blob: 31dab94f121d803d704bcbe5aa332df2175c8857 [file] [log] [blame]
Ben Murdoch3ef787d2012-04-12 10:51:47 +01001// Copyright 2012 the V8 project authors. All rights reserved.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
Ben Murdochf87a2032010-10-22 12:50:53 +01004
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005#include "src/strtod.h"
6
Ben Murdochf87a2032010-10-22 12:50:53 +01007#include <stdarg.h>
Ben Murdochb8a8cc12014-11-26 15:28:44 +00008#include <cmath>
Ben Murdochf87a2032010-10-22 12:50:53 +01009
Ben Murdochb8a8cc12014-11-26 15:28:44 +000010#include "src/bignum.h"
11#include "src/cached-powers.h"
12#include "src/double.h"
13#include "src/globals.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000014#include "src/utils.h"
Ben Murdochf87a2032010-10-22 12:50:53 +010015
16namespace v8 {
17namespace internal {
18
19// 2^53 = 9007199254740992.
20// Any integer with at most 15 decimal digits will hence fit into a double
21// (which has a 53bit significand) without loss of precision.
22static const int kMaxExactDoubleIntegerDecimalDigits = 15;
John Reck59135872010-11-02 12:39:01 -070023// 2^64 = 18446744073709551616 > 10^19
Ben Murdochf87a2032010-10-22 12:50:53 +010024static const int kMaxUint64DecimalDigits = 19;
John Reck59135872010-11-02 12:39:01 -070025
Ben Murdochf87a2032010-10-22 12:50:53 +010026// Max double: 1.7976931348623157 x 10^308
27// Min non-zero double: 4.9406564584124654 x 10^-324
28// Any x >= 10^309 is interpreted as +infinity.
29// Any x <= 10^-324 is interpreted as 0.
30// Note that 2.5e-324 (despite being smaller than the min double) will be read
31// as non-zero (equal to the min non-zero double).
32static const int kMaxDecimalPower = 309;
33static const int kMinDecimalPower = -324;
34
John Reck59135872010-11-02 12:39:01 -070035// 2^64 = 18446744073709551616
36static const uint64_t kMaxUint64 = V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF);
37
38
Ben Murdochf87a2032010-10-22 12:50:53 +010039static const double exact_powers_of_ten[] = {
40 1.0, // 10^0
41 10.0,
42 100.0,
43 1000.0,
44 10000.0,
45 100000.0,
46 1000000.0,
47 10000000.0,
48 100000000.0,
49 1000000000.0,
50 10000000000.0, // 10^10
51 100000000000.0,
52 1000000000000.0,
53 10000000000000.0,
54 100000000000000.0,
55 1000000000000000.0,
56 10000000000000000.0,
57 100000000000000000.0,
58 1000000000000000000.0,
59 10000000000000000000.0,
60 100000000000000000000.0, // 10^20
61 1000000000000000000000.0,
62 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
63 10000000000000000000000.0
64};
Ben Murdochb8a8cc12014-11-26 15:28:44 +000065static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
Ben Murdochf87a2032010-10-22 12:50:53 +010066
Russell Brenner90bac252010-11-18 13:33:46 -080067// Maximum number of significant digits in the decimal representation.
68// In fact the value is 772 (see conversions.cc), but to give us some margin
69// we round up to 780.
70static const int kMaxSignificantDecimalDigits = 780;
Ben Murdochf87a2032010-10-22 12:50:53 +010071
72static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
73 for (int i = 0; i < buffer.length(); i++) {
74 if (buffer[i] != '0') {
John Reck59135872010-11-02 12:39:01 -070075 return buffer.SubVector(i, buffer.length());
Ben Murdochf87a2032010-10-22 12:50:53 +010076 }
77 }
78 return Vector<const char>(buffer.start(), 0);
79}
80
81
82static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
83 for (int i = buffer.length() - 1; i >= 0; --i) {
84 if (buffer[i] != '0') {
John Reck59135872010-11-02 12:39:01 -070085 return buffer.SubVector(0, i + 1);
Ben Murdochf87a2032010-10-22 12:50:53 +010086 }
87 }
88 return Vector<const char>(buffer.start(), 0);
89}
90
91
Russell Brenner90bac252010-11-18 13:33:46 -080092static void TrimToMaxSignificantDigits(Vector<const char> buffer,
93 int exponent,
94 char* significant_buffer,
95 int* significant_exponent) {
96 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
97 significant_buffer[i] = buffer[i];
98 }
99 // The input buffer has been trimmed. Therefore the last digit must be
100 // different from '0'.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000101 DCHECK(buffer[buffer.length() - 1] != '0');
Russell Brenner90bac252010-11-18 13:33:46 -0800102 // Set the last digit to be non-zero. This is sufficient to guarantee
103 // correct rounding.
104 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
105 *significant_exponent =
106 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
107}
108
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000109
John Reck59135872010-11-02 12:39:01 -0700110// Reads digits from the buffer and converts them to a uint64.
111// Reads in as many digits as fit into a uint64.
112// When the string starts with "1844674407370955161" no further digit is read.
113// Since 2^64 = 18446744073709551616 it would still be possible read another
114// digit if it was less or equal than 6, but this would complicate the code.
115static uint64_t ReadUint64(Vector<const char> buffer,
116 int* number_of_read_digits) {
Ben Murdochf87a2032010-10-22 12:50:53 +0100117 uint64_t result = 0;
John Reck59135872010-11-02 12:39:01 -0700118 int i = 0;
119 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
120 int digit = buffer[i++] - '0';
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000121 DCHECK(0 <= digit && digit <= 9);
Ben Murdochf87a2032010-10-22 12:50:53 +0100122 result = 10 * result + digit;
123 }
John Reck59135872010-11-02 12:39:01 -0700124 *number_of_read_digits = i;
Ben Murdochf87a2032010-10-22 12:50:53 +0100125 return result;
126}
127
128
John Reck59135872010-11-02 12:39:01 -0700129// Reads a DiyFp from the buffer.
130// The returned DiyFp is not necessarily normalized.
131// If remaining_decimals is zero then the returned DiyFp is accurate.
132// Otherwise it has been rounded and has error of at most 1/2 ulp.
133static void ReadDiyFp(Vector<const char> buffer,
134 DiyFp* result,
135 int* remaining_decimals) {
136 int read_digits;
137 uint64_t significand = ReadUint64(buffer, &read_digits);
138 if (buffer.length() == read_digits) {
139 *result = DiyFp(significand, 0);
140 *remaining_decimals = 0;
141 } else {
142 // Round the significand.
143 if (buffer[read_digits] >= '5') {
144 significand++;
145 }
146 // Compute the binary exponent.
147 int exponent = 0;
148 *result = DiyFp(significand, exponent);
149 *remaining_decimals = buffer.length() - read_digits;
150 }
151}
152
153
Ben Murdochf87a2032010-10-22 12:50:53 +0100154static bool DoubleStrtod(Vector<const char> trimmed,
155 int exponent,
156 double* result) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000157#if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 || defined(USE_SIMULATOR)) && \
158 !defined(_MSC_VER)
Ben Murdochf87a2032010-10-22 12:50:53 +0100159 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
160 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
161 // result is not accurate.
Ben Murdoch3ef787d2012-04-12 10:51:47 +0100162 // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
163 // therefore accurate.
164 // Note that the ARM and MIPS simulators are compiled for 32bits. They
165 // therefore exhibit the same problem.
Ben Murdochf87a2032010-10-22 12:50:53 +0100166 return false;
167#endif
168 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
John Reck59135872010-11-02 12:39:01 -0700169 int read_digits;
Ben Murdochf87a2032010-10-22 12:50:53 +0100170 // The trimmed input fits into a double.
171 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
172 // can compute the result-double simply by multiplying (resp. dividing) the
173 // two numbers.
174 // This is possible because IEEE guarantees that floating-point operations
175 // return the best possible approximation.
176 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
177 // 10^-exponent fits into a double.
John Reck59135872010-11-02 12:39:01 -0700178 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000179 DCHECK(read_digits == trimmed.length());
Ben Murdochf87a2032010-10-22 12:50:53 +0100180 *result /= exact_powers_of_ten[-exponent];
181 return true;
182 }
183 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
184 // 10^exponent fits into a double.
John Reck59135872010-11-02 12:39:01 -0700185 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000186 DCHECK(read_digits == trimmed.length());
Ben Murdochf87a2032010-10-22 12:50:53 +0100187 *result *= exact_powers_of_ten[exponent];
188 return true;
189 }
190 int remaining_digits =
191 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
192 if ((0 <= exponent) &&
193 (exponent - remaining_digits < kExactPowersOfTenSize)) {
194 // The trimmed string was short and we can multiply it with
195 // 10^remaining_digits. As a result the remaining exponent now fits
196 // into a double too.
John Reck59135872010-11-02 12:39:01 -0700197 *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000198 DCHECK(read_digits == trimmed.length());
Ben Murdochf87a2032010-10-22 12:50:53 +0100199 *result *= exact_powers_of_ten[remaining_digits];
200 *result *= exact_powers_of_ten[exponent - remaining_digits];
201 return true;
202 }
203 }
204 return false;
205}
206
207
John Reck59135872010-11-02 12:39:01 -0700208// Returns 10^exponent as an exact DiyFp.
209// The given exponent must be in the range [1; kDecimalExponentDistance[.
210static DiyFp AdjustmentPowerOfTen(int exponent) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000211 DCHECK(0 < exponent);
212 DCHECK(exponent < PowersOfTenCache::kDecimalExponentDistance);
John Reck59135872010-11-02 12:39:01 -0700213 // Simply hardcode the remaining powers for the given decimal exponent
214 // distance.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000215 DCHECK(PowersOfTenCache::kDecimalExponentDistance == 8);
John Reck59135872010-11-02 12:39:01 -0700216 switch (exponent) {
217 case 1: return DiyFp(V8_2PART_UINT64_C(0xa0000000, 00000000), -60);
218 case 2: return DiyFp(V8_2PART_UINT64_C(0xc8000000, 00000000), -57);
219 case 3: return DiyFp(V8_2PART_UINT64_C(0xfa000000, 00000000), -54);
220 case 4: return DiyFp(V8_2PART_UINT64_C(0x9c400000, 00000000), -50);
221 case 5: return DiyFp(V8_2PART_UINT64_C(0xc3500000, 00000000), -47);
222 case 6: return DiyFp(V8_2PART_UINT64_C(0xf4240000, 00000000), -44);
223 case 7: return DiyFp(V8_2PART_UINT64_C(0x98968000, 00000000), -40);
224 default:
225 UNREACHABLE();
226 return DiyFp(0, 0);
227 }
228}
229
230
231// If the function returns true then the result is the correct double.
232// Otherwise it is either the correct double or the double that is just below
233// the correct double.
234static bool DiyFpStrtod(Vector<const char> buffer,
235 int exponent,
236 double* result) {
237 DiyFp input;
238 int remaining_decimals;
239 ReadDiyFp(buffer, &input, &remaining_decimals);
240 // Since we may have dropped some digits the input is not accurate.
241 // If remaining_decimals is different than 0 than the error is at most
242 // .5 ulp (unit in the last place).
243 // We don't want to deal with fractions and therefore keep a common
244 // denominator.
245 const int kDenominatorLog = 3;
246 const int kDenominator = 1 << kDenominatorLog;
247 // Move the remaining decimals into the exponent.
248 exponent += remaining_decimals;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000249 int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
John Reck59135872010-11-02 12:39:01 -0700250
251 int old_e = input.e();
252 input.Normalize();
253 error <<= old_e - input.e();
254
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000255 DCHECK(exponent <= PowersOfTenCache::kMaxDecimalExponent);
John Reck59135872010-11-02 12:39:01 -0700256 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
257 *result = 0.0;
258 return true;
259 }
260 DiyFp cached_power;
261 int cached_decimal_exponent;
262 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
263 &cached_power,
264 &cached_decimal_exponent);
265
266 if (cached_decimal_exponent != exponent) {
267 int adjustment_exponent = exponent - cached_decimal_exponent;
268 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
269 input.Multiply(adjustment_power);
270 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
271 // The product of input with the adjustment power fits into a 64 bit
272 // integer.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000273 DCHECK(DiyFp::kSignificandSize == 64);
John Reck59135872010-11-02 12:39:01 -0700274 } else {
275 // The adjustment power is exact. There is hence only an error of 0.5.
276 error += kDenominator / 2;
277 }
278 }
279
280 input.Multiply(cached_power);
281 // The error introduced by a multiplication of a*b equals
282 // error_a + error_b + error_a*error_b/2^64 + 0.5
283 // Substituting a with 'input' and b with 'cached_power' we have
284 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp),
285 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
286 int error_b = kDenominator / 2;
287 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
288 int fixed_error = kDenominator / 2;
289 error += error_b + error_ab + fixed_error;
290
291 old_e = input.e();
292 input.Normalize();
293 error <<= old_e - input.e();
294
295 // See if the double's significand changes if we add/subtract the error.
296 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
297 int effective_significand_size =
298 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
299 int precision_digits_count =
300 DiyFp::kSignificandSize - effective_significand_size;
301 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
302 // This can only happen for very small denormals. In this case the
303 // half-way multiplied by the denominator exceeds the range of an uint64.
304 // Simply shift everything to the right.
305 int shift_amount = (precision_digits_count + kDenominatorLog) -
306 DiyFp::kSignificandSize + 1;
307 input.set_f(input.f() >> shift_amount);
308 input.set_e(input.e() + shift_amount);
309 // We add 1 for the lost precision of error, and kDenominator for
310 // the lost precision of input.f().
311 error = (error >> shift_amount) + 1 + kDenominator;
312 precision_digits_count -= shift_amount;
313 }
314 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000315 DCHECK(DiyFp::kSignificandSize == 64);
316 DCHECK(precision_digits_count < 64);
John Reck59135872010-11-02 12:39:01 -0700317 uint64_t one64 = 1;
318 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
319 uint64_t precision_bits = input.f() & precision_bits_mask;
320 uint64_t half_way = one64 << (precision_digits_count - 1);
321 precision_bits *= kDenominator;
322 half_way *= kDenominator;
323 DiyFp rounded_input(input.f() >> precision_digits_count,
324 input.e() + precision_digits_count);
325 if (precision_bits >= half_way + error) {
326 rounded_input.set_f(rounded_input.f() + 1);
327 }
328 // If the last_bits are too close to the half-way case than we are too
329 // inaccurate and round down. In this case we return false so that we can
330 // fall back to a more precise algorithm.
331
332 *result = Double(rounded_input).value();
333 if (half_way - error < precision_bits && precision_bits < half_way + error) {
334 // Too imprecise. The caller will have to fall back to a slower version.
335 // However the returned number is guaranteed to be either the correct
336 // double, or the next-lower double.
337 return false;
338 } else {
339 return true;
340 }
341}
342
343
Russell Brenner90bac252010-11-18 13:33:46 -0800344// Returns the correct double for the buffer*10^exponent.
345// The variable guess should be a close guess that is either the correct double
346// or its lower neighbor (the nearest double less than the correct one).
347// Preconditions:
348// buffer.length() + exponent <= kMaxDecimalPower + 1
349// buffer.length() + exponent > kMinDecimalPower
350// buffer.length() <= kMaxDecimalSignificantDigits
351static double BignumStrtod(Vector<const char> buffer,
352 int exponent,
353 double guess) {
354 if (guess == V8_INFINITY) {
355 return guess;
356 }
357
358 DiyFp upper_boundary = Double(guess).UpperBoundary();
359
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000360 DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
361 DCHECK(buffer.length() + exponent > kMinDecimalPower);
362 DCHECK(buffer.length() <= kMaxSignificantDecimalDigits);
Russell Brenner90bac252010-11-18 13:33:46 -0800363 // Make sure that the Bignum will be able to hold all our numbers.
364 // Our Bignum implementation has a separate field for exponents. Shifts will
365 // consume at most one bigit (< 64 bits).
366 // ln(10) == 3.3219...
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000367 DCHECK(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
Russell Brenner90bac252010-11-18 13:33:46 -0800368 Bignum input;
369 Bignum boundary;
370 input.AssignDecimalString(buffer);
371 boundary.AssignUInt64(upper_boundary.f());
372 if (exponent >= 0) {
373 input.MultiplyByPowerOfTen(exponent);
374 } else {
375 boundary.MultiplyByPowerOfTen(-exponent);
376 }
377 if (upper_boundary.e() > 0) {
378 boundary.ShiftLeft(upper_boundary.e());
379 } else {
380 input.ShiftLeft(-upper_boundary.e());
381 }
382 int comparison = Bignum::Compare(input, boundary);
383 if (comparison < 0) {
384 return guess;
385 } else if (comparison > 0) {
386 return Double(guess).NextDouble();
387 } else if ((Double(guess).Significand() & 1) == 0) {
388 // Round towards even.
389 return guess;
390 } else {
391 return Double(guess).NextDouble();
392 }
393}
394
395
Ben Murdochf87a2032010-10-22 12:50:53 +0100396double Strtod(Vector<const char> buffer, int exponent) {
397 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
398 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
399 exponent += left_trimmed.length() - trimmed.length();
400 if (trimmed.length() == 0) return 0.0;
Russell Brenner90bac252010-11-18 13:33:46 -0800401 if (trimmed.length() > kMaxSignificantDecimalDigits) {
402 char significant_buffer[kMaxSignificantDecimalDigits];
403 int significant_exponent;
404 TrimToMaxSignificantDigits(trimmed, exponent,
405 significant_buffer, &significant_exponent);
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800406 return Strtod(Vector<const char>(significant_buffer,
407 kMaxSignificantDecimalDigits),
408 significant_exponent);
Russell Brenner90bac252010-11-18 13:33:46 -0800409 }
Ben Murdochf87a2032010-10-22 12:50:53 +0100410 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY;
411 if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
John Reck59135872010-11-02 12:39:01 -0700412
Russell Brenner90bac252010-11-18 13:33:46 -0800413 double guess;
414 if (DoubleStrtod(trimmed, exponent, &guess) ||
415 DiyFpStrtod(trimmed, exponent, &guess)) {
416 return guess;
Ben Murdochf87a2032010-10-22 12:50:53 +0100417 }
Russell Brenner90bac252010-11-18 13:33:46 -0800418 return BignumStrtod(trimmed, exponent, guess);
Ben Murdochf87a2032010-10-22 12:50:53 +0100419}
420
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000421} // namespace internal
422} // namespace v8