blob: 07cab806995b760def12b462717188fc0a7cbf93 [file] [log] [blame]
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001// Copyright 2012 the V8 project authors. All rights reserved.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
Andrei Popescu31002712010-02-23 13:46:05 +00004
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005#include "src/mips/codegen-mips.h"
Andrei Popescu31002712010-02-23 13:46:05 +00006
Ben Murdochb8a8cc12014-11-26 15:28:44 +00007#if V8_TARGET_ARCH_MIPS
Leon Clarkef7060e22010-06-03 12:02:55 +01008
Ben Murdochb8a8cc12014-11-26 15:28:44 +00009#include "src/codegen.h"
10#include "src/macro-assembler.h"
11#include "src/mips/simulator-mips.h"
Andrei Popescu31002712010-02-23 13:46:05 +000012
13namespace v8 {
14namespace internal {
15
Ben Murdoch3ef787d2012-04-12 10:51:47 +010016
Ben Murdochb8a8cc12014-11-26 15:28:44 +000017#define __ masm.
18
Ben Murdochb8a8cc12014-11-26 15:28:44 +000019#if defined(V8_HOST_ARCH_MIPS)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000020MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate,
21 MemCopyUint8Function stub) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +000022#if defined(USE_SIMULATOR) || defined(_MIPS_ARCH_MIPS32R6) || \
23 defined(_MIPS_ARCH_MIPS32RX)
24 return stub;
25#else
26 size_t actual_size;
27 byte* buffer =
28 static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000029 if (buffer == nullptr) return stub;
Ben Murdochb8a8cc12014-11-26 15:28:44 +000030
31 // This code assumes that cache lines are 32 bytes and if the cache line is
32 // larger it will not work correctly.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000033 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
34 CodeObjectRequired::kNo);
Ben Murdochb8a8cc12014-11-26 15:28:44 +000035
36 {
37 Label lastb, unaligned, aligned, chkw,
38 loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop,
39 leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw,
40 ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop;
41
42 // The size of each prefetch.
43 uint32_t pref_chunk = 32;
44 // The maximum size of a prefetch, it must not be less then pref_chunk.
45 // If the real size of a prefetch is greater then max_pref_size and
46 // the kPrefHintPrepareForStore hint is used, the code will not work
47 // correctly.
48 uint32_t max_pref_size = 128;
49 DCHECK(pref_chunk < max_pref_size);
50
51 // pref_limit is set based on the fact that we never use an offset
52 // greater then 5 on a store pref and that a single pref can
53 // never be larger then max_pref_size.
54 uint32_t pref_limit = (5 * pref_chunk) + max_pref_size;
55 int32_t pref_hint_load = kPrefHintLoadStreamed;
56 int32_t pref_hint_store = kPrefHintPrepareForStore;
57 uint32_t loadstore_chunk = 4;
58
59 // The initial prefetches may fetch bytes that are before the buffer being
60 // copied. Start copies with an offset of 4 so avoid this situation when
61 // using kPrefHintPrepareForStore.
62 DCHECK(pref_hint_store != kPrefHintPrepareForStore ||
63 pref_chunk * 4 >= max_pref_size);
64
65 // If the size is less than 8, go to lastb. Regardless of size,
66 // copy dst pointer to v0 for the retuen value.
67 __ slti(t2, a2, 2 * loadstore_chunk);
68 __ bne(t2, zero_reg, &lastb);
69 __ mov(v0, a0); // In delay slot.
70
71 // If src and dst have different alignments, go to unaligned, if they
72 // have the same alignment (but are not actually aligned) do a partial
73 // load/store to make them aligned. If they are both already aligned
74 // we can start copying at aligned.
75 __ xor_(t8, a1, a0);
76 __ andi(t8, t8, loadstore_chunk - 1); // t8 is a0/a1 word-displacement.
77 __ bne(t8, zero_reg, &unaligned);
78 __ subu(a3, zero_reg, a0); // In delay slot.
79
80 __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1.
81 __ beq(a3, zero_reg, &aligned); // Already aligned.
82 __ subu(a2, a2, a3); // In delay slot. a2 is the remining bytes count.
83
84 if (kArchEndian == kLittle) {
85 __ lwr(t8, MemOperand(a1));
86 __ addu(a1, a1, a3);
87 __ swr(t8, MemOperand(a0));
88 __ addu(a0, a0, a3);
89 } else {
90 __ lwl(t8, MemOperand(a1));
91 __ addu(a1, a1, a3);
92 __ swl(t8, MemOperand(a0));
93 __ addu(a0, a0, a3);
94 }
95 // Now dst/src are both aligned to (word) aligned addresses. Set a2 to
96 // count how many bytes we have to copy after all the 64 byte chunks are
97 // copied and a3 to the dst pointer after all the 64 byte chunks have been
98 // copied. We will loop, incrementing a0 and a1 until a0 equals a3.
99 __ bind(&aligned);
100 __ andi(t8, a2, 0x3f);
101 __ beq(a2, t8, &chkw); // Less than 64?
102 __ subu(a3, a2, t8); // In delay slot.
103 __ addu(a3, a0, a3); // Now a3 is the final dst after loop.
104
105 // When in the loop we prefetch with kPrefHintPrepareForStore hint,
106 // in this case the a0+x should be past the "t0-32" address. This means:
107 // for x=128 the last "safe" a0 address is "t0-160". Alternatively, for
108 // x=64 the last "safe" a0 address is "t0-96". In the current version we
109 // will use "pref hint, 128(a0)", so "t0-160" is the limit.
110 if (pref_hint_store == kPrefHintPrepareForStore) {
111 __ addu(t0, a0, a2); // t0 is the "past the end" address.
112 __ Subu(t9, t0, pref_limit); // t9 is the "last safe pref" address.
113 }
114
115 __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
116 __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
117 __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
118 __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
119
120 if (pref_hint_store != kPrefHintPrepareForStore) {
121 __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
122 __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
123 __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
124 }
125 __ bind(&loop16w);
126 __ lw(t0, MemOperand(a1));
127
128 if (pref_hint_store == kPrefHintPrepareForStore) {
129 __ sltu(v1, t9, a0); // If a0 > t9, don't use next prefetch.
130 __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg));
131 }
132 __ lw(t1, MemOperand(a1, 1, loadstore_chunk)); // Maybe in delay slot.
133
134 __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
135 __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
136
137 __ bind(&skip_pref);
138 __ lw(t2, MemOperand(a1, 2, loadstore_chunk));
139 __ lw(t3, MemOperand(a1, 3, loadstore_chunk));
140 __ lw(t4, MemOperand(a1, 4, loadstore_chunk));
141 __ lw(t5, MemOperand(a1, 5, loadstore_chunk));
142 __ lw(t6, MemOperand(a1, 6, loadstore_chunk));
143 __ lw(t7, MemOperand(a1, 7, loadstore_chunk));
144 __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
145
146 __ sw(t0, MemOperand(a0));
147 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
148 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
149 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
150 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
151 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
152 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
153 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
154
155 __ lw(t0, MemOperand(a1, 8, loadstore_chunk));
156 __ lw(t1, MemOperand(a1, 9, loadstore_chunk));
157 __ lw(t2, MemOperand(a1, 10, loadstore_chunk));
158 __ lw(t3, MemOperand(a1, 11, loadstore_chunk));
159 __ lw(t4, MemOperand(a1, 12, loadstore_chunk));
160 __ lw(t5, MemOperand(a1, 13, loadstore_chunk));
161 __ lw(t6, MemOperand(a1, 14, loadstore_chunk));
162 __ lw(t7, MemOperand(a1, 15, loadstore_chunk));
163 __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
164
165 __ sw(t0, MemOperand(a0, 8, loadstore_chunk));
166 __ sw(t1, MemOperand(a0, 9, loadstore_chunk));
167 __ sw(t2, MemOperand(a0, 10, loadstore_chunk));
168 __ sw(t3, MemOperand(a0, 11, loadstore_chunk));
169 __ sw(t4, MemOperand(a0, 12, loadstore_chunk));
170 __ sw(t5, MemOperand(a0, 13, loadstore_chunk));
171 __ sw(t6, MemOperand(a0, 14, loadstore_chunk));
172 __ sw(t7, MemOperand(a0, 15, loadstore_chunk));
173 __ addiu(a0, a0, 16 * loadstore_chunk);
174 __ bne(a0, a3, &loop16w);
175 __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot.
176 __ mov(a2, t8);
177
178 // Here we have src and dest word-aligned but less than 64-bytes to go.
179 // Check for a 32 bytes chunk and copy if there is one. Otherwise jump
180 // down to chk1w to handle the tail end of the copy.
181 __ bind(&chkw);
182 __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
183 __ andi(t8, a2, 0x1f);
184 __ beq(a2, t8, &chk1w); // Less than 32?
185 __ nop(); // In delay slot.
186 __ lw(t0, MemOperand(a1));
187 __ lw(t1, MemOperand(a1, 1, loadstore_chunk));
188 __ lw(t2, MemOperand(a1, 2, loadstore_chunk));
189 __ lw(t3, MemOperand(a1, 3, loadstore_chunk));
190 __ lw(t4, MemOperand(a1, 4, loadstore_chunk));
191 __ lw(t5, MemOperand(a1, 5, loadstore_chunk));
192 __ lw(t6, MemOperand(a1, 6, loadstore_chunk));
193 __ lw(t7, MemOperand(a1, 7, loadstore_chunk));
194 __ addiu(a1, a1, 8 * loadstore_chunk);
195 __ sw(t0, MemOperand(a0));
196 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
197 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
198 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
199 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
200 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
201 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
202 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
203 __ addiu(a0, a0, 8 * loadstore_chunk);
204
205 // Here we have less than 32 bytes to copy. Set up for a loop to copy
206 // one word at a time. Set a2 to count how many bytes we have to copy
207 // after all the word chunks are copied and a3 to the dst pointer after
208 // all the word chunks have been copied. We will loop, incrementing a0
209 // and a1 untill a0 equals a3.
210 __ bind(&chk1w);
211 __ andi(a2, t8, loadstore_chunk - 1);
212 __ beq(a2, t8, &lastb);
213 __ subu(a3, t8, a2); // In delay slot.
214 __ addu(a3, a0, a3);
215
216 __ bind(&wordCopy_loop);
217 __ lw(t3, MemOperand(a1));
218 __ addiu(a0, a0, loadstore_chunk);
219 __ addiu(a1, a1, loadstore_chunk);
220 __ bne(a0, a3, &wordCopy_loop);
221 __ sw(t3, MemOperand(a0, -1, loadstore_chunk)); // In delay slot.
222
223 __ bind(&lastb);
224 __ Branch(&leave, le, a2, Operand(zero_reg));
225 __ addu(a3, a0, a2);
226
227 __ bind(&lastbloop);
228 __ lb(v1, MemOperand(a1));
229 __ addiu(a0, a0, 1);
230 __ addiu(a1, a1, 1);
231 __ bne(a0, a3, &lastbloop);
232 __ sb(v1, MemOperand(a0, -1)); // In delay slot.
233
234 __ bind(&leave);
235 __ jr(ra);
236 __ nop();
237
238 // Unaligned case. Only the dst gets aligned so we need to do partial
239 // loads of the source followed by normal stores to the dst (once we
240 // have aligned the destination).
241 __ bind(&unaligned);
242 __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1.
243 __ beq(a3, zero_reg, &ua_chk16w);
244 __ subu(a2, a2, a3); // In delay slot.
245
246 if (kArchEndian == kLittle) {
247 __ lwr(v1, MemOperand(a1));
248 __ lwl(v1,
249 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
250 __ addu(a1, a1, a3);
251 __ swr(v1, MemOperand(a0));
252 __ addu(a0, a0, a3);
253 } else {
254 __ lwl(v1, MemOperand(a1));
255 __ lwr(v1,
256 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
257 __ addu(a1, a1, a3);
258 __ swl(v1, MemOperand(a0));
259 __ addu(a0, a0, a3);
260 }
261
262 // Now the dst (but not the source) is aligned. Set a2 to count how many
263 // bytes we have to copy after all the 64 byte chunks are copied and a3 to
264 // the dst pointer after all the 64 byte chunks have been copied. We will
265 // loop, incrementing a0 and a1 until a0 equals a3.
266 __ bind(&ua_chk16w);
267 __ andi(t8, a2, 0x3f);
268 __ beq(a2, t8, &ua_chkw);
269 __ subu(a3, a2, t8); // In delay slot.
270 __ addu(a3, a0, a3);
271
272 if (pref_hint_store == kPrefHintPrepareForStore) {
273 __ addu(t0, a0, a2);
274 __ Subu(t9, t0, pref_limit);
275 }
276
277 __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
278 __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
279 __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
280
281 if (pref_hint_store != kPrefHintPrepareForStore) {
282 __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
283 __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
284 __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
285 }
286
287 __ bind(&ua_loop16w);
288 __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
289 if (kArchEndian == kLittle) {
290 __ lwr(t0, MemOperand(a1));
291 __ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
292 __ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
293
294 if (pref_hint_store == kPrefHintPrepareForStore) {
295 __ sltu(v1, t9, a0);
296 __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
297 }
298 __ lwr(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot.
299
300 __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
301 __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
302
303 __ bind(&ua_skip_pref);
304 __ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
305 __ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
306 __ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
307 __ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
308 __ lwl(t0,
309 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
310 __ lwl(t1,
311 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
312 __ lwl(t2,
313 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
314 __ lwl(t3,
315 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
316 __ lwl(t4,
317 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
318 __ lwl(t5,
319 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
320 __ lwl(t6,
321 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
322 __ lwl(t7,
323 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
324 } else {
325 __ lwl(t0, MemOperand(a1));
326 __ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
327 __ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
328
329 if (pref_hint_store == kPrefHintPrepareForStore) {
330 __ sltu(v1, t9, a0);
331 __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
332 }
333 __ lwl(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot.
334
335 __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
336 __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
337
338 __ bind(&ua_skip_pref);
339 __ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
340 __ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
341 __ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
342 __ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
343 __ lwr(t0,
344 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
345 __ lwr(t1,
346 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
347 __ lwr(t2,
348 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
349 __ lwr(t3,
350 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
351 __ lwr(t4,
352 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
353 __ lwr(t5,
354 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
355 __ lwr(t6,
356 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
357 __ lwr(t7,
358 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
359 }
360 __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
361 __ sw(t0, MemOperand(a0));
362 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
363 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
364 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
365 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
366 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
367 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
368 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
369 if (kArchEndian == kLittle) {
370 __ lwr(t0, MemOperand(a1, 8, loadstore_chunk));
371 __ lwr(t1, MemOperand(a1, 9, loadstore_chunk));
372 __ lwr(t2, MemOperand(a1, 10, loadstore_chunk));
373 __ lwr(t3, MemOperand(a1, 11, loadstore_chunk));
374 __ lwr(t4, MemOperand(a1, 12, loadstore_chunk));
375 __ lwr(t5, MemOperand(a1, 13, loadstore_chunk));
376 __ lwr(t6, MemOperand(a1, 14, loadstore_chunk));
377 __ lwr(t7, MemOperand(a1, 15, loadstore_chunk));
378 __ lwl(t0,
379 MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
380 __ lwl(t1,
381 MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
382 __ lwl(t2,
383 MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
384 __ lwl(t3,
385 MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
386 __ lwl(t4,
387 MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
388 __ lwl(t5,
389 MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
390 __ lwl(t6,
391 MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
392 __ lwl(t7,
393 MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
394 } else {
395 __ lwl(t0, MemOperand(a1, 8, loadstore_chunk));
396 __ lwl(t1, MemOperand(a1, 9, loadstore_chunk));
397 __ lwl(t2, MemOperand(a1, 10, loadstore_chunk));
398 __ lwl(t3, MemOperand(a1, 11, loadstore_chunk));
399 __ lwl(t4, MemOperand(a1, 12, loadstore_chunk));
400 __ lwl(t5, MemOperand(a1, 13, loadstore_chunk));
401 __ lwl(t6, MemOperand(a1, 14, loadstore_chunk));
402 __ lwl(t7, MemOperand(a1, 15, loadstore_chunk));
403 __ lwr(t0,
404 MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
405 __ lwr(t1,
406 MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
407 __ lwr(t2,
408 MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
409 __ lwr(t3,
410 MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
411 __ lwr(t4,
412 MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
413 __ lwr(t5,
414 MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
415 __ lwr(t6,
416 MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
417 __ lwr(t7,
418 MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
419 }
420 __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
421 __ sw(t0, MemOperand(a0, 8, loadstore_chunk));
422 __ sw(t1, MemOperand(a0, 9, loadstore_chunk));
423 __ sw(t2, MemOperand(a0, 10, loadstore_chunk));
424 __ sw(t3, MemOperand(a0, 11, loadstore_chunk));
425 __ sw(t4, MemOperand(a0, 12, loadstore_chunk));
426 __ sw(t5, MemOperand(a0, 13, loadstore_chunk));
427 __ sw(t6, MemOperand(a0, 14, loadstore_chunk));
428 __ sw(t7, MemOperand(a0, 15, loadstore_chunk));
429 __ addiu(a0, a0, 16 * loadstore_chunk);
430 __ bne(a0, a3, &ua_loop16w);
431 __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot.
432 __ mov(a2, t8);
433
434 // Here less than 64-bytes. Check for
435 // a 32 byte chunk and copy if there is one. Otherwise jump down to
436 // ua_chk1w to handle the tail end of the copy.
437 __ bind(&ua_chkw);
438 __ Pref(pref_hint_load, MemOperand(a1));
439 __ andi(t8, a2, 0x1f);
440
441 __ beq(a2, t8, &ua_chk1w);
442 __ nop(); // In delay slot.
443 if (kArchEndian == kLittle) {
444 __ lwr(t0, MemOperand(a1));
445 __ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
446 __ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
447 __ lwr(t3, MemOperand(a1, 3, loadstore_chunk));
448 __ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
449 __ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
450 __ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
451 __ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
452 __ lwl(t0,
453 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
454 __ lwl(t1,
455 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
456 __ lwl(t2,
457 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
458 __ lwl(t3,
459 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
460 __ lwl(t4,
461 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
462 __ lwl(t5,
463 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
464 __ lwl(t6,
465 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
466 __ lwl(t7,
467 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
468 } else {
469 __ lwl(t0, MemOperand(a1));
470 __ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
471 __ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
472 __ lwl(t3, MemOperand(a1, 3, loadstore_chunk));
473 __ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
474 __ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
475 __ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
476 __ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
477 __ lwr(t0,
478 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
479 __ lwr(t1,
480 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
481 __ lwr(t2,
482 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
483 __ lwr(t3,
484 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
485 __ lwr(t4,
486 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
487 __ lwr(t5,
488 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
489 __ lwr(t6,
490 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
491 __ lwr(t7,
492 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
493 }
494 __ addiu(a1, a1, 8 * loadstore_chunk);
495 __ sw(t0, MemOperand(a0));
496 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
497 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
498 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
499 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
500 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
501 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
502 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
503 __ addiu(a0, a0, 8 * loadstore_chunk);
504
505 // Less than 32 bytes to copy. Set up for a loop to
506 // copy one word at a time.
507 __ bind(&ua_chk1w);
508 __ andi(a2, t8, loadstore_chunk - 1);
509 __ beq(a2, t8, &ua_smallCopy);
510 __ subu(a3, t8, a2); // In delay slot.
511 __ addu(a3, a0, a3);
512
513 __ bind(&ua_wordCopy_loop);
514 if (kArchEndian == kLittle) {
515 __ lwr(v1, MemOperand(a1));
516 __ lwl(v1,
517 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
518 } else {
519 __ lwl(v1, MemOperand(a1));
520 __ lwr(v1,
521 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
522 }
523 __ addiu(a0, a0, loadstore_chunk);
524 __ addiu(a1, a1, loadstore_chunk);
525 __ bne(a0, a3, &ua_wordCopy_loop);
526 __ sw(v1, MemOperand(a0, -1, loadstore_chunk)); // In delay slot.
527
528 // Copy the last 8 bytes.
529 __ bind(&ua_smallCopy);
530 __ beq(a2, zero_reg, &leave);
531 __ addu(a3, a0, a2); // In delay slot.
532
533 __ bind(&ua_smallCopy_loop);
534 __ lb(v1, MemOperand(a1));
535 __ addiu(a0, a0, 1);
536 __ addiu(a1, a1, 1);
537 __ bne(a0, a3, &ua_smallCopy_loop);
538 __ sb(v1, MemOperand(a0, -1)); // In delay slot.
539
540 __ jr(ra);
541 __ nop();
542 }
543 CodeDesc desc;
544 masm.GetCode(&desc);
545 DCHECK(!RelocInfo::RequiresRelocation(desc));
546
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000547 Assembler::FlushICache(isolate, buffer, actual_size);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000548 base::OS::ProtectCode(buffer, actual_size);
549 return FUNCTION_CAST<MemCopyUint8Function>(buffer);
550#endif
551}
552#endif
553
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000554UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000555#if defined(USE_SIMULATOR)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000556 return nullptr;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000557#else
558 size_t actual_size;
559 byte* buffer =
560 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000561 if (buffer == nullptr) return nullptr;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000562
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000563 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
564 CodeObjectRequired::kNo);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000565
566 __ MovFromFloatParameter(f12);
567 __ sqrt_d(f0, f12);
568 __ MovToFloatResult(f0);
569 __ Ret();
570
571 CodeDesc desc;
572 masm.GetCode(&desc);
573 DCHECK(!RelocInfo::RequiresRelocation(desc));
574
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000575 Assembler::FlushICache(isolate, buffer, actual_size);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000576 base::OS::ProtectCode(buffer, actual_size);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000577 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000578#endif
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100579}
580
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000581#undef __
582
583
Steve Block44f0eee2011-05-26 01:26:41 +0100584// -------------------------------------------------------------------------
585// Platform-specific RuntimeCallHelper functions.
586
Steve Block44f0eee2011-05-26 01:26:41 +0100587void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100588 masm->EnterFrame(StackFrame::INTERNAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000589 DCHECK(!masm->has_frame());
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100590 masm->set_has_frame(true);
Steve Block44f0eee2011-05-26 01:26:41 +0100591}
592
593
594void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100595 masm->LeaveFrame(StackFrame::INTERNAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000596 DCHECK(masm->has_frame());
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100597 masm->set_has_frame(false);
Andrei Popescu31002712010-02-23 13:46:05 +0000598}
599
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000600
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100601// -------------------------------------------------------------------------
602// Code generators
603
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000604#define __ ACCESS_MASM(masm)
605
606void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
607 MacroAssembler* masm,
608 Register receiver,
609 Register key,
610 Register value,
611 Register target_map,
612 AllocationSiteMode mode,
613 Label* allocation_memento_found) {
614 Register scratch_elements = t0;
615 DCHECK(!AreAliased(receiver, key, value, target_map,
616 scratch_elements));
617
618 if (mode == TRACK_ALLOCATION_SITE) {
619 DCHECK(allocation_memento_found != NULL);
620 __ JumpIfJSArrayHasAllocationMemento(
621 receiver, scratch_elements, allocation_memento_found);
622 }
623
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100624 // Set transitioned map.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000625 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
626 __ RecordWriteField(receiver,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100627 HeapObject::kMapOffset,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000628 target_map,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100629 t5,
630 kRAHasNotBeenSaved,
631 kDontSaveFPRegs,
632 EMIT_REMEMBERED_SET,
633 OMIT_SMI_CHECK);
634}
635
636
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000637void ElementsTransitionGenerator::GenerateSmiToDouble(
638 MacroAssembler* masm,
639 Register receiver,
640 Register key,
641 Register value,
642 Register target_map,
643 AllocationSiteMode mode,
644 Label* fail) {
645 // Register ra contains the return address.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100646 Label loop, entry, convert_hole, gc_required, only_change_map, done;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000647 Register elements = t0;
648 Register length = t1;
649 Register array = t2;
650 Register array_end = array;
651
652 // target_map parameter can be clobbered.
653 Register scratch1 = target_map;
654 Register scratch2 = t5;
655 Register scratch3 = t3;
656
657 // Verify input registers don't conflict with locals.
658 DCHECK(!AreAliased(receiver, key, value, target_map,
659 elements, length, array, scratch2));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100660
661 Register scratch = t6;
662
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000663 if (mode == TRACK_ALLOCATION_SITE) {
664 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
665 }
666
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100667 // Check for empty arrays, which only require a map transition and no changes
668 // to the backing store.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000669 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100670 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000671 __ Branch(&only_change_map, eq, at, Operand(elements));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100672
673 __ push(ra);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000674 __ lw(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
675 // elements: source FixedArray
676 // length: number of elements (smi-tagged)
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100677
678 // Allocate new FixedDoubleArray.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000679 __ sll(scratch, length, 2);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100680 __ Addu(scratch, scratch, FixedDoubleArray::kHeaderSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000681 __ Allocate(scratch, array, t3, scratch2, &gc_required, DOUBLE_ALIGNMENT);
Ben Murdochc5610432016-08-08 18:44:38 +0100682 // array: destination FixedDoubleArray, tagged as heap object
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100683
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000684 // Set destination FixedDoubleArray's length and map.
685 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
Ben Murdochc5610432016-08-08 18:44:38 +0100686 __ sw(length, FieldMemOperand(array, FixedDoubleArray::kLengthOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000687 // Update receiver's map.
Ben Murdochc5610432016-08-08 18:44:38 +0100688 __ sw(scratch2, FieldMemOperand(array, HeapObject::kMapOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000689
690 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
691 __ RecordWriteField(receiver,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100692 HeapObject::kMapOffset,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000693 target_map,
694 scratch2,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100695 kRAHasBeenSaved,
696 kDontSaveFPRegs,
697 OMIT_REMEMBERED_SET,
698 OMIT_SMI_CHECK);
699 // Replace receiver's backing store with newly created FixedDoubleArray.
Ben Murdochc5610432016-08-08 18:44:38 +0100700 __ Addu(scratch1, array, Operand(kHeapObjectTag - kHeapObjectTag));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000701 __ sw(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000702 __ RecordWriteField(receiver,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100703 JSObject::kElementsOffset,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000704 scratch1,
705 scratch2,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100706 kRAHasBeenSaved,
707 kDontSaveFPRegs,
708 EMIT_REMEMBERED_SET,
709 OMIT_SMI_CHECK);
710
711
712 // Prepare for conversion loop.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000713 __ Addu(scratch1, elements,
714 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
Ben Murdochc5610432016-08-08 18:44:38 +0100715 __ Addu(scratch3, array,
716 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100717 __ Lsa(array_end, scratch3, length, 2);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100718
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000719 // Repurpose registers no longer in use.
720 Register hole_lower = elements;
721 Register hole_upper = length;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000722 __ li(hole_lower, Operand(kHoleNanLower32));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000723 __ li(hole_upper, Operand(kHoleNanUpper32));
724
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000725 // scratch1: begin of source FixedArray element fields, not tagged
726 // hole_lower: kHoleNanLower32
727 // hole_upper: kHoleNanUpper32
728 // array_end: end of destination FixedDoubleArray, not tagged
729 // scratch3: begin of FixedDoubleArray element fields, not tagged
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000730
731 __ Branch(&entry);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100732
733 __ bind(&only_change_map);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000734 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
735 __ RecordWriteField(receiver,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100736 HeapObject::kMapOffset,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000737 target_map,
738 scratch2,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100739 kRAHasBeenSaved,
740 kDontSaveFPRegs,
741 OMIT_REMEMBERED_SET,
742 OMIT_SMI_CHECK);
743 __ Branch(&done);
744
745 // Call into runtime if GC is required.
746 __ bind(&gc_required);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000747 __ lw(ra, MemOperand(sp, 0));
748 __ Branch(USE_DELAY_SLOT, fail);
749 __ addiu(sp, sp, kPointerSize); // In delay slot.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100750
751 // Convert and copy elements.
752 __ bind(&loop);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000753 __ lw(scratch2, MemOperand(scratch1));
754 __ Addu(scratch1, scratch1, kIntSize);
755 // scratch2: current element
756 __ UntagAndJumpIfNotSmi(scratch2, scratch2, &convert_hole);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100757
758 // Normal smi, convert to double and store.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000759 __ mtc1(scratch2, f0);
760 __ cvt_d_w(f0, f0);
761 __ sdc1(f0, MemOperand(scratch3));
762 __ Branch(USE_DELAY_SLOT, &entry);
763 __ addiu(scratch3, scratch3, kDoubleSize); // In delay slot.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100764
765 // Hole found, store the-hole NaN.
766 __ bind(&convert_hole);
767 if (FLAG_debug_code) {
768 // Restore a "smi-untagged" heap object.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000769 __ SmiTag(scratch2);
770 __ Or(scratch2, scratch2, Operand(1));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100771 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000772 __ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(scratch2));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100773 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000774 // mantissa
775 __ sw(hole_lower, MemOperand(scratch3, Register::kMantissaOffset));
776 // exponent
777 __ sw(hole_upper, MemOperand(scratch3, Register::kExponentOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000778 __ addiu(scratch3, scratch3, kDoubleSize);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100779
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000780 __ bind(&entry);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000781 __ Branch(&loop, lt, scratch3, Operand(array_end));
782
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100783 __ bind(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000784 __ pop(ra);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100785}
786
787
788void ElementsTransitionGenerator::GenerateDoubleToObject(
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000789 MacroAssembler* masm,
790 Register receiver,
791 Register key,
792 Register value,
793 Register target_map,
794 AllocationSiteMode mode,
795 Label* fail) {
796 // Register ra contains the return address.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100797 Label entry, loop, convert_hole, gc_required, only_change_map;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000798 Register elements = t0;
799 Register array = t2;
800 Register length = t1;
801 Register scratch = t5;
802
803 // Verify input registers don't conflict with locals.
804 DCHECK(!AreAliased(receiver, key, value, target_map,
805 elements, array, length, scratch));
806
807 if (mode == TRACK_ALLOCATION_SITE) {
808 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
809 }
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100810
811 // Check for empty arrays, which only require a map transition and no changes
812 // to the backing store.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000813 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100814 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000815 __ Branch(&only_change_map, eq, at, Operand(elements));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100816
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000817 __ MultiPush(
818 value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100819
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000820 __ lw(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
821 // elements: source FixedArray
822 // length: number of elements (smi-tagged)
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100823
824 // Allocate new FixedArray.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000825 // Re-use value and target_map registers, as they have been saved on the
826 // stack.
827 Register array_size = value;
828 Register allocate_scratch = target_map;
829 __ sll(array_size, length, 1);
830 __ Addu(array_size, array_size, FixedDoubleArray::kHeaderSize);
831 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
832 NO_ALLOCATION_FLAGS);
833 // array: destination FixedArray, not tagged as heap object
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100834 // Set destination FixedDoubleArray's length and map.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000835 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
Ben Murdochc5610432016-08-08 18:44:38 +0100836 __ sw(length, FieldMemOperand(array, FixedDoubleArray::kLengthOffset));
837 __ sw(scratch, FieldMemOperand(array, HeapObject::kMapOffset));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100838
839 // Prepare for conversion loop.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000840 Register src_elements = elements;
841 Register dst_elements = target_map;
842 Register dst_end = length;
843 Register heap_number_map = scratch;
844 __ Addu(src_elements, src_elements, Operand(
845 FixedDoubleArray::kHeaderSize - kHeapObjectTag
846 + Register::kExponentOffset));
Ben Murdochc5610432016-08-08 18:44:38 +0100847 __ Addu(dst_elements, array,
848 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100849 __ Lsa(dst_end, dst_elements, dst_end, 1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400850
851 // Allocating heap numbers in the loop below can fail and cause a jump to
852 // gc_required. We can't leave a partly initialized FixedArray behind,
853 // so pessimistically fill it with holes now.
854 Label initialization_loop, initialization_loop_entry;
855 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
856 __ Branch(&initialization_loop_entry);
857 __ bind(&initialization_loop);
858 __ sw(scratch, MemOperand(dst_elements));
859 __ Addu(dst_elements, dst_elements, Operand(kPointerSize));
860 __ bind(&initialization_loop_entry);
861 __ Branch(&initialization_loop, lt, dst_elements, Operand(dst_end));
862
Ben Murdochc5610432016-08-08 18:44:38 +0100863 __ Addu(dst_elements, array,
864 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000865 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100866 // Using offsetted addresses.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000867 // dst_elements: begin of destination FixedArray element fields, not tagged
868 // src_elements: begin of source FixedDoubleArray element fields, not tagged,
869 // points to the exponent
870 // dst_end: end of destination FixedArray, not tagged
871 // array: destination FixedArray
872 // heap_number_map: heap number map
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100873 __ Branch(&entry);
874
875 // Call into runtime if GC is required.
876 __ bind(&gc_required);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000877 __ MultiPop(
878 value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100879
880 __ Branch(fail);
881
882 __ bind(&loop);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000883 Register upper_bits = key;
884 __ lw(upper_bits, MemOperand(src_elements));
885 __ Addu(src_elements, src_elements, kDoubleSize);
886 // upper_bits: current element's upper 32 bit
887 // src_elements: address of next element's upper 32 bit
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100888 __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));
889
890 // Non-hole double, copy value into a heap number.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000891 Register heap_number = receiver;
892 Register scratch2 = value;
893 Register scratch3 = t6;
894 __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map,
895 &gc_required);
896 // heap_number: new heap number
897 // Load mantissa of current element, src_elements
898 // point to exponent of next element.
899 __ lw(scratch2, MemOperand(src_elements, (Register::kMantissaOffset
900 - Register::kExponentOffset - kDoubleSize)));
901 __ sw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
902 __ sw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
903 __ mov(scratch2, dst_elements);
904 __ sw(heap_number, MemOperand(dst_elements));
905 __ Addu(dst_elements, dst_elements, kIntSize);
906 __ RecordWrite(array,
907 scratch2,
908 heap_number,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100909 kRAHasBeenSaved,
910 kDontSaveFPRegs,
911 EMIT_REMEMBERED_SET,
912 OMIT_SMI_CHECK);
913 __ Branch(&entry);
914
915 // Replace the-hole NaN with the-hole pointer.
916 __ bind(&convert_hole);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000917 __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
918 __ sw(scratch2, MemOperand(dst_elements));
919 __ Addu(dst_elements, dst_elements, kIntSize);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100920
921 __ bind(&entry);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000922 __ Branch(&loop, lt, dst_elements, Operand(dst_end));
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100923
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000924 __ MultiPop(receiver.bit() | target_map.bit() | value.bit() | key.bit());
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100925 // Replace receiver's backing store with newly created and filled FixedArray.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000926 __ sw(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
927 __ RecordWriteField(receiver,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100928 JSObject::kElementsOffset,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000929 array,
930 scratch,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100931 kRAHasBeenSaved,
932 kDontSaveFPRegs,
933 EMIT_REMEMBERED_SET,
934 OMIT_SMI_CHECK);
935 __ pop(ra);
936
937 __ bind(&only_change_map);
938 // Update receiver's map.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000939 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
940 __ RecordWriteField(receiver,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100941 HeapObject::kMapOffset,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000942 target_map,
943 scratch,
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100944 kRAHasNotBeenSaved,
945 kDontSaveFPRegs,
946 OMIT_REMEMBERED_SET,
947 OMIT_SMI_CHECK);
948}
949
950
951void StringCharLoadGenerator::Generate(MacroAssembler* masm,
952 Register string,
953 Register index,
954 Register result,
955 Label* call_runtime) {
956 // Fetch the instance type of the receiver into result register.
957 __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
958 __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
959
960 // We need special handling for indirect strings.
961 Label check_sequential;
962 __ And(at, result, Operand(kIsIndirectStringMask));
963 __ Branch(&check_sequential, eq, at, Operand(zero_reg));
964
965 // Dispatch on the indirect string shape: slice or cons.
966 Label cons_string;
967 __ And(at, result, Operand(kSlicedNotConsMask));
968 __ Branch(&cons_string, eq, at, Operand(zero_reg));
969
970 // Handle slices.
971 Label indirect_string_loaded;
972 __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
973 __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
974 __ sra(at, result, kSmiTagSize);
975 __ Addu(index, index, at);
976 __ jmp(&indirect_string_loaded);
977
978 // Handle cons strings.
979 // Check whether the right hand side is the empty string (i.e. if
980 // this is really a flat string in a cons string). If that is not
981 // the case we would rather go to the runtime system now to flatten
982 // the string.
983 __ bind(&cons_string);
984 __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000985 __ LoadRoot(at, Heap::kempty_stringRootIndex);
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100986 __ Branch(call_runtime, ne, result, Operand(at));
987 // Get the first of the two strings and load its instance type.
988 __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
989
990 __ bind(&indirect_string_loaded);
991 __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
992 __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
993
994 // Distinguish sequential and external strings. Only these two string
995 // representations can reach here (slices and flat cons strings have been
996 // reduced to the underlying sequential or external string).
997 Label external_string, check_encoding;
998 __ bind(&check_sequential);
999 STATIC_ASSERT(kSeqStringTag == 0);
1000 __ And(at, result, Operand(kStringRepresentationMask));
1001 __ Branch(&external_string, ne, at, Operand(zero_reg));
1002
1003 // Prepare sequential strings
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001004 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001005 __ Addu(string,
1006 string,
1007 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
1008 __ jmp(&check_encoding);
1009
1010 // Handle external strings.
1011 __ bind(&external_string);
1012 if (FLAG_debug_code) {
1013 // Assert that we do not have a cons or slice (indirect strings) here.
1014 // Sequential strings have already been ruled out.
1015 __ And(at, result, Operand(kIsIndirectStringMask));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001016 __ Assert(eq, kExternalStringExpectedButNotFound,
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001017 at, Operand(zero_reg));
1018 }
1019 // Rule out short external strings.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001020 STATIC_ASSERT(kShortExternalStringTag != 0);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001021 __ And(at, result, Operand(kShortExternalStringMask));
1022 __ Branch(call_runtime, ne, at, Operand(zero_reg));
1023 __ lw(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
1024
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001025 Label one_byte, done;
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001026 __ bind(&check_encoding);
1027 STATIC_ASSERT(kTwoByteStringTag == 0);
1028 __ And(at, result, Operand(kStringEncodingMask));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001029 __ Branch(&one_byte, ne, at, Operand(zero_reg));
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001030 // Two-byte string.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001031 __ Lsa(at, string, index, 1);
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001032 __ lhu(result, MemOperand(at));
1033 __ jmp(&done);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001034 __ bind(&one_byte);
1035 // One_byte string.
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001036 __ Addu(at, string, index);
1037 __ lbu(result, MemOperand(at));
1038 __ bind(&done);
1039}
1040
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001041#ifdef DEBUG
1042// nop(CODE_AGE_MARKER_NOP)
1043static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
1044#endif
1045
1046
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001047CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
1048 USE(isolate);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001049 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
1050 // Since patcher is a large object, allocate it dynamically when needed,
1051 // to avoid overloading the stack in stress conditions.
1052 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
1053 // the process, before MIPS simulator ICache is setup.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001054 base::SmartPointer<CodePatcher> patcher(
1055 new CodePatcher(isolate, young_sequence_.start(),
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001056 young_sequence_.length() / Assembler::kInstrSize,
1057 CodePatcher::DONT_FLUSH));
1058 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
Ben Murdochda12d292016-06-02 14:46:10 +01001059 patcher->masm()->PushStandardFrame(a1);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001060 patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001061}
1062
1063
1064#ifdef DEBUG
1065bool CodeAgingHelper::IsOld(byte* candidate) const {
1066 return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
1067}
1068#endif
1069
1070
1071bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
1072 bool result = isolate->code_aging_helper()->IsYoung(sequence);
1073 DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
1074 return result;
1075}
1076
1077
1078void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
1079 MarkingParity* parity) {
1080 if (IsYoungSequence(isolate, sequence)) {
1081 *age = kNoAgeCodeAge;
1082 *parity = NO_MARKING_PARITY;
1083 } else {
1084 Address target_address = Assembler::target_address_at(
1085 sequence + Assembler::kInstrSize);
1086 Code* stub = GetCodeFromTargetAddress(target_address);
1087 GetCodeAgeAndParity(stub, age, parity);
1088 }
1089}
1090
1091
1092void Code::PatchPlatformCodeAge(Isolate* isolate,
1093 byte* sequence,
1094 Code::Age age,
1095 MarkingParity parity) {
1096 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
1097 if (age == kNoAgeCodeAge) {
1098 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001099 Assembler::FlushICache(isolate, sequence, young_length);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001100 } else {
1101 Code* stub = GetCodeAgeStub(isolate, age, parity);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001102 CodePatcher patcher(isolate, sequence,
1103 young_length / Assembler::kInstrSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001104 // Mark this code sequence for FindPlatformCodeAgeSequence().
1105 patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
1106 // Load the stub address to t9 and call it,
1107 // GetCodeAgeAndParity() extracts the stub address from this instruction.
1108 patcher.masm()->li(
1109 t9,
1110 Operand(reinterpret_cast<uint32_t>(stub->instruction_start())),
1111 CONSTANT_SIZE);
1112 patcher.masm()->nop(); // Prevent jalr to jal optimization.
1113 patcher.masm()->jalr(t9, a0);
1114 patcher.masm()->nop(); // Branch delay slot nop.
1115 patcher.masm()->nop(); // Pad the empty space.
1116 }
1117}
1118
1119
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001120#undef __
Andrei Popescu31002712010-02-23 13:46:05 +00001121
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001122} // namespace internal
1123} // namespace v8
Leon Clarkef7060e22010-06-03 12:02:55 +01001124
1125#endif // V8_TARGET_ARCH_MIPS