check.
2037 j(not_equal, miss);
2038 // Check access rights to the global object. This has to happen
2039 // after the map check so that we know that the object is
2040 // actually a global object.
2041 if (object->IsJSGlobalProxy()) {
2042 CheckAccessGlobalProxy(reg, scratch, miss);
2043 }
2044 // The prototype is in old space; load it directly.
2045 reg = holder_reg; // from now the object is in holder_reg
2046 Move(reg, Handle<JSObject>(prototype));
2047 }
2048
2049 // Go to the next object in the prototype chain.
2050 object = prototype;
2051 }
2052
2053 // Check the holder map.
Steve Block3ce2e202009-11-05 08:53:23 +00002054 Cmp(FieldOperand(reg, HeapObject::kMapOffset), Handle<Map>(holder->map()));
Steve Blocka7e24c12009-10-30 11:49:00 +00002055 j(not_equal, miss);
2056
2057 // Log the check depth.
2058 LOG(IntEvent("check-maps-depth", depth));
2059
2060 // Perform security check for access to the global object and return
2061 // the holder register.
2062 ASSERT(object == holder);
2063 ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
2064 if (object->IsJSGlobalProxy()) {
2065 CheckAccessGlobalProxy(reg, scratch, miss);
2066 }
2067 return reg;
2068}
2069
2070
Steve Blocka7e24c12009-10-30 11:49:00 +00002071void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
2072 Register scratch,
2073 Label* miss) {
2074 Label same_contexts;
2075
2076 ASSERT(!holder_reg.is(scratch));
2077 ASSERT(!scratch.is(kScratchRegister));
2078 // Load current lexical context from the stack frame.
2079 movq(scratch, Operand(rbp, StandardFrameConstants::kContextOffset));
2080
2081 // When generating debug code, make sure the lexical context is set.
2082 if (FLAG_debug_code) {
2083 cmpq(scratch, Immediate(0));
2084 Check(not_equal, "we should not have an empty lexical context");
2085 }
2086 // Load the global context of the current context.
2087 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
2088 movq(scratch, FieldOperand(scratch, offset));
2089 movq(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
2090
2091 // Check the context is a global context.
2092 if (FLAG_debug_code) {
2093 Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
2094 Factory::global_context_map());
2095 Check(equal, "JSGlobalObject::global_context should be a global context.");
2096 }
2097
2098 // Check if both contexts are the same.
2099 cmpq(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
2100 j(equal, &same_contexts);
2101
2102 // Compare security tokens.
2103 // Check that the security token in the calling global object is
2104 // compatible with the security token in the receiving global
2105 // object.
2106
2107 // Check the context is a global context.
2108 if (FLAG_debug_code) {
2109 // Preserve original value of holder_reg.
2110 push(holder_reg);
2111 movq(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
2112 CompareRoot(holder_reg, Heap::kNullValueRootIndex);
2113 Check(not_equal, "JSGlobalProxy::context() should not be null.");
2114
2115 // Read the first word and compare to global_context_map(),
2116 movq(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
2117 CompareRoot(holder_reg, Heap::kGlobalContextMapRootIndex);
2118 Check(equal, "JSGlobalObject::global_context should be a global context.");
2119 pop(holder_reg);
2120 }
2121
2122 movq(kScratchRegister,
2123 FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
Steve Block3ce2e202009-11-05 08:53:23 +00002124 int token_offset =
2125 Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00002126 movq(scratch, FieldOperand(scratch, token_offset));
2127 cmpq(scratch, FieldOperand(kScratchRegister, token_offset));
2128 j(not_equal, miss);
2129
2130 bind(&same_contexts);
2131}
2132
2133
2134void MacroAssembler::LoadAllocationTopHelper(Register result,
2135 Register result_end,
2136 Register scratch,
2137 AllocationFlags flags) {
2138 ExternalReference new_space_allocation_top =
2139 ExternalReference::new_space_allocation_top_address();
2140
2141 // Just return if allocation top is already known.
2142 if ((flags & RESULT_CONTAINS_TOP) != 0) {
2143 // No use of scratch if allocation top is provided.
2144 ASSERT(scratch.is(no_reg));
2145#ifdef DEBUG
2146 // Assert that result actually contains top on entry.
2147 movq(kScratchRegister, new_space_allocation_top);
2148 cmpq(result, Operand(kScratchRegister, 0));
2149 Check(equal, "Unexpected allocation top");
2150#endif
2151 return;
2152 }
2153
2154 // Move address of new object to result. Use scratch register if available.
2155 if (scratch.is(no_reg)) {
2156 movq(kScratchRegister, new_space_allocation_top);
2157 movq(result, Operand(kScratchRegister, 0));
2158 } else {
2159 ASSERT(!scratch.is(result_end));
2160 movq(scratch, new_space_allocation_top);
2161 movq(result, Operand(scratch, 0));
2162 }
2163}
2164
2165
2166void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
2167 Register scratch) {
Steve Blockd0582a62009-12-15 09:54:21 +00002168 if (FLAG_debug_code) {
2169 testq(result_end, Immediate(kObjectAlignmentMask));
2170 Check(zero, "Unaligned allocation in new space");
2171 }
2172
Steve Blocka7e24c12009-10-30 11:49:00 +00002173 ExternalReference new_space_allocation_top =
2174 ExternalReference::new_space_allocation_top_address();
2175
2176 // Update new top.
2177 if (result_end.is(rax)) {
2178 // rax can be stored directly to a memory location.
2179 store_rax(new_space_allocation_top);
2180 } else {
2181 // Register required - use scratch provided if available.
2182 if (scratch.is(no_reg)) {
2183 movq(kScratchRegister, new_space_allocation_top);
2184 movq(Operand(kScratchRegister, 0), result_end);
2185 } else {
2186 movq(Operand(scratch, 0), result_end);
2187 }
2188 }
2189}
2190
2191
2192void MacroAssembler::AllocateInNewSpace(int object_size,
2193 Register result,
2194 Register result_end,
2195 Register scratch,
2196 Label* gc_required,
2197 AllocationFlags flags) {
2198 ASSERT(!result.is(result_end));
2199
2200 // Load address of new object into result.
2201 LoadAllocationTopHelper(result, result_end, scratch, flags);
2202
2203 // Calculate new top and bail out if new space is exhausted.
2204 ExternalReference new_space_allocation_limit =
2205 ExternalReference::new_space_allocation_limit_address();
2206 lea(result_end, Operand(result, object_size));
2207 movq(kScratchRegister, new_space_allocation_limit);
2208 cmpq(result_end, Operand(kScratchRegister, 0));
2209 j(above, gc_required);
2210
2211 // Update allocation top.
2212 UpdateAllocationTopHelper(result_end, scratch);
2213
2214 // Tag the result if requested.
2215 if ((flags & TAG_OBJECT) != 0) {
2216 addq(result, Immediate(kHeapObjectTag));
2217 }
2218}
2219
2220
2221void MacroAssembler::AllocateInNewSpace(int header_size,
2222 ScaleFactor element_size,
2223 Register element_count,
2224 Register result,
2225 Register result_end,
2226 Register scratch,
2227 Label* gc_required,
2228 AllocationFlags flags) {
2229 ASSERT(!result.is(result_end));
2230
2231 // Load address of new object into result.
2232 LoadAllocationTopHelper(result, result_end, scratch, flags);
2233
2234 // Calculate new top and bail out if new space is exhausted.
2235 ExternalReference new_space_allocation_limit =
2236 ExternalReference::new_space_allocation_limit_address();
2237 lea(result_end, Operand(result, element_count, element_size, header_size));
2238 movq(kScratchRegister, new_space_allocation_limit);
2239 cmpq(result_end, Operand(kScratchRegister, 0));
2240 j(above, gc_required);
2241
2242 // Update allocation top.
2243 UpdateAllocationTopHelper(result_end, scratch);
2244
2245 // Tag the result if requested.
2246 if ((flags & TAG_OBJECT) != 0) {
2247 addq(result, Immediate(kHeapObjectTag));
2248 }
2249}
2250
2251
2252void MacroAssembler::AllocateInNewSpace(Register object_size,
2253 Register result,
2254 Register result_end,
2255 Register scratch,
2256 Label* gc_required,
2257 AllocationFlags flags) {
2258 // Load address of new object into result.
2259 LoadAllocationTopHelper(result, result_end, scratch, flags);
2260
2261 // Calculate new top and bail out if new space is exhausted.
2262 ExternalReference new_space_allocation_limit =
2263 ExternalReference::new_space_allocation_limit_address();
2264 if (!object_size.is(result_end)) {
2265 movq(result_end, object_size);
2266 }
2267 addq(result_end, result);
2268 movq(kScratchRegister, new_space_allocation_limit);
2269 cmpq(result_end, Operand(kScratchRegister, 0));
2270 j(above, gc_required);
2271
2272 // Update allocation top.
2273 UpdateAllocationTopHelper(result_end, scratch);
2274
2275 // Tag the result if requested.
2276 if ((flags & TAG_OBJECT) != 0) {
2277 addq(result, Immediate(kHeapObjectTag));
2278 }
2279}
2280
2281
2282void MacroAssembler::UndoAllocationInNewSpace(Register object) {
2283 ExternalReference new_space_allocation_top =
2284 ExternalReference::new_space_allocation_top_address();
2285
2286 // Make sure the object has no tag before resetting top.
2287 and_(object, Immediate(~kHeapObjectTagMask));
2288 movq(kScratchRegister, new_space_allocation_top);
2289#ifdef DEBUG
2290 cmpq(object, Operand(kScratchRegister, 0));
2291 Check(below, "Undo allocation of non allocated memory");
2292#endif
2293 movq(Operand(kScratchRegister, 0), object);
2294}
2295
2296
Steve Block3ce2e202009-11-05 08:53:23 +00002297void MacroAssembler::AllocateHeapNumber(Register result,
2298 Register scratch,
2299 Label* gc_required) {
2300 // Allocate heap number in new space.
2301 AllocateInNewSpace(HeapNumber::kSize,
2302 result,
2303 scratch,
2304 no_reg,
2305 gc_required,
2306 TAG_OBJECT);
2307
2308 // Set the map.
2309 LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
2310 movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
2311}
2312
2313
Leon Clarkee46be812010-01-19 14:06:41 +00002314void MacroAssembler::AllocateTwoByteString(Register result,
2315 Register length,
2316 Register scratch1,
2317 Register scratch2,
2318 Register scratch3,
2319 Label* gc_required) {
2320 // Calculate the number of bytes needed for the characters in the string while
2321 // observing object alignment.
2322 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2323 ASSERT(kShortSize == 2);
2324 // scratch1 = length * 2 + kObjectAlignmentMask.
2325 lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
2326 and_(scratch1, Immediate(~kObjectAlignmentMask));
2327
2328 // Allocate two byte string in new space.
2329 AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
2330 times_1,
2331 scratch1,
2332 result,
2333 scratch2,
2334 scratch3,
2335 gc_required,
2336 TAG_OBJECT);
2337
2338 // Set the map, length and hash field.
2339 LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
2340 movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
2341 movl(FieldOperand(result, String::kLengthOffset), length);
2342 movl(FieldOperand(result, String::kHashFieldOffset),
2343 Immediate(String::kEmptyHashField));
2344}
2345
2346
2347void MacroAssembler::AllocateAsciiString(Register result,
2348 Register length,
2349 Register scratch1,
2350 Register scratch2,
2351 Register scratch3,
2352 Label* gc_required) {
2353 // Calculate the number of bytes needed for the characters in the string while
2354 // observing object alignment.
2355 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
2356 movl(scratch1, length);
2357 ASSERT(kCharSize == 1);
2358 addq(scratch1, Immediate(kObjectAlignmentMask));
2359 and_(scratch1, Immediate(~kObjectAlignmentMask));
2360
2361 // Allocate ascii string in new space.
2362 AllocateInNewSpace(SeqAsciiString::kHeaderSize,
2363 times_1,
2364 scratch1,
2365 result,
2366 scratch2,
2367 scratch3,
2368 gc_required,
2369 TAG_OBJECT);
2370
2371 // Set the map, length and hash field.
2372 LoadRoot(kScratchRegister, Heap::kAsciiStringMapRootIndex);
2373 movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
2374 movl(FieldOperand(result, String::kLengthOffset), length);
2375 movl(FieldOperand(result, String::kHashFieldOffset),
2376 Immediate(String::kEmptyHashField));
2377}
2378
2379
2380void MacroAssembler::AllocateConsString(Register result,
2381 Register scratch1,
2382 Register scratch2,
2383 Label* gc_required) {
2384 // Allocate heap number in new space.
2385 AllocateInNewSpace(ConsString::kSize,
2386 result,
2387 scratch1,
2388 scratch2,
2389 gc_required,
2390 TAG_OBJECT);
2391
2392 // Set the map. The other fields are left uninitialized.
2393 LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
2394 movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
2395}
2396
2397
2398void MacroAssembler::AllocateAsciiConsString(Register result,
2399 Register scratch1,
2400 Register scratch2,
2401 Label* gc_required) {
2402 // Allocate heap number in new space.
2403 AllocateInNewSpace(ConsString::kSize,
2404 result,
2405 scratch1,
2406 scratch2,
2407 gc_required,
2408 TAG_OBJECT);
2409
2410 // Set the map. The other fields are left uninitialized.
2411 LoadRoot(kScratchRegister, Heap::kConsAsciiStringMapRootIndex);
2412 movq(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
2413}
2414
2415
Steve Blockd0582a62009-12-15 09:54:21 +00002416void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2417 if (context_chain_length > 0) {
2418 // Move up the chain of contexts to the context containing the slot.
2419 movq(dst, Operand(rsi, Context::SlotOffset(Context::CLOSURE_INDEX)));
2420 // Load the function context (which is the incoming, outer context).
Leon Clarkee46be812010-01-19 14:06:41 +00002421 movq(dst, FieldOperand(dst, JSFunction::kContextOffset));
Steve Blockd0582a62009-12-15 09:54:21 +00002422 for (int i = 1; i < context_chain_length; i++) {
2423 movq(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
2424 movq(dst, FieldOperand(dst, JSFunction::kContextOffset));
2425 }
2426 // The context may be an intermediate context, not a function context.
2427 movq(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
2428 } else { // context is the current function context.
2429 // The context may be an intermediate context, not a function context.
2430 movq(dst, Operand(rsi, Context::SlotOffset(Context::FCONTEXT_INDEX)));
2431 }
2432}
2433
2434
Steve Blocka7e24c12009-10-30 11:49:00 +00002435CodePatcher::CodePatcher(byte* address, int size)
2436 : address_(address), size_(size), masm_(address, size + Assembler::kGap) {
2437 // Create a new macro assembler pointing to the address of the code to patch.
2438 // The size is adjusted with kGap on order for the assembler to generate size
2439 // bytes of instructions without failing with buffer size constraints.
2440 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
2441}
2442
2443
2444CodePatcher::~CodePatcher() {
2445 // Indicate that code has changed.
2446 CPU::FlushICache(address_, size_);
2447
2448 // Check that the code was patched as expected.
2449 ASSERT(masm_.pc_ == address_ + size_);
2450 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
2451}
2452
Steve Blocka7e24c12009-10-30 11:49:00 +00002453} } // namespace v8::internal