blob: aafc8406800856f95e2bb9d20680f671815fedc6 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X64
6
7#include "src/regexp/x64/regexp-macro-assembler-x64.h"
8
9#include "src/log.h"
10#include "src/macro-assembler.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000011#include "src/regexp/regexp-macro-assembler.h"
12#include "src/regexp/regexp-stack.h"
13#include "src/unicode.h"
14
15namespace v8 {
16namespace internal {
17
18#ifndef V8_INTERPRETED_REGEXP
19
20/*
21 * This assembler uses the following register assignment convention
22 * - rdx : Currently loaded character(s) as Latin1 or UC16. Must be loaded
23 * using LoadCurrentCharacter before using any of the dispatch methods.
24 * Temporarily stores the index of capture start after a matching pass
25 * for a global regexp.
26 * - rdi : Current position in input, as negative offset from end of string.
27 * Please notice that this is the byte offset, not the character
28 * offset! Is always a 32-bit signed (negative) offset, but must be
29 * maintained sign-extended to 64 bits, since it is used as index.
30 * - rsi : End of input (points to byte after last character in input),
31 * so that rsi+rdi points to the current character.
32 * - rbp : Frame pointer. Used to access arguments, local variables and
33 * RegExp registers.
34 * - rsp : Points to tip of C stack.
35 * - rcx : Points to tip of backtrack stack. The backtrack stack contains
36 * only 32-bit values. Most are offsets from some base (e.g., character
37 * positions from end of string or code location from Code* pointer).
38 * - r8 : Code object pointer. Used to convert between absolute and
39 * code-object-relative addresses.
40 *
41 * The registers rax, rbx, r9 and r11 are free to use for computations.
42 * If changed to use r12+, they should be saved as callee-save registers.
43 * The macro assembler special register r13 (kRootRegister) isn't special
44 * during execution of RegExp code (it doesn't hold the value assumed when
45 * creating JS code), so Root related macro operations can be used.
46 *
47 * Each call to a C++ method should retain these registers.
48 *
49 * The stack will have the following content, in some order, indexable from the
50 * frame pointer (see, e.g., kStackHighEnd):
51 * - Isolate* isolate (address of the current isolate)
52 * - direct_call (if 1, direct call from JavaScript code, if 0 call
53 * through the runtime system)
54 * - stack_area_base (high end of the memory area to use as
55 * backtracking stack)
56 * - capture array size (may fit multiple sets of matches)
57 * - int* capture_array (int[num_saved_registers_], for output).
58 * - end of input (address of end of string)
59 * - start of input (address of first character in string)
60 * - start index (character index of start)
61 * - String* input_string (input string)
62 * - return address
63 * - backup of callee save registers (rbx, possibly rsi and rdi).
64 * - success counter (only useful for global regexp to count matches)
65 * - Offset of location before start of input (effectively character
66 * string start - 1). Used to initialize capture registers to a
67 * non-position.
68 * - At start of string (if 1, we are starting at the start of the
69 * string, otherwise 0)
70 * - register 0 rbp[-n] (Only positions must be stored in the first
71 * - register 1 rbp[-n-8] num_saved_registers_ registers)
72 * - ...
73 *
74 * The first num_saved_registers_ registers are initialized to point to
75 * "character -1" in the string (i.e., char_size() bytes before the first
76 * character of the string). The remaining registers starts out uninitialized.
77 *
78 * The first seven values must be provided by the calling code by
79 * calling the code's entry address cast to a function pointer with the
80 * following signature:
81 * int (*match)(String* input_string,
82 * int start_index,
83 * Address start,
84 * Address end,
85 * int* capture_output_array,
86 * bool at_start,
87 * byte* stack_area_base,
88 * bool direct_call)
89 */
90
91#define __ ACCESS_MASM((&masm_))
92
93RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
94 Mode mode,
95 int registers_to_save)
96 : NativeRegExpMacroAssembler(isolate, zone),
97 masm_(isolate, NULL, kRegExpCodeSize, CodeObjectRequired::kYes),
98 no_root_array_scope_(&masm_),
99 code_relative_fixup_positions_(4, zone),
100 mode_(mode),
101 num_registers_(registers_to_save),
102 num_saved_registers_(registers_to_save),
103 entry_label_(),
104 start_label_(),
105 success_label_(),
106 backtrack_label_(),
107 exit_label_() {
108 DCHECK_EQ(0, registers_to_save % 2);
109 __ jmp(&entry_label_); // We'll write the entry code when we know more.
110 __ bind(&start_label_); // And then continue from here.
111}
112
113
114RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
115 // Unuse labels in case we throw away the assembler without calling GetCode.
116 entry_label_.Unuse();
117 start_label_.Unuse();
118 success_label_.Unuse();
119 backtrack_label_.Unuse();
120 exit_label_.Unuse();
121 check_preempt_label_.Unuse();
122 stack_overflow_label_.Unuse();
123}
124
125
126int RegExpMacroAssemblerX64::stack_limit_slack() {
127 return RegExpStack::kStackLimitSlack;
128}
129
130
131void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
132 if (by != 0) {
133 __ addq(rdi, Immediate(by * char_size()));
134 }
135}
136
137
138void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
139 DCHECK(reg >= 0);
140 DCHECK(reg < num_registers_);
141 if (by != 0) {
142 __ addp(register_location(reg), Immediate(by));
143 }
144}
145
146
147void RegExpMacroAssemblerX64::Backtrack() {
148 CheckPreemption();
149 // Pop Code* offset from backtrack stack, add Code* and jump to location.
150 Pop(rbx);
151 __ addp(rbx, code_object_pointer());
152 __ jmp(rbx);
153}
154
155
156void RegExpMacroAssemblerX64::Bind(Label* label) {
157 __ bind(label);
158}
159
160
161void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
162 __ cmpl(current_character(), Immediate(c));
163 BranchOrBacktrack(equal, on_equal);
164}
165
166
167void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
168 __ cmpl(current_character(), Immediate(limit));
169 BranchOrBacktrack(greater, on_greater);
170}
171
172
173void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
174 __ leap(rax, Operand(rdi, -char_size()));
175 __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
176 BranchOrBacktrack(equal, on_at_start);
177}
178
179
180void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset,
181 Label* on_not_at_start) {
182 __ leap(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
183 __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
184 BranchOrBacktrack(not_equal, on_not_at_start);
185}
186
187
188void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
189 __ cmpl(current_character(), Immediate(limit));
190 BranchOrBacktrack(less, on_less);
191}
192
193
194void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
195 Label fallthrough;
196 __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
197 __ j(not_equal, &fallthrough);
198 Drop();
199 BranchOrBacktrack(no_condition, on_equal);
200 __ bind(&fallthrough);
201}
202
203
204void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
Ben Murdoch097c5b22016-05-18 11:27:45 +0100205 int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000206 Label fallthrough;
207 ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
208 ReadPositionFromRegister(rbx, start_reg + 1); // Offset of end of capture
209 __ subp(rbx, rdx); // Length of capture.
210
211 // -----------------------
212 // rdx = Start offset of capture.
213 // rbx = Length of capture
214
215 // At this point, the capture registers are either both set or both cleared.
216 // If the capture length is zero, then the capture is either empty or cleared.
217 // Fall through in both cases.
218 __ j(equal, &fallthrough);
219
220 // -----------------------
221 // rdx - Start of capture
222 // rbx - length of capture
223 // Check that there are sufficient characters left in the input.
224 if (read_backward) {
225 __ movl(rax, Operand(rbp, kStringStartMinusOne));
226 __ addl(rax, rbx);
227 __ cmpl(rdi, rax);
228 BranchOrBacktrack(less_equal, on_no_match);
229 } else {
230 __ movl(rax, rdi);
231 __ addl(rax, rbx);
232 BranchOrBacktrack(greater, on_no_match);
233 }
234
235 if (mode_ == LATIN1) {
236 Label loop_increment;
237 if (on_no_match == NULL) {
238 on_no_match = &backtrack_label_;
239 }
240
241 __ leap(r9, Operand(rsi, rdx, times_1, 0));
242 __ leap(r11, Operand(rsi, rdi, times_1, 0));
243 if (read_backward) {
244 __ subp(r11, rbx); // Offset by length when matching backwards.
245 }
246 __ addp(rbx, r9); // End of capture
247 // ---------------------
248 // r11 - current input character address
249 // r9 - current capture character address
250 // rbx - end of capture
251
252 Label loop;
253 __ bind(&loop);
254 __ movzxbl(rdx, Operand(r9, 0));
255 __ movzxbl(rax, Operand(r11, 0));
256 // al - input character
257 // dl - capture character
258 __ cmpb(rax, rdx);
259 __ j(equal, &loop_increment);
260
261 // Mismatch, try case-insensitive match (converting letters to lower-case).
262 // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
263 // a match.
264 __ orp(rax, Immediate(0x20)); // Convert match character to lower-case.
265 __ orp(rdx, Immediate(0x20)); // Convert capture character to lower-case.
266 __ cmpb(rax, rdx);
267 __ j(not_equal, on_no_match); // Definitely not equal.
268 __ subb(rax, Immediate('a'));
269 __ cmpb(rax, Immediate('z' - 'a'));
270 __ j(below_equal, &loop_increment); // In range 'a'-'z'.
271 // Latin-1: Check for values in range [224,254] but not 247.
272 __ subb(rax, Immediate(224 - 'a'));
273 __ cmpb(rax, Immediate(254 - 224));
274 __ j(above, on_no_match); // Weren't Latin-1 letters.
275 __ cmpb(rax, Immediate(247 - 224)); // Check for 247.
276 __ j(equal, on_no_match);
277 __ bind(&loop_increment);
278 // Increment pointers into match and capture strings.
279 __ addp(r11, Immediate(1));
280 __ addp(r9, Immediate(1));
281 // Compare to end of capture, and loop if not done.
282 __ cmpp(r9, rbx);
283 __ j(below, &loop);
284
285 // Compute new value of character position after the matched part.
286 __ movp(rdi, r11);
287 __ subq(rdi, rsi);
288 if (read_backward) {
289 // Subtract match length if we matched backward.
290 __ addq(rdi, register_location(start_reg));
291 __ subq(rdi, register_location(start_reg + 1));
292 }
293 } else {
294 DCHECK(mode_ == UC16);
295 // Save important/volatile registers before calling C function.
296#ifndef _WIN64
297 // Caller save on Linux and callee save in Windows.
298 __ pushq(rsi);
299 __ pushq(rdi);
300#endif
301 __ pushq(backtrack_stackpointer());
302
303 static const int num_arguments = 4;
304 __ PrepareCallCFunction(num_arguments);
305
306 // Put arguments into parameter registers. Parameters are
307 // Address byte_offset1 - Address captured substring's start.
308 // Address byte_offset2 - Address of current character position.
309 // size_t byte_length - length of capture in bytes(!)
Ben Murdoch097c5b22016-05-18 11:27:45 +0100310// Isolate* isolate or 0 if unicode flag.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000311#ifdef _WIN64
Ben Murdoch097c5b22016-05-18 11:27:45 +0100312 DCHECK(rcx.is(arg_reg_1));
313 DCHECK(rdx.is(arg_reg_2));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000314 // Compute and set byte_offset1 (start of capture).
315 __ leap(rcx, Operand(rsi, rdx, times_1, 0));
316 // Set byte_offset2.
317 __ leap(rdx, Operand(rsi, rdi, times_1, 0));
318 if (read_backward) {
319 __ subq(rdx, rbx);
320 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000321#else // AMD64 calling convention
Ben Murdoch097c5b22016-05-18 11:27:45 +0100322 DCHECK(rdi.is(arg_reg_1));
323 DCHECK(rsi.is(arg_reg_2));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000324 // Compute byte_offset2 (current position = rsi+rdi).
325 __ leap(rax, Operand(rsi, rdi, times_1, 0));
326 // Compute and set byte_offset1 (start of capture).
327 __ leap(rdi, Operand(rsi, rdx, times_1, 0));
328 // Set byte_offset2.
329 __ movp(rsi, rax);
330 if (read_backward) {
331 __ subq(rsi, rbx);
332 }
Ben Murdoch097c5b22016-05-18 11:27:45 +0100333#endif // _WIN64
334
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000335 // Set byte_length.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100336 __ movp(arg_reg_3, rbx);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000337 // Isolate.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100338#ifdef V8_I18N_SUPPORT
339 if (unicode) {
340 __ movp(arg_reg_4, Immediate(0));
341 } else // NOLINT
342#endif // V8_I18N_SUPPORT
343 {
344 __ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate()));
345 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000346
347 { // NOLINT: Can't find a way to open this scope without confusing the
348 // linter.
349 AllowExternalCallThatCantCauseGC scope(&masm_);
350 ExternalReference compare =
351 ExternalReference::re_case_insensitive_compare_uc16(isolate());
352 __ CallCFunction(compare, num_arguments);
353 }
354
355 // Restore original values before reacting on result value.
356 __ Move(code_object_pointer(), masm_.CodeObject());
357 __ popq(backtrack_stackpointer());
358#ifndef _WIN64
359 __ popq(rdi);
360 __ popq(rsi);
361#endif
362
363 // Check if function returned non-zero for success or zero for failure.
364 __ testp(rax, rax);
365 BranchOrBacktrack(zero, on_no_match);
366 // On success, advance position by length of capture.
367 // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
368 if (read_backward) {
369 __ subq(rdi, rbx);
370 } else {
371 __ addq(rdi, rbx);
372 }
373 }
374 __ bind(&fallthrough);
375}
376
377
378void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg,
379 bool read_backward,
380 Label* on_no_match) {
381 Label fallthrough;
382
383 // Find length of back-referenced capture.
384 ReadPositionFromRegister(rdx, start_reg); // Offset of start of capture
385 ReadPositionFromRegister(rax, start_reg + 1); // Offset of end of capture
386 __ subp(rax, rdx); // Length to check.
387
388 // At this point, the capture registers are either both set or both cleared.
389 // If the capture length is zero, then the capture is either empty or cleared.
390 // Fall through in both cases.
391 __ j(equal, &fallthrough);
392
393 // -----------------------
394 // rdx - Start of capture
395 // rax - length of capture
396 // Check that there are sufficient characters left in the input.
397 if (read_backward) {
398 __ movl(rbx, Operand(rbp, kStringStartMinusOne));
399 __ addl(rbx, rax);
400 __ cmpl(rdi, rbx);
401 BranchOrBacktrack(less_equal, on_no_match);
402 } else {
403 __ movl(rbx, rdi);
404 __ addl(rbx, rax);
405 BranchOrBacktrack(greater, on_no_match);
406 }
407
408 // Compute pointers to match string and capture string
409 __ leap(rbx, Operand(rsi, rdi, times_1, 0)); // Start of match.
410 if (read_backward) {
411 __ subq(rbx, rax); // Offset by length when matching backwards.
412 }
413 __ addp(rdx, rsi); // Start of capture.
414 __ leap(r9, Operand(rdx, rax, times_1, 0)); // End of capture
415
416 // -----------------------
417 // rbx - current capture character address.
418 // rbx - current input character address .
419 // r9 - end of input to match (capture length after rbx).
420
421 Label loop;
422 __ bind(&loop);
423 if (mode_ == LATIN1) {
424 __ movzxbl(rax, Operand(rdx, 0));
425 __ cmpb(rax, Operand(rbx, 0));
426 } else {
427 DCHECK(mode_ == UC16);
428 __ movzxwl(rax, Operand(rdx, 0));
429 __ cmpw(rax, Operand(rbx, 0));
430 }
431 BranchOrBacktrack(not_equal, on_no_match);
432 // Increment pointers into capture and match string.
433 __ addp(rbx, Immediate(char_size()));
434 __ addp(rdx, Immediate(char_size()));
435 // Check if we have reached end of match area.
436 __ cmpp(rdx, r9);
437 __ j(below, &loop);
438
439 // Success.
440 // Set current character position to position after match.
441 __ movp(rdi, rbx);
442 __ subq(rdi, rsi);
443 if (read_backward) {
444 // Subtract match length if we matched backward.
445 __ addq(rdi, register_location(start_reg));
446 __ subq(rdi, register_location(start_reg + 1));
447 }
448
449 __ bind(&fallthrough);
450}
451
452
453void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
454 Label* on_not_equal) {
455 __ cmpl(current_character(), Immediate(c));
456 BranchOrBacktrack(not_equal, on_not_equal);
457}
458
459
460void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
461 uint32_t mask,
462 Label* on_equal) {
463 if (c == 0) {
464 __ testl(current_character(), Immediate(mask));
465 } else {
466 __ movl(rax, Immediate(mask));
467 __ andp(rax, current_character());
468 __ cmpl(rax, Immediate(c));
469 }
470 BranchOrBacktrack(equal, on_equal);
471}
472
473
474void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
475 uint32_t mask,
476 Label* on_not_equal) {
477 if (c == 0) {
478 __ testl(current_character(), Immediate(mask));
479 } else {
480 __ movl(rax, Immediate(mask));
481 __ andp(rax, current_character());
482 __ cmpl(rax, Immediate(c));
483 }
484 BranchOrBacktrack(not_equal, on_not_equal);
485}
486
487
488void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
489 uc16 c,
490 uc16 minus,
491 uc16 mask,
492 Label* on_not_equal) {
493 DCHECK(minus < String::kMaxUtf16CodeUnit);
494 __ leap(rax, Operand(current_character(), -minus));
495 __ andp(rax, Immediate(mask));
496 __ cmpl(rax, Immediate(c));
497 BranchOrBacktrack(not_equal, on_not_equal);
498}
499
500
501void RegExpMacroAssemblerX64::CheckCharacterInRange(
502 uc16 from,
503 uc16 to,
504 Label* on_in_range) {
505 __ leal(rax, Operand(current_character(), -from));
506 __ cmpl(rax, Immediate(to - from));
507 BranchOrBacktrack(below_equal, on_in_range);
508}
509
510
511void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
512 uc16 from,
513 uc16 to,
514 Label* on_not_in_range) {
515 __ leal(rax, Operand(current_character(), -from));
516 __ cmpl(rax, Immediate(to - from));
517 BranchOrBacktrack(above, on_not_in_range);
518}
519
520
521void RegExpMacroAssemblerX64::CheckBitInTable(
522 Handle<ByteArray> table,
523 Label* on_bit_set) {
524 __ Move(rax, table);
525 Register index = current_character();
526 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
527 __ movp(rbx, current_character());
528 __ andp(rbx, Immediate(kTableMask));
529 index = rbx;
530 }
531 __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
532 Immediate(0));
533 BranchOrBacktrack(not_equal, on_bit_set);
534}
535
536
537bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
538 Label* on_no_match) {
539 // Range checks (c in min..max) are generally implemented by an unsigned
540 // (c - min) <= (max - min) check, using the sequence:
541 // leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
542 // cmp(rax, Immediate(max - min))
543 switch (type) {
544 case 's':
545 // Match space-characters
546 if (mode_ == LATIN1) {
547 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
548 Label success;
549 __ cmpl(current_character(), Immediate(' '));
550 __ j(equal, &success, Label::kNear);
551 // Check range 0x09..0x0d
552 __ leap(rax, Operand(current_character(), -'\t'));
553 __ cmpl(rax, Immediate('\r' - '\t'));
554 __ j(below_equal, &success, Label::kNear);
555 // \u00a0 (NBSP).
556 __ cmpl(rax, Immediate(0x00a0 - '\t'));
557 BranchOrBacktrack(not_equal, on_no_match);
558 __ bind(&success);
559 return true;
560 }
561 return false;
562 case 'S':
563 // The emitted code for generic character classes is good enough.
564 return false;
565 case 'd':
566 // Match ASCII digits ('0'..'9')
567 __ leap(rax, Operand(current_character(), -'0'));
568 __ cmpl(rax, Immediate('9' - '0'));
569 BranchOrBacktrack(above, on_no_match);
570 return true;
571 case 'D':
572 // Match non ASCII-digits
573 __ leap(rax, Operand(current_character(), -'0'));
574 __ cmpl(rax, Immediate('9' - '0'));
575 BranchOrBacktrack(below_equal, on_no_match);
576 return true;
577 case '.': {
578 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
579 __ movl(rax, current_character());
580 __ xorp(rax, Immediate(0x01));
581 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
582 __ subl(rax, Immediate(0x0b));
583 __ cmpl(rax, Immediate(0x0c - 0x0b));
584 BranchOrBacktrack(below_equal, on_no_match);
585 if (mode_ == UC16) {
586 // Compare original value to 0x2028 and 0x2029, using the already
587 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
588 // 0x201d (0x2028 - 0x0b) or 0x201e.
589 __ subl(rax, Immediate(0x2028 - 0x0b));
590 __ cmpl(rax, Immediate(0x2029 - 0x2028));
591 BranchOrBacktrack(below_equal, on_no_match);
592 }
593 return true;
594 }
595 case 'n': {
596 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
597 __ movl(rax, current_character());
598 __ xorp(rax, Immediate(0x01));
599 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
600 __ subl(rax, Immediate(0x0b));
601 __ cmpl(rax, Immediate(0x0c - 0x0b));
602 if (mode_ == LATIN1) {
603 BranchOrBacktrack(above, on_no_match);
604 } else {
605 Label done;
606 BranchOrBacktrack(below_equal, &done);
607 // Compare original value to 0x2028 and 0x2029, using the already
608 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
609 // 0x201d (0x2028 - 0x0b) or 0x201e.
610 __ subl(rax, Immediate(0x2028 - 0x0b));
611 __ cmpl(rax, Immediate(0x2029 - 0x2028));
612 BranchOrBacktrack(above, on_no_match);
613 __ bind(&done);
614 }
615 return true;
616 }
617 case 'w': {
618 if (mode_ != LATIN1) {
619 // Table is 256 entries, so all Latin1 characters can be tested.
620 __ cmpl(current_character(), Immediate('z'));
621 BranchOrBacktrack(above, on_no_match);
622 }
623 __ Move(rbx, ExternalReference::re_word_character_map());
624 DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
625 __ testb(Operand(rbx, current_character(), times_1, 0),
626 current_character());
627 BranchOrBacktrack(zero, on_no_match);
628 return true;
629 }
630 case 'W': {
631 Label done;
632 if (mode_ != LATIN1) {
633 // Table is 256 entries, so all Latin1 characters can be tested.
634 __ cmpl(current_character(), Immediate('z'));
635 __ j(above, &done);
636 }
637 __ Move(rbx, ExternalReference::re_word_character_map());
638 DCHECK_EQ(0, word_character_map[0]); // Character '\0' is not a word char.
639 __ testb(Operand(rbx, current_character(), times_1, 0),
640 current_character());
641 BranchOrBacktrack(not_zero, on_no_match);
642 if (mode_ != LATIN1) {
643 __ bind(&done);
644 }
645 return true;
646 }
647
648 case '*':
649 // Match any character.
650 return true;
651 // No custom implementation (yet): s(UC16), S(UC16).
652 default:
653 return false;
654 }
655}
656
657
658void RegExpMacroAssemblerX64::Fail() {
659 STATIC_ASSERT(FAILURE == 0); // Return value for failure is zero.
660 if (!global()) {
661 __ Set(rax, FAILURE);
662 }
663 __ jmp(&exit_label_);
664}
665
666
667Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
668 Label return_rax;
669 // Finalize code - write the entry point code now we know how many
670 // registers we need.
671 // Entry code:
672 __ bind(&entry_label_);
673
674 // Tell the system that we have a stack frame. Because the type is MANUAL, no
675 // is generated.
676 FrameScope scope(&masm_, StackFrame::MANUAL);
677
678 // Actually emit code to start a new stack frame.
679 __ pushq(rbp);
680 __ movp(rbp, rsp);
681 // Save parameters and callee-save registers. Order here should correspond
682 // to order of kBackup_ebx etc.
683#ifdef _WIN64
684 // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
685 // Store register parameters in pre-allocated stack slots,
686 __ movq(Operand(rbp, kInputString), rcx);
687 __ movq(Operand(rbp, kStartIndex), rdx); // Passed as int32 in edx.
688 __ movq(Operand(rbp, kInputStart), r8);
689 __ movq(Operand(rbp, kInputEnd), r9);
690 // Callee-save on Win64.
691 __ pushq(rsi);
692 __ pushq(rdi);
693 __ pushq(rbx);
694#else
695 // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
696 // Push register parameters on stack for reference.
697 DCHECK_EQ(kInputString, -1 * kRegisterSize);
698 DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
699 DCHECK_EQ(kInputStart, -3 * kRegisterSize);
700 DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
701 DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
702 DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
703 __ pushq(rdi);
704 __ pushq(rsi);
705 __ pushq(rdx);
706 __ pushq(rcx);
707 __ pushq(r8);
708 __ pushq(r9);
709
710 __ pushq(rbx); // Callee-save
711#endif
712
713 __ Push(Immediate(0)); // Number of successful matches in a global regexp.
714 __ Push(Immediate(0)); // Make room for "string start - 1" constant.
715
716 // Check if we have space on the stack for registers.
717 Label stack_limit_hit;
718 Label stack_ok;
719
720 ExternalReference stack_limit =
721 ExternalReference::address_of_stack_limit(isolate());
722 __ movp(rcx, rsp);
723 __ Move(kScratchRegister, stack_limit);
724 __ subp(rcx, Operand(kScratchRegister, 0));
725 // Handle it if the stack pointer is already below the stack limit.
726 __ j(below_equal, &stack_limit_hit);
727 // Check if there is room for the variable number of registers above
728 // the stack limit.
729 __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
730 __ j(above_equal, &stack_ok);
731 // Exit with OutOfMemory exception. There is not enough space on the stack
732 // for our working registers.
733 __ Set(rax, EXCEPTION);
734 __ jmp(&return_rax);
735
736 __ bind(&stack_limit_hit);
737 __ Move(code_object_pointer(), masm_.CodeObject());
738 CallCheckStackGuardState(); // Preserves no registers beside rbp and rsp.
739 __ testp(rax, rax);
740 // If returned value is non-zero, we exit with the returned value as result.
741 __ j(not_zero, &return_rax);
742
743 __ bind(&stack_ok);
744
745 // Allocate space on stack for registers.
746 __ subp(rsp, Immediate(num_registers_ * kPointerSize));
747 // Load string length.
748 __ movp(rsi, Operand(rbp, kInputEnd));
749 // Load input position.
750 __ movp(rdi, Operand(rbp, kInputStart));
751 // Set up rdi to be negative offset from string end.
752 __ subq(rdi, rsi);
753 // Set rax to address of char before start of the string
754 // (effectively string position -1).
755 __ movp(rbx, Operand(rbp, kStartIndex));
756 __ negq(rbx);
757 if (mode_ == UC16) {
758 __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
759 } else {
760 __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
761 }
762 // Store this value in a local variable, for use when clearing
763 // position registers.
764 __ movp(Operand(rbp, kStringStartMinusOne), rax);
765
766#if V8_OS_WIN
767 // Ensure that we have written to each stack page, in order. Skipping a page
768 // on Windows can cause segmentation faults. Assuming page size is 4k.
769 const int kPageSize = 4096;
770 const int kRegistersPerPage = kPageSize / kPointerSize;
771 for (int i = num_saved_registers_ + kRegistersPerPage - 1;
772 i < num_registers_;
773 i += kRegistersPerPage) {
774 __ movp(register_location(i), rax); // One write every page.
775 }
776#endif // V8_OS_WIN
777
778 // Initialize code object pointer.
779 __ Move(code_object_pointer(), masm_.CodeObject());
780
781 Label load_char_start_regexp, start_regexp;
782 // Load newline if index is at start, previous character otherwise.
783 __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
784 __ j(not_equal, &load_char_start_regexp, Label::kNear);
785 __ Set(current_character(), '\n');
786 __ jmp(&start_regexp, Label::kNear);
787
788 // Global regexp restarts matching here.
789 __ bind(&load_char_start_regexp);
790 // Load previous char as initial value of current character register.
791 LoadCurrentCharacterUnchecked(-1, 1);
792 __ bind(&start_regexp);
793
794 // Initialize on-stack registers.
795 if (num_saved_registers_ > 0) {
796 // Fill saved registers with initial value = start offset - 1
797 // Fill in stack push order, to avoid accessing across an unwritten
798 // page (a problem on Windows).
799 if (num_saved_registers_ > 8) {
800 __ Set(rcx, kRegisterZero);
801 Label init_loop;
802 __ bind(&init_loop);
803 __ movp(Operand(rbp, rcx, times_1, 0), rax);
804 __ subq(rcx, Immediate(kPointerSize));
805 __ cmpq(rcx,
806 Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
807 __ j(greater, &init_loop);
808 } else { // Unroll the loop.
809 for (int i = 0; i < num_saved_registers_; i++) {
810 __ movp(register_location(i), rax);
811 }
812 }
813 }
814
815 // Initialize backtrack stack pointer.
816 __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
817
818 __ jmp(&start_label_);
819
820 // Exit code:
821 if (success_label_.is_linked()) {
822 // Save captures when successful.
823 __ bind(&success_label_);
824 if (num_saved_registers_ > 0) {
825 // copy captures to output
826 __ movp(rdx, Operand(rbp, kStartIndex));
827 __ movp(rbx, Operand(rbp, kRegisterOutput));
828 __ movp(rcx, Operand(rbp, kInputEnd));
829 __ subp(rcx, Operand(rbp, kInputStart));
830 if (mode_ == UC16) {
831 __ leap(rcx, Operand(rcx, rdx, times_2, 0));
832 } else {
833 __ addp(rcx, rdx);
834 }
835 for (int i = 0; i < num_saved_registers_; i++) {
836 __ movp(rax, register_location(i));
837 if (i == 0 && global_with_zero_length_check()) {
838 // Keep capture start in rdx for the zero-length check later.
839 __ movp(rdx, rax);
840 }
841 __ addp(rax, rcx); // Convert to index from start, not end.
842 if (mode_ == UC16) {
843 __ sarp(rax, Immediate(1)); // Convert byte index to character index.
844 }
845 __ movl(Operand(rbx, i * kIntSize), rax);
846 }
847 }
848
849 if (global()) {
850 // Restart matching if the regular expression is flagged as global.
851 // Increment success counter.
852 __ incp(Operand(rbp, kSuccessfulCaptures));
853 // Capture results have been stored, so the number of remaining global
854 // output registers is reduced by the number of stored captures.
855 __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
856 __ subp(rcx, Immediate(num_saved_registers_));
857 // Check whether we have enough room for another set of capture results.
858 __ cmpp(rcx, Immediate(num_saved_registers_));
859 __ j(less, &exit_label_);
860
861 __ movp(Operand(rbp, kNumOutputRegisters), rcx);
862 // Advance the location for output.
863 __ addp(Operand(rbp, kRegisterOutput),
864 Immediate(num_saved_registers_ * kIntSize));
865
866 // Prepare rax to initialize registers with its value in the next run.
867 __ movp(rax, Operand(rbp, kStringStartMinusOne));
868
869 if (global_with_zero_length_check()) {
870 // Special case for zero-length matches.
871 // rdx: capture start index
872 __ cmpp(rdi, rdx);
873 // Not a zero-length match, restart.
874 __ j(not_equal, &load_char_start_regexp);
875 // rdi (offset from the end) is zero if we already reached the end.
876 __ testp(rdi, rdi);
877 __ j(zero, &exit_label_, Label::kNear);
878 // Advance current position after a zero-length match.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100879 Label advance;
880 __ bind(&advance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000881 if (mode_ == UC16) {
882 __ addq(rdi, Immediate(2));
883 } else {
884 __ incq(rdi);
885 }
Ben Murdoch097c5b22016-05-18 11:27:45 +0100886 if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000887 }
888
889 __ jmp(&load_char_start_regexp);
890 } else {
891 __ movp(rax, Immediate(SUCCESS));
892 }
893 }
894
895 __ bind(&exit_label_);
896 if (global()) {
897 // Return the number of successful captures.
898 __ movp(rax, Operand(rbp, kSuccessfulCaptures));
899 }
900
901 __ bind(&return_rax);
902#ifdef _WIN64
903 // Restore callee save registers.
904 __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
905 __ popq(rbx);
906 __ popq(rdi);
907 __ popq(rsi);
908 // Stack now at rbp.
909#else
910 // Restore callee save register.
911 __ movp(rbx, Operand(rbp, kBackup_rbx));
912 // Skip rsp to rbp.
913 __ movp(rsp, rbp);
914#endif
915 // Exit function frame, restore previous one.
916 __ popq(rbp);
917 __ ret(0);
918
919 // Backtrack code (branch target for conditional backtracks).
920 if (backtrack_label_.is_linked()) {
921 __ bind(&backtrack_label_);
922 Backtrack();
923 }
924
925 Label exit_with_exception;
926
927 // Preempt-code
928 if (check_preempt_label_.is_linked()) {
929 SafeCallTarget(&check_preempt_label_);
930
931 __ pushq(backtrack_stackpointer());
932 __ pushq(rdi);
933
934 CallCheckStackGuardState();
935 __ testp(rax, rax);
936 // If returning non-zero, we should end execution with the given
937 // result as return value.
938 __ j(not_zero, &return_rax);
939
940 // Restore registers.
941 __ Move(code_object_pointer(), masm_.CodeObject());
942 __ popq(rdi);
943 __ popq(backtrack_stackpointer());
944 // String might have moved: Reload esi from frame.
945 __ movp(rsi, Operand(rbp, kInputEnd));
946 SafeReturn();
947 }
948
949 // Backtrack stack overflow code.
950 if (stack_overflow_label_.is_linked()) {
951 SafeCallTarget(&stack_overflow_label_);
952 // Reached if the backtrack-stack limit has been hit.
953
954 Label grow_failed;
955 // Save registers before calling C function
956#ifndef _WIN64
957 // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
958 __ pushq(rsi);
959 __ pushq(rdi);
960#endif
961
962 // Call GrowStack(backtrack_stackpointer())
963 static const int num_arguments = 3;
964 __ PrepareCallCFunction(num_arguments);
965#ifdef _WIN64
966 // Microsoft passes parameters in rcx, rdx, r8.
967 // First argument, backtrack stackpointer, is already in rcx.
968 __ leap(rdx, Operand(rbp, kStackHighEnd)); // Second argument
969 __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
970#else
971 // AMD64 ABI passes parameters in rdi, rsi, rdx.
972 __ movp(rdi, backtrack_stackpointer()); // First argument.
973 __ leap(rsi, Operand(rbp, kStackHighEnd)); // Second argument.
974 __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
975#endif
976 ExternalReference grow_stack =
977 ExternalReference::re_grow_stack(isolate());
978 __ CallCFunction(grow_stack, num_arguments);
979 // If return NULL, we have failed to grow the stack, and
980 // must exit with a stack-overflow exception.
981 __ testp(rax, rax);
982 __ j(equal, &exit_with_exception);
983 // Otherwise use return value as new stack pointer.
984 __ movp(backtrack_stackpointer(), rax);
985 // Restore saved registers and continue.
986 __ Move(code_object_pointer(), masm_.CodeObject());
987#ifndef _WIN64
988 __ popq(rdi);
989 __ popq(rsi);
990#endif
991 SafeReturn();
992 }
993
994 if (exit_with_exception.is_linked()) {
995 // If any of the code above needed to exit with an exception.
996 __ bind(&exit_with_exception);
997 // Exit with Result EXCEPTION(-1) to signal thrown exception.
998 __ Set(rax, EXCEPTION);
999 __ jmp(&return_rax);
1000 }
1001
1002 FixupCodeRelativePositions();
1003
1004 CodeDesc code_desc;
1005 masm_.GetCode(&code_desc);
1006 Isolate* isolate = this->isolate();
1007 Handle<Code> code = isolate->factory()->NewCode(
1008 code_desc, Code::ComputeFlags(Code::REGEXP),
1009 masm_.CodeObject());
Ben Murdochda12d292016-06-02 14:46:10 +01001010 PROFILE(isolate, RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001011 return Handle<HeapObject>::cast(code);
1012}
1013
1014
1015void RegExpMacroAssemblerX64::GoTo(Label* to) {
1016 BranchOrBacktrack(no_condition, to);
1017}
1018
1019
1020void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
1021 int comparand,
1022 Label* if_ge) {
1023 __ cmpp(register_location(reg), Immediate(comparand));
1024 BranchOrBacktrack(greater_equal, if_ge);
1025}
1026
1027
1028void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
1029 int comparand,
1030 Label* if_lt) {
1031 __ cmpp(register_location(reg), Immediate(comparand));
1032 BranchOrBacktrack(less, if_lt);
1033}
1034
1035
1036void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
1037 Label* if_eq) {
1038 __ cmpp(rdi, register_location(reg));
1039 BranchOrBacktrack(equal, if_eq);
1040}
1041
1042
1043RegExpMacroAssembler::IrregexpImplementation
1044 RegExpMacroAssemblerX64::Implementation() {
1045 return kX64Implementation;
1046}
1047
1048
1049void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
1050 Label* on_end_of_input,
1051 bool check_bounds,
1052 int characters) {
1053 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
1054 if (check_bounds) {
1055 if (cp_offset >= 0) {
1056 CheckPosition(cp_offset + characters - 1, on_end_of_input);
1057 } else {
1058 CheckPosition(cp_offset, on_end_of_input);
1059 }
1060 }
1061 LoadCurrentCharacterUnchecked(cp_offset, characters);
1062}
1063
1064
1065void RegExpMacroAssemblerX64::PopCurrentPosition() {
1066 Pop(rdi);
1067}
1068
1069
1070void RegExpMacroAssemblerX64::PopRegister(int register_index) {
1071 Pop(rax);
1072 __ movp(register_location(register_index), rax);
1073}
1074
1075
1076void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
1077 Push(label);
1078 CheckStackLimit();
1079}
1080
1081
1082void RegExpMacroAssemblerX64::PushCurrentPosition() {
1083 Push(rdi);
1084}
1085
1086
1087void RegExpMacroAssemblerX64::PushRegister(int register_index,
1088 StackCheckFlag check_stack_limit) {
1089 __ movp(rax, register_location(register_index));
1090 Push(rax);
1091 if (check_stack_limit) CheckStackLimit();
1092}
1093
1094
1095STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
1096
1097
1098void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
1099 if (kPointerSize == kInt64Size) {
1100 __ movq(rdi, register_location(reg));
1101 } else {
1102 // Need sign extension for x32 as rdi might be used as an index register.
1103 __ movsxlq(rdi, register_location(reg));
1104 }
1105}
1106
1107
1108void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
1109 if (kPointerSize == kInt64Size) {
1110 __ movq(dst, register_location(reg));
1111 } else {
1112 // Need sign extension for x32 as dst might be used as an index register.
1113 __ movsxlq(dst, register_location(reg));
1114 }
1115}
1116
1117
1118void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
1119 __ movp(backtrack_stackpointer(), register_location(reg));
1120 __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
1121}
1122
1123
1124void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
1125 Label after_position;
1126 __ cmpp(rdi, Immediate(-by * char_size()));
1127 __ j(greater_equal, &after_position, Label::kNear);
1128 __ movq(rdi, Immediate(-by * char_size()));
1129 // On RegExp code entry (where this operation is used), the character before
1130 // the current position is expected to be already loaded.
1131 // We have advanced the position, so it's safe to read backwards.
1132 LoadCurrentCharacterUnchecked(-1, 1);
1133 __ bind(&after_position);
1134}
1135
1136
1137void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
1138 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1139 __ movp(register_location(register_index), Immediate(to));
1140}
1141
1142
1143bool RegExpMacroAssemblerX64::Succeed() {
1144 __ jmp(&success_label_);
1145 return global();
1146}
1147
1148
1149void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
1150 int cp_offset) {
1151 if (cp_offset == 0) {
1152 __ movp(register_location(reg), rdi);
1153 } else {
1154 __ leap(rax, Operand(rdi, cp_offset * char_size()));
1155 __ movp(register_location(reg), rax);
1156 }
1157}
1158
1159
1160void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
1161 DCHECK(reg_from <= reg_to);
1162 __ movp(rax, Operand(rbp, kStringStartMinusOne));
1163 for (int reg = reg_from; reg <= reg_to; reg++) {
1164 __ movp(register_location(reg), rax);
1165 }
1166}
1167
1168
1169void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
1170 __ movp(rax, backtrack_stackpointer());
1171 __ subp(rax, Operand(rbp, kStackHighEnd));
1172 __ movp(register_location(reg), rax);
1173}
1174
1175
1176// Private methods:
1177
1178void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
1179 // This function call preserves no register values. Caller should
1180 // store anything volatile in a C call or overwritten by this function.
1181 static const int num_arguments = 3;
1182 __ PrepareCallCFunction(num_arguments);
1183#ifdef _WIN64
1184 // Second argument: Code* of self. (Do this before overwriting r8).
1185 __ movp(rdx, code_object_pointer());
1186 // Third argument: RegExp code frame pointer.
1187 __ movp(r8, rbp);
1188 // First argument: Next address on the stack (will be address of
1189 // return address).
1190 __ leap(rcx, Operand(rsp, -kPointerSize));
1191#else
1192 // Third argument: RegExp code frame pointer.
1193 __ movp(rdx, rbp);
1194 // Second argument: Code* of self.
1195 __ movp(rsi, code_object_pointer());
1196 // First argument: Next address on the stack (will be address of
1197 // return address).
1198 __ leap(rdi, Operand(rsp, -kRegisterSize));
1199#endif
1200 ExternalReference stack_check =
1201 ExternalReference::re_check_stack_guard_state(isolate());
1202 __ CallCFunction(stack_check, num_arguments);
1203}
1204
1205
1206// Helper function for reading a value out of a stack frame.
1207template <typename T>
1208static T& frame_entry(Address re_frame, int frame_offset) {
1209 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1210}
1211
1212
1213template <typename T>
1214static T* frame_entry_address(Address re_frame, int frame_offset) {
1215 return reinterpret_cast<T*>(re_frame + frame_offset);
1216}
1217
1218
1219int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
1220 Code* re_code,
1221 Address re_frame) {
1222 return NativeRegExpMacroAssembler::CheckStackGuardState(
1223 frame_entry<Isolate*>(re_frame, kIsolate),
1224 frame_entry<int>(re_frame, kStartIndex),
1225 frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
1226 frame_entry_address<String*>(re_frame, kInputString),
1227 frame_entry_address<const byte*>(re_frame, kInputStart),
1228 frame_entry_address<const byte*>(re_frame, kInputEnd));
1229}
1230
1231
1232Operand RegExpMacroAssemblerX64::register_location(int register_index) {
1233 DCHECK(register_index < (1<<30));
1234 if (num_registers_ <= register_index) {
1235 num_registers_ = register_index + 1;
1236 }
1237 return Operand(rbp, kRegisterZero - register_index * kPointerSize);
1238}
1239
1240
1241void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
1242 Label* on_outside_input) {
1243 if (cp_offset >= 0) {
1244 __ cmpl(rdi, Immediate(-cp_offset * char_size()));
1245 BranchOrBacktrack(greater_equal, on_outside_input);
1246 } else {
1247 __ leap(rax, Operand(rdi, cp_offset * char_size()));
1248 __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
1249 BranchOrBacktrack(less_equal, on_outside_input);
1250 }
1251}
1252
1253
1254void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
1255 Label* to) {
1256 if (condition < 0) { // No condition
1257 if (to == NULL) {
1258 Backtrack();
1259 return;
1260 }
1261 __ jmp(to);
1262 return;
1263 }
1264 if (to == NULL) {
1265 __ j(condition, &backtrack_label_);
1266 return;
1267 }
1268 __ j(condition, to);
1269}
1270
1271
1272void RegExpMacroAssemblerX64::SafeCall(Label* to) {
1273 __ call(to);
1274}
1275
1276
1277void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
1278 __ bind(label);
1279 __ subp(Operand(rsp, 0), code_object_pointer());
1280}
1281
1282
1283void RegExpMacroAssemblerX64::SafeReturn() {
1284 __ addp(Operand(rsp, 0), code_object_pointer());
1285 __ ret(0);
1286}
1287
1288
1289void RegExpMacroAssemblerX64::Push(Register source) {
1290 DCHECK(!source.is(backtrack_stackpointer()));
1291 // Notice: This updates flags, unlike normal Push.
1292 __ subp(backtrack_stackpointer(), Immediate(kIntSize));
1293 __ movl(Operand(backtrack_stackpointer(), 0), source);
1294}
1295
1296
1297void RegExpMacroAssemblerX64::Push(Immediate value) {
1298 // Notice: This updates flags, unlike normal Push.
1299 __ subp(backtrack_stackpointer(), Immediate(kIntSize));
1300 __ movl(Operand(backtrack_stackpointer(), 0), value);
1301}
1302
1303
1304void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
1305 for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
1306 int position = code_relative_fixup_positions_[i];
1307 // The position succeeds a relative label offset from position.
1308 // Patch the relative offset to be relative to the Code object pointer
1309 // instead.
1310 int patch_position = position - kIntSize;
1311 int offset = masm_.long_at(patch_position);
1312 masm_.long_at_put(patch_position,
1313 offset
1314 + position
1315 + Code::kHeaderSize
1316 - kHeapObjectTag);
1317 }
1318 code_relative_fixup_positions_.Clear();
1319}
1320
1321
1322void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
1323 __ subp(backtrack_stackpointer(), Immediate(kIntSize));
1324 __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
1325 MarkPositionForCodeRelativeFixup();
1326}
1327
1328
1329void RegExpMacroAssemblerX64::Pop(Register target) {
1330 DCHECK(!target.is(backtrack_stackpointer()));
1331 __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
1332 // Notice: This updates flags, unlike normal Pop.
1333 __ addp(backtrack_stackpointer(), Immediate(kIntSize));
1334}
1335
1336
1337void RegExpMacroAssemblerX64::Drop() {
1338 __ addp(backtrack_stackpointer(), Immediate(kIntSize));
1339}
1340
1341
1342void RegExpMacroAssemblerX64::CheckPreemption() {
1343 // Check for preemption.
1344 Label no_preempt;
1345 ExternalReference stack_limit =
1346 ExternalReference::address_of_stack_limit(isolate());
1347 __ load_rax(stack_limit);
1348 __ cmpp(rsp, rax);
1349 __ j(above, &no_preempt);
1350
1351 SafeCall(&check_preempt_label_);
1352
1353 __ bind(&no_preempt);
1354}
1355
1356
1357void RegExpMacroAssemblerX64::CheckStackLimit() {
1358 Label no_stack_overflow;
1359 ExternalReference stack_limit =
1360 ExternalReference::address_of_regexp_stack_limit(isolate());
1361 __ load_rax(stack_limit);
1362 __ cmpp(backtrack_stackpointer(), rax);
1363 __ j(above, &no_stack_overflow);
1364
1365 SafeCall(&stack_overflow_label_);
1366
1367 __ bind(&no_stack_overflow);
1368}
1369
1370
1371void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
1372 int characters) {
1373 if (mode_ == LATIN1) {
1374 if (characters == 4) {
1375 __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1376 } else if (characters == 2) {
1377 __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1378 } else {
1379 DCHECK(characters == 1);
1380 __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1381 }
1382 } else {
1383 DCHECK(mode_ == UC16);
1384 if (characters == 2) {
1385 __ movl(current_character(),
1386 Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1387 } else {
1388 DCHECK(characters == 1);
1389 __ movzxwl(current_character(),
1390 Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1391 }
1392 }
1393}
1394
1395#undef __
1396
1397#endif // V8_INTERPRETED_REGEXP
1398
1399} // namespace internal
1400} // namespace v8
1401
1402#endif // V8_TARGET_ARCH_X64