blob: 391a5d4aac7ee4c6e056e5153adbb1396005c61c [file] [log] [blame]
Ben Murdochda12d292016-06-02 14:46:10 +01001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been
34// modified significantly by Google Inc.
35// Copyright 2014 the V8 project authors. All rights reserved.
36
37// A light-weight S390 Assembler
38// Generates user mode instructions for z/Architecture
39
40#ifndef V8_S390_ASSEMBLER_S390_H_
41#define V8_S390_ASSEMBLER_S390_H_
42#include <stdio.h>
43#if V8_HOST_ARCH_S390
44// elf.h include is required for auxv check for STFLE facility used
45// for hardware detection, which is sensible only on s390 hosts.
46#include <elf.h>
47#endif
48
49#include <fcntl.h>
50#include <unistd.h>
51#include "src/assembler.h"
52#include "src/s390/constants-s390.h"
53
54#define ABI_USES_FUNCTION_DESCRIPTORS 0
55
56#define ABI_PASSES_HANDLES_IN_REGS 1
57
58// ObjectPair is defined under runtime/runtime-util.h.
59// On 31-bit, ObjectPair == uint64_t. ABI dictates long long
60// be returned with the lower addressed half in r2
61// and the higher addressed half in r3. (Returns in Regs)
62// On 64-bit, ObjectPair is a Struct. ABI dictaes Structs be
63// returned in a storage buffer allocated by the caller,
64// with the address of this buffer passed as a hidden
65// argument in r2. (Does NOT return in Regs)
66// For x86 linux, ObjectPair is returned in registers.
67#if V8_TARGET_ARCH_S390X
68#define ABI_RETURNS_OBJECTPAIR_IN_REGS 0
69#else
70#define ABI_RETURNS_OBJECTPAIR_IN_REGS 1
71#endif
72
73#define ABI_CALL_VIA_IP 1
74
75#define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC
76
77namespace v8 {
78namespace internal {
79
80// clang-format off
81#define GENERAL_REGISTERS(V) \
82 V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
83 V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp)
84
85#define ALLOCATABLE_GENERAL_REGISTERS(V) \
86 V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
87 V(r8) V(r9) V(r13)
88
89#define DOUBLE_REGISTERS(V) \
90 V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
91 V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15)
92
Ben Murdochc5610432016-08-08 18:44:38 +010093#define FLOAT_REGISTERS DOUBLE_REGISTERS
94
Ben Murdochda12d292016-06-02 14:46:10 +010095#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
96 V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
97 V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0)
98// clang-format on
99
100// CPU Registers.
101//
102// 1) We would prefer to use an enum, but enum values are assignment-
103// compatible with int, which has caused code-generation bugs.
104//
105// 2) We would prefer to use a class instead of a struct but we don't like
106// the register initialization to depend on the particular initialization
107// order (which appears to be different on OS X, Linux, and Windows for the
108// installed versions of C++ we tried). Using a struct permits C-style
109// "initialization". Also, the Register objects cannot be const as this
110// forces initialization stubs in MSVC, making us dependent on initialization
111// order.
112//
113// 3) By not using an enum, we are possibly preventing the compiler from
114// doing certain constant folds, which may significantly reduce the
115// code generated for some assembly instructions (because they boil down
116// to a few constants). If this is a problem, we could change the code
117// such that we use an enum in optimized mode, and the struct in debug
118// mode. This way we get the compile-time error checking in debug mode
119// and best performance in optimized code.
120
121struct Register {
122 enum Code {
123#define REGISTER_CODE(R) kCode_##R,
124 GENERAL_REGISTERS(REGISTER_CODE)
125#undef REGISTER_CODE
126 kAfterLast,
127 kCode_no_reg = -1
128 };
129 static const int kNumRegisters = Code::kAfterLast;
130
131#define REGISTER_COUNT(R) 1 +
132 static const int kNumAllocatable =
133 ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT) 0;
134#undef REGISTER_COUNT
135
136#define REGISTER_BIT(R) 1 << kCode_##R |
137 static const RegList kAllocatable =
138 ALLOCATABLE_GENERAL_REGISTERS(REGISTER_BIT) 0;
139#undef REGISTER_BIT
140
141 static Register from_code(int code) {
142 DCHECK(code >= 0);
143 DCHECK(code < kNumRegisters);
144 Register r = {code};
145 return r;
146 }
147
Ben Murdochda12d292016-06-02 14:46:10 +0100148 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
149 bool is(Register reg) const { return reg_code == reg.reg_code; }
150 int code() const {
151 DCHECK(is_valid());
152 return reg_code;
153 }
154 int bit() const {
155 DCHECK(is_valid());
156 return 1 << reg_code;
157 }
158
159 void set_code(int code) {
160 reg_code = code;
161 DCHECK(is_valid());
162 }
163
164#if V8_TARGET_LITTLE_ENDIAN
165 static const int kMantissaOffset = 0;
166 static const int kExponentOffset = 4;
167#else
168 static const int kMantissaOffset = 4;
169 static const int kExponentOffset = 0;
170#endif
171
172 // Unfortunately we can't make this private in a struct.
173 int reg_code;
174};
175
176typedef struct Register Register;
177
178#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
179GENERAL_REGISTERS(DECLARE_REGISTER)
180#undef DECLARE_REGISTER
181const Register no_reg = {Register::kCode_no_reg};
182
183// Register aliases
184const Register kLithiumScratch = r1; // lithium scratch.
185const Register kRootRegister = r10; // Roots array pointer.
186const Register cp = r13; // JavaScript context pointer.
187
Ben Murdoch61f157c2016-09-16 13:49:30 +0100188static const bool kSimpleFPAliasing = true;
189
Ben Murdochda12d292016-06-02 14:46:10 +0100190// Double word FP register.
191struct DoubleRegister {
192 enum Code {
193#define REGISTER_CODE(R) kCode_##R,
194 DOUBLE_REGISTERS(REGISTER_CODE)
195#undef REGISTER_CODE
196 kAfterLast,
197 kCode_no_reg = -1
198 };
199
200 static const int kNumRegisters = Code::kAfterLast;
201 static const int kMaxNumRegisters = kNumRegisters;
202
Ben Murdochda12d292016-06-02 14:46:10 +0100203 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
204 bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; }
205
206 int code() const {
207 DCHECK(is_valid());
208 return reg_code;
209 }
210
211 int bit() const {
212 DCHECK(is_valid());
213 return 1 << reg_code;
214 }
215
216 static DoubleRegister from_code(int code) {
217 DoubleRegister r = {code};
218 return r;
219 }
220
221 int reg_code;
222};
223
Ben Murdochc5610432016-08-08 18:44:38 +0100224typedef DoubleRegister FloatRegister;
225
226// TODO(john.yan) Define SIMD registers.
227typedef DoubleRegister Simd128Register;
Ben Murdochda12d292016-06-02 14:46:10 +0100228
229#define DECLARE_REGISTER(R) \
230 const DoubleRegister R = {DoubleRegister::kCode_##R};
231DOUBLE_REGISTERS(DECLARE_REGISTER)
232#undef DECLARE_REGISTER
233const Register no_dreg = {Register::kCode_no_reg};
234
235// Aliases for double registers. Defined using #define instead of
236// "static const DoubleRegister&" because Clang complains otherwise when a
237// compilation unit that includes this header doesn't use the variables.
238#define kDoubleRegZero d14
239#define kScratchDoubleReg d13
240
241Register ToRegister(int num);
242
243// Coprocessor register
244struct CRegister {
245 bool is_valid() const { return 0 <= reg_code && reg_code < 8; }
246 bool is(CRegister creg) const { return reg_code == creg.reg_code; }
247 int code() const {
248 DCHECK(is_valid());
249 return reg_code;
250 }
251 int bit() const {
252 DCHECK(is_valid());
253 return 1 << reg_code;
254 }
255
256 // Unfortunately we can't make this private in a struct.
257 int reg_code;
258};
259
260const CRegister no_creg = {-1};
261
262const CRegister cr0 = {0};
263const CRegister cr1 = {1};
264const CRegister cr2 = {2};
265const CRegister cr3 = {3};
266const CRegister cr4 = {4};
267const CRegister cr5 = {5};
268const CRegister cr6 = {6};
269const CRegister cr7 = {7};
270
Ben Murdochda12d292016-06-02 14:46:10 +0100271// -----------------------------------------------------------------------------
272// Machine instruction Operands
273
274#if V8_TARGET_ARCH_S390X
275const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64;
276#else
277const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32;
278#endif
279
280// Class Operand represents a shifter operand in data processing instructions
281// defining immediate numbers and masks
282typedef uint8_t Length;
283
284struct Mask {
285 uint8_t mask;
286 uint8_t value() { return mask; }
287 static Mask from_value(uint8_t input) {
288 DCHECK(input <= 0x0F);
289 Mask m = {input};
290 return m;
291 }
292};
293
294class Operand BASE_EMBEDDED {
295 public:
296 // immediate
297 INLINE(explicit Operand(intptr_t immediate,
298 RelocInfo::Mode rmode = kRelocInfo_NONEPTR));
299 INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); }
300 INLINE(explicit Operand(const ExternalReference& f));
301 explicit Operand(Handle<Object> handle);
302 INLINE(explicit Operand(Smi* value));
303
304 // rm
305 INLINE(explicit Operand(Register rm));
306
307 // Return true if this is a register operand.
308 INLINE(bool is_reg() const);
309
310 bool must_output_reloc_info(const Assembler* assembler) const;
311
312 inline intptr_t immediate() const {
313 DCHECK(!rm_.is_valid());
314 return imm_;
315 }
316
317 inline void setBits(int n) {
318 imm_ = (static_cast<uint32_t>(imm_) << (32 - n)) >> (32 - n);
319 }
320
321 Register rm() const { return rm_; }
322
323 private:
324 Register rm_;
325 intptr_t imm_; // valid if rm_ == no_reg
326 RelocInfo::Mode rmode_;
327
328 friend class Assembler;
329 friend class MacroAssembler;
330};
331
332typedef int32_t Disp;
333
334// Class MemOperand represents a memory operand in load and store instructions
335// On S390, we have various flavours of memory operands:
336// 1) a base register + 16 bit unsigned displacement
337// 2) a base register + index register + 16 bit unsigned displacement
338// 3) a base register + index register + 20 bit signed displacement
339class MemOperand BASE_EMBEDDED {
340 public:
341 explicit MemOperand(Register rx, Disp offset = 0);
342 explicit MemOperand(Register rx, Register rb, Disp offset = 0);
343
344 int32_t offset() const { return offset_; }
345 uint32_t getDisplacement() const { return offset(); }
346
347 // Base register
348 Register rb() const {
349 DCHECK(!baseRegister.is(no_reg));
350 return baseRegister;
351 }
352
353 Register getBaseRegister() const { return rb(); }
354
355 // Index Register
356 Register rx() const {
357 DCHECK(!indexRegister.is(no_reg));
358 return indexRegister;
359 }
360 Register getIndexRegister() const { return rx(); }
361
362 private:
363 Register baseRegister; // base
364 Register indexRegister; // index
365 int32_t offset_; // offset
366
367 friend class Assembler;
368};
369
370class DeferredRelocInfo {
371 public:
372 DeferredRelocInfo() {}
373 DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data)
374 : position_(position), rmode_(rmode), data_(data) {}
375
376 int position() const { return position_; }
377 RelocInfo::Mode rmode() const { return rmode_; }
378 intptr_t data() const { return data_; }
379
380 private:
381 int position_;
382 RelocInfo::Mode rmode_;
383 intptr_t data_;
384};
385
386class Assembler : public AssemblerBase {
387 public:
388 // Create an assembler. Instructions and relocation information are emitted
389 // into a buffer, with the instructions starting from the beginning and the
390 // relocation information starting from the end of the buffer. See CodeDesc
391 // for a detailed comment on the layout (globals.h).
392 //
393 // If the provided buffer is NULL, the assembler allocates and grows its own
394 // buffer, and buffer_size determines the initial buffer size. The buffer is
395 // owned by the assembler and deallocated upon destruction of the assembler.
396 //
397 // If the provided buffer is not NULL, the assembler uses the provided buffer
398 // for code generation and assumes its size to be buffer_size. If the buffer
399 // is too small, a fatal error occurs. No deallocation of the buffer is done
400 // upon destruction of the assembler.
401 Assembler(Isolate* isolate, void* buffer, int buffer_size);
402 virtual ~Assembler() {}
403
404 // GetCode emits any pending (non-emitted) code and fills the descriptor
405 // desc. GetCode() is idempotent; it returns the same result if no other
406 // Assembler functions are invoked in between GetCode() calls.
407 void GetCode(CodeDesc* desc);
408
409 // Label operations & relative jumps (PPUM Appendix D)
410 //
411 // Takes a branch opcode (cc) and a label (L) and generates
412 // either a backward branch or a forward branch and links it
413 // to the label fixup chain. Usage:
414 //
415 // Label L; // unbound label
416 // j(cc, &L); // forward branch to unbound label
417 // bind(&L); // bind label to the current pc
418 // j(cc, &L); // backward branch to bound label
419 // bind(&L); // illegal: a label may be bound only once
420 //
421 // Note: The same Label can be used for forward and backward branches
422 // but it may be bound only once.
423
424 void bind(Label* L); // binds an unbound label L to the current code position
425
426 // Links a label at the current pc_offset(). If already bound, returns the
427 // bound position. If already linked, returns the position of the prior link.
428 // Otherwise, returns the current pc_offset().
429 int link(Label* L);
430
431 // Determines if Label is bound and near enough so that a single
432 // branch instruction can be used to reach it.
433 bool is_near(Label* L, Condition cond);
434
435 // Returns the branch offset to the given label from the current code position
436 // Links the label to the current position if it is still unbound
437 int branch_offset(Label* L) { return link(L) - pc_offset(); }
438
439 // Puts a labels target address at the given position.
440 // The high 8 bits are set to zero.
441 void label_at_put(Label* L, int at_offset);
442 void load_label_offset(Register r1, Label* L);
443
444 // Read/Modify the code target address in the branch/call instruction at pc.
445 INLINE(static Address target_address_at(Address pc, Address constant_pool));
446 INLINE(static void set_target_address_at(
447 Isolate* isolate, Address pc, Address constant_pool, Address target,
448 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
449 INLINE(static Address target_address_at(Address pc, Code* code)) {
450 Address constant_pool = NULL;
451 return target_address_at(pc, constant_pool);
452 }
453 INLINE(static void set_target_address_at(
454 Isolate* isolate, Address pc, Code* code, Address target,
455 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
456 Address constant_pool = NULL;
457 set_target_address_at(isolate, pc, constant_pool, target,
458 icache_flush_mode);
459 }
460
461 // Return the code target address at a call site from the return address
462 // of that call in the instruction stream.
463 inline static Address target_address_from_return_address(Address pc);
464
465 // Given the address of the beginning of a call, return the address
466 // in the instruction stream that the call will return to.
467 INLINE(static Address return_address_from_call_start(Address pc));
468
469 inline Handle<Object> code_target_object_handle_at(Address pc);
470 // This sets the branch destination.
471 // This is for calls and branches within generated code.
472 inline static void deserialization_set_special_target_at(
473 Isolate* isolate, Address instruction_payload, Code* code,
474 Address target);
475
476 // This sets the internal reference at the pc.
477 inline static void deserialization_set_target_internal_reference_at(
478 Isolate* isolate, Address pc, Address target,
479 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
480
481 // Here we are patching the address in the IIHF/IILF instruction pair.
482 // These values are used in the serialization process and must be zero for
483 // S390 platform, as Code, Embedded Object or External-reference pointers
484 // are split across two consecutive instructions and don't exist separately
485 // in the code, so the serializer should not step forwards in memory after
486 // a target is resolved and written.
487 static const int kSpecialTargetSize = 0;
488
489// Number of bytes for instructions used to store pointer sized constant.
490#if V8_TARGET_ARCH_S390X
491 static const int kBytesForPtrConstant = 12; // IIHF + IILF
492#else
493 static const int kBytesForPtrConstant = 6; // IILF
494#endif
495
496 // Distance between the instruction referring to the address of the call
497 // target and the return address.
498
499 // Offset between call target address and return address
500 // for BRASL calls
501 // Patch will be appiled to other FIXED_SEQUENCE call
502 static const int kCallTargetAddressOffset = 6;
503
504// The length of FIXED_SEQUENCE call
505// iihf r8, <address_hi> // <64-bit only>
506// iilf r8, <address_lo>
507// basr r14, r8
508#if V8_TARGET_ARCH_S390X
509 static const int kCallSequenceLength = 14;
510#else
511 static const int kCallSequenceLength = 8;
512#endif
513
514 // This is the length of the BreakLocationIterator::SetDebugBreakAtReturn()
515 // code patch FIXED_SEQUENCE in bytes!
516 // JS Return Sequence = Call Sequence + BKPT
517 // static const int kJSReturnSequenceLength = kCallSequenceLength + 2;
518
519 // This is the length of the code sequence from SetDebugBreakAtSlot()
520 // FIXED_SEQUENCE in bytes!
521 static const int kDebugBreakSlotLength = kCallSequenceLength;
522 static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset;
523
524 // Length to patch between the start of the JS return sequence
525 // from SetDebugBreakAtReturn and the address from
526 // break_address_from_return_address.
527 //
528 // frame->pc() in Debug::SetAfterBreakTarget will point to BKPT in
529 // JS return sequence, so the length to patch will not include BKPT
530 // instruction length.
531 // static const int kPatchReturnSequenceAddressOffset =
532 // kCallSequenceLength - kPatchDebugBreakSlotReturnOffset;
533
534 // Length to patch between the start of the FIXED call sequence from
535 // SetDebugBreakAtSlot() and the the address from
536 // break_address_from_return_address.
537 static const int kPatchDebugBreakSlotAddressOffset =
538 kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset;
539
540 static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) {
541 return ((cr.code() * CRWIDTH) + crbit);
542 }
543
544 // ---------------------------------------------------------------------------
545 // Code generation
546
547 // Helper for unconditional branch to Label with update to save register
548 void b(Register r, Label* l) {
Ben Murdochda12d292016-06-02 14:46:10 +0100549 int32_t halfwords = branch_offset(l) / 2;
550 brasl(r, Operand(halfwords));
551 }
552
553 // Conditional Branch Instruction - Generates either BRC / BRCL
554 void branchOnCond(Condition c, int branch_offset, bool is_bound = false);
555
556 // Helpers for conditional branch to Label
557 void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) {
558 branchOnCond(cond, branch_offset(l),
559 l->is_bound() || (dist == Label::kNear));
560 }
561
562 void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) {
563 b(cond, l, Label::kNear);
564 }
565 // Helpers for conditional branch to Label
566 void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); }
567 void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); }
568 void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); }
569 void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); }
570 void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); }
571 void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); }
572 void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); }
573 void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); }
574 void bunordered(Label* l, Label::Distance dist = Label::kFar) {
575 b(unordered, l, dist);
576 }
577 void bordered(Label* l, Label::Distance dist = Label::kFar) {
578 b(ordered, l, dist);
579 }
580
581 // Helpers for conditional indirect branch off register
582 void b(Condition cond, Register r) { bcr(cond, r); }
583 void beq(Register r) { b(eq, r); }
584 void bne(Register r) { b(ne, r); }
585 void blt(Register r) { b(lt, r); }
586 void ble(Register r) { b(le, r); }
587 void bgt(Register r) { b(gt, r); }
588 void bge(Register r) { b(ge, r); }
589 void b(Register r) { b(al, r); }
590 void jmp(Register r) { b(al, r); }
591 void bunordered(Register r) { b(unordered, r); }
592 void bordered(Register r) { b(ordered, r); }
593
594 // ---------------------------------------------------------------------------
595 // Code generation
596
597 // Insert the smallest number of nop instructions
598 // possible to align the pc offset to a multiple
599 // of m. m must be a power of 2 (>= 4).
600 void Align(int m);
601 // Insert the smallest number of zero bytes possible to align the pc offset
602 // to a mulitple of m. m must be a power of 2 (>= 2).
603 void DataAlign(int m);
604 // Aligns code to something that's optimal for a jump target for the platform.
605 void CodeTargetAlign();
606
607 void breakpoint(bool do_print) {
608 if (do_print) {
Ben Murdoch61f157c2016-09-16 13:49:30 +0100609 PrintF("DebugBreak is inserted to %p\n", static_cast<void*>(pc_));
Ben Murdochda12d292016-06-02 14:46:10 +0100610 }
611#if V8_HOST_ARCH_64_BIT
612 int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak);
613 int32_t hi_32 = static_cast<int64_t>(value) >> 32;
614 int32_t lo_32 = static_cast<int32_t>(value);
615
616 iihf(r1, Operand(hi_32));
617 iilf(r1, Operand(lo_32));
618#else
619 iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak)));
620#endif
621 basr(r14, r1);
622 }
623
624 void call(Handle<Code> target, RelocInfo::Mode rmode,
625 TypeFeedbackId ast_id = TypeFeedbackId::None());
626 void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond);
627
628// S390 instruction generation
629#define I_FORM(name) void name(const Operand& i)
630
631#define RR_FORM(name) void name(Register r1, Register r2)
632
633#define RR2_FORM(name) void name(Condition m1, Register r2)
634
635#define RX_FORM(name) \
636 void name(Register r1, Register x2, Register b2, Disp d2); \
637 void name(Register r1, const MemOperand& opnd)
638
639#define RI1_FORM(name) void name(Register r, const Operand& i)
640
641#define RI2_FORM(name) void name(Condition m, const Operand& i)
642
643#define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i)
644
645#define RIE_F_FORM(name) \
646 void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \
647 const Operand& i5)
648
649#define RIL1_FORM(name) void name(Register r1, const Operand& i2)
650
651#define RIL2_FORM(name) void name(Condition m1, const Operand& i2)
652
653#define RXE_FORM(name) \
654 void name(Register r1, const MemOperand& opnd); \
655 void name(Register r1, Register b2, Register x2, Disp d2)
656
657#define RXF_FORM(name) \
658 void name(Register r1, Register r3, const MemOperand& opnd); \
659 void name(Register r1, Register r3, Register b2, Register x2, Disp d2)
660
661#define RXY_FORM(name) \
662 void name(Register r1, Register x2, Register b2, Disp d2); \
663 void name(Register r1, const MemOperand& opnd)
664
665#define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i)
666
667#define RIS_FORM(name) \
668 void name(Register r1, Condition m3, Register b4, Disp d4, \
669 const Operand& i2); \
670 void name(Register r1, const Operand& i2, Condition m3, \
671 const MemOperand& opnd)
672
673#define SI_FORM(name) \
674 void name(const MemOperand& opnd, const Operand& i); \
675 void name(const Operand& i2, Register b1, Disp d1)
676
677#define SIL_FORM(name) \
678 void name(Register b1, Disp d1, const Operand& i2); \
679 void name(const MemOperand& opnd, const Operand& i2)
680
681#define RRE_FORM(name) void name(Register r1, Register r2)
682
683#define RRF1_FORM(name) void name(Register r1, Register r2, Register r3)
684
685#define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2)
686
687#define RRF3_FORM(name) \
688 void name(Register r3, Condition m4, Register r1, Register r2)
689
690#define RS1_FORM(name) \
691 void name(Register r1, Register r3, const MemOperand& opnd); \
692 void name(Register r1, Register r3, Register b2, Disp d2)
693
694#define RS2_FORM(name) \
695 void name(Register r1, Condition m3, const MemOperand& opnd); \
696 void name(Register r1, Condition m3, Register b2, Disp d2)
697
698#define RSE_FORM(name) \
699 void name(Register r1, Register r3, const MemOperand& opnd); \
700 void name(Register r1, Register r3, Register b2, Disp d2)
701
702#define RSL_FORM(name) \
703 void name(Length l, Register b2, Disp d2); \
704 void name(const MemOperand& opnd)
705
706#define RSY1_FORM(name) \
707 void name(Register r1, Register r3, Register b2, Disp d2); \
708 void name(Register r1, Register r3, const MemOperand& opnd)
709
710#define RSY2_FORM(name) \
711 void name(Register r1, Condition m3, Register b2, Disp d2); \
712 void name(Register r1, Condition m3, const MemOperand& opnd)
713
714#define RRD_FORM(name) void name(Register r1, Register r3, Register r2)
715
716#define RRS_FORM(name) \
717 void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \
718 void name(Register r1, Register r2, Condition m3, const MemOperand& opnd)
719
720#define S_FORM(name) \
721 void name(Register b2, Disp d2); \
722 void name(const MemOperand& opnd)
723
724#define SIY_FORM(name) \
725 void name(const Operand& i2, Register b1, Disp d1); \
726 void name(const MemOperand& opnd, const Operand& i)
727
728#define SS1_FORM(name) \
729 void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \
730 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length)
731
732#define SS2_FORM(name) \
733 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \
734 Length length2); \
735 void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2)
736
737#define SS3_FORM(name) \
738 void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \
739 void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2, \
740 Length l1)
741
742#define SS4_FORM(name) \
743 void name(const MemOperand& opnd1, const MemOperand& opnd2); \
744 void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \
745 Disp d2)
746
747#define SS5_FORM(name) \
748 void name(const MemOperand& opnd1, const MemOperand& opnd2); \
749 void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \
750 Disp d4)
751
752#define SSE_FORM(name) \
753 void name(Register b1, Disp d1, Register b2, Disp d2); \
754 void name(const MemOperand& opnd1, const MemOperand& opnd2)
755
756#define SSF_FORM(name) \
757 void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \
758 void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2)
759
760 // S390 instruction sets
761 RX_FORM(bc);
762 RR_FORM(bctr);
763 RX_FORM(cd);
764 RRE_FORM(cdr);
765 RXE_FORM(cdb);
766 RXE_FORM(ceb);
767 RRE_FORM(cefbr);
768 RXE_FORM(ddb);
769 RRE_FORM(ddbr);
770 SS1_FORM(ed);
771 RRE_FORM(epair);
772 RX_FORM(ex);
773 RRF2_FORM(fidbr);
774 RRE_FORM(flogr);
775 RX_FORM(ic_z);
776 RXY_FORM(icy);
777 RIL1_FORM(iihf);
778 RI1_FORM(iihh);
779 RI1_FORM(iihl);
780 RIL1_FORM(iilf);
781 RI1_FORM(iilh);
782 RI1_FORM(iill);
783 RRE_FORM(lcgr);
784 RR_FORM(lcr);
785 RX_FORM(le_z);
786 RXY_FORM(ley);
787 RIL1_FORM(llihf);
788 RIL1_FORM(llilf);
789 RRE_FORM(lngr);
790 RR_FORM(lnr);
791 RSY1_FORM(loc);
792 RXY_FORM(lrv);
793 RXY_FORM(lrvh);
794 RXE_FORM(mdb);
795 RRE_FORM(mdbr);
796 SS4_FORM(mvck);
797 SSF_FORM(mvcos);
798 SS4_FORM(mvcs);
799 SS1_FORM(mvn);
800 SS1_FORM(nc);
801 SI_FORM(ni);
802 RIL1_FORM(nihf);
803 RIL1_FORM(nilf);
804 RI1_FORM(nilh);
805 RI1_FORM(nill);
806 RIL1_FORM(oihf);
807 RIL1_FORM(oilf);
808 RI1_FORM(oill);
809 RRE_FORM(popcnt);
810 RXE_FORM(sdb);
811 RRE_FORM(sdbr);
812 RIL1_FORM(slfi);
813 RXY_FORM(slgf);
814 RIL1_FORM(slgfi);
815 RS1_FORM(srdl);
816 RX_FORM(ste);
817 RXY_FORM(stey);
818 RXY_FORM(strv);
819 RI1_FORM(tmll);
820 SS1_FORM(tr);
821 S_FORM(ts);
822 RIL1_FORM(xihf);
823 RIL1_FORM(xilf);
824
825 // Load Address Instructions
826 void la(Register r, const MemOperand& opnd);
827 void lay(Register r, const MemOperand& opnd);
828 void larl(Register r1, const Operand& opnd);
829 void larl(Register r, Label* l);
830
831 // Load Instructions
832 void lb(Register r, const MemOperand& src);
833 void lbr(Register r1, Register r2);
834 void lgb(Register r, const MemOperand& src);
835 void lgbr(Register r1, Register r2);
836 void lh(Register r, const MemOperand& src);
837 void lhy(Register r, const MemOperand& src);
838 void lhr(Register r1, Register r2);
839 void lgh(Register r, const MemOperand& src);
840 void lghr(Register r1, Register r2);
841 void l(Register r, const MemOperand& src);
842 void ly(Register r, const MemOperand& src);
843 void lr(Register r1, Register r2);
844 void lg(Register r, const MemOperand& src);
845 void lgr(Register r1, Register r2);
846 void lgf(Register r, const MemOperand& src);
847 void lgfr(Register r1, Register r2);
848 void lhi(Register r, const Operand& imm);
849 void lghi(Register r, const Operand& imm);
850
851 // Load And Test Instructions
852 void lt_z(Register r, const MemOperand& src);
853 void ltg(Register r, const MemOperand& src);
854 void ltr(Register r1, Register r2);
855 void ltgr(Register r1, Register r2);
856 void ltgfr(Register r1, Register r2);
857
858 // Load Logical Instructions
859 void llc(Register r, const MemOperand& src);
860 void llgc(Register r, const MemOperand& src);
861 void llgf(Register r, const MemOperand& src);
862 void llgfr(Register r1, Register r2);
863 void llh(Register r, const MemOperand& src);
864 void llgh(Register r, const MemOperand& src);
865 void llhr(Register r1, Register r2);
866 void llghr(Register r1, Register r2);
867
868 // Load Multiple Instructions
869 void lm(Register r1, Register r2, const MemOperand& src);
870 void lmy(Register r1, Register r2, const MemOperand& src);
871 void lmg(Register r1, Register r2, const MemOperand& src);
872
873 // Store Instructions
874 void st(Register r, const MemOperand& src);
875 void stc(Register r, const MemOperand& src);
876 void stcy(Register r, const MemOperand& src);
877 void stg(Register r, const MemOperand& src);
878 void sth(Register r, const MemOperand& src);
879 void sthy(Register r, const MemOperand& src);
880 void sty(Register r, const MemOperand& src);
881
882 // Store Multiple Instructions
883 void stm(Register r1, Register r2, const MemOperand& src);
884 void stmy(Register r1, Register r2, const MemOperand& src);
885 void stmg(Register r1, Register r2, const MemOperand& src);
886
887 // Compare Instructions
888 void c(Register r, const MemOperand& opnd);
889 void cy(Register r, const MemOperand& opnd);
890 void cr_z(Register r1, Register r2);
891 void cg(Register r, const MemOperand& opnd);
892 void cgr(Register r1, Register r2);
893 void ch(Register r, const MemOperand& opnd);
894 void chy(Register r, const MemOperand& opnd);
895 void chi(Register r, const Operand& opnd);
896 void cghi(Register r, const Operand& opnd);
897 void cfi(Register r, const Operand& opnd);
898 void cgfi(Register r, const Operand& opnd);
899
900 // Compare Logical Instructions
901 void cl(Register r, const MemOperand& opnd);
902 void cly(Register r, const MemOperand& opnd);
903 void clr(Register r1, Register r2);
904 void clg(Register r, const MemOperand& opnd);
905 void clgr(Register r1, Register r2);
906 void clfi(Register r, const Operand& opnd);
907 void clgfi(Register r, const Operand& opnd);
908 void cli(const MemOperand& mem, const Operand& imm);
909 void cliy(const MemOperand& mem, const Operand& imm);
910 void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length);
911
912 // Test Under Mask Instructions
913 void tm(const MemOperand& mem, const Operand& imm);
914 void tmy(const MemOperand& mem, const Operand& imm);
915
916 // Rotate Instructions
917 void rll(Register r1, Register r3, Register opnd);
918 void rll(Register r1, Register r3, const Operand& opnd);
919 void rll(Register r1, Register r3, Register r2, const Operand& opnd);
920 void rllg(Register r1, Register r3, const Operand& opnd);
921 void rllg(Register r1, Register r3, const Register opnd);
922 void rllg(Register r1, Register r3, Register r2, const Operand& opnd);
923
924 // Shift Instructions (32)
925 void sll(Register r1, Register opnd);
926 void sll(Register r1, const Operand& opnd);
927 void sllk(Register r1, Register r3, Register opnd);
928 void sllk(Register r1, Register r3, const Operand& opnd);
929 void srl(Register r1, Register opnd);
930 void srl(Register r1, const Operand& opnd);
931 void srlk(Register r1, Register r3, Register opnd);
932 void srlk(Register r1, Register r3, const Operand& opnd);
933 void sra(Register r1, Register opnd);
934 void sra(Register r1, const Operand& opnd);
935 void srak(Register r1, Register r3, Register opnd);
936 void srak(Register r1, Register r3, const Operand& opnd);
937 void sla(Register r1, Register opnd);
938 void sla(Register r1, const Operand& opnd);
939 void slak(Register r1, Register r3, Register opnd);
940 void slak(Register r1, Register r3, const Operand& opnd);
941
942 // Shift Instructions (64)
943 void sllg(Register r1, Register r3, const Operand& opnd);
944 void sllg(Register r1, Register r3, const Register opnd);
945 void srlg(Register r1, Register r3, const Operand& opnd);
946 void srlg(Register r1, Register r3, const Register opnd);
947 void srag(Register r1, Register r3, const Operand& opnd);
948 void srag(Register r1, Register r3, const Register opnd);
949 void srda(Register r1, const Operand& opnd);
950 void srdl(Register r1, const Operand& opnd);
951 void slag(Register r1, Register r3, const Operand& opnd);
952 void slag(Register r1, Register r3, const Register opnd);
953 void sldl(Register r1, Register b2, const Operand& opnd);
954 void srdl(Register r1, Register b2, const Operand& opnd);
955 void srda(Register r1, Register b2, const Operand& opnd);
956
957 // Rotate and Insert Selected Bits
958 void risbg(Register dst, Register src, const Operand& startBit,
959 const Operand& endBit, const Operand& shiftAmt,
960 bool zeroBits = true);
961 void risbgn(Register dst, Register src, const Operand& startBit,
962 const Operand& endBit, const Operand& shiftAmt,
963 bool zeroBits = true);
964
965 // Move Character (Mem to Mem)
966 void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length);
967
968 // Branch Instructions
969 void basr(Register r1, Register r2);
970 void bcr(Condition m, Register target);
971 void bct(Register r, const MemOperand& opnd);
972 void bctg(Register r, const MemOperand& opnd);
973 void bras(Register r, const Operand& opnd);
974 void brasl(Register r, const Operand& opnd);
975 void brc(Condition c, const Operand& opnd);
976 void brcl(Condition m, const Operand& opnd, bool isCodeTarget = false);
977 void brct(Register r1, const Operand& opnd);
978 void brctg(Register r1, const Operand& opnd);
979
980 // 32-bit Add Instructions
981 void a(Register r1, const MemOperand& opnd);
982 void ay(Register r1, const MemOperand& opnd);
983 void afi(Register r1, const Operand& opnd);
984 void ah(Register r1, const MemOperand& opnd);
985 void ahy(Register r1, const MemOperand& opnd);
986 void ahi(Register r1, const Operand& opnd);
987 void ahik(Register r1, Register r3, const Operand& opnd);
988 void ar(Register r1, Register r2);
989 void ark(Register r1, Register r2, Register r3);
990 void asi(const MemOperand&, const Operand&);
991
992 // 64-bit Add Instructions
993 void ag(Register r1, const MemOperand& opnd);
994 void agf(Register r1, const MemOperand& opnd);
995 void agfi(Register r1, const Operand& opnd);
996 void agfr(Register r1, Register r2);
997 void aghi(Register r1, const Operand& opnd);
998 void aghik(Register r1, Register r3, const Operand& opnd);
999 void agr(Register r1, Register r2);
1000 void agrk(Register r1, Register r2, Register r3);
1001 void agsi(const MemOperand&, const Operand&);
1002
1003 // 32-bit Add Logical Instructions
1004 void al_z(Register r1, const MemOperand& opnd);
1005 void aly(Register r1, const MemOperand& opnd);
1006 void alfi(Register r1, const Operand& opnd);
1007 void alr(Register r1, Register r2);
1008 void alcr(Register r1, Register r2);
1009 void alrk(Register r1, Register r2, Register r3);
1010
1011 // 64-bit Add Logical Instructions
1012 void alg(Register r1, const MemOperand& opnd);
1013 void algfi(Register r1, const Operand& opnd);
1014 void algr(Register r1, Register r2);
1015 void algrk(Register r1, Register r2, Register r3);
1016
1017 // 32-bit Subtract Instructions
1018 void s(Register r1, const MemOperand& opnd);
1019 void sy(Register r1, const MemOperand& opnd);
1020 void sh(Register r1, const MemOperand& opnd);
1021 void shy(Register r1, const MemOperand& opnd);
1022 void sr(Register r1, Register r2);
1023 void srk(Register r1, Register r2, Register r3);
1024
1025 // 64-bit Subtract Instructions
1026 void sg(Register r1, const MemOperand& opnd);
1027 void sgf(Register r1, const MemOperand& opnd);
1028 void sgr(Register r1, Register r2);
1029 void sgfr(Register r1, Register r2);
1030 void sgrk(Register r1, Register r2, Register r3);
1031
1032 // 32-bit Subtract Logical Instructions
1033 void sl(Register r1, const MemOperand& opnd);
1034 void sly(Register r1, const MemOperand& opnd);
1035 void slr(Register r1, Register r2);
1036 void slrk(Register r1, Register r2, Register r3);
1037 void slbr(Register r1, Register r2);
1038
1039 // 64-bit Subtract Logical Instructions
1040 void slg(Register r1, const MemOperand& opnd);
1041 void slgr(Register r1, Register r2);
1042 void slgrk(Register r1, Register r2, Register r3);
1043
1044 // 32-bit Multiply Instructions
1045 void m(Register r1, const MemOperand& opnd);
1046 void mr_z(Register r1, Register r2);
1047 void ml(Register r1, const MemOperand& opnd);
1048 void mlr(Register r1, Register r2);
1049 void ms(Register r1, const MemOperand& opnd);
1050 void msy(Register r1, const MemOperand& opnd);
1051 void msfi(Register r1, const Operand& opnd);
1052 void msr(Register r1, Register r2);
1053 void mh(Register r1, const MemOperand& opnd);
1054 void mhy(Register r1, const MemOperand& opnd);
1055 void mhi(Register r1, const Operand& opnd);
1056
1057 // 64-bit Multiply Instructions
1058 void mlg(Register r1, const MemOperand& opnd);
1059 void mlgr(Register r1, Register r2);
1060 void mghi(Register r1, const Operand& opnd);
1061 void msgfi(Register r1, const Operand& opnd);
1062 void msg(Register r1, const MemOperand& opnd);
1063 void msgr(Register r1, Register r2);
1064
1065 // 32-bit Divide Instructions
1066 void d(Register r1, const MemOperand& opnd);
1067 void dr(Register r1, Register r2);
1068 void dl(Register r1, const MemOperand& opnd);
1069 void dlr(Register r1, Register r2);
1070
1071 // 64-bit Divide Instructions
1072 void dlgr(Register r1, Register r2);
1073 void dsgr(Register r1, Register r2);
1074
1075 // Bitwise Instructions (AND / OR / XOR)
1076 void n(Register r1, const MemOperand& opnd);
1077 void ny(Register r1, const MemOperand& opnd);
1078 void nr(Register r1, Register r2);
1079 void nrk(Register r1, Register r2, Register r3);
1080 void ng(Register r1, const MemOperand& opnd);
1081 void ngr(Register r1, Register r2);
1082 void ngrk(Register r1, Register r2, Register r3);
1083 void o(Register r1, const MemOperand& opnd);
1084 void oy(Register r1, const MemOperand& opnd);
1085 void or_z(Register r1, Register r2);
1086 void ork(Register r1, Register r2, Register r3);
1087 void og(Register r1, const MemOperand& opnd);
1088 void ogr(Register r1, Register r2);
1089 void ogrk(Register r1, Register r2, Register r3);
1090 void x(Register r1, const MemOperand& opnd);
1091 void xy(Register r1, const MemOperand& opnd);
1092 void xr(Register r1, Register r2);
1093 void xrk(Register r1, Register r2, Register r3);
1094 void xg(Register r1, const MemOperand& opnd);
1095 void xgr(Register r1, Register r2);
1096 void xgrk(Register r1, Register r2, Register r3);
1097 void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length);
1098
1099 // Bitwise GPR <-> FPR Conversion Instructions
1100 void lgdr(Register r1, DoubleRegister f2);
1101 void ldgr(DoubleRegister f1, Register r2);
1102
1103 // Floating Point Load / Store Instructions
1104 void ld(DoubleRegister r1, const MemOperand& opnd);
1105 void ldy(DoubleRegister r1, const MemOperand& opnd);
1106 void le_z(DoubleRegister r1, const MemOperand& opnd);
1107 void ley(DoubleRegister r1, const MemOperand& opnd);
1108 void ldr(DoubleRegister r1, DoubleRegister r2);
1109 void ltdbr(DoubleRegister r1, DoubleRegister r2);
1110 void ltebr(DoubleRegister r1, DoubleRegister r2);
1111 void std(DoubleRegister r1, const MemOperand& opnd);
1112 void stdy(DoubleRegister r1, const MemOperand& opnd);
1113 void ste(DoubleRegister r1, const MemOperand& opnd);
1114 void stey(DoubleRegister r1, const MemOperand& opnd);
1115
1116 // Floating Point Load Rounded/Positive Instructions
1117 void ledbr(DoubleRegister r1, DoubleRegister r2);
1118 void ldebr(DoubleRegister r1, DoubleRegister r2);
1119 void lpebr(DoubleRegister r1, DoubleRegister r2);
1120 void lpdbr(DoubleRegister r1, DoubleRegister r2);
1121
1122 // Floating <-> Fixed Point Conversion Instructions
1123 void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg,
1124 Register fixReg);
1125 void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg,
1126 Register fixReg);
1127 void celgbr(Condition m3, Condition m4, DoubleRegister fltReg,
1128 Register fixReg);
1129 void celfbr(Condition m3, Condition m4, DoubleRegister fltReg,
1130 Register fixReg);
1131 void clfdbr(Condition m3, Condition m4, Register fixReg,
1132 DoubleRegister fltReg);
1133 void clfebr(Condition m3, Condition m4, Register fixReg,
1134 DoubleRegister fltReg);
1135 void clgdbr(Condition m3, Condition m4, Register fixReg,
1136 DoubleRegister fltReg);
1137 void clgebr(Condition m3, Condition m4, Register fixReg,
1138 DoubleRegister fltReg);
1139 void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg);
1140 void cdfbr(DoubleRegister fltReg, Register fixReg);
1141 void cgebr(Condition m, Register fixReg, DoubleRegister fltReg);
1142 void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg);
1143 void cegbr(DoubleRegister fltReg, Register fixReg);
1144 void cdgbr(DoubleRegister fltReg, Register fixReg);
1145 void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg);
1146 void cefbr(DoubleRegister fltReg, Register fixReg);
1147
1148 // Floating Point Compare Instructions
1149 void cebr(DoubleRegister r1, DoubleRegister r2);
1150 void cdb(DoubleRegister r1, const MemOperand& opnd);
1151 void cdbr(DoubleRegister r1, DoubleRegister r2);
1152
1153 // Floating Point Arithmetic Instructions
1154 void aebr(DoubleRegister r1, DoubleRegister r2);
1155 void adb(DoubleRegister r1, const MemOperand& opnd);
1156 void adbr(DoubleRegister r1, DoubleRegister r2);
1157 void lzdr(DoubleRegister r1);
1158 void sebr(DoubleRegister r1, DoubleRegister r2);
1159 void sdb(DoubleRegister r1, const MemOperand& opnd);
1160 void sdbr(DoubleRegister r1, DoubleRegister r2);
1161 void meebr(DoubleRegister r1, DoubleRegister r2);
1162 void mdb(DoubleRegister r1, const MemOperand& opnd);
1163 void mdbr(DoubleRegister r1, DoubleRegister r2);
1164 void debr(DoubleRegister r1, DoubleRegister r2);
1165 void ddb(DoubleRegister r1, const MemOperand& opnd);
1166 void ddbr(DoubleRegister r1, DoubleRegister r2);
1167 void madbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3);
1168 void msdbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3);
1169 void sqebr(DoubleRegister r1, DoubleRegister r2);
1170 void sqdb(DoubleRegister r1, const MemOperand& opnd);
1171 void sqdbr(DoubleRegister r1, DoubleRegister r2);
1172 void lcdbr(DoubleRegister r1, DoubleRegister r2);
1173 void ldeb(DoubleRegister r1, const MemOperand& opnd);
1174
1175 enum FIDBRA_MASK3 {
1176 FIDBRA_CURRENT_ROUNDING_MODE = 0,
1177 FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1,
1178 // ...
1179 FIDBRA_ROUND_TOWARD_0 = 5,
1180 FIDBRA_ROUND_TOWARD_POS_INF = 6,
1181 FIDBRA_ROUND_TOWARD_NEG_INF = 7
1182 };
1183 void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3);
1184 void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3);
1185
1186 // Move integer
1187 void mvhi(const MemOperand& opnd1, const Operand& i2);
1188 void mvghi(const MemOperand& opnd1, const Operand& i2);
1189
1190 // Exception-generating instructions and debugging support
1191 void stop(const char* msg, Condition cond = al,
1192 int32_t code = kDefaultStopCode, CRegister cr = cr7);
1193
1194 void bkpt(uint32_t imm16); // v5 and above
1195
1196 // Different nop operations are used by the code generator to detect certain
1197 // states of the generated code.
1198 enum NopMarkerTypes {
1199 NON_MARKING_NOP = 0,
1200 GROUP_ENDING_NOP,
1201 DEBUG_BREAK_NOP,
1202 // IC markers.
1203 PROPERTY_ACCESS_INLINED,
1204 PROPERTY_ACCESS_INLINED_CONTEXT,
1205 PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
1206 // Helper values.
1207 LAST_CODE_MARKER,
1208 FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
1209 };
1210
1211 void nop(int type = 0); // 0 is the default non-marking type.
1212
1213 // Check the code size generated from label to here.
1214 int SizeOfCodeGeneratedSince(Label* label) {
1215 return pc_offset() - label->pos();
1216 }
1217
1218 // Debugging
1219
1220 // Mark generator continuation.
1221 void RecordGeneratorContinuation();
1222
1223 // Mark address of a debug break slot.
1224 void RecordDebugBreakSlot(RelocInfo::Mode mode);
1225
1226 // Record the AST id of the CallIC being compiled, so that it can be placed
1227 // in the relocation information.
1228 void SetRecordedAstId(TypeFeedbackId ast_id) { recorded_ast_id_ = ast_id; }
1229
1230 TypeFeedbackId RecordedAstId() {
1231 // roohack - another issue??? DCHECK(!recorded_ast_id_.IsNone());
1232 return recorded_ast_id_;
1233 }
1234
1235 void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
1236
1237 // Record a comment relocation entry that can be used by a disassembler.
1238 // Use --code-comments to enable.
1239 void RecordComment(const char* msg);
1240
1241 // Record a deoptimization reason that can be used by a log or cpu profiler.
1242 // Use --trace-deopt to enable.
Ben Murdochc5610432016-08-08 18:44:38 +01001243 void RecordDeoptReason(const int reason, int raw_position, int id);
Ben Murdochda12d292016-06-02 14:46:10 +01001244
1245 // Writes a single byte or word of data in the code stream. Used
1246 // for inline tables, e.g., jump-tables.
1247 void db(uint8_t data);
1248 void dd(uint32_t data);
1249 void dq(uint64_t data);
1250 void dp(uintptr_t data);
1251
1252 AssemblerPositionsRecorder* positions_recorder() {
1253 return &positions_recorder_;
1254 }
1255
1256 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1257 ConstantPoolEntry::Access access,
1258 ConstantPoolEntry::Type type) {
1259 // No embedded constant pool support.
1260 UNREACHABLE();
1261 }
1262
1263 // Read/patch instructions
1264 SixByteInstr instr_at(int pos) {
1265 return Instruction::InstructionBits(buffer_ + pos);
1266 }
1267 template <typename T>
1268 void instr_at_put(int pos, T instr) {
1269 Instruction::SetInstructionBits<T>(buffer_ + pos, instr);
1270 }
1271
1272 // Decodes instruction at pos, and returns its length
1273 int32_t instr_length_at(int pos) {
1274 return Instruction::InstructionLength(buffer_ + pos);
1275 }
1276
1277 static SixByteInstr instr_at(byte* pc) {
1278 return Instruction::InstructionBits(pc);
1279 }
1280
1281 static Condition GetCondition(Instr instr);
1282
1283 static bool IsBranch(Instr instr);
1284#if V8_TARGET_ARCH_S390X
1285 static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2);
1286#else
1287 static bool Is32BitLoadIntoIP(SixByteInstr instr);
1288#endif
1289
1290 static bool IsCmpRegister(Instr instr);
1291 static bool IsCmpImmediate(Instr instr);
1292 static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP);
1293
1294 // The code currently calls CheckBuffer() too often. This has the side
1295 // effect of randomly growing the buffer in the middle of multi-instruction
1296 // sequences.
1297 //
1298 // This function allows outside callers to check and grow the buffer
1299 void EnsureSpaceFor(int space_needed);
1300
1301 void EmitRelocations();
1302 void emit_label_addr(Label* label);
1303
1304 public:
1305 byte* buffer_pos() const { return buffer_; }
1306
1307 protected:
1308 // Relocation for a type-recording IC has the AST id added to it. This
1309 // member variable is a way to pass the information from the call site to
1310 // the relocation info.
1311 TypeFeedbackId recorded_ast_id_;
1312
1313 int buffer_space() const { return reloc_info_writer.pos() - pc_; }
1314
1315 // Decode instruction(s) at pos and return backchain to previous
1316 // label reference or kEndOfChain.
1317 int target_at(int pos);
1318
1319 // Patch instruction(s) at pos to target target_pos (e.g. branch)
1320 void target_at_put(int pos, int target_pos, bool* is_branch = nullptr);
1321
1322 // Record reloc info for current pc_
1323 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1324
1325 private:
1326 // Code generation
1327 // The relocation writer's position is at least kGap bytes below the end of
1328 // the generated instructions. This is so that multi-instruction sequences do
1329 // not have to check for overflow. The same is true for writes of large
1330 // relocation info entries.
1331 static const int kGap = 32;
1332
1333 // Relocation info generation
1334 // Each relocation is encoded as a variable size value
1335 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1336 RelocInfoWriter reloc_info_writer;
1337 std::vector<DeferredRelocInfo> relocations_;
1338
1339 // The bound position, before this we cannot do instruction elimination.
1340 int last_bound_pos_;
1341
1342 // Code emission
1343 inline void CheckBuffer();
1344 void GrowBuffer(int needed = 0);
1345 inline void TrackBranch();
1346 inline void UntrackBranch();
1347
1348 inline int32_t emit_code_target(
1349 Handle<Code> target, RelocInfo::Mode rmode,
1350 TypeFeedbackId ast_id = TypeFeedbackId::None());
1351
1352 // Helpers to emit binary encoding of 2/4/6 byte instructions.
1353 inline void emit2bytes(uint16_t x);
1354 inline void emit4bytes(uint32_t x);
1355 inline void emit6bytes(uint64_t x);
1356
1357 // Helpers to emit binary encoding for various instruction formats.
1358
1359 inline void rr_form(Opcode op, Register r1, Register r2);
1360 inline void rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2);
1361 inline void rr_form(Opcode op, Condition m1, Register r2);
1362 inline void rr2_form(uint8_t op, Condition m1, Register r2);
1363
1364 inline void rx_form(Opcode op, Register r1, Register x2, Register b2,
1365 Disp d2);
1366 inline void rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
1367 Disp d2);
1368
1369 inline void ri_form(Opcode op, Register r1, const Operand& i2);
1370 inline void ri_form(Opcode op, Condition m1, const Operand& i2);
1371
1372 inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2);
1373 inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3,
1374 const Operand& i4, const Operand& i5);
1375
1376 inline void ril_form(Opcode op, Register r1, const Operand& i2);
1377 inline void ril_form(Opcode op, Condition m1, const Operand& i2);
1378
1379 inline void ris_form(Opcode op, Register r1, Condition m3, Register b4,
1380 Disp d4, const Operand& i2);
1381
1382 inline void rrd_form(Opcode op, Register r1, Register r3, Register r2);
1383
1384 inline void rre_form(Opcode op, Register r1, Register r2);
1385 inline void rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2);
1386
1387 inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3);
1388 inline void rrf1_form(uint32_t x);
1389 inline void rrf2_form(uint32_t x);
1390 inline void rrf3_form(uint32_t x);
1391 inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1,
1392 Register r2);
1393
1394 inline void rrs_form(Opcode op, Register r1, Register r2, Register b4,
1395 Disp d4, Condition m3);
1396
1397 inline void rs_form(Opcode op, Register r1, Condition m3, Register b2,
1398 const Disp d2);
1399 inline void rs_form(Opcode op, Register r1, Register r3, Register b2,
1400 const Disp d2);
1401
1402 inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2);
1403 inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2);
1404
1405 inline void rsy_form(Opcode op, Register r1, Register r3, Register b2,
1406 const Disp d2);
1407 inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2,
1408 const Disp d2);
1409
1410 inline void rxe_form(Opcode op, Register r1, Register x2, Register b2,
1411 Disp d2);
1412
1413 inline void rxf_form(Opcode op, Register r1, Register r3, Register b2,
1414 Register x2, Disp d2);
1415
1416 inline void rxy_form(Opcode op, Register r1, Register x2, Register b2,
1417 Disp d2);
1418 inline void rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
1419 Disp d2);
1420
1421 inline void s_form(Opcode op, Register b1, Disp d2);
1422
1423 inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1);
1424 inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1);
1425
1426 inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2);
1427
1428 inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2,
1429 Disp d2);
1430 inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1,
1431 Register b2, Disp d2);
1432 inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1,
1433 Disp d1, Register b2, Disp d2);
1434 inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1,
1435 Register b2, Disp d2);
1436 inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2);
1437 inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1,
1438 Register b2, Disp d2);
1439
1440 // Labels
1441 void print(Label* L);
1442 int max_reach_from(int pos);
1443 void bind_to(Label* L, int pos);
1444 void next(Label* L);
1445
1446 friend class RegExpMacroAssemblerS390;
1447 friend class RelocInfo;
1448 friend class CodePatcher;
1449
1450 List<Handle<Code> > code_targets_;
1451
1452 AssemblerPositionsRecorder positions_recorder_;
1453 friend class AssemblerPositionsRecorder;
1454 friend class EnsureSpace;
1455};
1456
1457class EnsureSpace BASE_EMBEDDED {
1458 public:
1459 explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
1460};
1461
1462} // namespace internal
1463} // namespace v8
1464
1465#endif // V8_S390_ASSEMBLER_S390_H_