blob: dc8aee1b035288a7e81208f44387fc235016bcd1 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_REGEXP_JSREGEXP_H_
6#define V8_REGEXP_JSREGEXP_H_
7
8#include "src/allocation.h"
9#include "src/assembler.h"
10#include "src/regexp/regexp-ast.h"
Ben Murdoch097c5b22016-05-18 11:27:45 +010011#include "src/regexp/regexp-macro-assembler.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000012
13namespace v8 {
14namespace internal {
15
16class NodeVisitor;
17class RegExpCompiler;
18class RegExpMacroAssembler;
19class RegExpNode;
20class RegExpTree;
21class BoyerMooreLookahead;
22
23class RegExpImpl {
24 public:
25 // Whether V8 is compiled with native regexp support or not.
26 static bool UsesNativeRegExp() {
27#ifdef V8_INTERPRETED_REGEXP
28 return false;
29#else
30 return true;
31#endif
32 }
33
34 // Returns a string representation of a regular expression.
35 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
36 // This function calls the garbage collector if necessary.
37 static Handle<String> ToString(Handle<Object> value);
38
39 // Parses the RegExp pattern and prepares the JSRegExp object with
40 // generic data and choice of implementation - as well as what
41 // the implementation wants to store in the data field.
42 // Returns false if compilation fails.
43 MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
44 Handle<String> pattern,
45 JSRegExp::Flags flags);
46
47 // See ECMA-262 section 15.10.6.2.
48 // This function calls the garbage collector if necessary.
49 MUST_USE_RESULT static MaybeHandle<Object> Exec(
50 Handle<JSRegExp> regexp,
51 Handle<String> subject,
52 int index,
53 Handle<JSArray> lastMatchInfo);
54
55 // Prepares a JSRegExp object with Irregexp-specific data.
56 static void IrregexpInitialize(Handle<JSRegExp> re,
57 Handle<String> pattern,
58 JSRegExp::Flags flags,
59 int capture_register_count);
60
61
62 static void AtomCompile(Handle<JSRegExp> re,
63 Handle<String> pattern,
64 JSRegExp::Flags flags,
65 Handle<String> match_pattern);
66
67
68 static int AtomExecRaw(Handle<JSRegExp> regexp,
69 Handle<String> subject,
70 int index,
71 int32_t* output,
72 int output_size);
73
74
75 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
76 Handle<String> subject,
77 int index,
78 Handle<JSArray> lastMatchInfo);
79
80 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
81
82 // Prepare a RegExp for being executed one or more times (using
83 // IrregexpExecOnce) on the subject.
84 // This ensures that the regexp is compiled for the subject, and that
85 // the subject is flat.
86 // Returns the number of integer spaces required by IrregexpExecOnce
87 // as its "registers" argument. If the regexp cannot be compiled,
88 // an exception is set as pending, and this function returns negative.
89 static int IrregexpPrepare(Handle<JSRegExp> regexp,
90 Handle<String> subject);
91
92 // Execute a regular expression on the subject, starting from index.
93 // If matching succeeds, return the number of matches. This can be larger
94 // than one in the case of global regular expressions.
95 // The captures and subcaptures are stored into the registers vector.
96 // If matching fails, returns RE_FAILURE.
97 // If execution fails, sets a pending exception and returns RE_EXCEPTION.
98 static int IrregexpExecRaw(Handle<JSRegExp> regexp,
99 Handle<String> subject,
100 int index,
101 int32_t* output,
102 int output_size);
103
104 // Execute an Irregexp bytecode pattern.
105 // On a successful match, the result is a JSArray containing
106 // captured positions. On a failure, the result is the null value.
107 // Returns an empty handle in case of an exception.
108 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
109 Handle<JSRegExp> regexp,
110 Handle<String> subject,
111 int index,
112 Handle<JSArray> lastMatchInfo);
113
114 // Set last match info. If match is NULL, then setting captures is omitted.
115 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
116 Handle<String> subject,
117 int capture_count,
118 int32_t* match);
119
120
121 class GlobalCache {
122 public:
123 GlobalCache(Handle<JSRegExp> regexp,
124 Handle<String> subject,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000125 Isolate* isolate);
126
127 INLINE(~GlobalCache());
128
129 // Fetch the next entry in the cache for global regexp match results.
130 // This does not set the last match info. Upon failure, NULL is returned.
131 // The cause can be checked with Result(). The previous
132 // result is still in available in memory when a failure happens.
133 INLINE(int32_t* FetchNext());
134
135 INLINE(int32_t* LastSuccessfulMatch());
136
137 INLINE(bool HasException()) { return num_matches_ < 0; }
138
139 private:
Ben Murdoch097c5b22016-05-18 11:27:45 +0100140 int AdvanceZeroLength(int last_index);
141
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000142 int num_matches_;
143 int max_matches_;
144 int current_match_index_;
145 int registers_per_match_;
146 // Pointer to the last set of captures.
147 int32_t* register_array_;
148 int register_array_size_;
149 Handle<JSRegExp> regexp_;
150 Handle<String> subject_;
151 };
152
153
154 // Array index in the lastMatchInfo array.
155 static const int kLastCaptureCount = 0;
156 static const int kLastSubject = 1;
157 static const int kLastInput = 2;
158 static const int kFirstCapture = 3;
159 static const int kLastMatchOverhead = 3;
160
161 // Direct offset into the lastMatchInfo array.
162 static const int kLastCaptureCountOffset =
163 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
164 static const int kLastSubjectOffset =
165 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
166 static const int kLastInputOffset =
167 FixedArray::kHeaderSize + kLastInput * kPointerSize;
168 static const int kFirstCaptureOffset =
169 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
170
171 // Used to access the lastMatchInfo array.
172 static int GetCapture(FixedArray* array, int index) {
173 return Smi::cast(array->get(index + kFirstCapture))->value();
174 }
175
176 static void SetLastCaptureCount(FixedArray* array, int to) {
177 array->set(kLastCaptureCount, Smi::FromInt(to));
178 }
179
180 static void SetLastSubject(FixedArray* array, String* to) {
181 array->set(kLastSubject, to);
182 }
183
184 static void SetLastInput(FixedArray* array, String* to) {
185 array->set(kLastInput, to);
186 }
187
188 static void SetCapture(FixedArray* array, int index, int to) {
189 array->set(index + kFirstCapture, Smi::FromInt(to));
190 }
191
192 static int GetLastCaptureCount(FixedArray* array) {
193 return Smi::cast(array->get(kLastCaptureCount))->value();
194 }
195
196 // For acting on the JSRegExp data FixedArray.
197 static int IrregexpMaxRegisterCount(FixedArray* re);
198 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
Ben Murdoch61f157c2016-09-16 13:49:30 +0100199 static void SetIrregexpCaptureNameMap(FixedArray* re,
200 Handle<FixedArray> value);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000201 static int IrregexpNumberOfCaptures(FixedArray* re);
202 static int IrregexpNumberOfRegisters(FixedArray* re);
203 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
204 static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
205
206 // Limit the space regexps take up on the heap. In order to limit this we
207 // would like to keep track of the amount of regexp code on the heap. This
208 // is not tracked, however. As a conservative approximation we track the
209 // total regexp code compiled including code that has subsequently been freed
210 // and the total executable memory at any point.
211 static const int kRegExpExecutableMemoryLimit = 16 * MB;
212 static const int kRegExpCompiledLimit = 1 * MB;
213 static const int kRegExpTooLargeToOptimize = 20 * KB;
214
215 private:
216 static bool CompileIrregexp(Handle<JSRegExp> re,
217 Handle<String> sample_subject, bool is_one_byte);
218 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
219 Handle<String> sample_subject,
220 bool is_one_byte);
221};
222
223
224// Represents the location of one element relative to the intersection of
225// two sets. Corresponds to the four areas of a Venn diagram.
226enum ElementInSetsRelation {
227 kInsideNone = 0,
228 kInsideFirst = 1,
229 kInsideSecond = 2,
230 kInsideBoth = 3
231};
232
233
234// A set of unsigned integers that behaves especially well on small
235// integers (< 32). May do zone-allocation.
236class OutSet: public ZoneObject {
237 public:
238 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
239 OutSet* Extend(unsigned value, Zone* zone);
240 bool Get(unsigned value) const;
241 static const unsigned kFirstLimit = 32;
242
243 private:
244 // Destructively set a value in this set. In most cases you want
245 // to use Extend instead to ensure that only one instance exists
246 // that contains the same values.
247 void Set(unsigned value, Zone* zone);
248
249 // The successors are a list of sets that contain the same values
250 // as this set and the one more value that is not present in this
251 // set.
252 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
253
254 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
255 : first_(first), remaining_(remaining), successors_(NULL) { }
256 uint32_t first_;
257 ZoneList<unsigned>* remaining_;
258 ZoneList<OutSet*>* successors_;
259 friend class Trace;
260};
261
262
263// A mapping from integers, specified as ranges, to a set of integers.
264// Used for mapping character ranges to choices.
265class DispatchTable : public ZoneObject {
266 public:
267 explicit DispatchTable(Zone* zone) : tree_(zone) { }
268
269 class Entry {
270 public:
271 Entry() : from_(0), to_(0), out_set_(NULL) { }
Ben Murdoch097c5b22016-05-18 11:27:45 +0100272 Entry(uc32 from, uc32 to, OutSet* out_set)
273 : from_(from), to_(to), out_set_(out_set) {
274 DCHECK(from <= to);
275 }
276 uc32 from() { return from_; }
277 uc32 to() { return to_; }
278 void set_to(uc32 value) { to_ = value; }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000279 void AddValue(int value, Zone* zone) {
280 out_set_ = out_set_->Extend(value, zone);
281 }
282 OutSet* out_set() { return out_set_; }
283 private:
Ben Murdoch097c5b22016-05-18 11:27:45 +0100284 uc32 from_;
285 uc32 to_;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000286 OutSet* out_set_;
287 };
288
289 class Config {
290 public:
Ben Murdoch097c5b22016-05-18 11:27:45 +0100291 typedef uc32 Key;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000292 typedef Entry Value;
Ben Murdoch097c5b22016-05-18 11:27:45 +0100293 static const uc32 kNoKey;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000294 static const Entry NoValue() { return Value(); }
Ben Murdoch097c5b22016-05-18 11:27:45 +0100295 static inline int Compare(uc32 a, uc32 b) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000296 if (a == b)
297 return 0;
298 else if (a < b)
299 return -1;
300 else
301 return 1;
302 }
303 };
304
305 void AddRange(CharacterRange range, int value, Zone* zone);
Ben Murdoch097c5b22016-05-18 11:27:45 +0100306 OutSet* Get(uc32 value);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000307 void Dump();
308
309 template <typename Callback>
310 void ForEach(Callback* callback) {
311 return tree()->ForEach(callback);
312 }
313
314 private:
315 // There can't be a static empty set since it allocates its
316 // successors in a zone and caches them.
317 OutSet* empty() { return &empty_; }
318 OutSet empty_;
319 ZoneSplayTree<Config>* tree() { return &tree_; }
320 ZoneSplayTree<Config> tree_;
321};
322
323
Ben Murdoch097c5b22016-05-18 11:27:45 +0100324// Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates.
325class UnicodeRangeSplitter {
326 public:
327 UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base);
328 void Call(uc32 from, DispatchTable::Entry entry);
329
330 ZoneList<CharacterRange>* bmp() { return bmp_; }
331 ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; }
332 ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; }
333 ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; }
334
335 private:
336 static const int kBase = 0;
337 // Separate ranges into
338 static const int kBmpCodePoints = 1;
339 static const int kLeadSurrogates = 2;
340 static const int kTrailSurrogates = 3;
341 static const int kNonBmpCodePoints = 4;
342
343 Zone* zone_;
344 DispatchTable table_;
345 ZoneList<CharacterRange>* bmp_;
346 ZoneList<CharacterRange>* lead_surrogates_;
347 ZoneList<CharacterRange>* trail_surrogates_;
348 ZoneList<CharacterRange>* non_bmp_;
349};
350
351
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000352#define FOR_EACH_NODE_TYPE(VISIT) \
353 VISIT(End) \
354 VISIT(Action) \
355 VISIT(Choice) \
356 VISIT(BackReference) \
357 VISIT(Assertion) \
358 VISIT(Text)
359
360
361class Trace;
362struct PreloadState;
363class GreedyLoopState;
364class AlternativeGenerationList;
365
366struct NodeInfo {
367 NodeInfo()
368 : being_analyzed(false),
369 been_analyzed(false),
370 follows_word_interest(false),
371 follows_newline_interest(false),
372 follows_start_interest(false),
373 at_end(false),
374 visited(false),
375 replacement_calculated(false) { }
376
377 // Returns true if the interests and assumptions of this node
378 // matches the given one.
379 bool Matches(NodeInfo* that) {
380 return (at_end == that->at_end) &&
381 (follows_word_interest == that->follows_word_interest) &&
382 (follows_newline_interest == that->follows_newline_interest) &&
383 (follows_start_interest == that->follows_start_interest);
384 }
385
386 // Updates the interests of this node given the interests of the
387 // node preceding it.
388 void AddFromPreceding(NodeInfo* that) {
389 at_end |= that->at_end;
390 follows_word_interest |= that->follows_word_interest;
391 follows_newline_interest |= that->follows_newline_interest;
392 follows_start_interest |= that->follows_start_interest;
393 }
394
395 bool HasLookbehind() {
396 return follows_word_interest ||
397 follows_newline_interest ||
398 follows_start_interest;
399 }
400
401 // Sets the interests of this node to include the interests of the
402 // following node.
403 void AddFromFollowing(NodeInfo* that) {
404 follows_word_interest |= that->follows_word_interest;
405 follows_newline_interest |= that->follows_newline_interest;
406 follows_start_interest |= that->follows_start_interest;
407 }
408
409 void ResetCompilationState() {
410 being_analyzed = false;
411 been_analyzed = false;
412 }
413
414 bool being_analyzed: 1;
415 bool been_analyzed: 1;
416
417 // These bits are set of this node has to know what the preceding
418 // character was.
419 bool follows_word_interest: 1;
420 bool follows_newline_interest: 1;
421 bool follows_start_interest: 1;
422
423 bool at_end: 1;
424 bool visited: 1;
425 bool replacement_calculated: 1;
426};
427
428
429// Details of a quick mask-compare check that can look ahead in the
430// input stream.
431class QuickCheckDetails {
432 public:
433 QuickCheckDetails()
434 : characters_(0),
435 mask_(0),
436 value_(0),
437 cannot_match_(false) { }
438 explicit QuickCheckDetails(int characters)
439 : characters_(characters),
440 mask_(0),
441 value_(0),
442 cannot_match_(false) { }
443 bool Rationalize(bool one_byte);
444 // Merge in the information from another branch of an alternation.
445 void Merge(QuickCheckDetails* other, int from_index);
446 // Advance the current position by some amount.
447 void Advance(int by, bool one_byte);
448 void Clear();
449 bool cannot_match() { return cannot_match_; }
450 void set_cannot_match() { cannot_match_ = true; }
451 struct Position {
452 Position() : mask(0), value(0), determines_perfectly(false) { }
453 uc16 mask;
454 uc16 value;
455 bool determines_perfectly;
456 };
457 int characters() { return characters_; }
458 void set_characters(int characters) { characters_ = characters; }
459 Position* positions(int index) {
460 DCHECK(index >= 0);
461 DCHECK(index < characters_);
462 return positions_ + index;
463 }
464 uint32_t mask() { return mask_; }
465 uint32_t value() { return value_; }
466
467 private:
468 // How many characters do we have quick check information from. This is
469 // the same for all branches of a choice node.
470 int characters_;
471 Position positions_[4];
472 // These values are the condensate of the above array after Rationalize().
473 uint32_t mask_;
474 uint32_t value_;
475 // If set to true, there is no way this quick check can match at all.
476 // E.g., if it requires to be at the start of the input, and isn't.
477 bool cannot_match_;
478};
479
480
481extern int kUninitializedRegExpNodePlaceHolder;
482
483
484class RegExpNode: public ZoneObject {
485 public:
486 explicit RegExpNode(Zone* zone)
487 : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
488 bm_info_[0] = bm_info_[1] = NULL;
489 }
490 virtual ~RegExpNode();
491 virtual void Accept(NodeVisitor* visitor) = 0;
492 // Generates a goto to this node or actually generates the code at this point.
493 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
494 // How many characters must this node consume at a minimum in order to
495 // succeed. If we have found at least 'still_to_find' characters that
496 // must be consumed there is no need to ask any following nodes whether
497 // they are sure to eat any more characters. The not_at_start argument is
498 // used to indicate that we know we are not at the start of the input. In
499 // this case anchored branches will always fail and can be ignored when
500 // determining how many characters are consumed on success.
501 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
502 // Emits some quick code that checks whether the preloaded characters match.
503 // Falls through on certain failure, jumps to the label on possible success.
504 // If the node cannot make a quick check it does nothing and returns false.
505 bool EmitQuickCheck(RegExpCompiler* compiler,
506 Trace* bounds_check_trace,
507 Trace* trace,
508 bool preload_has_checked_bounds,
509 Label* on_possible_success,
510 QuickCheckDetails* details_return,
511 bool fall_through_on_failure);
512 // For a given number of characters this returns a mask and a value. The
513 // next n characters are anded with the mask and compared with the value.
514 // A comparison failure indicates the node cannot match the next n characters.
515 // A comparison success indicates the node may match.
516 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
517 RegExpCompiler* compiler,
518 int characters_filled_in,
519 bool not_at_start) = 0;
520 static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
521 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
522 // Only returns the successor for a text node of length 1 that matches any
523 // character and that has no guards on it.
524 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
525 RegExpCompiler* compiler) {
526 return NULL;
527 }
528
529 // Collects information on the possible code units (mod 128) that can match if
530 // we look forward. This is used for a Boyer-Moore-like string searching
531 // implementation. TODO(erikcorry): This should share more code with
532 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
533 // the number of nodes we are willing to look at in order to create this data.
534 static const int kRecursionBudget = 200;
535 bool KeepRecursing(RegExpCompiler* compiler);
536 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
537 BoyerMooreLookahead* bm, bool not_at_start) {
538 UNREACHABLE();
539 }
540
541 // If we know that the input is one-byte then there are some nodes that can
542 // never match. This method returns a node that can be substituted for
543 // itself, or NULL if the node can never match.
544 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
545 return this;
546 }
547 // Helper for FilterOneByte.
548 RegExpNode* replacement() {
549 DCHECK(info()->replacement_calculated);
550 return replacement_;
551 }
552 RegExpNode* set_replacement(RegExpNode* replacement) {
553 info()->replacement_calculated = true;
554 replacement_ = replacement;
555 return replacement; // For convenience.
556 }
557
558 // We want to avoid recalculating the lookahead info, so we store it on the
559 // node. Only info that is for this node is stored. We can tell that the
560 // info is for this node when offset == 0, so the information is calculated
561 // relative to this node.
562 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
563 if (offset == 0) set_bm_info(not_at_start, bm);
564 }
565
566 Label* label() { return &label_; }
567 // If non-generic code is generated for a node (i.e. the node is not at the
568 // start of the trace) then it cannot be reused. This variable sets a limit
569 // on how often we allow that to happen before we insist on starting a new
570 // trace and generating generic code for a node that can be reused by flushing
571 // the deferred actions in the current trace and generating a goto.
572 static const int kMaxCopiesCodeGenerated = 10;
573
574 bool on_work_list() { return on_work_list_; }
575 void set_on_work_list(bool value) { on_work_list_ = value; }
576
577 NodeInfo* info() { return &info_; }
578
579 BoyerMooreLookahead* bm_info(bool not_at_start) {
580 return bm_info_[not_at_start ? 1 : 0];
581 }
582
583 Zone* zone() const { return zone_; }
584
585 protected:
586 enum LimitResult { DONE, CONTINUE };
587 RegExpNode* replacement_;
588
589 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
590
591 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
592 bm_info_[not_at_start ? 1 : 0] = bm;
593 }
594
595 private:
596 static const int kFirstCharBudget = 10;
597 Label label_;
598 bool on_work_list_;
599 NodeInfo info_;
600 // This variable keeps track of how many times code has been generated for
601 // this node (in different traces). We don't keep track of where the
602 // generated code is located unless the code is generated at the start of
603 // a trace, in which case it is generic and can be reused by flushing the
604 // deferred operations in the current trace and generating a goto.
605 int trace_count_;
606 BoyerMooreLookahead* bm_info_[2];
607
608 Zone* zone_;
609};
610
611
612class SeqRegExpNode: public RegExpNode {
613 public:
614 explicit SeqRegExpNode(RegExpNode* on_success)
615 : RegExpNode(on_success->zone()), on_success_(on_success) { }
616 RegExpNode* on_success() { return on_success_; }
617 void set_on_success(RegExpNode* node) { on_success_ = node; }
618 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
619 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
620 BoyerMooreLookahead* bm, bool not_at_start) {
621 on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
622 if (offset == 0) set_bm_info(not_at_start, bm);
623 }
624
625 protected:
626 RegExpNode* FilterSuccessor(int depth, bool ignore_case);
627
628 private:
629 RegExpNode* on_success_;
630};
631
632
633class ActionNode: public SeqRegExpNode {
634 public:
635 enum ActionType {
636 SET_REGISTER,
637 INCREMENT_REGISTER,
638 STORE_POSITION,
639 BEGIN_SUBMATCH,
640 POSITIVE_SUBMATCH_SUCCESS,
641 EMPTY_MATCH_CHECK,
642 CLEAR_CAPTURES
643 };
644 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
645 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
646 static ActionNode* StorePosition(int reg,
647 bool is_capture,
648 RegExpNode* on_success);
649 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
650 static ActionNode* BeginSubmatch(int stack_pointer_reg,
651 int position_reg,
652 RegExpNode* on_success);
653 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
654 int restore_reg,
655 int clear_capture_count,
656 int clear_capture_from,
657 RegExpNode* on_success);
658 static ActionNode* EmptyMatchCheck(int start_register,
659 int repetition_register,
660 int repetition_limit,
661 RegExpNode* on_success);
662 virtual void Accept(NodeVisitor* visitor);
663 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
664 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
665 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
666 RegExpCompiler* compiler,
667 int filled_in,
668 bool not_at_start) {
669 return on_success()->GetQuickCheckDetails(
670 details, compiler, filled_in, not_at_start);
671 }
672 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
673 BoyerMooreLookahead* bm, bool not_at_start);
674 ActionType action_type() { return action_type_; }
675 // TODO(erikcorry): We should allow some action nodes in greedy loops.
676 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
677
678 private:
679 union {
680 struct {
681 int reg;
682 int value;
683 } u_store_register;
684 struct {
685 int reg;
686 } u_increment_register;
687 struct {
688 int reg;
689 bool is_capture;
690 } u_position_register;
691 struct {
692 int stack_pointer_register;
693 int current_position_register;
694 int clear_register_count;
695 int clear_register_from;
696 } u_submatch;
697 struct {
698 int start_register;
699 int repetition_register;
700 int repetition_limit;
701 } u_empty_match_check;
702 struct {
703 int range_from;
704 int range_to;
705 } u_clear_captures;
706 } data_;
707 ActionNode(ActionType action_type, RegExpNode* on_success)
708 : SeqRegExpNode(on_success),
709 action_type_(action_type) { }
710 ActionType action_type_;
711 friend class DotPrinter;
712};
713
714
715class TextNode: public SeqRegExpNode {
716 public:
717 TextNode(ZoneList<TextElement>* elms, bool read_backward,
718 RegExpNode* on_success)
719 : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
720 TextNode(RegExpCharacterClass* that, bool read_backward,
721 RegExpNode* on_success)
722 : SeqRegExpNode(on_success),
723 elms_(new (zone()) ZoneList<TextElement>(1, zone())),
724 read_backward_(read_backward) {
725 elms_->Add(TextElement::CharClass(that), zone());
726 }
Ben Murdoch097c5b22016-05-18 11:27:45 +0100727 // Create TextNode for a single character class for the given ranges.
728 static TextNode* CreateForCharacterRanges(Zone* zone,
729 ZoneList<CharacterRange>* ranges,
730 bool read_backward,
731 RegExpNode* on_success);
732 // Create TextNode for a surrogate pair with a range given for the
733 // lead and the trail surrogate each.
734 static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead,
735 CharacterRange trail,
736 bool read_backward,
737 RegExpNode* on_success);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000738 virtual void Accept(NodeVisitor* visitor);
739 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
740 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
741 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
742 RegExpCompiler* compiler,
743 int characters_filled_in,
744 bool not_at_start);
745 ZoneList<TextElement>* elements() { return elms_; }
746 bool read_backward() { return read_backward_; }
747 void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
748 virtual int GreedyLoopTextLength();
749 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
750 RegExpCompiler* compiler);
751 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
752 BoyerMooreLookahead* bm, bool not_at_start);
753 void CalculateOffsets();
754 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
755
756 private:
757 enum TextEmitPassType {
758 NON_LATIN1_MATCH, // Check for characters that can't match.
759 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
760 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
761 CASE_CHARACTER_MATCH, // Case-independent single character check.
762 CHARACTER_CLASS_MATCH // Character class.
763 };
764 static bool SkipPass(int pass, bool ignore_case);
765 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
766 static const int kLastPass = CHARACTER_CLASS_MATCH;
767 void TextEmitPass(RegExpCompiler* compiler,
768 TextEmitPassType pass,
769 bool preloaded,
770 Trace* trace,
771 bool first_element_checked,
772 int* checked_up_to);
773 int Length();
774 ZoneList<TextElement>* elms_;
775 bool read_backward_;
776};
777
778
779class AssertionNode: public SeqRegExpNode {
780 public:
781 enum AssertionType {
782 AT_END,
783 AT_START,
784 AT_BOUNDARY,
785 AT_NON_BOUNDARY,
786 AFTER_NEWLINE
787 };
788 static AssertionNode* AtEnd(RegExpNode* on_success) {
789 return new(on_success->zone()) AssertionNode(AT_END, on_success);
790 }
791 static AssertionNode* AtStart(RegExpNode* on_success) {
792 return new(on_success->zone()) AssertionNode(AT_START, on_success);
793 }
794 static AssertionNode* AtBoundary(RegExpNode* on_success) {
795 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
796 }
797 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
798 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
799 }
800 static AssertionNode* AfterNewline(RegExpNode* on_success) {
801 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
802 }
803 virtual void Accept(NodeVisitor* visitor);
804 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
805 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
806 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
807 RegExpCompiler* compiler,
808 int filled_in,
809 bool not_at_start);
810 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
811 BoyerMooreLookahead* bm, bool not_at_start);
812 AssertionType assertion_type() { return assertion_type_; }
813
814 private:
815 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
816 enum IfPrevious { kIsNonWord, kIsWord };
817 void BacktrackIfPrevious(RegExpCompiler* compiler,
818 Trace* trace,
819 IfPrevious backtrack_if_previous);
820 AssertionNode(AssertionType t, RegExpNode* on_success)
821 : SeqRegExpNode(on_success), assertion_type_(t) { }
822 AssertionType assertion_type_;
823};
824
825
826class BackReferenceNode: public SeqRegExpNode {
827 public:
828 BackReferenceNode(int start_reg, int end_reg, bool read_backward,
829 RegExpNode* on_success)
830 : SeqRegExpNode(on_success),
831 start_reg_(start_reg),
832 end_reg_(end_reg),
833 read_backward_(read_backward) {}
834 virtual void Accept(NodeVisitor* visitor);
835 int start_register() { return start_reg_; }
836 int end_register() { return end_reg_; }
837 bool read_backward() { return read_backward_; }
838 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
839 virtual int EatsAtLeast(int still_to_find,
840 int recursion_depth,
841 bool not_at_start);
842 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
843 RegExpCompiler* compiler,
844 int characters_filled_in,
845 bool not_at_start) {
846 return;
847 }
848 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
849 BoyerMooreLookahead* bm, bool not_at_start);
850
851 private:
852 int start_reg_;
853 int end_reg_;
854 bool read_backward_;
855};
856
857
858class EndNode: public RegExpNode {
859 public:
860 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
Ben Murdoch097c5b22016-05-18 11:27:45 +0100861 EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {}
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000862 virtual void Accept(NodeVisitor* visitor);
863 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
864 virtual int EatsAtLeast(int still_to_find,
865 int recursion_depth,
866 bool not_at_start) { return 0; }
867 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
868 RegExpCompiler* compiler,
869 int characters_filled_in,
870 bool not_at_start) {
871 // Returning 0 from EatsAtLeast should ensure we never get here.
872 UNREACHABLE();
873 }
874 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
875 BoyerMooreLookahead* bm, bool not_at_start) {
876 // Returning 0 from EatsAtLeast should ensure we never get here.
877 UNREACHABLE();
878 }
879
880 private:
881 Action action_;
882};
883
884
885class NegativeSubmatchSuccess: public EndNode {
886 public:
887 NegativeSubmatchSuccess(int stack_pointer_reg,
888 int position_reg,
889 int clear_capture_count,
890 int clear_capture_start,
891 Zone* zone)
892 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
893 stack_pointer_register_(stack_pointer_reg),
894 current_position_register_(position_reg),
895 clear_capture_count_(clear_capture_count),
896 clear_capture_start_(clear_capture_start) { }
897 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
898
899 private:
900 int stack_pointer_register_;
901 int current_position_register_;
902 int clear_capture_count_;
903 int clear_capture_start_;
904};
905
906
907class Guard: public ZoneObject {
908 public:
909 enum Relation { LT, GEQ };
910 Guard(int reg, Relation op, int value)
911 : reg_(reg),
912 op_(op),
913 value_(value) { }
914 int reg() { return reg_; }
915 Relation op() { return op_; }
916 int value() { return value_; }
917
918 private:
919 int reg_;
920 Relation op_;
921 int value_;
922};
923
924
925class GuardedAlternative {
926 public:
927 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
928 void AddGuard(Guard* guard, Zone* zone);
929 RegExpNode* node() { return node_; }
930 void set_node(RegExpNode* node) { node_ = node; }
931 ZoneList<Guard*>* guards() { return guards_; }
932
933 private:
934 RegExpNode* node_;
935 ZoneList<Guard*>* guards_;
936};
937
938
939class AlternativeGeneration;
940
941
942class ChoiceNode: public RegExpNode {
943 public:
944 explicit ChoiceNode(int expected_size, Zone* zone)
945 : RegExpNode(zone),
946 alternatives_(new(zone)
947 ZoneList<GuardedAlternative>(expected_size, zone)),
948 table_(NULL),
949 not_at_start_(false),
950 being_calculated_(false) { }
951 virtual void Accept(NodeVisitor* visitor);
952 void AddAlternative(GuardedAlternative node) {
953 alternatives()->Add(node, zone());
954 }
955 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
956 DispatchTable* GetTable(bool ignore_case);
957 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
958 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
959 int EatsAtLeastHelper(int still_to_find,
960 int budget,
961 RegExpNode* ignore_this_node,
962 bool not_at_start);
963 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
964 RegExpCompiler* compiler,
965 int characters_filled_in,
966 bool not_at_start);
967 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
968 BoyerMooreLookahead* bm, bool not_at_start);
969
970 bool being_calculated() { return being_calculated_; }
971 bool not_at_start() { return not_at_start_; }
972 void set_not_at_start() { not_at_start_ = true; }
973 void set_being_calculated(bool b) { being_calculated_ = b; }
974 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
975 return true;
976 }
977 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
978 virtual bool read_backward() { return false; }
979
980 protected:
981 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
982 ZoneList<GuardedAlternative>* alternatives_;
983
984 private:
985 friend class DispatchTableConstructor;
986 friend class Analysis;
987 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
988 Guard* guard,
989 Trace* trace);
990 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
991 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
992 Trace* trace,
993 GuardedAlternative alternative,
994 AlternativeGeneration* alt_gen,
995 int preload_characters,
996 bool next_expects_preload);
997 void SetUpPreLoad(RegExpCompiler* compiler,
998 Trace* current_trace,
999 PreloadState* preloads);
1000 void AssertGuardsMentionRegisters(Trace* trace);
1001 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
1002 Trace* EmitGreedyLoop(RegExpCompiler* compiler,
1003 Trace* trace,
1004 AlternativeGenerationList* alt_gens,
1005 PreloadState* preloads,
1006 GreedyLoopState* greedy_loop_state,
1007 int text_length);
1008 void EmitChoices(RegExpCompiler* compiler,
1009 AlternativeGenerationList* alt_gens,
1010 int first_choice,
1011 Trace* trace,
1012 PreloadState* preloads);
1013 DispatchTable* table_;
1014 // If true, this node is never checked at the start of the input.
1015 // Allows a new trace to start with at_start() set to false.
1016 bool not_at_start_;
1017 bool being_calculated_;
1018};
1019
1020
1021class NegativeLookaroundChoiceNode : public ChoiceNode {
1022 public:
1023 explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
1024 GuardedAlternative then_do_this,
1025 Zone* zone)
1026 : ChoiceNode(2, zone) {
1027 AddAlternative(this_must_fail);
1028 AddAlternative(then_do_this);
1029 }
1030 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1031 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1032 RegExpCompiler* compiler,
1033 int characters_filled_in,
1034 bool not_at_start);
1035 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1036 BoyerMooreLookahead* bm, bool not_at_start) {
1037 alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
1038 not_at_start);
1039 if (offset == 0) set_bm_info(not_at_start, bm);
1040 }
1041 // For a negative lookahead we don't emit the quick check for the
1042 // alternative that is expected to fail. This is because quick check code
1043 // starts by loading enough characters for the alternative that takes fewest
1044 // characters, but on a negative lookahead the negative branch did not take
1045 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
1046 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1047 return !is_first;
1048 }
1049 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1050};
1051
1052
1053class LoopChoiceNode: public ChoiceNode {
1054 public:
1055 LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
1056 : ChoiceNode(2, zone),
1057 loop_node_(NULL),
1058 continue_node_(NULL),
1059 body_can_be_zero_length_(body_can_be_zero_length),
1060 read_backward_(read_backward) {}
1061 void AddLoopAlternative(GuardedAlternative alt);
1062 void AddContinueAlternative(GuardedAlternative alt);
1063 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1064 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1065 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1066 RegExpCompiler* compiler,
1067 int characters_filled_in,
1068 bool not_at_start);
1069 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
1070 BoyerMooreLookahead* bm, bool not_at_start);
1071 RegExpNode* loop_node() { return loop_node_; }
1072 RegExpNode* continue_node() { return continue_node_; }
1073 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1074 virtual bool read_backward() { return read_backward_; }
1075 virtual void Accept(NodeVisitor* visitor);
1076 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1077
1078 private:
1079 // AddAlternative is made private for loop nodes because alternatives
1080 // should not be added freely, we need to keep track of which node
1081 // goes back to the node itself.
1082 void AddAlternative(GuardedAlternative node) {
1083 ChoiceNode::AddAlternative(node);
1084 }
1085
1086 RegExpNode* loop_node_;
1087 RegExpNode* continue_node_;
1088 bool body_can_be_zero_length_;
1089 bool read_backward_;
1090};
1091
1092
1093// Improve the speed that we scan for an initial point where a non-anchored
1094// regexp can match by using a Boyer-Moore-like table. This is done by
1095// identifying non-greedy non-capturing loops in the nodes that eat any
1096// character one at a time. For example in the middle of the regexp
1097// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
1098// inserted at the start of any non-anchored regexp.
1099//
1100// When we have found such a loop we look ahead in the nodes to find the set of
1101// characters that can come at given distances. For example for the regexp
1102// /.?foo/ we know that there are at least 3 characters ahead of us, and the
1103// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1104// the lookahead info where the set of characters is reasonably constrained. In
1105// our example this is from index 1 to 2 (0 is not constrained). We can now
1106// look 3 characters ahead and if we don't find one of [f, o] (the union of
1107// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1108//
1109// For Unicode input strings we do the same, but modulo 128.
1110//
1111// We also look at the first string fed to the regexp and use that to get a hint
1112// of the character frequencies in the inputs. This affects the assessment of
1113// whether the set of characters is 'reasonably constrained'.
1114//
1115// We also have another lookahead mechanism (called quick check in the code),
1116// which uses a wide load of multiple characters followed by a mask and compare
1117// to determine whether a match is possible at this point.
1118enum ContainedInLattice {
1119 kNotYet = 0,
1120 kLatticeIn = 1,
1121 kLatticeOut = 2,
1122 kLatticeUnknown = 3 // Can also mean both in and out.
1123};
1124
1125
1126inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1127 return static_cast<ContainedInLattice>(a | b);
1128}
1129
1130
1131ContainedInLattice AddRange(ContainedInLattice a,
1132 const int* ranges,
1133 int ranges_size,
1134 Interval new_range);
1135
1136
1137class BoyerMoorePositionInfo : public ZoneObject {
1138 public:
1139 explicit BoyerMoorePositionInfo(Zone* zone)
1140 : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1141 map_count_(0),
1142 w_(kNotYet),
1143 s_(kNotYet),
1144 d_(kNotYet),
1145 surrogate_(kNotYet) {
1146 for (int i = 0; i < kMapSize; i++) {
1147 map_->Add(false, zone);
1148 }
1149 }
1150
1151 bool& at(int i) { return map_->at(i); }
1152
1153 static const int kMapSize = 128;
1154 static const int kMask = kMapSize - 1;
1155
1156 int map_count() const { return map_count_; }
1157
1158 void Set(int character);
1159 void SetInterval(const Interval& interval);
1160 void SetAll();
1161 bool is_non_word() { return w_ == kLatticeOut; }
1162 bool is_word() { return w_ == kLatticeIn; }
1163
1164 private:
1165 ZoneList<bool>* map_;
1166 int map_count_; // Number of set bits in the map.
1167 ContainedInLattice w_; // The \w character class.
1168 ContainedInLattice s_; // The \s character class.
1169 ContainedInLattice d_; // The \d character class.
1170 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1171};
1172
1173
1174class BoyerMooreLookahead : public ZoneObject {
1175 public:
1176 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1177
1178 int length() { return length_; }
1179 int max_char() { return max_char_; }
1180 RegExpCompiler* compiler() { return compiler_; }
1181
1182 int Count(int map_number) {
1183 return bitmaps_->at(map_number)->map_count();
1184 }
1185
1186 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1187
1188 void Set(int map_number, int character) {
1189 if (character > max_char_) return;
1190 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1191 info->Set(character);
1192 }
1193
1194 void SetInterval(int map_number, const Interval& interval) {
1195 if (interval.from() > max_char_) return;
1196 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1197 if (interval.to() > max_char_) {
1198 info->SetInterval(Interval(interval.from(), max_char_));
1199 } else {
1200 info->SetInterval(interval);
1201 }
1202 }
1203
1204 void SetAll(int map_number) {
1205 bitmaps_->at(map_number)->SetAll();
1206 }
1207
1208 void SetRest(int from_map) {
1209 for (int i = from_map; i < length_; i++) SetAll(i);
1210 }
1211 void EmitSkipInstructions(RegExpMacroAssembler* masm);
1212
1213 private:
1214 // This is the value obtained by EatsAtLeast. If we do not have at least this
1215 // many characters left in the sample string then the match is bound to fail.
1216 // Therefore it is OK to read a character this far ahead of the current match
1217 // point.
1218 int length_;
1219 RegExpCompiler* compiler_;
1220 // 0xff for Latin1, 0xffff for UTF-16.
1221 int max_char_;
1222 ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1223
1224 int GetSkipTable(int min_lookahead,
1225 int max_lookahead,
1226 Handle<ByteArray> boolean_skip_table);
1227 bool FindWorthwhileInterval(int* from, int* to);
1228 int FindBestInterval(
1229 int max_number_of_chars, int old_biggest_points, int* from, int* to);
1230};
1231
1232
1233// There are many ways to generate code for a node. This class encapsulates
1234// the current way we should be generating. In other words it encapsulates
1235// the current state of the code generator. The effect of this is that we
1236// generate code for paths that the matcher can take through the regular
1237// expression. A given node in the regexp can be code-generated several times
1238// as it can be part of several traces. For example for the regexp:
1239// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1240// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1241// to match foo is generated only once (the traces have a common prefix). The
1242// code to store the capture is deferred and generated (twice) after the places
1243// where baz has been matched.
1244class Trace {
1245 public:
1246 // A value for a property that is either known to be true, know to be false,
1247 // or not known.
1248 enum TriBool {
1249 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1250 };
1251
1252 class DeferredAction {
1253 public:
1254 DeferredAction(ActionNode::ActionType action_type, int reg)
1255 : action_type_(action_type), reg_(reg), next_(NULL) { }
1256 DeferredAction* next() { return next_; }
1257 bool Mentions(int reg);
1258 int reg() { return reg_; }
1259 ActionNode::ActionType action_type() { return action_type_; }
1260 private:
1261 ActionNode::ActionType action_type_;
1262 int reg_;
1263 DeferredAction* next_;
1264 friend class Trace;
1265 };
1266
1267 class DeferredCapture : public DeferredAction {
1268 public:
1269 DeferredCapture(int reg, bool is_capture, Trace* trace)
1270 : DeferredAction(ActionNode::STORE_POSITION, reg),
1271 cp_offset_(trace->cp_offset()),
1272 is_capture_(is_capture) { }
1273 int cp_offset() { return cp_offset_; }
1274 bool is_capture() { return is_capture_; }
1275 private:
1276 int cp_offset_;
1277 bool is_capture_;
1278 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1279 };
1280
1281 class DeferredSetRegister : public DeferredAction {
1282 public:
1283 DeferredSetRegister(int reg, int value)
1284 : DeferredAction(ActionNode::SET_REGISTER, reg),
1285 value_(value) { }
1286 int value() { return value_; }
1287 private:
1288 int value_;
1289 };
1290
1291 class DeferredClearCaptures : public DeferredAction {
1292 public:
1293 explicit DeferredClearCaptures(Interval range)
1294 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1295 range_(range) { }
1296 Interval range() { return range_; }
1297 private:
1298 Interval range_;
1299 };
1300
1301 class DeferredIncrementRegister : public DeferredAction {
1302 public:
1303 explicit DeferredIncrementRegister(int reg)
1304 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1305 };
1306
1307 Trace()
1308 : cp_offset_(0),
1309 actions_(NULL),
1310 backtrack_(NULL),
1311 stop_node_(NULL),
1312 loop_label_(NULL),
1313 characters_preloaded_(0),
1314 bound_checked_up_to_(0),
1315 flush_budget_(100),
1316 at_start_(UNKNOWN) { }
1317
1318 // End the trace. This involves flushing the deferred actions in the trace
1319 // and pushing a backtrack location onto the backtrack stack. Once this is
1320 // done we can start a new trace or go to one that has already been
1321 // generated.
1322 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1323 int cp_offset() { return cp_offset_; }
1324 DeferredAction* actions() { return actions_; }
1325 // A trivial trace is one that has no deferred actions or other state that
1326 // affects the assumptions used when generating code. There is no recorded
1327 // backtrack location in a trivial trace, so with a trivial trace we will
1328 // generate code that, on a failure to match, gets the backtrack location
1329 // from the backtrack stack rather than using a direct jump instruction. We
1330 // always start code generation with a trivial trace and non-trivial traces
1331 // are created as we emit code for nodes or add to the list of deferred
1332 // actions in the trace. The location of the code generated for a node using
1333 // a trivial trace is recorded in a label in the node so that gotos can be
1334 // generated to that code.
1335 bool is_trivial() {
1336 return backtrack_ == NULL &&
1337 actions_ == NULL &&
1338 cp_offset_ == 0 &&
1339 characters_preloaded_ == 0 &&
1340 bound_checked_up_to_ == 0 &&
1341 quick_check_performed_.characters() == 0 &&
1342 at_start_ == UNKNOWN;
1343 }
1344 TriBool at_start() { return at_start_; }
1345 void set_at_start(TriBool at_start) { at_start_ = at_start; }
1346 Label* backtrack() { return backtrack_; }
1347 Label* loop_label() { return loop_label_; }
1348 RegExpNode* stop_node() { return stop_node_; }
1349 int characters_preloaded() { return characters_preloaded_; }
1350 int bound_checked_up_to() { return bound_checked_up_to_; }
1351 int flush_budget() { return flush_budget_; }
1352 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1353 bool mentions_reg(int reg);
1354 // Returns true if a deferred position store exists to the specified
1355 // register and stores the offset in the out-parameter. Otherwise
1356 // returns false.
1357 bool GetStoredPosition(int reg, int* cp_offset);
1358 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1359 // new traces - the intention is that traces are immutable after creation.
1360 void add_action(DeferredAction* new_action) {
1361 DCHECK(new_action->next_ == NULL);
1362 new_action->next_ = actions_;
1363 actions_ = new_action;
1364 }
1365 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
1366 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1367 void set_loop_label(Label* label) { loop_label_ = label; }
1368 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
1369 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
1370 void set_flush_budget(int to) { flush_budget_ = to; }
1371 void set_quick_check_performed(QuickCheckDetails* d) {
1372 quick_check_performed_ = *d;
1373 }
1374 void InvalidateCurrentCharacter();
1375 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1376
1377 private:
1378 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1379 void PerformDeferredActions(RegExpMacroAssembler* macro,
1380 int max_register,
1381 const OutSet& affected_registers,
1382 OutSet* registers_to_pop,
1383 OutSet* registers_to_clear,
1384 Zone* zone);
1385 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1386 int max_register,
1387 const OutSet& registers_to_pop,
1388 const OutSet& registers_to_clear);
1389 int cp_offset_;
1390 DeferredAction* actions_;
1391 Label* backtrack_;
1392 RegExpNode* stop_node_;
1393 Label* loop_label_;
1394 int characters_preloaded_;
1395 int bound_checked_up_to_;
1396 QuickCheckDetails quick_check_performed_;
1397 int flush_budget_;
1398 TriBool at_start_;
1399};
1400
1401
1402class GreedyLoopState {
1403 public:
1404 explicit GreedyLoopState(bool not_at_start);
1405
1406 Label* label() { return &label_; }
1407 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1408
1409 private:
1410 Label label_;
1411 Trace counter_backtrack_trace_;
1412};
1413
1414
1415struct PreloadState {
1416 static const int kEatsAtLeastNotYetInitialized = -1;
1417 bool preload_is_current_;
1418 bool preload_has_checked_bounds_;
1419 int preload_characters_;
1420 int eats_at_least_;
1421 void init() {
1422 eats_at_least_ = kEatsAtLeastNotYetInitialized;
1423 }
1424};
1425
1426
1427class NodeVisitor {
1428 public:
1429 virtual ~NodeVisitor() { }
1430#define DECLARE_VISIT(Type) \
1431 virtual void Visit##Type(Type##Node* that) = 0;
1432FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1433#undef DECLARE_VISIT
1434 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1435};
1436
1437
1438// Node visitor used to add the start set of the alternatives to the
1439// dispatch table of a choice node.
1440class DispatchTableConstructor: public NodeVisitor {
1441 public:
1442 DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1443 Zone* zone)
1444 : table_(table),
1445 choice_index_(-1),
1446 ignore_case_(ignore_case),
1447 zone_(zone) { }
1448
1449 void BuildTable(ChoiceNode* node);
1450
1451 void AddRange(CharacterRange range) {
1452 table()->AddRange(range, choice_index_, zone_);
1453 }
1454
1455 void AddInverse(ZoneList<CharacterRange>* ranges);
1456
1457#define DECLARE_VISIT(Type) \
1458 virtual void Visit##Type(Type##Node* that);
1459FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1460#undef DECLARE_VISIT
1461
1462 DispatchTable* table() { return table_; }
1463 void set_choice_index(int value) { choice_index_ = value; }
1464
1465 protected:
1466 DispatchTable* table_;
1467 int choice_index_;
1468 bool ignore_case_;
1469 Zone* zone_;
1470};
1471
1472
1473// Assertion propagation moves information about assertions such as
1474// \b to the affected nodes. For instance, in /.\b./ information must
1475// be propagated to the first '.' that whatever follows needs to know
1476// if it matched a word or a non-word, and to the second '.' that it
1477// has to check if it succeeds a word or non-word. In this case the
1478// result will be something like:
1479//
1480// +-------+ +------------+
1481// | . | | . |
1482// +-------+ ---> +------------+
1483// | word? | | check word |
1484// +-------+ +------------+
1485class Analysis: public NodeVisitor {
1486 public:
Ben Murdoch097c5b22016-05-18 11:27:45 +01001487 Analysis(Isolate* isolate, JSRegExp::Flags flags, bool is_one_byte)
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001488 : isolate_(isolate),
Ben Murdoch097c5b22016-05-18 11:27:45 +01001489 flags_(flags),
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001490 is_one_byte_(is_one_byte),
1491 error_message_(NULL) {}
1492 void EnsureAnalyzed(RegExpNode* node);
1493
1494#define DECLARE_VISIT(Type) \
1495 virtual void Visit##Type(Type##Node* that);
1496FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1497#undef DECLARE_VISIT
1498 virtual void VisitLoopChoice(LoopChoiceNode* that);
1499
1500 bool has_failed() { return error_message_ != NULL; }
1501 const char* error_message() {
1502 DCHECK(error_message_ != NULL);
1503 return error_message_;
1504 }
1505 void fail(const char* error_message) {
1506 error_message_ = error_message;
1507 }
1508
1509 Isolate* isolate() const { return isolate_; }
1510
Ben Murdoch097c5b22016-05-18 11:27:45 +01001511 bool ignore_case() const { return (flags_ & JSRegExp::kIgnoreCase) != 0; }
1512 bool unicode() const { return (flags_ & JSRegExp::kUnicode) != 0; }
1513
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001514 private:
1515 Isolate* isolate_;
Ben Murdoch097c5b22016-05-18 11:27:45 +01001516 JSRegExp::Flags flags_;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001517 bool is_one_byte_;
1518 const char* error_message_;
1519
1520 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1521};
1522
1523
1524struct RegExpCompileData {
1525 RegExpCompileData()
1526 : tree(NULL),
1527 node(NULL),
1528 simple(true),
1529 contains_anchor(false),
1530 capture_count(0) { }
1531 RegExpTree* tree;
1532 RegExpNode* node;
1533 bool simple;
1534 bool contains_anchor;
Ben Murdoch61f157c2016-09-16 13:49:30 +01001535 Handle<FixedArray> capture_name_map;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001536 Handle<String> error;
1537 int capture_count;
1538};
1539
1540
1541class RegExpEngine: public AllStatic {
1542 public:
1543 struct CompilationResult {
1544 CompilationResult(Isolate* isolate, const char* error_message)
1545 : error_message(error_message),
1546 code(isolate->heap()->the_hole_value()),
1547 num_registers(0) {}
1548 CompilationResult(Object* code, int registers)
1549 : error_message(NULL), code(code), num_registers(registers) {}
1550 const char* error_message;
1551 Object* code;
1552 int num_registers;
1553 };
1554
1555 static CompilationResult Compile(Isolate* isolate, Zone* zone,
Ben Murdoch097c5b22016-05-18 11:27:45 +01001556 RegExpCompileData* input,
1557 JSRegExp::Flags flags,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001558 Handle<String> pattern,
1559 Handle<String> sample_subject,
1560 bool is_one_byte);
1561
1562 static bool TooMuchRegExpCode(Handle<String> pattern);
1563
1564 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1565};
1566
1567
1568class RegExpResultsCache : public AllStatic {
1569 public:
1570 enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
1571
1572 // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi.
1573 // On success, the returned result is guaranteed to be a COW-array.
1574 static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
1575 FixedArray** last_match_out, ResultsCacheType type);
1576 // Attempt to add value_array to the cache specified by type. On success,
1577 // value_array is turned into a COW-array.
1578 static void Enter(Isolate* isolate, Handle<String> key_string,
1579 Handle<Object> key_pattern, Handle<FixedArray> value_array,
1580 Handle<FixedArray> last_match_cache, ResultsCacheType type);
1581 static void Clear(FixedArray* cache);
1582 static const int kRegExpResultsCacheSize = 0x100;
1583
1584 private:
1585 static const int kArrayEntriesPerCacheEntry = 4;
1586 static const int kStringOffset = 0;
1587 static const int kPatternOffset = 1;
1588 static const int kArrayOffset = 2;
1589 static const int kLastMatchOffset = 3;
1590};
1591
1592} // namespace internal
1593} // namespace v8
1594
1595#endif // V8_REGEXP_JSREGEXP_H_