blob: 246d574257e78b045718fb8bce50548967116f19 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
6#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
7
8#include <vector>
9
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000010#include "src/arm64/assembler-arm64.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000011#include "src/bailout-reason.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000012#include "src/base/bits.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000013#include "src/globals.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000014
15// Simulator specific helpers.
16#if USE_SIMULATOR
17 // TODO(all): If possible automatically prepend an indicator like
18 // UNIMPLEMENTED or LOCATION.
19 #define ASM_UNIMPLEMENTED(message) \
20 __ Debug(message, __LINE__, NO_PARAM)
21 #define ASM_UNIMPLEMENTED_BREAK(message) \
22 __ Debug(message, __LINE__, \
23 FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
Ben Murdochc5610432016-08-08 18:44:38 +010024#if DEBUG
25#define ASM_LOCATION(message) __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
Ben Murdochb8a8cc12014-11-26 15:28:44 +000026#else
Ben Murdochc5610432016-08-08 18:44:38 +010027#define ASM_LOCATION(message)
28#endif
29#else
30#define ASM_UNIMPLEMENTED(message)
31#define ASM_UNIMPLEMENTED_BREAK(message)
32#define ASM_LOCATION(message)
Ben Murdochb8a8cc12014-11-26 15:28:44 +000033#endif
34
35
36namespace v8 {
37namespace internal {
38
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000039// Give alias names to registers for calling conventions.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000040#define kReturnRegister0 x0
41#define kReturnRegister1 x1
Ben Murdoch097c5b22016-05-18 11:27:45 +010042#define kReturnRegister2 x2
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000043#define kJSFunctionRegister x1
44#define kContextRegister cp
Ben Murdochc5610432016-08-08 18:44:38 +010045#define kAllocateSizeRegister x1
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000046#define kInterpreterAccumulatorRegister x0
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000047#define kInterpreterBytecodeOffsetRegister x19
48#define kInterpreterBytecodeArrayRegister x20
49#define kInterpreterDispatchTableRegister x21
50#define kJavaScriptCallArgCountRegister x0
51#define kJavaScriptCallNewTargetRegister x3
52#define kRuntimeCallFunctionRegister x1
53#define kRuntimeCallArgCountRegister x0
54
Ben Murdochb8a8cc12014-11-26 15:28:44 +000055#define LS_MACRO_LIST(V) \
56 V(Ldrb, Register&, rt, LDRB_w) \
57 V(Strb, Register&, rt, STRB_w) \
58 V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
59 V(Ldrh, Register&, rt, LDRH_w) \
60 V(Strh, Register&, rt, STRH_w) \
61 V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
62 V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
63 V(Str, CPURegister&, rt, StoreOpFor(rt)) \
64 V(Ldrsw, Register&, rt, LDRSW_x)
65
66#define LSPAIR_MACRO_LIST(V) \
67 V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2)) \
68 V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
69 V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
70
Ben Murdoch61f157c2016-09-16 13:49:30 +010071#define LDA_STL_MACRO_LIST(V) \
72 V(Ldarb, ldarb) \
73 V(Ldarh, ldarh) \
74 V(Ldar, ldar) \
75 V(Ldaxrb, ldaxrb) \
76 V(Ldaxrh, ldaxrh) \
77 V(Ldaxr, ldaxr) \
78 V(Stlrb, stlrb) \
79 V(Stlrh, stlrh) \
80 V(Stlr, stlr)
81
82#define STLX_MACRO_LIST(V) \
83 V(Stlxrb, stlxrb) \
84 V(Stlxrh, stlxrh) \
85 V(Stlxr, stlxr)
Ben Murdochb8a8cc12014-11-26 15:28:44 +000086
87// ----------------------------------------------------------------------------
88// Static helper functions
89
90// Generate a MemOperand for loading a field from an object.
91inline MemOperand FieldMemOperand(Register object, int offset);
92inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
93
94// Generate a MemOperand for loading a SMI from memory.
95inline MemOperand UntagSmiMemOperand(Register object, int offset);
96
97
98// ----------------------------------------------------------------------------
99// MacroAssembler
100
101enum BranchType {
102 // Copies of architectural conditions.
103 // The associated conditions can be used in place of those, the code will
104 // take care of reinterpreting them with the correct type.
105 integer_eq = eq,
106 integer_ne = ne,
107 integer_hs = hs,
108 integer_lo = lo,
109 integer_mi = mi,
110 integer_pl = pl,
111 integer_vs = vs,
112 integer_vc = vc,
113 integer_hi = hi,
114 integer_ls = ls,
115 integer_ge = ge,
116 integer_lt = lt,
117 integer_gt = gt,
118 integer_le = le,
119 integer_al = al,
120 integer_nv = nv,
121
122 // These two are *different* from the architectural codes al and nv.
123 // 'always' is used to generate unconditional branches.
124 // 'never' is used to not generate a branch (generally as the inverse
125 // branch type of 'always).
126 always, never,
127 // cbz and cbnz
128 reg_zero, reg_not_zero,
129 // tbz and tbnz
130 reg_bit_clear, reg_bit_set,
131
132 // Aliases.
133 kBranchTypeFirstCondition = eq,
134 kBranchTypeLastCondition = nv,
135 kBranchTypeFirstUsingReg = reg_zero,
136 kBranchTypeFirstUsingBit = reg_bit_clear
137};
138
139inline BranchType InvertBranchType(BranchType type) {
140 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
141 return static_cast<BranchType>(
142 NegateCondition(static_cast<Condition>(type)));
143 } else {
144 return static_cast<BranchType>(type ^ 1);
145 }
146}
147
148enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
149enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
150enum PointersToHereCheck {
151 kPointersToHereMaybeInteresting,
152 kPointersToHereAreAlwaysInteresting
153};
154enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
155enum TargetAddressStorageMode {
156 CAN_INLINE_TARGET_ADDRESS,
157 NEVER_INLINE_TARGET_ADDRESS
158};
159enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
160enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
161enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
162enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
163enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
164
165class MacroAssembler : public Assembler {
166 public:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000167 MacroAssembler(Isolate* isolate, byte* buffer, unsigned buffer_size,
168 CodeObjectRequired create_code_object);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000169
170 inline Handle<Object> CodeObject();
171
172 // Instruction set functions ------------------------------------------------
173 // Logical macros.
174 inline void And(const Register& rd,
175 const Register& rn,
176 const Operand& operand);
177 inline void Ands(const Register& rd,
178 const Register& rn,
179 const Operand& operand);
180 inline void Bic(const Register& rd,
181 const Register& rn,
182 const Operand& operand);
183 inline void Bics(const Register& rd,
184 const Register& rn,
185 const Operand& operand);
186 inline void Orr(const Register& rd,
187 const Register& rn,
188 const Operand& operand);
189 inline void Orn(const Register& rd,
190 const Register& rn,
191 const Operand& operand);
192 inline void Eor(const Register& rd,
193 const Register& rn,
194 const Operand& operand);
195 inline void Eon(const Register& rd,
196 const Register& rn,
197 const Operand& operand);
198 inline void Tst(const Register& rn, const Operand& operand);
199 void LogicalMacro(const Register& rd,
200 const Register& rn,
201 const Operand& operand,
202 LogicalOp op);
203
204 // Add and sub macros.
205 inline void Add(const Register& rd,
206 const Register& rn,
207 const Operand& operand);
208 inline void Adds(const Register& rd,
209 const Register& rn,
210 const Operand& operand);
211 inline void Sub(const Register& rd,
212 const Register& rn,
213 const Operand& operand);
214 inline void Subs(const Register& rd,
215 const Register& rn,
216 const Operand& operand);
217 inline void Cmn(const Register& rn, const Operand& operand);
218 inline void Cmp(const Register& rn, const Operand& operand);
219 inline void Neg(const Register& rd,
220 const Operand& operand);
221 inline void Negs(const Register& rd,
222 const Operand& operand);
223
224 void AddSubMacro(const Register& rd,
225 const Register& rn,
226 const Operand& operand,
227 FlagsUpdate S,
228 AddSubOp op);
229
230 // Add/sub with carry macros.
231 inline void Adc(const Register& rd,
232 const Register& rn,
233 const Operand& operand);
234 inline void Adcs(const Register& rd,
235 const Register& rn,
236 const Operand& operand);
237 inline void Sbc(const Register& rd,
238 const Register& rn,
239 const Operand& operand);
240 inline void Sbcs(const Register& rd,
241 const Register& rn,
242 const Operand& operand);
243 inline void Ngc(const Register& rd,
244 const Operand& operand);
245 inline void Ngcs(const Register& rd,
246 const Operand& operand);
247 void AddSubWithCarryMacro(const Register& rd,
248 const Register& rn,
249 const Operand& operand,
250 FlagsUpdate S,
251 AddSubWithCarryOp op);
252
253 // Move macros.
254 void Mov(const Register& rd,
255 const Operand& operand,
256 DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
257 void Mov(const Register& rd, uint64_t imm);
258 inline void Mvn(const Register& rd, uint64_t imm);
259 void Mvn(const Register& rd, const Operand& operand);
260 static bool IsImmMovn(uint64_t imm, unsigned reg_size);
261 static bool IsImmMovz(uint64_t imm, unsigned reg_size);
262 static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
263
264 // Try to move an immediate into the destination register in a single
265 // instruction. Returns true for success, and updates the contents of dst.
266 // Returns false, otherwise.
267 bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
268
269 // Move an immediate into register dst, and return an Operand object for use
270 // with a subsequent instruction that accepts a shift. The value moved into
271 // dst is not necessarily equal to imm; it may have had a shifting operation
272 // applied to it that will be subsequently undone by the shift applied in the
273 // Operand.
274 Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm);
275
276 // Conditional macros.
277 inline void Ccmp(const Register& rn,
278 const Operand& operand,
279 StatusFlags nzcv,
280 Condition cond);
281 inline void Ccmn(const Register& rn,
282 const Operand& operand,
283 StatusFlags nzcv,
284 Condition cond);
285 void ConditionalCompareMacro(const Register& rn,
286 const Operand& operand,
287 StatusFlags nzcv,
288 Condition cond,
289 ConditionalCompareOp op);
290 void Csel(const Register& rd,
291 const Register& rn,
292 const Operand& operand,
293 Condition cond);
294
295 // Load/store macros.
296#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
297 inline void FN(const REGTYPE REG, const MemOperand& addr);
298 LS_MACRO_LIST(DECLARE_FUNCTION)
299#undef DECLARE_FUNCTION
300
301 void LoadStoreMacro(const CPURegister& rt,
302 const MemOperand& addr,
303 LoadStoreOp op);
304
305#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
306 inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
307 LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
308#undef DECLARE_FUNCTION
309
310 void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
311 const MemOperand& addr, LoadStorePairOp op);
312
Ben Murdoch61f157c2016-09-16 13:49:30 +0100313// Load-acquire/store-release macros.
314#define DECLARE_FUNCTION(FN, OP) \
315 inline void FN(const Register& rt, const Register& rn);
316 LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
317#undef DECLARE_FUNCTION
318
319#define DECLARE_FUNCTION(FN, OP) \
320 inline void FN(const Register& rs, const Register& rt, const Register& rn);
321 STLX_MACRO_LIST(DECLARE_FUNCTION)
322#undef DECLARE_FUNCTION
323
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000324 // V8-specific load/store helpers.
325 void Load(const Register& rt, const MemOperand& addr, Representation r);
326 void Store(const Register& rt, const MemOperand& addr, Representation r);
327
328 enum AdrHint {
329 // The target must be within the immediate range of adr.
330 kAdrNear,
331 // The target may be outside of the immediate range of adr. Additional
332 // instructions may be emitted.
333 kAdrFar
334 };
335 void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
336
337 // Remaining instructions are simple pass-through calls to the assembler.
338 inline void Asr(const Register& rd, const Register& rn, unsigned shift);
339 inline void Asr(const Register& rd, const Register& rn, const Register& rm);
340
341 // Branch type inversion relies on these relations.
342 STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
343 (reg_bit_clear == (reg_bit_set ^ 1)) &&
344 (always == (never ^ 1)));
345
346 void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
347
348 inline void B(Label* label);
349 inline void B(Condition cond, Label* label);
350 void B(Label* label, Condition cond);
351 inline void Bfi(const Register& rd,
352 const Register& rn,
353 unsigned lsb,
354 unsigned width);
355 inline void Bfxil(const Register& rd,
356 const Register& rn,
357 unsigned lsb,
358 unsigned width);
359 inline void Bind(Label* label);
360 inline void Bl(Label* label);
361 inline void Blr(const Register& xn);
362 inline void Br(const Register& xn);
363 inline void Brk(int code);
364 void Cbnz(const Register& rt, Label* label);
365 void Cbz(const Register& rt, Label* label);
366 inline void Cinc(const Register& rd, const Register& rn, Condition cond);
367 inline void Cinv(const Register& rd, const Register& rn, Condition cond);
368 inline void Cls(const Register& rd, const Register& rn);
369 inline void Clz(const Register& rd, const Register& rn);
370 inline void Cneg(const Register& rd, const Register& rn, Condition cond);
371 inline void CzeroX(const Register& rd, Condition cond);
372 inline void CmovX(const Register& rd, const Register& rn, Condition cond);
373 inline void Cset(const Register& rd, Condition cond);
374 inline void Csetm(const Register& rd, Condition cond);
375 inline void Csinc(const Register& rd,
376 const Register& rn,
377 const Register& rm,
378 Condition cond);
379 inline void Csinv(const Register& rd,
380 const Register& rn,
381 const Register& rm,
382 Condition cond);
383 inline void Csneg(const Register& rd,
384 const Register& rn,
385 const Register& rm,
386 Condition cond);
387 inline void Dmb(BarrierDomain domain, BarrierType type);
388 inline void Dsb(BarrierDomain domain, BarrierType type);
389 inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
390 inline void Extr(const Register& rd,
391 const Register& rn,
392 const Register& rm,
393 unsigned lsb);
394 inline void Fabs(const FPRegister& fd, const FPRegister& fn);
395 inline void Fadd(const FPRegister& fd,
396 const FPRegister& fn,
397 const FPRegister& fm);
398 inline void Fccmp(const FPRegister& fn,
399 const FPRegister& fm,
400 StatusFlags nzcv,
401 Condition cond);
402 inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
403 inline void Fcmp(const FPRegister& fn, double value);
404 inline void Fcsel(const FPRegister& fd,
405 const FPRegister& fn,
406 const FPRegister& fm,
407 Condition cond);
408 inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
409 inline void Fcvtas(const Register& rd, const FPRegister& fn);
410 inline void Fcvtau(const Register& rd, const FPRegister& fn);
411 inline void Fcvtms(const Register& rd, const FPRegister& fn);
412 inline void Fcvtmu(const Register& rd, const FPRegister& fn);
413 inline void Fcvtns(const Register& rd, const FPRegister& fn);
414 inline void Fcvtnu(const Register& rd, const FPRegister& fn);
415 inline void Fcvtzs(const Register& rd, const FPRegister& fn);
416 inline void Fcvtzu(const Register& rd, const FPRegister& fn);
417 inline void Fdiv(const FPRegister& fd,
418 const FPRegister& fn,
419 const FPRegister& fm);
420 inline void Fmadd(const FPRegister& fd,
421 const FPRegister& fn,
422 const FPRegister& fm,
423 const FPRegister& fa);
424 inline void Fmax(const FPRegister& fd,
425 const FPRegister& fn,
426 const FPRegister& fm);
427 inline void Fmaxnm(const FPRegister& fd,
428 const FPRegister& fn,
429 const FPRegister& fm);
430 inline void Fmin(const FPRegister& fd,
431 const FPRegister& fn,
432 const FPRegister& fm);
433 inline void Fminnm(const FPRegister& fd,
434 const FPRegister& fn,
435 const FPRegister& fm);
436 inline void Fmov(FPRegister fd, FPRegister fn);
437 inline void Fmov(FPRegister fd, Register rn);
438 // Provide explicit double and float interfaces for FP immediate moves, rather
439 // than relying on implicit C++ casts. This allows signalling NaNs to be
440 // preserved when the immediate matches the format of fd. Most systems convert
441 // signalling NaNs to quiet NaNs when converting between float and double.
442 inline void Fmov(FPRegister fd, double imm);
443 inline void Fmov(FPRegister fd, float imm);
444 // Provide a template to allow other types to be converted automatically.
445 template<typename T>
446 void Fmov(FPRegister fd, T imm) {
447 DCHECK(allow_macro_instructions_);
448 Fmov(fd, static_cast<double>(imm));
449 }
450 inline void Fmov(Register rd, FPRegister fn);
451 inline void Fmsub(const FPRegister& fd,
452 const FPRegister& fn,
453 const FPRegister& fm,
454 const FPRegister& fa);
455 inline void Fmul(const FPRegister& fd,
456 const FPRegister& fn,
457 const FPRegister& fm);
458 inline void Fneg(const FPRegister& fd, const FPRegister& fn);
459 inline void Fnmadd(const FPRegister& fd,
460 const FPRegister& fn,
461 const FPRegister& fm,
462 const FPRegister& fa);
463 inline void Fnmsub(const FPRegister& fd,
464 const FPRegister& fn,
465 const FPRegister& fm,
466 const FPRegister& fa);
467 inline void Frinta(const FPRegister& fd, const FPRegister& fn);
468 inline void Frintm(const FPRegister& fd, const FPRegister& fn);
469 inline void Frintn(const FPRegister& fd, const FPRegister& fn);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400470 inline void Frintp(const FPRegister& fd, const FPRegister& fn);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000471 inline void Frintz(const FPRegister& fd, const FPRegister& fn);
472 inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
473 inline void Fsub(const FPRegister& fd,
474 const FPRegister& fn,
475 const FPRegister& fm);
476 inline void Hint(SystemHint code);
477 inline void Hlt(int code);
478 inline void Isb();
479 inline void Ldnp(const CPURegister& rt,
480 const CPURegister& rt2,
481 const MemOperand& src);
482 // Load a literal from the inline constant pool.
483 inline void Ldr(const CPURegister& rt, const Immediate& imm);
484 // Helper function for double immediate.
485 inline void Ldr(const CPURegister& rt, double imm);
486 inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
487 inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
488 inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
489 inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
490 inline void Madd(const Register& rd,
491 const Register& rn,
492 const Register& rm,
493 const Register& ra);
494 inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
495 inline void Mov(const Register& rd, const Register& rm);
496 inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
497 inline void Mrs(const Register& rt, SystemRegister sysreg);
498 inline void Msr(SystemRegister sysreg, const Register& rt);
499 inline void Msub(const Register& rd,
500 const Register& rn,
501 const Register& rm,
502 const Register& ra);
503 inline void Mul(const Register& rd, const Register& rn, const Register& rm);
504 inline void Nop() { nop(); }
505 inline void Rbit(const Register& rd, const Register& rn);
506 inline void Ret(const Register& xn = lr);
507 inline void Rev(const Register& rd, const Register& rn);
508 inline void Rev16(const Register& rd, const Register& rn);
509 inline void Rev32(const Register& rd, const Register& rn);
510 inline void Ror(const Register& rd, const Register& rs, unsigned shift);
511 inline void Ror(const Register& rd, const Register& rn, const Register& rm);
512 inline void Sbfiz(const Register& rd,
513 const Register& rn,
514 unsigned lsb,
515 unsigned width);
516 inline void Sbfx(const Register& rd,
517 const Register& rn,
518 unsigned lsb,
519 unsigned width);
520 inline void Scvtf(const FPRegister& fd,
521 const Register& rn,
522 unsigned fbits = 0);
523 inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
524 inline void Smaddl(const Register& rd,
525 const Register& rn,
526 const Register& rm,
527 const Register& ra);
528 inline void Smsubl(const Register& rd,
529 const Register& rn,
530 const Register& rm,
531 const Register& ra);
532 inline void Smull(const Register& rd,
533 const Register& rn,
534 const Register& rm);
535 inline void Smulh(const Register& rd,
536 const Register& rn,
537 const Register& rm);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400538 inline void Umull(const Register& rd, const Register& rn, const Register& rm);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000539 inline void Stnp(const CPURegister& rt,
540 const CPURegister& rt2,
541 const MemOperand& dst);
542 inline void Sxtb(const Register& rd, const Register& rn);
543 inline void Sxth(const Register& rd, const Register& rn);
544 inline void Sxtw(const Register& rd, const Register& rn);
545 void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
546 void Tbz(const Register& rt, unsigned bit_pos, Label* label);
547 inline void Ubfiz(const Register& rd,
548 const Register& rn,
549 unsigned lsb,
550 unsigned width);
551 inline void Ubfx(const Register& rd,
552 const Register& rn,
553 unsigned lsb,
554 unsigned width);
555 inline void Ucvtf(const FPRegister& fd,
556 const Register& rn,
557 unsigned fbits = 0);
558 inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
559 inline void Umaddl(const Register& rd,
560 const Register& rn,
561 const Register& rm,
562 const Register& ra);
563 inline void Umsubl(const Register& rd,
564 const Register& rn,
565 const Register& rm,
566 const Register& ra);
567 inline void Uxtb(const Register& rd, const Register& rn);
568 inline void Uxth(const Register& rd, const Register& rn);
569 inline void Uxtw(const Register& rd, const Register& rn);
570
571 // Pseudo-instructions ------------------------------------------------------
572
573 // Compute rd = abs(rm).
574 // This function clobbers the condition flags. On output the overflow flag is
575 // set iff the negation overflowed.
576 //
577 // If rm is the minimum representable value, the result is not representable.
578 // Handlers for each case can be specified using the relevant labels.
579 void Abs(const Register& rd, const Register& rm,
580 Label * is_not_representable = NULL,
581 Label * is_representable = NULL);
582
583 // Push or pop up to 4 registers of the same width to or from the stack,
584 // using the current stack pointer as set by SetStackPointer.
585 //
586 // If an argument register is 'NoReg', all further arguments are also assumed
587 // to be 'NoReg', and are thus not pushed or popped.
588 //
589 // Arguments are ordered such that "Push(a, b);" is functionally equivalent
590 // to "Push(a); Push(b);".
591 //
592 // It is valid to push the same register more than once, and there is no
593 // restriction on the order in which registers are specified.
594 //
595 // It is not valid to pop into the same register more than once in one
596 // operation, not even into the zero register.
597 //
598 // If the current stack pointer (as set by SetStackPointer) is csp, then it
599 // must be aligned to 16 bytes on entry and the total size of the specified
600 // registers must also be a multiple of 16 bytes.
601 //
602 // Even if the current stack pointer is not the system stack pointer (csp),
603 // Push (and derived methods) will still modify the system stack pointer in
604 // order to comply with ABI rules about accessing memory below the system
605 // stack pointer.
606 //
607 // Other than the registers passed into Pop, the stack pointer and (possibly)
608 // the system stack pointer, these methods do not modify any other registers.
609 void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
610 const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
611 void Push(const CPURegister& src0, const CPURegister& src1,
612 const CPURegister& src2, const CPURegister& src3,
613 const CPURegister& src4, const CPURegister& src5 = NoReg,
614 const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
615 void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
616 const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000617 void Pop(const CPURegister& dst0, const CPURegister& dst1,
618 const CPURegister& dst2, const CPURegister& dst3,
619 const CPURegister& dst4, const CPURegister& dst5 = NoReg,
620 const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000621 void Push(const Register& src0, const FPRegister& src1);
622
623 // Alternative forms of Push and Pop, taking a RegList or CPURegList that
624 // specifies the registers that are to be pushed or popped. Higher-numbered
625 // registers are associated with higher memory addresses (as in the A32 push
626 // and pop instructions).
627 //
628 // (Push|Pop)SizeRegList allow you to specify the register size as a
629 // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
630 // kSRegSizeInBits are supported.
631 //
632 // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
633 void PushCPURegList(CPURegList registers);
634 void PopCPURegList(CPURegList registers);
635
636 inline void PushSizeRegList(RegList registers, unsigned reg_size,
637 CPURegister::RegisterType type = CPURegister::kRegister) {
638 PushCPURegList(CPURegList(type, reg_size, registers));
639 }
640 inline void PopSizeRegList(RegList registers, unsigned reg_size,
641 CPURegister::RegisterType type = CPURegister::kRegister) {
642 PopCPURegList(CPURegList(type, reg_size, registers));
643 }
644 inline void PushXRegList(RegList regs) {
645 PushSizeRegList(regs, kXRegSizeInBits);
646 }
647 inline void PopXRegList(RegList regs) {
648 PopSizeRegList(regs, kXRegSizeInBits);
649 }
650 inline void PushWRegList(RegList regs) {
651 PushSizeRegList(regs, kWRegSizeInBits);
652 }
653 inline void PopWRegList(RegList regs) {
654 PopSizeRegList(regs, kWRegSizeInBits);
655 }
656 inline void PushDRegList(RegList regs) {
657 PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
658 }
659 inline void PopDRegList(RegList regs) {
660 PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
661 }
662 inline void PushSRegList(RegList regs) {
663 PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
664 }
665 inline void PopSRegList(RegList regs) {
666 PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
667 }
668
669 // Push the specified register 'count' times.
670 void PushMultipleTimes(CPURegister src, Register count);
671 void PushMultipleTimes(CPURegister src, int count);
672
673 // This is a convenience method for pushing a single Handle<Object>.
674 inline void Push(Handle<Object> handle);
675 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
676
677 // Aliases of Push and Pop, required for V8 compatibility.
678 inline void push(Register src) {
679 Push(src);
680 }
681 inline void pop(Register dst) {
682 Pop(dst);
683 }
684
685 // Sometimes callers need to push or pop multiple registers in a way that is
686 // difficult to structure efficiently for fixed Push or Pop calls. This scope
687 // allows push requests to be queued up, then flushed at once. The
688 // MacroAssembler will try to generate the most efficient sequence required.
689 //
690 // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
691 // register sizes and types.
692 class PushPopQueue {
693 public:
694 explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
695
696 ~PushPopQueue() {
697 DCHECK(queued_.empty());
698 }
699
700 void Queue(const CPURegister& rt) {
701 size_ += rt.SizeInBytes();
702 queued_.push_back(rt);
703 }
704
705 enum PreambleDirective {
706 WITH_PREAMBLE,
707 SKIP_PREAMBLE
708 };
709 void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
710 void PopQueued();
711
712 private:
713 MacroAssembler* masm_;
714 int size_;
715 std::vector<CPURegister> queued_;
716 };
717
718 // Poke 'src' onto the stack. The offset is in bytes.
719 //
720 // If the current stack pointer (according to StackPointer()) is csp, then
721 // csp must be aligned to 16 bytes.
722 void Poke(const CPURegister& src, const Operand& offset);
723
724 // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
725 //
726 // If the current stack pointer (according to StackPointer()) is csp, then
727 // csp must be aligned to 16 bytes.
728 void Peek(const CPURegister& dst, const Operand& offset);
729
730 // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
731 // with 'src2' at a higher address than 'src1'. The offset is in bytes.
732 //
733 // If the current stack pointer (according to StackPointer()) is csp, then
734 // csp must be aligned to 16 bytes.
735 void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
736
737 // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
738 // values peeked will be adjacent, with the value in 'dst2' being from a
739 // higher address than 'dst1'. The offset is in bytes.
740 //
741 // If the current stack pointer (according to StackPointer()) is csp, then
742 // csp must be aligned to 16 bytes.
743 void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
744
745 // Claim or drop stack space without actually accessing memory.
746 //
747 // In debug mode, both of these will write invalid data into the claimed or
748 // dropped space.
749 //
750 // If the current stack pointer (according to StackPointer()) is csp, then it
751 // must be aligned to 16 bytes and the size claimed or dropped must be a
752 // multiple of 16 bytes.
753 //
754 // Note that unit_size must be specified in bytes. For variants which take a
755 // Register count, the unit size must be a power of two.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000756 inline void Claim(int64_t count, uint64_t unit_size = kXRegSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000757 inline void Claim(const Register& count,
758 uint64_t unit_size = kXRegSize);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000759 inline void Drop(int64_t count, uint64_t unit_size = kXRegSize);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000760 inline void Drop(const Register& count,
761 uint64_t unit_size = kXRegSize);
762
763 // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
764 // register.
765 inline void ClaimBySMI(const Register& count_smi,
766 uint64_t unit_size = kXRegSize);
767 inline void DropBySMI(const Register& count_smi,
768 uint64_t unit_size = kXRegSize);
769
770 // Compare a register with an operand, and branch to label depending on the
771 // condition. May corrupt the status flags.
772 inline void CompareAndBranch(const Register& lhs,
773 const Operand& rhs,
774 Condition cond,
775 Label* label);
776
777 // Test the bits of register defined by bit_pattern, and branch if ANY of
778 // those bits are set. May corrupt the status flags.
779 inline void TestAndBranchIfAnySet(const Register& reg,
780 const uint64_t bit_pattern,
781 Label* label);
782
783 // Test the bits of register defined by bit_pattern, and branch if ALL of
784 // those bits are clear (ie. not set.) May corrupt the status flags.
785 inline void TestAndBranchIfAllClear(const Register& reg,
786 const uint64_t bit_pattern,
787 Label* label);
788
789 // Insert one or more instructions into the instruction stream that encode
790 // some caller-defined data. The instructions used will be executable with no
791 // side effects.
792 inline void InlineData(uint64_t data);
793
794 // Insert an instrumentation enable marker into the instruction stream.
795 inline void EnableInstrumentation();
796
797 // Insert an instrumentation disable marker into the instruction stream.
798 inline void DisableInstrumentation();
799
800 // Insert an instrumentation event marker into the instruction stream. These
801 // will be picked up by the instrumentation system to annotate an instruction
802 // profile. The argument marker_name must be a printable two character string;
803 // it will be encoded in the event marker.
804 inline void AnnotateInstrumentation(const char* marker_name);
805
806 // If emit_debug_code() is true, emit a run-time check to ensure that
807 // StackPointer() does not point below the system stack pointer.
808 //
809 // Whilst it is architecturally legal for StackPointer() to point below csp,
810 // it can be evidence of a potential bug because the ABI forbids accesses
811 // below csp.
812 //
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400813 // If StackPointer() is the system stack pointer (csp), then csp will be
814 // dereferenced to cause the processor (or simulator) to abort if it is not
815 // properly aligned.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000816 //
817 // If emit_debug_code() is false, this emits no code.
818 void AssertStackConsistency();
819
Ben Murdochda12d292016-06-02 14:46:10 +0100820 // Emits a runtime assert that the CSP is aligned.
821 void AssertCspAligned();
822
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000823 // Preserve the callee-saved registers (as defined by AAPCS64).
824 //
825 // Higher-numbered registers are pushed before lower-numbered registers, and
826 // thus get higher addresses.
827 // Floating-point registers are pushed before general-purpose registers, and
828 // thus get higher addresses.
829 //
830 // Note that registers are not checked for invalid values. Use this method
831 // only if you know that the GC won't try to examine the values on the stack.
832 //
833 // This method must not be called unless the current stack pointer (as set by
834 // SetStackPointer) is the system stack pointer (csp), and is aligned to
835 // ActivationFrameAlignment().
836 void PushCalleeSavedRegisters();
837
838 // Restore the callee-saved registers (as defined by AAPCS64).
839 //
840 // Higher-numbered registers are popped after lower-numbered registers, and
841 // thus come from higher addresses.
842 // Floating-point registers are popped after general-purpose registers, and
843 // thus come from higher addresses.
844 //
845 // This method must not be called unless the current stack pointer (as set by
846 // SetStackPointer) is the system stack pointer (csp), and is aligned to
847 // ActivationFrameAlignment().
848 void PopCalleeSavedRegisters();
849
850 // Set the current stack pointer, but don't generate any code.
851 inline void SetStackPointer(const Register& stack_pointer) {
852 DCHECK(!TmpList()->IncludesAliasOf(stack_pointer));
853 sp_ = stack_pointer;
854 }
855
856 // Return the current stack pointer, as set by SetStackPointer.
857 inline const Register& StackPointer() const {
858 return sp_;
859 }
860
861 // Align csp for a frame, as per ActivationFrameAlignment, and make it the
862 // current stack pointer.
863 inline void AlignAndSetCSPForFrame() {
864 int sp_alignment = ActivationFrameAlignment();
865 // AAPCS64 mandates at least 16-byte alignment.
866 DCHECK(sp_alignment >= 16);
867 DCHECK(base::bits::IsPowerOfTwo32(sp_alignment));
868 Bic(csp, StackPointer(), sp_alignment - 1);
869 SetStackPointer(csp);
870 }
871
872 // Push the system stack pointer (csp) down to allow the same to be done to
873 // the current stack pointer (according to StackPointer()). This must be
874 // called _before_ accessing the memory.
875 //
876 // This is necessary when pushing or otherwise adding things to the stack, to
877 // satisfy the AAPCS64 constraint that the memory below the system stack
878 // pointer is not accessed. The amount pushed will be increased as necessary
879 // to ensure csp remains aligned to 16 bytes.
880 //
881 // This method asserts that StackPointer() is not csp, since the call does
882 // not make sense in that context.
883 inline void BumpSystemStackPointer(const Operand& space);
884
885 // Re-synchronizes the system stack pointer (csp) with the current stack
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400886 // pointer (according to StackPointer()).
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000887 //
888 // This method asserts that StackPointer() is not csp, since the call does
889 // not make sense in that context.
890 inline void SyncSystemStackPointer();
891
892 // Helpers ------------------------------------------------------------------
893 // Root register.
894 inline void InitializeRootRegister();
895
896 void AssertFPCRState(Register fpcr = NoReg);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000897 void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
898 void CanonicalizeNaN(const FPRegister& reg) {
899 CanonicalizeNaN(reg, reg);
900 }
901
902 // Load an object from the root table.
903 void LoadRoot(CPURegister destination,
904 Heap::RootListIndex index);
905 // Store an object to the root table.
906 void StoreRoot(Register source,
907 Heap::RootListIndex index);
908
909 // Load both TrueValue and FalseValue roots.
910 void LoadTrueFalseRoots(Register true_root, Register false_root);
911
912 void LoadHeapObject(Register dst, Handle<HeapObject> object);
913
914 void LoadObject(Register result, Handle<Object> object) {
915 AllowDeferredHandleDereference heap_object_check;
916 if (object->IsHeapObject()) {
917 LoadHeapObject(result, Handle<HeapObject>::cast(object));
918 } else {
919 DCHECK(object->IsSmi());
920 Mov(result, Operand(object));
921 }
922 }
923
924 static int SafepointRegisterStackIndex(int reg_code);
925
926 // This is required for compatibility with architecture independant code.
927 // Remove if not needed.
928 inline void Move(Register dst, Register src) { Mov(dst, src); }
Ben Murdochda12d292016-06-02 14:46:10 +0100929 inline void Move(Register dst, Handle<Object> x) { LoadObject(dst, x); }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000930 inline void Move(Register dst, Smi* src) { Mov(dst, src); }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000931
932 void LoadInstanceDescriptors(Register map,
933 Register descriptors);
934 void EnumLengthUntagged(Register dst, Register map);
935 void EnumLengthSmi(Register dst, Register map);
936 void NumberOfOwnDescriptors(Register dst, Register map);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000937 void LoadAccessor(Register dst, Register holder, int accessor_index,
938 AccessorComponent accessor);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000939
940 template<typename Field>
941 void DecodeField(Register dst, Register src) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000942 static const int shift = Field::kShift;
943 static const int setbits = CountSetBits(Field::kMask, 32);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000944 Ubfx(dst, src, shift, setbits);
945 }
946
947 template<typename Field>
948 void DecodeField(Register reg) {
949 DecodeField<Field>(reg, reg);
950 }
951
952 // ---- SMI and Number Utilities ----
953
954 inline void SmiTag(Register dst, Register src);
955 inline void SmiTag(Register smi);
956 inline void SmiUntag(Register dst, Register src);
957 inline void SmiUntag(Register smi);
958 inline void SmiUntagToDouble(FPRegister dst,
959 Register src,
960 UntagMode mode = kNotSpeculativeUntag);
961 inline void SmiUntagToFloat(FPRegister dst,
962 Register src,
963 UntagMode mode = kNotSpeculativeUntag);
964
965 // Tag and push in one step.
966 inline void SmiTagAndPush(Register src);
967 inline void SmiTagAndPush(Register src1, Register src2);
968
969 inline void JumpIfSmi(Register value,
970 Label* smi_label,
971 Label* not_smi_label = NULL);
972 inline void JumpIfNotSmi(Register value, Label* not_smi_label);
973 inline void JumpIfBothSmi(Register value1,
974 Register value2,
975 Label* both_smi_label,
976 Label* not_smi_label = NULL);
977 inline void JumpIfEitherSmi(Register value1,
978 Register value2,
979 Label* either_smi_label,
980 Label* not_smi_label = NULL);
981 inline void JumpIfEitherNotSmi(Register value1,
982 Register value2,
983 Label* not_smi_label);
984 inline void JumpIfBothNotSmi(Register value1,
985 Register value2,
986 Label* not_smi_label);
987
988 // Abort execution if argument is a smi, enabled via --debug-code.
989 void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
990 void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
991
992 inline void ObjectTag(Register tagged_obj, Register obj);
993 inline void ObjectUntag(Register untagged_obj, Register obj);
994
995 // Abort execution if argument is not a name, enabled via --debug-code.
996 void AssertName(Register object);
997
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000998 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
999 void AssertFunction(Register object);
1000
Ben Murdochc5610432016-08-08 18:44:38 +01001001 // Abort execution if argument is not a JSGeneratorObject,
1002 // enabled via --debug-code.
1003 void AssertGeneratorObject(Register object);
1004
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001005 // Abort execution if argument is not a JSBoundFunction,
1006 // enabled via --debug-code.
1007 void AssertBoundFunction(Register object);
1008
Ben Murdoch097c5b22016-05-18 11:27:45 +01001009 // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1010 void AssertReceiver(Register object);
1011
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001012 // Abort execution if argument is not undefined or an AllocationSite, enabled
1013 // via --debug-code.
1014 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1015
1016 // Abort execution if argument is not a string, enabled via --debug-code.
1017 void AssertString(Register object);
1018
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001019 // Abort execution if argument is not a positive or zero integer, enabled via
1020 // --debug-code.
1021 void AssertPositiveOrZero(Register value);
1022
Ben Murdoch097c5b22016-05-18 11:27:45 +01001023 // Abort execution if argument is not a number (heap number or smi).
1024 void AssertNumber(Register value);
Ben Murdochda12d292016-06-02 14:46:10 +01001025 void AssertNotNumber(Register value);
Ben Murdoch097c5b22016-05-18 11:27:45 +01001026
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001027 void JumpIfHeapNumber(Register object, Label* on_heap_number,
1028 SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
1029 void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number,
1030 SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
1031
1032 // Sets the vs flag if the input is -0.0.
1033 void TestForMinusZero(DoubleRegister input);
1034
1035 // Jump to label if the input double register contains -0.0.
1036 void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
1037
1038 // Jump to label if the input integer register contains the double precision
1039 // floating point representation of -0.0.
1040 void JumpIfMinusZero(Register input, Label* on_negative_zero);
1041
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001042 // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
1043 // output.
1044 void ClampInt32ToUint8(Register in_out);
1045 void ClampInt32ToUint8(Register output, Register input);
1046
1047 // Saturate a double in input to an unsigned 8-bit integer in output.
1048 void ClampDoubleToUint8(Register output,
1049 DoubleRegister input,
1050 DoubleRegister dbl_scratch);
1051
1052 // Try to represent a double as a signed 32-bit int.
1053 // This succeeds if the result compares equal to the input, so inputs of -0.0
1054 // are represented as 0 and handled as a success.
1055 //
1056 // On output the Z flag is set if the operation was successful.
1057 void TryRepresentDoubleAsInt32(Register as_int,
1058 FPRegister value,
1059 FPRegister scratch_d,
1060 Label* on_successful_conversion = NULL,
1061 Label* on_failed_conversion = NULL) {
1062 DCHECK(as_int.Is32Bits());
1063 TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1064 on_failed_conversion);
1065 }
1066
1067 // Try to represent a double as a signed 64-bit int.
1068 // This succeeds if the result compares equal to the input, so inputs of -0.0
1069 // are represented as 0 and handled as a success.
1070 //
1071 // On output the Z flag is set if the operation was successful.
1072 void TryRepresentDoubleAsInt64(Register as_int,
1073 FPRegister value,
1074 FPRegister scratch_d,
1075 Label* on_successful_conversion = NULL,
1076 Label* on_failed_conversion = NULL) {
1077 DCHECK(as_int.Is64Bits());
1078 TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
1079 on_failed_conversion);
1080 }
1081
1082 // ---- Object Utilities ----
1083
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001084 // Initialize fields with filler values. Fields starting at |current_address|
1085 // not including |end_address| are overwritten with the value in |filler|. At
1086 // the end the loop, |current_address| takes the value of |end_address|.
1087 void InitializeFieldsWithFiller(Register current_address,
1088 Register end_address, Register filler);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001089
1090 // Copies a number of bytes from src to dst. All passed registers are
1091 // clobbered. On exit src and dst will point to the place just after where the
1092 // last byte was read or written and length will be zero. Hint may be used to
1093 // determine which is the most efficient algorithm to use for copying.
1094 void CopyBytes(Register dst,
1095 Register src,
1096 Register length,
1097 Register scratch,
1098 CopyHint hint = kCopyUnknown);
1099
1100 // ---- String Utilities ----
1101
1102
1103 // Jump to label if either object is not a sequential one-byte string.
1104 // Optionally perform a smi check on the objects first.
1105 void JumpIfEitherIsNotSequentialOneByteStrings(
1106 Register first, Register second, Register scratch1, Register scratch2,
1107 Label* failure, SmiCheckType smi_check = DO_SMI_CHECK);
1108
1109 // Check if instance type is sequential one-byte string and jump to label if
1110 // it is not.
1111 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1112 Label* failure);
1113
1114 // Checks if both instance types are sequential one-byte strings and jumps to
1115 // label if either is not.
1116 void JumpIfEitherInstanceTypeIsNotSequentialOneByte(
1117 Register first_object_instance_type, Register second_object_instance_type,
1118 Register scratch1, Register scratch2, Label* failure);
1119
1120 // Checks if both instance types are sequential one-byte strings and jumps to
1121 // label if either is not.
1122 void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1123 Register first_object_instance_type, Register second_object_instance_type,
1124 Register scratch1, Register scratch2, Label* failure);
1125
1126 void JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name);
1127
1128 // ---- Calling / Jumping helpers ----
1129
1130 // This is required for compatibility in architecture indepenedant code.
1131 inline void jmp(Label* L) { B(L); }
1132
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001133 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1134 void TailCallStub(CodeStub* stub);
1135
1136 void CallRuntime(const Runtime::Function* f,
1137 int num_arguments,
1138 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1139
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001140 // Convenience function: Same as above, but takes the fid instead.
1141 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001142 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001143 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001144 }
1145
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001146 // Convenience function: Same as above, but takes the fid instead.
1147 void CallRuntime(Runtime::FunctionId fid,
1148 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1149 const Runtime::Function* function = Runtime::FunctionForId(fid);
1150 CallRuntime(function, function->nargs, save_doubles);
1151 }
1152
1153 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1154 const Runtime::Function* function = Runtime::FunctionForId(fid);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001155 CallRuntime(function, function->nargs, kSaveFPRegs);
1156 }
1157
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001158 void TailCallRuntime(Runtime::FunctionId fid);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001159
1160 int ActivationFrameAlignment();
1161
1162 // Calls a C function.
1163 // The called function is not allowed to trigger a
1164 // garbage collection, since that might move the code and invalidate the
1165 // return address (unless this is somehow accounted for by the called
1166 // function).
1167 void CallCFunction(ExternalReference function,
1168 int num_reg_arguments);
1169 void CallCFunction(ExternalReference function,
1170 int num_reg_arguments,
1171 int num_double_arguments);
1172 void CallCFunction(Register function,
1173 int num_reg_arguments,
1174 int num_double_arguments);
1175
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001176 // Jump to a runtime routine.
1177 void JumpToExternalReference(const ExternalReference& builtin);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001178
1179 // Convenience function: call an external reference.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001180 void CallExternalReference(const ExternalReference& ext,
1181 int num_arguments);
1182
1183
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001184 void Jump(Register target);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001185 void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
1186 void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
1187 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001188
1189 void Call(Register target);
1190 void Call(Label* target);
1191 void Call(Address target, RelocInfo::Mode rmode);
1192 void Call(Handle<Code> code,
1193 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1194 TypeFeedbackId ast_id = TypeFeedbackId::None());
1195
1196 // For every Call variant, there is a matching CallSize function that returns
1197 // the size (in bytes) of the call sequence.
1198 static int CallSize(Register target);
1199 static int CallSize(Label* target);
1200 static int CallSize(Address target, RelocInfo::Mode rmode);
1201 static int CallSize(Handle<Code> code,
1202 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1203 TypeFeedbackId ast_id = TypeFeedbackId::None());
1204
Ben Murdochda12d292016-06-02 14:46:10 +01001205 // Removes current frame and its arguments from the stack preserving
1206 // the arguments and a return address pushed to the stack for the next call.
1207 // Both |callee_args_count| and |caller_args_count_reg| do not include
1208 // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
1209 // is trashed.
1210 void PrepareForTailCall(const ParameterCount& callee_args_count,
1211 Register caller_args_count_reg, Register scratch0,
1212 Register scratch1);
1213
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001214 // Registers used through the invocation chain are hard-coded.
1215 // We force passing the parameters to ensure the contracts are correctly
1216 // honoured by the caller.
1217 // 'function' must be x1.
1218 // 'actual' must use an immediate or x0.
1219 // 'expected' must use an immediate or x2.
1220 // 'call_kind' must be x5.
1221 void InvokePrologue(const ParameterCount& expected,
1222 const ParameterCount& actual,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001223 Label* done,
1224 InvokeFlag flag,
1225 bool* definitely_mismatches,
1226 const CallWrapper& call_wrapper);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001227 void FloodFunctionIfStepping(Register fun, Register new_target,
1228 const ParameterCount& expected,
1229 const ParameterCount& actual);
1230 void InvokeFunctionCode(Register function, Register new_target,
1231 const ParameterCount& expected,
1232 const ParameterCount& actual, InvokeFlag flag,
1233 const CallWrapper& call_wrapper);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001234 // Invoke the JavaScript function in the given register.
1235 // Changes the current context to the context in the function before invoking.
1236 void InvokeFunction(Register function,
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001237 Register new_target,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001238 const ParameterCount& actual,
1239 InvokeFlag flag,
1240 const CallWrapper& call_wrapper);
1241 void InvokeFunction(Register function,
1242 const ParameterCount& expected,
1243 const ParameterCount& actual,
1244 InvokeFlag flag,
1245 const CallWrapper& call_wrapper);
1246 void InvokeFunction(Handle<JSFunction> function,
1247 const ParameterCount& expected,
1248 const ParameterCount& actual,
1249 InvokeFlag flag,
1250 const CallWrapper& call_wrapper);
1251
1252
1253 // ---- Floating point helpers ----
1254
1255 // Perform a conversion from a double to a signed int64. If the input fits in
1256 // range of the 64-bit result, execution branches to done. Otherwise,
1257 // execution falls through, and the sign of the result can be used to
1258 // determine if overflow was towards positive or negative infinity.
1259 //
1260 // On successful conversion, the least significant 32 bits of the result are
1261 // equivalent to the ECMA-262 operation "ToInt32".
1262 //
1263 // Only public for the test code in test-code-stubs-arm64.cc.
1264 void TryConvertDoubleToInt64(Register result,
1265 DoubleRegister input,
1266 Label* done);
1267
1268 // Performs a truncating conversion of a floating point number as used by
1269 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1270 // Exits with 'result' holding the answer.
1271 void TruncateDoubleToI(Register result, DoubleRegister double_input);
1272
1273 // Performs a truncating conversion of a heap number as used by
1274 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1275 // must be different registers. Exits with 'result' holding the answer.
1276 void TruncateHeapNumberToI(Register result, Register object);
1277
1278 // Converts the smi or heap number in object to an int32 using the rules
1279 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1280 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1281 // different registers.
1282 void TruncateNumberToI(Register object,
1283 Register result,
1284 Register heap_number_map,
1285 Label* not_int32);
1286
1287 // ---- Code generation helpers ----
1288
1289 void set_generating_stub(bool value) { generating_stub_ = value; }
1290 bool generating_stub() const { return generating_stub_; }
1291#if DEBUG
1292 void set_allow_macro_instructions(bool value) {
1293 allow_macro_instructions_ = value;
1294 }
1295 bool allow_macro_instructions() const { return allow_macro_instructions_; }
1296#endif
1297 bool use_real_aborts() const { return use_real_aborts_; }
1298 void set_has_frame(bool value) { has_frame_ = value; }
1299 bool has_frame() const { return has_frame_; }
1300 bool AllowThisStubCall(CodeStub* stub);
1301
1302 class NoUseRealAbortsScope {
1303 public:
1304 explicit NoUseRealAbortsScope(MacroAssembler* masm) :
1305 saved_(masm->use_real_aborts_), masm_(masm) {
1306 masm_->use_real_aborts_ = false;
1307 }
1308 ~NoUseRealAbortsScope() {
1309 masm_->use_real_aborts_ = saved_;
1310 }
1311 private:
1312 bool saved_;
1313 MacroAssembler* masm_;
1314 };
1315
1316 // ---------------------------------------------------------------------------
1317 // Debugger Support
1318
1319 void DebugBreak();
1320
1321 // ---------------------------------------------------------------------------
1322 // Exception handling
1323
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001324 // Push a new stack handler and link into stack handler chain.
1325 void PushStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001326
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001327 // Unlink the stack handler on top of the stack from the stack handler chain.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001328 // Must preserve the result register.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001329 void PopStackHandler();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001330
1331
1332 // ---------------------------------------------------------------------------
1333 // Allocation support
1334
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001335 // Allocate an object in new space or old space. The object_size is
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001336 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1337 // is passed. The allocated object is returned in result.
1338 //
1339 // If the new space is exhausted control continues at the gc_required label.
1340 // In this case, the result and scratch registers may still be clobbered.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001341 void Allocate(Register object_size, Register result, Register result_end,
1342 Register scratch, Label* gc_required, AllocationFlags flags);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001343
1344 void Allocate(int object_size,
1345 Register result,
1346 Register scratch1,
1347 Register scratch2,
1348 Label* gc_required,
1349 AllocationFlags flags);
1350
Ben Murdochc5610432016-08-08 18:44:38 +01001351 // FastAllocate is right now only used for folded allocations. It just
1352 // increments the top pointer without checking against limit. This can only
1353 // be done if it was proved earlier that the allocation will succeed.
1354 void FastAllocate(Register object_size, Register result, Register result_end,
1355 Register scratch, AllocationFlags flags);
1356
1357 void FastAllocate(int object_size, Register result, Register scratch1,
1358 Register scratch2, AllocationFlags flags);
1359
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001360 void AllocateTwoByteString(Register result,
1361 Register length,
1362 Register scratch1,
1363 Register scratch2,
1364 Register scratch3,
1365 Label* gc_required);
1366 void AllocateOneByteString(Register result, Register length,
1367 Register scratch1, Register scratch2,
1368 Register scratch3, Label* gc_required);
1369 void AllocateTwoByteConsString(Register result,
1370 Register length,
1371 Register scratch1,
1372 Register scratch2,
1373 Label* gc_required);
1374 void AllocateOneByteConsString(Register result, Register length,
1375 Register scratch1, Register scratch2,
1376 Label* gc_required);
1377 void AllocateTwoByteSlicedString(Register result,
1378 Register length,
1379 Register scratch1,
1380 Register scratch2,
1381 Label* gc_required);
1382 void AllocateOneByteSlicedString(Register result, Register length,
1383 Register scratch1, Register scratch2,
1384 Label* gc_required);
1385
1386 // Allocates a heap number or jumps to the gc_required label if the young
1387 // space is full and a scavenge is needed.
1388 // All registers are clobbered.
1389 // If no heap_number_map register is provided, the function will take care of
1390 // loading it.
1391 void AllocateHeapNumber(Register result,
1392 Label* gc_required,
1393 Register scratch1,
1394 Register scratch2,
1395 CPURegister value = NoFPReg,
1396 CPURegister heap_number_map = NoReg,
1397 MutableMode mode = IMMUTABLE);
1398
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001399 // Allocate and initialize a JSValue wrapper with the specified {constructor}
1400 // and {value}.
1401 void AllocateJSValue(Register result, Register constructor, Register value,
1402 Register scratch1, Register scratch2,
1403 Label* gc_required);
1404
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001405 // ---------------------------------------------------------------------------
1406 // Support functions.
1407
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001408 // Machine code version of Map::GetConstructor().
1409 // |temp| holds |result|'s map when done, and |temp2| its instance type.
1410 void GetMapConstructor(Register result, Register map, Register temp,
1411 Register temp2);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001412
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001413 void TryGetFunctionPrototype(Register function, Register result,
1414 Register scratch, Label* miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001415
1416 // Compare object type for heap object. heap_object contains a non-Smi
1417 // whose object type should be compared with the given type. This both
1418 // sets the flags and leaves the object type in the type_reg register.
1419 // It leaves the map in the map register (unless the type_reg and map register
1420 // are the same register). It leaves the heap object in the heap_object
1421 // register unless the heap_object register is the same register as one of the
1422 // other registers.
1423 void CompareObjectType(Register heap_object,
1424 Register map,
1425 Register type_reg,
1426 InstanceType type);
1427
1428
1429 // Compare object type for heap object, and branch if equal (or not.)
1430 // heap_object contains a non-Smi whose object type should be compared with
1431 // the given type. This both sets the flags and leaves the object type in
1432 // the type_reg register. It leaves the map in the map register (unless the
1433 // type_reg and map register are the same register). It leaves the heap
1434 // object in the heap_object register unless the heap_object register is the
1435 // same register as one of the other registers.
1436 void JumpIfObjectType(Register object,
1437 Register map,
1438 Register type_reg,
1439 InstanceType type,
1440 Label* if_cond_pass,
1441 Condition cond = eq);
1442
1443 void JumpIfNotObjectType(Register object,
1444 Register map,
1445 Register type_reg,
1446 InstanceType type,
1447 Label* if_not_object);
1448
1449 // Compare instance type in a map. map contains a valid map object whose
1450 // object type should be compared with the given type. This both
1451 // sets the flags and leaves the object type in the type_reg register.
1452 void CompareInstanceType(Register map,
1453 Register type_reg,
1454 InstanceType type);
1455
1456 // Compare an object's map with the specified map. Condition flags are set
1457 // with result of map compare.
1458 void CompareObjectMap(Register obj, Heap::RootListIndex index);
1459
1460 // Compare an object's map with the specified map. Condition flags are set
1461 // with result of map compare.
1462 void CompareObjectMap(Register obj, Register scratch, Handle<Map> map);
1463
1464 // As above, but the map of the object is already loaded into the register
1465 // which is preserved by the code generated.
1466 void CompareMap(Register obj_map,
1467 Handle<Map> map);
1468
1469 // Check if the map of an object is equal to a specified map and branch to
1470 // label if not. Skip the smi check if not required (object is known to be a
1471 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1472 // against maps that are ElementsKind transition maps of the specified map.
1473 void CheckMap(Register obj,
1474 Register scratch,
1475 Handle<Map> map,
1476 Label* fail,
1477 SmiCheckType smi_check_type);
1478
1479
1480 void CheckMap(Register obj,
1481 Register scratch,
1482 Heap::RootListIndex index,
1483 Label* fail,
1484 SmiCheckType smi_check_type);
1485
1486 // As above, but the map of the object is already loaded into obj_map, and is
1487 // preserved.
1488 void CheckMap(Register obj_map,
1489 Handle<Map> map,
1490 Label* fail,
1491 SmiCheckType smi_check_type);
1492
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001493 // Check if the map of an object is equal to a specified weak map and branch
1494 // to a specified target if equal. Skip the smi check if not required
1495 // (object is known to be a heap object)
1496 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
1497 Handle<WeakCell> cell, Handle<Code> success,
1498 SmiCheckType smi_check_type);
1499
1500 // Compare the given value and the value of weak cell.
1501 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
1502
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001503 void GetWeakValue(Register value, Handle<WeakCell> cell);
1504
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001505 // Load the value of the weak cell in the value register. Branch to the given
1506 // miss label if the weak cell was cleared.
1507 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001508
1509 // Test the bitfield of the heap object map with mask and set the condition
1510 // flags. The object register is preserved.
1511 void TestMapBitfield(Register object, uint64_t mask);
1512
1513 // Load the elements kind field from a map, and return it in the result
1514 // register.
1515 void LoadElementsKindFromMap(Register result, Register map);
1516
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001517 // Load the value from the root list and push it onto the stack.
1518 void PushRoot(Heap::RootListIndex index);
1519
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001520 // Compare the object in a register to a value from the root list.
1521 void CompareRoot(const Register& obj, Heap::RootListIndex index);
1522
1523 // Compare the object in a register to a value and jump if they are equal.
1524 void JumpIfRoot(const Register& obj,
1525 Heap::RootListIndex index,
1526 Label* if_equal);
1527
1528 // Compare the object in a register to a value and jump if they are not equal.
1529 void JumpIfNotRoot(const Register& obj,
1530 Heap::RootListIndex index,
1531 Label* if_not_equal);
1532
1533 // Load and check the instance type of an object for being a unique name.
1534 // Loads the type into the second argument register.
1535 // The object and type arguments can be the same register; in that case it
1536 // will be overwritten with the type.
1537 // Fall-through if the object was a string and jump on fail otherwise.
1538 inline void IsObjectNameType(Register object, Register type, Label* fail);
1539
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001540 // Load and check the instance type of an object for being a string.
1541 // Loads the type into the second argument register.
1542 // The object and type arguments can be the same register; in that case it
1543 // will be overwritten with the type.
1544 // Jumps to not_string or string appropriate. If the appropriate label is
1545 // NULL, fall through.
1546 inline void IsObjectJSStringType(Register object, Register type,
1547 Label* not_string, Label* string = NULL);
1548
1549 // Compare the contents of a register with an operand, and branch to true,
1550 // false or fall through, depending on condition.
1551 void CompareAndSplit(const Register& lhs,
1552 const Operand& rhs,
1553 Condition cond,
1554 Label* if_true,
1555 Label* if_false,
1556 Label* fall_through);
1557
1558 // Test the bits of register defined by bit_pattern, and branch to
1559 // if_any_set, if_all_clear or fall_through accordingly.
1560 void TestAndSplit(const Register& reg,
1561 uint64_t bit_pattern,
1562 Label* if_all_clear,
1563 Label* if_any_set,
1564 Label* fall_through);
1565
1566 // Check if a map for a JSObject indicates that the object has fast elements.
1567 // Jump to the specified label if it does not.
1568 void CheckFastElements(Register map, Register scratch, Label* fail);
1569
1570 // Check if a map for a JSObject indicates that the object can have both smi
1571 // and HeapObject elements. Jump to the specified label if it does not.
1572 void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1573
1574 // Check to see if number can be stored as a double in FastDoubleElements.
1575 // If it can, store it at the index specified by key_reg in the array,
1576 // otherwise jump to fail.
1577 void StoreNumberToDoubleElements(Register value_reg,
1578 Register key_reg,
1579 Register elements_reg,
1580 Register scratch1,
1581 FPRegister fpscratch1,
1582 Label* fail,
1583 int elements_offset = 0);
1584
1585 // Picks out an array index from the hash field.
1586 // Register use:
1587 // hash - holds the index's hash. Clobbered.
1588 // index - holds the overwritten index on exit.
1589 void IndexFromHash(Register hash, Register index);
1590
1591 // ---------------------------------------------------------------------------
1592 // Inline caching support.
1593
1594 void EmitSeqStringSetCharCheck(Register string,
1595 Register index,
1596 SeqStringSetCharCheckIndexType index_type,
1597 Register scratch,
1598 uint32_t encoding_mask);
1599
1600 // Generate code for checking access rights - used for security checks
1601 // on access to global objects across environments. The holder register
1602 // is left untouched, whereas both scratch registers are clobbered.
1603 void CheckAccessGlobalProxy(Register holder_reg,
1604 Register scratch1,
1605 Register scratch2,
1606 Label* miss);
1607
1608 // Hash the interger value in 'key' register.
1609 // It uses the same algorithm as ComputeIntegerHash in utils.h.
1610 void GetNumberHash(Register key, Register scratch);
1611
1612 // Load value from the dictionary.
1613 //
1614 // elements - holds the slow-case elements of the receiver on entry.
1615 // Unchanged unless 'result' is the same register.
1616 //
1617 // key - holds the smi key on entry.
1618 // Unchanged unless 'result' is the same register.
1619 //
1620 // result - holds the result on exit if the load succeeded.
1621 // Allowed to be the same as 'key' or 'result'.
1622 // Unchanged on bailout so 'key' or 'result' can be used
1623 // in further computation.
1624 void LoadFromNumberDictionary(Label* miss,
1625 Register elements,
1626 Register key,
1627 Register result,
1628 Register scratch0,
1629 Register scratch1,
1630 Register scratch2,
1631 Register scratch3);
1632
1633 // ---------------------------------------------------------------------------
1634 // Frames.
1635
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001636 // Load the type feedback vector from a JavaScript frame.
1637 void EmitLoadTypeFeedbackVector(Register vector);
1638
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001639 // Activation support.
1640 void EnterFrame(StackFrame::Type type);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001641 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001642 void LeaveFrame(StackFrame::Type type);
1643
1644 // Returns map with validated enum cache in object register.
Ben Murdoch097c5b22016-05-18 11:27:45 +01001645 void CheckEnumCache(Register object, Register scratch0, Register scratch1,
1646 Register scratch2, Register scratch3, Register scratch4,
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001647 Label* call_runtime);
1648
1649 // AllocationMemento support. Arrays may have an associated
1650 // AllocationMemento object that can be checked for in order to pretransition
1651 // to another type.
1652 // On entry, receiver should point to the array object.
1653 // If allocation info is present, the Z flag is set (so that the eq
1654 // condition will pass).
1655 void TestJSArrayForAllocationMemento(Register receiver,
1656 Register scratch1,
1657 Register scratch2,
1658 Label* no_memento_found);
1659
1660 void JumpIfJSArrayHasAllocationMemento(Register receiver,
1661 Register scratch1,
1662 Register scratch2,
1663 Label* memento_found) {
1664 Label no_memento_found;
1665 TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
1666 &no_memento_found);
1667 B(eq, memento_found);
1668 Bind(&no_memento_found);
1669 }
1670
1671 // The stack pointer has to switch between csp and jssp when setting up and
1672 // destroying the exit frame. Hence preserving/restoring the registers is
1673 // slightly more complicated than simple push/pop operations.
1674 void ExitFramePreserveFPRegs();
1675 void ExitFrameRestoreFPRegs();
1676
1677 // Generates function and stub prologue code.
Ben Murdochda12d292016-06-02 14:46:10 +01001678 void StubPrologue(StackFrame::Type type, int frame_slots);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001679 void Prologue(bool code_pre_aging);
1680
1681 // Enter exit frame. Exit frames are used when calling C code from generated
1682 // (JavaScript) code.
1683 //
1684 // The stack pointer must be jssp on entry, and will be set to csp by this
1685 // function. The frame pointer is also configured, but the only other
1686 // registers modified by this function are the provided scratch register, and
1687 // jssp.
1688 //
1689 // The 'extra_space' argument can be used to allocate some space in the exit
1690 // frame that will be ignored by the GC. This space will be reserved in the
1691 // bottom of the frame immediately above the return address slot.
1692 //
1693 // Set up a stack frame and registers as follows:
1694 // fp[8]: CallerPC (lr)
1695 // fp -> fp[0]: CallerFP (old fp)
1696 // fp[-8]: SPOffset (new csp)
1697 // fp[-16]: CodeObject()
1698 // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
1699 // csp[8]: Memory reserved for the caller if extra_space != 0.
1700 // Alignment padding, if necessary.
1701 // csp -> csp[0]: Space reserved for the return address.
1702 //
1703 // This function also stores the new frame information in the top frame, so
1704 // that the new frame becomes the current frame.
1705 void EnterExitFrame(bool save_doubles,
1706 const Register& scratch,
1707 int extra_space = 0);
1708
1709 // Leave the current exit frame, after a C function has returned to generated
1710 // (JavaScript) code.
1711 //
1712 // This effectively unwinds the operation of EnterExitFrame:
1713 // * Preserved doubles are restored (if restore_doubles is true).
1714 // * The frame information is removed from the top frame.
1715 // * The exit frame is dropped.
1716 // * The stack pointer is reset to jssp.
1717 //
1718 // The stack pointer must be csp on entry.
1719 void LeaveExitFrame(bool save_doubles,
1720 const Register& scratch,
1721 bool restore_context);
1722
1723 void LoadContext(Register dst, int context_chain_length);
1724
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001725 // Load the global object from the current context.
1726 void LoadGlobalObject(Register dst) {
1727 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
1728 }
1729
1730 // Load the global proxy from the current context.
1731 void LoadGlobalProxy(Register dst) {
1732 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
1733 }
1734
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001735 // Emit code for a truncating division by a constant. The dividend register is
1736 // unchanged. Dividend and result must be different.
1737 void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1738
1739 // ---------------------------------------------------------------------------
1740 // StatsCounter support
1741
1742 void SetCounter(StatsCounter* counter, int value, Register scratch1,
1743 Register scratch2);
1744 void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1745 Register scratch2);
1746 void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1747 Register scratch2);
1748
1749 // ---------------------------------------------------------------------------
1750 // Garbage collector support (GC).
1751
1752 enum RememberedSetFinalAction {
1753 kReturnAtEnd,
1754 kFallThroughAtEnd
1755 };
1756
1757 // Record in the remembered set the fact that we have a pointer to new space
1758 // at the address pointed to by the addr register. Only works if addr is not
1759 // in new space.
1760 void RememberedSetHelper(Register object, // Used for debug code.
1761 Register addr,
1762 Register scratch1,
1763 SaveFPRegsMode save_fp,
1764 RememberedSetFinalAction and_then);
1765
1766 // Push and pop the registers that can hold pointers, as defined by the
1767 // RegList constant kSafepointSavedRegisters.
1768 void PushSafepointRegisters();
1769 void PopSafepointRegisters();
1770
1771 void PushSafepointRegistersAndDoubles();
1772 void PopSafepointRegistersAndDoubles();
1773
1774 // Store value in register src in the safepoint stack slot for register dst.
1775 void StoreToSafepointRegisterSlot(Register src, Register dst) {
1776 Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1777 }
1778
1779 // Load the value of the src register from its safepoint stack slot
1780 // into register dst.
1781 void LoadFromSafepointRegisterSlot(Register dst, Register src) {
1782 Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1783 }
1784
Ben Murdoch097c5b22016-05-18 11:27:45 +01001785 void CheckPageFlag(const Register& object, const Register& scratch, int mask,
1786 Condition cc, Label* condition_met);
1787
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001788 void CheckPageFlagSet(const Register& object,
1789 const Register& scratch,
1790 int mask,
1791 Label* if_any_set);
1792
1793 void CheckPageFlagClear(const Register& object,
1794 const Register& scratch,
1795 int mask,
1796 Label* if_all_clear);
1797
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001798 // Check if object is in new space and jump accordingly.
1799 // Register 'object' is preserved.
1800 void JumpIfNotInNewSpace(Register object,
1801 Label* branch) {
1802 InNewSpace(object, ne, branch);
1803 }
1804
1805 void JumpIfInNewSpace(Register object,
1806 Label* branch) {
1807 InNewSpace(object, eq, branch);
1808 }
1809
1810 // Notify the garbage collector that we wrote a pointer into an object.
1811 // |object| is the object being stored into, |value| is the object being
1812 // stored. value and scratch registers are clobbered by the operation.
1813 // The offset is the offset from the start of the object, not the offset from
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001814 // the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001815 void RecordWriteField(
1816 Register object,
1817 int offset,
1818 Register value,
1819 Register scratch,
1820 LinkRegisterStatus lr_status,
1821 SaveFPRegsMode save_fp,
1822 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1823 SmiCheck smi_check = INLINE_SMI_CHECK,
1824 PointersToHereCheck pointers_to_here_check_for_value =
1825 kPointersToHereMaybeInteresting);
1826
1827 // As above, but the offset has the tag presubtracted. For use with
1828 // MemOperand(reg, off).
1829 inline void RecordWriteContextSlot(
1830 Register context,
1831 int offset,
1832 Register value,
1833 Register scratch,
1834 LinkRegisterStatus lr_status,
1835 SaveFPRegsMode save_fp,
1836 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1837 SmiCheck smi_check = INLINE_SMI_CHECK,
1838 PointersToHereCheck pointers_to_here_check_for_value =
1839 kPointersToHereMaybeInteresting) {
1840 RecordWriteField(context,
1841 offset + kHeapObjectTag,
1842 value,
1843 scratch,
1844 lr_status,
1845 save_fp,
1846 remembered_set_action,
1847 smi_check,
1848 pointers_to_here_check_for_value);
1849 }
1850
Ben Murdoch097c5b22016-05-18 11:27:45 +01001851 // Notify the garbage collector that we wrote a code entry into a
1852 // JSFunction. Only scratch is clobbered by the operation.
1853 void RecordWriteCodeEntryField(Register js_function, Register code_entry,
1854 Register scratch);
1855
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001856 void RecordWriteForMap(
1857 Register object,
1858 Register map,
1859 Register dst,
1860 LinkRegisterStatus lr_status,
1861 SaveFPRegsMode save_fp);
1862
1863 // For a given |object| notify the garbage collector that the slot |address|
1864 // has been written. |value| is the object being stored. The value and
1865 // address registers are clobbered by the operation.
1866 void RecordWrite(
1867 Register object,
1868 Register address,
1869 Register value,
1870 LinkRegisterStatus lr_status,
1871 SaveFPRegsMode save_fp,
1872 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1873 SmiCheck smi_check = INLINE_SMI_CHECK,
1874 PointersToHereCheck pointers_to_here_check_for_value =
1875 kPointersToHereMaybeInteresting);
1876
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001877 // Checks the color of an object. If the object is white we jump to the
1878 // incremental marker.
1879 void JumpIfWhite(Register value, Register scratch1, Register scratch2,
1880 Register scratch3, Register scratch4, Label* value_is_white);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001881
1882 // Helper for finding the mark bits for an address.
1883 // Note that the behaviour slightly differs from other architectures.
1884 // On exit:
1885 // - addr_reg is unchanged.
1886 // - The bitmap register points at the word with the mark bits.
1887 // - The shift register contains the index of the first color bit for this
1888 // object in the bitmap.
1889 inline void GetMarkBits(Register addr_reg,
1890 Register bitmap_reg,
1891 Register shift_reg);
1892
1893 // Check if an object has a given incremental marking color.
1894 void HasColor(Register object,
1895 Register scratch0,
1896 Register scratch1,
1897 Label* has_color,
1898 int first_bit,
1899 int second_bit);
1900
1901 void JumpIfBlack(Register object,
1902 Register scratch0,
1903 Register scratch1,
1904 Label* on_black);
1905
1906
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001907 // ---------------------------------------------------------------------------
1908 // Debugging.
1909
1910 // Calls Abort(msg) if the condition cond is not satisfied.
1911 // Use --debug_code to enable.
1912 void Assert(Condition cond, BailoutReason reason);
1913 void AssertRegisterIsClear(Register reg, BailoutReason reason);
1914 void AssertRegisterIsRoot(
1915 Register reg,
1916 Heap::RootListIndex index,
1917 BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
1918 void AssertFastElements(Register elements);
1919
1920 // Abort if the specified register contains the invalid color bit pattern.
1921 // The pattern must be in bits [1:0] of 'reg' register.
1922 //
1923 // If emit_debug_code() is false, this emits no code.
1924 void AssertHasValidColor(const Register& reg);
1925
1926 // Abort if 'object' register doesn't point to a string object.
1927 //
1928 // If emit_debug_code() is false, this emits no code.
1929 void AssertIsString(const Register& object);
1930
1931 // Like Assert(), but always enabled.
1932 void Check(Condition cond, BailoutReason reason);
1933 void CheckRegisterIsClear(Register reg, BailoutReason reason);
1934
1935 // Print a message to stderr and abort execution.
1936 void Abort(BailoutReason reason);
1937
1938 // Conditionally load the cached Array transitioned map of type
1939 // transitioned_kind from the native context if the map in register
1940 // map_in_out is the cached Array map in the native context of
1941 // expected_kind.
1942 void LoadTransitionedArrayMapConditional(
1943 ElementsKind expected_kind,
1944 ElementsKind transitioned_kind,
1945 Register map_in_out,
1946 Register scratch1,
1947 Register scratch2,
1948 Label* no_map_match);
1949
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001950 void LoadNativeContextSlot(int index, Register dst);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001951
1952 // Load the initial map from the global function. The registers function and
1953 // map can be the same, function is then overwritten.
1954 void LoadGlobalFunctionInitialMap(Register function,
1955 Register map,
1956 Register scratch);
1957
1958 CPURegList* TmpList() { return &tmp_list_; }
1959 CPURegList* FPTmpList() { return &fptmp_list_; }
1960
1961 static CPURegList DefaultTmpList();
1962 static CPURegList DefaultFPTmpList();
1963
1964 // Like printf, but print at run-time from generated code.
1965 //
1966 // The caller must ensure that arguments for floating-point placeholders
1967 // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
1968 // placeholders are Registers.
1969 //
1970 // At the moment it is only possible to print the value of csp if it is the
1971 // current stack pointer. Otherwise, the MacroAssembler will automatically
1972 // update csp on every push (using BumpSystemStackPointer), so determining its
1973 // value is difficult.
1974 //
1975 // Format placeholders that refer to more than one argument, or to a specific
1976 // argument, are not supported. This includes formats like "%1$d" or "%.*d".
1977 //
1978 // This function automatically preserves caller-saved registers so that
1979 // calling code can use Printf at any point without having to worry about
1980 // corruption. The preservation mechanism generates a lot of code. If this is
1981 // a problem, preserve the important registers manually and then call
1982 // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
1983 // implicitly preserved.
1984 void Printf(const char * format,
1985 CPURegister arg0 = NoCPUReg,
1986 CPURegister arg1 = NoCPUReg,
1987 CPURegister arg2 = NoCPUReg,
1988 CPURegister arg3 = NoCPUReg);
1989
1990 // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
1991 //
1992 // The return code from the system printf call will be returned in x0.
1993 void PrintfNoPreserve(const char * format,
1994 const CPURegister& arg0 = NoCPUReg,
1995 const CPURegister& arg1 = NoCPUReg,
1996 const CPURegister& arg2 = NoCPUReg,
1997 const CPURegister& arg3 = NoCPUReg);
1998
1999 // Code ageing support functions.
2000
2001 // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
2002 // function as old, it replaces some of the function prologue (generated by
2003 // FullCodeGenerator::Generate) with a call to a special stub (ultimately
2004 // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
2005 // function prologue to its initial young state (indicating that it has been
2006 // recently run) and continues. A young function is therefore one which has a
2007 // normal frame setup sequence, and an old function has a code age sequence
2008 // which calls a code ageing stub.
2009
2010 // Set up a basic stack frame for young code (or code exempt from ageing) with
2011 // type FUNCTION. It may be patched later for code ageing support. This is
2012 // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
2013 //
2014 // This function takes an Assembler so it can be called from either a
2015 // MacroAssembler or a PatchingAssembler context.
2016 static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
2017
2018 // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
2019 void EmitFrameSetupForCodeAgePatching();
2020
2021 // Emit a code age sequence that calls the relevant code age stub. The code
2022 // generated by this sequence is expected to replace the code generated by
2023 // EmitFrameSetupForCodeAgePatching, and represents an old function.
2024 //
2025 // If stub is NULL, this function generates the code age sequence but omits
2026 // the stub address that is normally embedded in the instruction stream. This
2027 // can be used by debug code to verify code age sequences.
2028 static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
2029
2030 // Call EmitCodeAgeSequence from a MacroAssembler context.
2031 void EmitCodeAgeSequence(Code* stub);
2032
2033 // Return true if the sequence is a young sequence geneated by
2034 // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
2035 // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
2036 static bool IsYoungSequence(Isolate* isolate, byte* sequence);
2037
2038 // Jumps to found label if a prototype map has dictionary elements.
2039 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
2040 Register scratch1, Label* found);
2041
2042 // Perform necessary maintenance operations before a push or after a pop.
2043 //
2044 // Note that size is specified in bytes.
2045 void PushPreamble(Operand total_size);
2046 void PopPostamble(Operand total_size);
2047
2048 void PushPreamble(int count, int size) { PushPreamble(count * size); }
2049 void PopPostamble(int count, int size) { PopPostamble(count * size); }
2050
2051 private:
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002052 // The actual Push and Pop implementations. These don't generate any code
2053 // other than that required for the push or pop. This allows
2054 // (Push|Pop)CPURegList to bundle together run-time assertions for a large
2055 // block of registers.
2056 //
2057 // Note that size is per register, and is specified in bytes.
2058 void PushHelper(int count, int size,
2059 const CPURegister& src0, const CPURegister& src1,
2060 const CPURegister& src2, const CPURegister& src3);
2061 void PopHelper(int count, int size,
2062 const CPURegister& dst0, const CPURegister& dst1,
2063 const CPURegister& dst2, const CPURegister& dst3);
2064
2065 // Call Printf. On a native build, a simple call will be generated, but if the
2066 // simulator is being used then a suitable pseudo-instruction is used. The
2067 // arguments and stack (csp) must be prepared by the caller as for a normal
2068 // AAPCS64 call to 'printf'.
2069 //
2070 // The 'args' argument should point to an array of variable arguments in their
2071 // proper PCS registers (and in calling order). The argument registers can
2072 // have mixed types. The format string (x0) should not be included.
2073 void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
2074
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002075 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
2076 void InNewSpace(Register object,
2077 Condition cond, // eq for new space, ne otherwise.
2078 Label* branch);
2079
2080 // Try to represent a double as an int so that integer fast-paths may be
2081 // used. Not every valid integer value is guaranteed to be caught.
2082 // It supports both 32-bit and 64-bit integers depending whether 'as_int'
2083 // is a W or X register.
2084 //
2085 // This does not distinguish between +0 and -0, so if this distinction is
2086 // important it must be checked separately.
2087 //
2088 // On output the Z flag is set if the operation was successful.
2089 void TryRepresentDoubleAsInt(Register as_int,
2090 FPRegister value,
2091 FPRegister scratch_d,
2092 Label* on_successful_conversion = NULL,
2093 Label* on_failed_conversion = NULL);
2094
2095 bool generating_stub_;
2096#if DEBUG
2097 // Tell whether any of the macro instruction can be used. When false the
2098 // MacroAssembler will assert if a method which can emit a variable number
2099 // of instructions is called.
2100 bool allow_macro_instructions_;
2101#endif
2102 bool has_frame_;
2103
2104 // The Abort method should call a V8 runtime function, but the CallRuntime
2105 // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
2106 // use a simpler abort mechanism that doesn't depend on CEntryStub.
2107 //
2108 // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
2109 // being generated.
2110 bool use_real_aborts_;
2111
2112 // This handle will be patched with the code object on installation.
2113 Handle<Object> code_object_;
2114
2115 // The register to use as a stack pointer for stack operations.
2116 Register sp_;
2117
2118 // Scratch registers available for use by the MacroAssembler.
2119 CPURegList tmp_list_;
2120 CPURegList fptmp_list_;
2121
2122 void InitializeNewString(Register string,
2123 Register length,
2124 Heap::RootListIndex map_index,
2125 Register scratch1,
2126 Register scratch2);
2127
2128 public:
2129 // Far branches resolving.
2130 //
2131 // The various classes of branch instructions with immediate offsets have
2132 // different ranges. While the Assembler will fail to assemble a branch
2133 // exceeding its range, the MacroAssembler offers a mechanism to resolve
2134 // branches to too distant targets, either by tweaking the generated code to
2135 // use branch instructions with wider ranges or generating veneers.
2136 //
2137 // Currently branches to distant targets are resolved using unconditional
2138 // branch isntructions with a range of +-128MB. If that becomes too little
2139 // (!), the mechanism can be extended to generate special veneers for really
2140 // far targets.
2141
2142 // Helps resolve branching to labels potentially out of range.
2143 // If the label is not bound, it registers the information necessary to later
2144 // be able to emit a veneer for this branch if necessary.
2145 // If the label is bound, it returns true if the label (or the previous link
2146 // in the label chain) is out of range. In that case the caller is responsible
2147 // for generating appropriate code.
2148 // Otherwise it returns false.
2149 // This function also checks wether veneers need to be emitted.
2150 bool NeedExtraInstructionsOrRegisterBranch(Label *label,
2151 ImmBranchType branch_type);
2152};
2153
2154
2155// Use this scope when you need a one-to-one mapping bewteen methods and
2156// instructions. This scope prevents the MacroAssembler from being called and
2157// literal pools from being emitted. It also asserts the number of instructions
2158// emitted is what you specified when creating the scope.
2159class InstructionAccurateScope BASE_EMBEDDED {
2160 public:
2161 explicit InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
2162 : masm_(masm)
2163#ifdef DEBUG
2164 ,
2165 size_(count * kInstructionSize)
2166#endif
2167 {
2168 // Before blocking the const pool, see if it needs to be emitted.
2169 masm_->CheckConstPool(false, true);
2170 masm_->CheckVeneerPool(false, true);
2171
2172 masm_->StartBlockPools();
2173#ifdef DEBUG
2174 if (count != 0) {
2175 masm_->bind(&start_);
2176 }
2177 previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
2178 masm_->set_allow_macro_instructions(false);
2179#endif
2180 }
2181
2182 ~InstructionAccurateScope() {
2183 masm_->EndBlockPools();
2184#ifdef DEBUG
2185 if (start_.is_bound()) {
2186 DCHECK(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
2187 }
2188 masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
2189#endif
2190 }
2191
2192 private:
2193 MacroAssembler* masm_;
2194#ifdef DEBUG
2195 size_t size_;
2196 Label start_;
2197 bool previous_allow_macro_instructions_;
2198#endif
2199};
2200
2201
2202// This scope utility allows scratch registers to be managed safely. The
2203// MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
2204// registers. These registers can be allocated on demand, and will be returned
2205// at the end of the scope.
2206//
2207// When the scope ends, the MacroAssembler's lists will be restored to their
2208// original state, even if the lists were modified by some other means.
2209class UseScratchRegisterScope {
2210 public:
2211 explicit UseScratchRegisterScope(MacroAssembler* masm)
2212 : available_(masm->TmpList()),
2213 availablefp_(masm->FPTmpList()),
2214 old_available_(available_->list()),
2215 old_availablefp_(availablefp_->list()) {
2216 DCHECK(available_->type() == CPURegister::kRegister);
2217 DCHECK(availablefp_->type() == CPURegister::kFPRegister);
2218 }
2219
2220 ~UseScratchRegisterScope();
2221
2222 // Take a register from the appropriate temps list. It will be returned
2223 // automatically when the scope ends.
2224 Register AcquireW() { return AcquireNextAvailable(available_).W(); }
2225 Register AcquireX() { return AcquireNextAvailable(available_).X(); }
2226 FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
2227 FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
2228
2229 Register UnsafeAcquire(const Register& reg) {
2230 return Register(UnsafeAcquire(available_, reg));
2231 }
2232
2233 Register AcquireSameSizeAs(const Register& reg);
2234 FPRegister AcquireSameSizeAs(const FPRegister& reg);
2235
2236 private:
2237 static CPURegister AcquireNextAvailable(CPURegList* available);
2238 static CPURegister UnsafeAcquire(CPURegList* available,
2239 const CPURegister& reg);
2240
2241 // Available scratch registers.
2242 CPURegList* available_; // kRegister
2243 CPURegList* availablefp_; // kFPRegister
2244
2245 // The state of the available lists at the start of this scope.
2246 RegList old_available_; // kRegister
2247 RegList old_availablefp_; // kFPRegister
2248};
2249
2250
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002251inline MemOperand ContextMemOperand(Register context, int index = 0) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002252 return MemOperand(context, Context::SlotOffset(index));
2253}
2254
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002255inline MemOperand NativeContextMemOperand() {
2256 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002257}
2258
2259
2260// Encode and decode information about patchable inline SMI checks.
2261class InlineSmiCheckInfo {
2262 public:
2263 explicit InlineSmiCheckInfo(Address info);
2264
2265 bool HasSmiCheck() const {
2266 return smi_check_ != NULL;
2267 }
2268
2269 const Register& SmiRegister() const {
2270 return reg_;
2271 }
2272
2273 Instruction* SmiCheck() const {
2274 return smi_check_;
2275 }
2276
2277 // Use MacroAssembler::InlineData to emit information about patchable inline
2278 // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
2279 // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
2280 //
2281 // The generated patch information can be read using the InlineSMICheckInfo
2282 // class.
2283 static void Emit(MacroAssembler* masm, const Register& reg,
2284 const Label* smi_check);
2285
2286 // Emit information to indicate that there is no inline SMI check.
2287 static void EmitNotInlined(MacroAssembler* masm) {
2288 Label unbound;
2289 Emit(masm, NoReg, &unbound);
2290 }
2291
2292 private:
2293 Register reg_;
2294 Instruction* smi_check_;
2295
2296 // Fields in the data encoded by InlineData.
2297
2298 // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
2299 // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
2300 // used in a patchable check. The Emit() method checks this.
2301 //
2302 // Note that the total size of the fields is restricted by the underlying
2303 // storage size handled by the BitField class, which is a uint32_t.
2304 class RegisterBits : public BitField<unsigned, 0, 5> {};
2305 class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
2306};
2307
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002308} // namespace internal
2309} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002310
2311#ifdef GENERATED_CODE_COVERAGE
2312#error "Unsupported option"
2313#define CODE_COVERAGE_STRINGIFY(x) #x
2314#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2315#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2316#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2317#else
2318#define ACCESS_MASM(masm) masm->
2319#endif
2320
2321#endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_