| /* -*- mode: C; c-basic-offset: 3; -*- */ |
| /* |
| This file is part of drd, a thread error detector. |
| |
| Copyright (C) 2006-2009 Bart Van Assche <bart.vanassche@gmail.com>. |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| |
| #include "drd_vc.h" |
| #include "pub_tool_basics.h" // Addr, SizeT |
| #include "pub_tool_libcassert.h" // tl_assert() |
| #include "pub_tool_libcbase.h" // VG_(memcpy) |
| #include "pub_tool_libcprint.h" // VG_(printf) |
| #include "pub_tool_mallocfree.h" // VG_(malloc), VG_(free) |
| |
| |
| /* Local function declarations. */ |
| |
| static |
| void DRD_(vc_reserve)(VectorClock* const vc, const unsigned new_capacity); |
| |
| |
| /* Function definitions. */ |
| |
| /** |
| * Initialize the memory 'vc' points at as a vector clock with size 'size'. |
| * If the pointer 'vcelem' is not null, it is assumed to be an array with |
| * 'size' elements and it becomes the initial value of the vector clock. |
| */ |
| void DRD_(vc_init)(VectorClock* const vc, |
| const VCElem* const vcelem, |
| const unsigned size) |
| { |
| tl_assert(vc); |
| vc->size = 0; |
| vc->capacity = 0; |
| vc->vc = 0; |
| DRD_(vc_reserve)(vc, size); |
| tl_assert(size == 0 || vc->vc != 0); |
| if (vcelem) |
| { |
| VG_(memcpy)(vc->vc, vcelem, size * sizeof(vcelem[0])); |
| vc->size = size; |
| } |
| } |
| |
| /** Reset vc to the empty vector clock. */ |
| void DRD_(vc_cleanup)(VectorClock* const vc) |
| { |
| DRD_(vc_reserve)(vc, 0); |
| } |
| |
| /** Copy constructor -- initializes *new. */ |
| void DRD_(vc_copy)(VectorClock* const new, const VectorClock* const rhs) |
| { |
| DRD_(vc_init)(new, rhs->vc, rhs->size); |
| } |
| |
| /** Assignment operator -- *lhs is already a valid vector clock. */ |
| void DRD_(vc_assign)(VectorClock* const lhs, const VectorClock* const rhs) |
| { |
| DRD_(vc_cleanup)(lhs); |
| DRD_(vc_copy)(lhs, rhs); |
| } |
| |
| /** Increment the clock of thread 'tid' in vector clock 'vc'. */ |
| void DRD_(vc_increment)(VectorClock* const vc, DrdThreadId const tid) |
| { |
| unsigned i; |
| for (i = 0; i < vc->size; i++) |
| { |
| if (vc->vc[i].threadid == tid) |
| { |
| typeof(vc->vc[i].count) const oldcount = vc->vc[i].count; |
| vc->vc[i].count++; |
| // Check for integer overflow. |
| tl_assert(oldcount < vc->vc[i].count); |
| return; |
| } |
| } |
| |
| /* |
| * The specified thread ID does not yet exist in the vector clock |
| * -- insert it. |
| */ |
| { |
| const VCElem vcelem = { tid, 1 }; |
| VectorClock vc2; |
| DRD_(vc_init)(&vc2, &vcelem, 1); |
| DRD_(vc_combine)(vc, &vc2); |
| DRD_(vc_cleanup)(&vc2); |
| } |
| } |
| |
| /** |
| * @return True if vector clocks vc1 and vc2 are ordered, and false otherwise. |
| * Order is as imposed by thread synchronization actions ("happens before"). |
| */ |
| Bool DRD_(vc_ordered)(const VectorClock* const vc1, |
| const VectorClock* const vc2) |
| { |
| return DRD_(vc_lte)(vc1, vc2) || DRD_(vc_lte)(vc2, vc1); |
| } |
| |
| /** Compute elementwise minimum. */ |
| void DRD_(vc_min)(VectorClock* const result, const VectorClock* const rhs) |
| { |
| unsigned i; |
| unsigned j; |
| |
| tl_assert(result); |
| tl_assert(rhs); |
| |
| DRD_(vc_check)(result); |
| |
| /* Next, combine both vector clocks into one. */ |
| i = 0; |
| for (j = 0; j < rhs->size; j++) |
| { |
| while (i < result->size && result->vc[i].threadid < rhs->vc[j].threadid) |
| { |
| /* Thread ID is missing in second vector clock. Clear the count. */ |
| result->vc[i].count = 0; |
| i++; |
| } |
| if (i >= result->size) |
| { |
| break; |
| } |
| if (result->vc[i].threadid <= rhs->vc[j].threadid) |
| { |
| /* The thread ID is present in both vector clocks. Compute the */ |
| /* minimum of vc[i].count and vc[j].count. */ |
| tl_assert(result->vc[i].threadid == rhs->vc[j].threadid); |
| if (rhs->vc[j].count < result->vc[i].count) |
| { |
| result->vc[i].count = rhs->vc[j].count; |
| } |
| } |
| } |
| DRD_(vc_check)(result); |
| } |
| |
| /** |
| * Compute elementwise maximum. |
| */ |
| void DRD_(vc_combine)(VectorClock* const result, const VectorClock* const rhs) |
| { |
| DRD_(vc_combine2)(result, rhs, -1); |
| } |
| |
| /** |
| * Compute elementwise maximum. |
| * |
| * @return True if *result and *rhs are equal, or if *result and *rhs only |
| * differ in the component with thread ID tid. |
| */ |
| Bool DRD_(vc_combine2)(VectorClock* const result, |
| const VectorClock* const rhs, |
| const DrdThreadId tid) |
| { |
| unsigned i; |
| unsigned j; |
| unsigned shared; |
| unsigned new_size; |
| Bool almost_equal = True; |
| |
| tl_assert(result); |
| tl_assert(rhs); |
| |
| // First count the number of shared thread id's. |
| j = 0; |
| shared = 0; |
| for (i = 0; i < result->size; i++) |
| { |
| while (j < rhs->size && rhs->vc[j].threadid < result->vc[i].threadid) |
| j++; |
| if (j >= rhs->size) |
| break; |
| if (result->vc[i].threadid == rhs->vc[j].threadid) |
| shared++; |
| } |
| |
| DRD_(vc_check)(result); |
| |
| new_size = result->size + rhs->size - shared; |
| if (new_size > result->capacity) |
| DRD_(vc_reserve)(result, new_size); |
| |
| DRD_(vc_check)(result); |
| |
| // Next, combine both vector clocks into one. |
| i = 0; |
| for (j = 0; j < rhs->size; j++) |
| { |
| /* First of all, skip those clocks in result->vc[] for which there */ |
| /* is no corresponding clock in rhs->vc[]. */ |
| while (i < result->size && result->vc[i].threadid < rhs->vc[j].threadid) |
| { |
| if (result->vc[i].threadid != tid) |
| { |
| almost_equal = False; |
| } |
| i++; |
| } |
| /* If the end of *result is met, append rhs->vc[j] to *result. */ |
| if (i >= result->size) |
| { |
| result->size++; |
| result->vc[i] = rhs->vc[j]; |
| if (result->vc[i].threadid != tid) |
| { |
| almost_equal = False; |
| } |
| } |
| /* If clock rhs->vc[j] is not in *result, insert it. */ |
| else if (result->vc[i].threadid > rhs->vc[j].threadid) |
| { |
| unsigned k; |
| for (k = result->size; k > i; k--) |
| { |
| result->vc[k] = result->vc[k - 1]; |
| } |
| result->size++; |
| result->vc[i] = rhs->vc[j]; |
| if (result->vc[i].threadid != tid) |
| { |
| almost_equal = False; |
| } |
| } |
| /* Otherwise, both *result and *rhs have a clock for thread */ |
| /* result->vc[i].threadid == rhs->vc[j].threadid. Compute the maximum. */ |
| else |
| { |
| tl_assert(result->vc[i].threadid == rhs->vc[j].threadid); |
| if (result->vc[i].threadid != tid |
| && rhs->vc[j].count != result->vc[i].count) |
| { |
| almost_equal = False; |
| } |
| if (rhs->vc[j].count > result->vc[i].count) |
| { |
| result->vc[i].count = rhs->vc[j].count; |
| } |
| } |
| } |
| DRD_(vc_check)(result); |
| tl_assert(result->size == new_size); |
| |
| return almost_equal; |
| } |
| |
| /** Print the contents of vector clock 'vc'. */ |
| void DRD_(vc_print)(const VectorClock* const vc) |
| { |
| unsigned i; |
| |
| tl_assert(vc); |
| VG_(printf)("["); |
| for (i = 0; i < vc->size; i++) |
| { |
| tl_assert(vc->vc); |
| VG_(printf)("%s %d: %d", i > 0 ? "," : "", |
| vc->vc[i].threadid, vc->vc[i].count); |
| } |
| VG_(printf)(" ]"); |
| } |
| |
| /** |
| * Print the contents of vector clock 'vc' to the character array 'str' that |
| * has 'size' elements. |
| */ |
| void DRD_(vc_snprint)(Char* const str, const Int size, |
| const VectorClock* const vc) |
| { |
| unsigned i; |
| unsigned j = 1; |
| |
| tl_assert(vc); |
| VG_(snprintf)(str, size, "["); |
| for (i = 0; i < vc->size; i++) |
| { |
| tl_assert(vc->vc); |
| for ( ; j <= vc->vc[i].threadid; j++) |
| { |
| VG_(snprintf)(str + VG_(strlen)(str), size - VG_(strlen)(str), |
| "%s %d", |
| i > 0 ? "," : "", |
| (j == vc->vc[i].threadid) ? vc->vc[i].count : 0); |
| } |
| } |
| VG_(snprintf)(str + VG_(strlen)(str), size - VG_(strlen)(str), " ]"); |
| } |
| |
| /** |
| * Invariant test. |
| * |
| * The function below tests whether the following two conditions are |
| * satisfied: |
| * - size <= capacity. |
| * - Vector clock elements are stored in thread ID order. |
| * |
| * If one of these conditions is not met, an assertion failure is triggered. |
| */ |
| void DRD_(vc_check)(const VectorClock* const vc) |
| { |
| unsigned i; |
| tl_assert(vc->size <= vc->capacity); |
| for (i = 1; i < vc->size; i++) |
| { |
| tl_assert(vc->vc[i-1].threadid < vc->vc[i].threadid); |
| } |
| } |
| |
| /** |
| * Change the size of the memory block pointed at by vc->vc. |
| * Changes capacity, but does not change size. If the size of the memory |
| * block is increased, the newly allocated memory is not initialized. |
| */ |
| static |
| void DRD_(vc_reserve)(VectorClock* const vc, const unsigned new_capacity) |
| { |
| tl_assert(vc); |
| if (new_capacity > vc->capacity) |
| { |
| if (vc->vc) |
| { |
| vc->vc = VG_(realloc)("drd.vc.vr.1", |
| vc->vc, new_capacity * sizeof(vc->vc[0])); |
| } |
| else if (new_capacity > 0) |
| { |
| vc->vc = VG_(malloc)("drd.vc.vr.2", |
| new_capacity * sizeof(vc->vc[0])); |
| } |
| else |
| { |
| tl_assert(vc->vc == 0 && new_capacity == 0); |
| } |
| vc->capacity = new_capacity; |
| } |
| tl_assert(new_capacity == 0 || vc->vc != 0); |
| } |
| |
| #if 0 |
| /** |
| * Unit test. |
| */ |
| void DRD_(vc_test)(void) |
| { |
| VectorClock vc1; |
| VCElem vc1elem[] = { { 3, 7 }, { 5, 8 }, }; |
| VectorClock vc2; |
| VCElem vc2elem[] = { { 1, 4 }, { 3, 9 }, }; |
| VectorClock vc3; |
| VCElem vc4elem[] = { { 1, 3 }, { 2, 1 }, }; |
| VectorClock vc4; |
| VCElem vc5elem[] = { { 1, 4 }, }; |
| VectorClock vc5; |
| |
| vc_init(&vc1, vc1elem, sizeof(vc1elem)/sizeof(vc1elem[0])); |
| vc_init(&vc2, vc2elem, sizeof(vc2elem)/sizeof(vc2elem[0])); |
| vc_init(&vc3, 0, 0); |
| vc_init(&vc4, vc4elem, sizeof(vc4elem)/sizeof(vc4elem[0])); |
| vc_init(&vc5, vc5elem, sizeof(vc5elem)/sizeof(vc5elem[0])); |
| |
| vc_combine(&vc3, &vc1); |
| vc_combine(&vc3, &vc2); |
| |
| VG_(printf)("vc1: "); |
| vc_print(&vc1); |
| VG_(printf)("\nvc2: "); |
| vc_print(&vc2); |
| VG_(printf)("\nvc3: "); |
| vc_print(&vc3); |
| VG_(printf)("\n"); |
| VG_(printf)("vc_lte(vc1, vc2) = %d, vc_lte(vc1, vc3) = %d," |
| " vc_lte(vc2, vc3) = %d, vc_lte(", |
| vc_lte(&vc1, &vc2), vc_lte(&vc1, &vc3), vc_lte(&vc2, &vc3)); |
| vc_print(&vc4); |
| VG_(printf)(", "); |
| vc_print(&vc5); |
| VG_(printf)(") = %d sw %d\n", vc_lte(&vc4, &vc5), vc_lte(&vc5, &vc4)); |
| |
| vc_cleanup(&vc1); |
| vc_cleanup(&vc2); |
| vc_cleanup(&vc3); |
| } |
| #endif |