| |
| /*--------------------------------------------------------------------*/ |
| /*--- Ptrcheck: a pointer-use checker. ---*/ |
| /*--- This file checks heap accesses. ---*/ |
| /*--- h_main.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of Ptrcheck, a Valgrind tool for checking pointer |
| use in programs. |
| |
| Initial version (Annelid): |
| |
| Copyright (C) 2003-2008 Nicholas Nethercote |
| njn@valgrind.org |
| |
| Valgrind-3.X port: |
| |
| Copyright (C) 2008-2008 OpenWorks Ltd |
| info@open-works.co.uk |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| // FIXME: 64-bit cleanness, check the following |
| // struct _ISNode.ownerCount is 32-bit |
| // struct _ISNode.topLevel is 32-bit |
| // or is that not really right now? add assertion checks about |
| // the max size of a node |
| |
| // FIXME: should we shadow %RIP? Maybe not. |
| |
| // FIXME: shadows of temporaries created in preamble, a la memcheck? |
| |
| // FIXME: result of add_new_segment is always ignored |
| |
| // FIXME: the mechanism involving last_seg_added is really ugly. |
| // Do something cleaner. |
| |
| // FIXME: post_reg_write_clientcall: check function pointer comparisons |
| // are safe on toc-afflicted platforms |
| |
| // FIXME: tidy up findShadowTmp |
| |
| // FIXME: post_reg_write_demux(Vg_CoreSysCall) is redundant w.r.t. |
| // the default 'NONPTR' behaviour of post_syscall. post_reg_write_demux |
| // is called first, then post_syscall. |
| |
| // FIXME: check nothing is mapped in the lowest 1M of memory at |
| // startup, or quit (to do with nonptr_or_unknown, also sync 1M |
| // magic value with PIE default load address in m_ume.c. |
| |
| // FIXME: consider whether we could paint memory acquired from |
| // sys_read etc as NONPTR rather than UNKNOWN. |
| |
| // XXX: recycle freed segments |
| |
| //-------------------------------------------------------------- |
| // Metadata: |
| // HeapBlock.id :: Seg (stored as heap shadowchunk; always non-zero) |
| // MemLoc.aseg :: Seg (implicitly stored) |
| // MemLoc.vseg :: Seg (explicitly stored as the shadow memory) |
| // RegLoc.vseg :: Seg (explicitly stored as shadow registers) |
| // |
| // A Seg is made when new memory is created, eg. with malloc() or mmap(). |
| // There are two other Segs: |
| // - NONPTR: for something that's definitely not a pointer |
| // - UNKNOWN: for something that could be a pointer |
| // - BOTTOM: used with pointer differences (see below) |
| // |
| // MemLoc.vseg is done at word granularity. If a pointer is written |
| // to memory misaligned, the information about it will be lost -- it's |
| // treated as two sub-word writes to two adjacent words. This avoids |
| // certain nasty cases that could arise if we tried to track unaligned |
| // pointers. Fortunately, misalignment is rare so we don't lose much |
| // information this way. |
| // |
| // MemLoc.aseg is done at byte granularity, and *implicitly* -- ie. not |
| // directly accessible like MemLoc.vseg, but only by searching through all |
| // the segments. Fortunately, it's mostly checked at LOADs/STOREs; at that |
| // point we have a pointer p to the MemLoc m as the other arg of the |
| // LOAD/STORE, so we can check to see if the p.vseg's range includes m. If |
| // not, it's an error and we have to search through all segments to find out |
| // what m.aseg really is. That's still pretty fast though, thanks to the |
| // interval skip-list used. With syscalls we must also do the skip-list |
| // search, but only on the first and last bytes touched. |
| //-------------------------------------------------------------- |
| |
| //-------------------------------------------------------------- |
| // Assumptions, etc: |
| // - see comment at top of SK_(instrument)() for how sub-word ops are |
| // handled. |
| // |
| // - ioctl(), socketcall() (and ipc() will be) assumed to return non-pointers |
| // |
| // - FPU_W is assumed to never write pointers. |
| // |
| // - Assuming none of the post_mem_writes create segments worth tracking. |
| // |
| // - Treating mmap'd segments (all! including code) like heap segments. But |
| // their ranges can change, new ones can be created by unmapping parts of |
| // old segments, etc. But this nasty behaviour seems to never happen -- |
| // there are assertions checking it. |
| //-------------------------------------------------------------- |
| |
| //-------------------------------------------------------------- |
| // What I am checking: |
| // - Type errors: |
| // * ADD, OR, LEA2: error if two pointer inputs. |
| // * ADC, SBB: error if one or two pointer inputs. |
| // * AND, OR: error if two unequal pointer inputs. |
| // * NEG: error if pointer input. |
| // * {,i}mul_32_64 if either input is a pointer. |
| // * shldl/shrdl, bsf/bsr if any inputs are pointers. |
| // |
| // - LOAD, STORE: |
| // * ptr.vseg must match ptee.aseg. |
| // * ptee.aseg must not be a freed segment. |
| // |
| // - syscalls: for those accessing memory, look at first and last bytes: |
| // * check first.aseg == last.aseg |
| // * check first.aseg and last.aseg are not freed segments. |
| // |
| // What I am not checking, that I expected to when I started: |
| // - AND, XOR: allowing two pointers to be used if both from the same segment, |
| // because "xor %r,%r" is commonly used to zero %r, and "test %r,%r" |
| // (which is translated with an AND) is common too. |
| // |
| // - div_64_32/idiv_64_32 can take pointer inputs for the dividend; |
| // division doesn't make sense, but modulo does, and they're done with the |
| // same instruction. (Could try to be super-clever and watch the outputs |
| // to see if the quotient is used, but not worth it.) |
| // |
| // - mul_64_32/imul_64_32 can take pointers inputs for one arg or the |
| // other, but not both. This is because some programs (eg. Mozilla |
| // Firebird) multiply pointers in hash routines. |
| // |
| // - NEG: can take a pointer. It happens in glibc in a few places. I've |
| // seen the code, didn't understand it, but it's done deliberately. |
| // |
| // What I am not checking/doing, but could, but it would require more |
| // instrumentation and/or slow things down a bit: |
| // - SUB: when differencing two pointers, result is BOTTOM, ie. "don't |
| // check". Could link segments instead, slower but a bit more accurate. |
| // Also use BOTTOM when doing (ptr - unknown), which could be a pointer |
| // difference with a stack/static pointer. |
| // |
| // - PUTF: input should be non-pointer |
| // |
| // - arithmetic error messages: eg. for adding two pointers, just giving the |
| // segments, not the actual pointers. |
| // |
| // What I am not checking, and would be difficult: |
| // - mmap(...MAP_FIXED...) is not handled specially. It might be used in |
| // ways that fool Ptrcheck into giving false positives. |
| // |
| // - syscalls: for those accessing memory, not checking that the asegs of the |
| // accessed words match the vseg of the accessing pointer, because the |
| // vseg is not easily accessible at the required time (would required |
| // knowing for every syscall which register each arg came in, and looking |
| // there). |
| // |
| // What I am not checking, and would be difficult, but doesn't matter: |
| // - free(p): similar to syscalls, not checking that the p.vseg matches the |
| // aseg of the first byte in the block. However, Memcheck does an |
| // equivalent "bad free" check using shadow_chunks; indeed, Ptrcheck could |
| // do the same check, but there's no point duplicating functionality. So |
| // no loss, really. |
| // |
| // Other: |
| // - not doing anything with mprotect(); probably not worth the effort. |
| //-------------------------------------------------------------- |
| |
| //-------------------------------------------------------------- |
| // Todo: |
| // - Segments for stack frames. Would detect (some, large) stack |
| // over/under-runs, dangling pointers. |
| // |
| // - Segments for static data. Would detect over/under-runs. Requires |
| // reading debug info. |
| //-------------------------------------------------------------- |
| |
| //-------------------------------------------------------------- |
| // Some profiling results: |
| // twolf konq date sz |
| // 1. started 35.0s 14.7 |
| // 2. introduced GETV/PUTV 30.2s 10.1 |
| // 3. inlined check_load_or_store 5.6s 27.5s 10.1 |
| // 4. (made check_load, check_store4 regparm(0)) (27.9s) (11.0) |
| // 5. um, not sure 5.3s 27.3s 10.6 |
| // ... |
| // 6. after big changes, corrections 11.2s 32.8s 14.0 |
| // 7. removed link-segment chasing in check/L/S 8.9s 30.8s 14.0 |
| // 8. avoiding do_lea1 if k is a nonptr 8.0s 28.0s 12.9 |
| //-------------------------------------------------------------- |
| |
| //#include "vg_skin.h" |
| |
| #include "pub_tool_basics.h" |
| #include "pub_tool_libcbase.h" |
| #include "pub_tool_libcprint.h" |
| #include "pub_tool_libcassert.h" |
| #include "pub_tool_mallocfree.h" |
| #include "pub_tool_execontext.h" |
| #include "pub_tool_hashtable.h" |
| #include "pub_tool_tooliface.h" |
| #include "pub_tool_replacemalloc.h" |
| #include "pub_tool_options.h" |
| #include "pub_tool_execontext.h" |
| #include "pub_tool_aspacemgr.h" // VG_(am_shadow_malloc) |
| #include "pub_tool_vki.h" // VKI_MAX_PAGE_SIZE |
| #include "pub_tool_machine.h" // VG_({get,set}_shadow_regs_area) et al |
| #include "pub_tool_debuginfo.h" // VG_(get_fnname) |
| #include "pub_tool_threadstate.h" // VG_(get_running_tid) |
| #include "pub_tool_oset.h" |
| #include "pub_tool_vkiscnums.h" |
| #include "pub_tool_machine.h" |
| #include "pub_tool_wordfm.h" |
| #include "pub_tool_xarray.h" |
| |
| #include "pc_common.h" |
| |
| //#include "h_list.h" |
| #include "h_main.h" |
| |
| #include "sg_main.h" // sg_instrument_*, and struct _SGEnv |
| |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Debug/trace options ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Set to 1 to do sanity checks on Seg values in many places, which |
| checks if bogus Segs are in circulation. Quite expensive from a |
| performance point of view. */ |
| #define SC_SEGS 0 |
| |
| static ULong stats__client_mallocs = 0; |
| static ULong stats__client_frees = 0; |
| static ULong stats__segs_allocd = 0; |
| static ULong stats__segs_recycled = 0; |
| |
| |
| ////////////////////////////////////////////////////////////// |
| // // |
| // Segments low level storage // |
| // // |
| ////////////////////////////////////////////////////////////// |
| |
| // NONPTR, UNKNOWN, BOTTOM defined in h_main.h since |
| // pc_common.c needs to see them, for error processing |
| |
| // we only start recycling segs when this many exist |
| #define N_FREED_SEGS (1 * 1000 * 1000) |
| |
| struct _Seg { |
| Addr addr; |
| SizeT szB; /* may be zero */ |
| ExeContext* ec; /* where malloc'd or freed */ |
| /* When 1, indicates block is in use. Otherwise, used to form a |
| linked list of freed blocks, running from oldest freed block to |
| the most recently freed block. */ |
| struct _Seg* nextfree; |
| }; |
| |
| // Determines if 'a' is before, within, or after seg's range. Sets 'cmp' to |
| // -1/0/1 accordingly. Sets 'n' to the number of bytes before/within/after. |
| void Seg__cmp(Seg* seg, Addr a, Int* cmp, UWord* n) |
| { |
| if (a < seg->addr) { |
| *cmp = -1; |
| *n = seg->addr - a; |
| } else if (a < seg->addr + seg->szB && seg->szB > 0) { |
| *cmp = 0; |
| *n = a - seg->addr; |
| } else { |
| *cmp = 1; |
| *n = a - (seg->addr + seg->szB); |
| } |
| } |
| |
| inline Bool Seg__is_freed(Seg* seg) |
| { |
| if (!is_known_segment(seg)) |
| return False; |
| else |
| return seg->nextfree != (Seg*)1; |
| } |
| |
| ExeContext* Seg__where(Seg* seg) |
| { |
| tl_assert(is_known_segment(seg)); |
| return seg->ec; |
| } |
| |
| SizeT Seg__size(Seg* seg) |
| { |
| tl_assert(is_known_segment(seg)); |
| return seg->szB; |
| } |
| |
| Addr Seg__addr(Seg* seg) |
| { |
| tl_assert(is_known_segment(seg)); |
| return seg->addr; |
| } |
| |
| |
| #define N_SEGS_PER_GROUP 10000 |
| |
| typedef |
| struct _SegGroup { |
| struct _SegGroup* admin; |
| UWord nextfree; /* 0 .. N_SEGS_PER_GROUP */ |
| Seg segs[N_SEGS_PER_GROUP]; |
| } |
| SegGroup; |
| |
| static SegGroup* group_list = NULL; |
| static UWord nFreeSegs = 0; |
| static Seg* freesegs_youngest = NULL; |
| static Seg* freesegs_oldest = NULL; |
| |
| |
| static SegGroup* new_SegGroup ( void ) { |
| SegGroup* g = VG_(malloc)("pc.h_main.nTG.1", sizeof(SegGroup)); |
| VG_(memset)(g, 0, sizeof(*g)); |
| return g; |
| } |
| |
| /* Get a completely new Seg */ |
| static Seg* new_Seg ( void ) |
| { |
| Seg* teg; |
| SegGroup* g; |
| if (group_list == NULL) { |
| g = new_SegGroup(); |
| g->admin = NULL; |
| group_list = g; |
| } |
| tl_assert(group_list->nextfree <= N_SEGS_PER_GROUP); |
| if (group_list->nextfree == N_SEGS_PER_GROUP) { |
| g = new_SegGroup(); |
| g->admin = group_list; |
| group_list = g; |
| } |
| tl_assert(group_list->nextfree < N_SEGS_PER_GROUP); |
| teg = &group_list->segs[ group_list->nextfree ]; |
| group_list->nextfree++; |
| stats__segs_allocd++; |
| return teg; |
| } |
| |
| static Seg* get_Seg_for_malloc ( void ) |
| { |
| Seg* seg; |
| if (nFreeSegs < N_FREED_SEGS) { |
| seg = new_Seg(); |
| seg->nextfree = (Seg*)1; |
| return seg; |
| } |
| /* else recycle the oldest Seg in the free list */ |
| tl_assert(freesegs_youngest); |
| tl_assert(freesegs_oldest); |
| tl_assert(freesegs_youngest != freesegs_oldest); |
| seg = freesegs_oldest; |
| freesegs_oldest = seg->nextfree; |
| nFreeSegs--; |
| seg->nextfree = (Seg*)1; |
| stats__segs_recycled++; |
| return seg; |
| } |
| |
| static void set_Seg_freed ( Seg* seg ) |
| { |
| tl_assert(seg); |
| tl_assert(!Seg__is_freed(seg)); |
| if (nFreeSegs == 0) { |
| tl_assert(freesegs_oldest == NULL); |
| tl_assert(freesegs_youngest == NULL); |
| seg->nextfree = NULL; |
| freesegs_youngest = seg; |
| freesegs_oldest = seg; |
| nFreeSegs++; |
| } else { |
| tl_assert(freesegs_youngest); |
| tl_assert(freesegs_oldest); |
| if (nFreeSegs == 1) { |
| tl_assert(freesegs_youngest == freesegs_oldest); |
| } else { |
| tl_assert(freesegs_youngest != freesegs_oldest); |
| } |
| tl_assert(freesegs_youngest->nextfree == NULL); |
| tl_assert(seg != freesegs_youngest && seg != freesegs_oldest); |
| seg->nextfree = NULL; |
| freesegs_youngest->nextfree = seg; |
| freesegs_youngest = seg; |
| nFreeSegs++; |
| } |
| } |
| |
| static WordFM* addr_to_seg_map = NULL; /* GuestAddr -> Seg* */ |
| |
| static void addr_to_seg_map_ENSURE_INIT ( void ) |
| { |
| if (UNLIKELY(addr_to_seg_map == NULL)) { |
| addr_to_seg_map = VG_(newFM)( VG_(malloc), "pc.h_main.attmEI.1", |
| VG_(free), NULL/*unboxedcmp*/ ); |
| } |
| } |
| |
| static Seg* find_Seg_by_addr ( Addr ga ) |
| { |
| UWord keyW, valW; |
| addr_to_seg_map_ENSURE_INIT(); |
| if (VG_(lookupFM)( addr_to_seg_map, &keyW, &valW, (UWord)ga )) { |
| tl_assert(keyW == ga); |
| return (Seg*)valW; |
| } else { |
| return NULL; |
| } |
| } |
| |
| static void bind_addr_to_Seg ( Addr ga, Seg* seg ) |
| { |
| Bool b; |
| addr_to_seg_map_ENSURE_INIT(); |
| b = VG_(addToFM)( addr_to_seg_map, (UWord)ga, (UWord)seg ); |
| tl_assert(!b); /* else ga is already bound */ |
| } |
| |
| static void unbind_addr_from_Seg ( Addr ga ) |
| { |
| Bool b; |
| UWord keyW, valW; |
| addr_to_seg_map_ENSURE_INIT(); |
| b = VG_(delFromFM)( addr_to_seg_map, &keyW, &valW, (UWord)ga ); |
| tl_assert(b); /* else ga was not already bound */ |
| tl_assert(keyW == ga); |
| tl_assert(valW != 0); |
| } |
| |
| |
| ////////////////////////////////////////////////////////////// |
| ////////////////////////////////////////////////////////////// |
| ////////////////////////////////////////////////////////////// |
| |
| // So that post_reg_write_clientcall knows the segment just allocated. |
| static Seg* last_seg_added = NULL; |
| |
| // Returns the added heap segment |
| static Seg* add_new_segment ( ThreadId tid, Addr p, SizeT size ) |
| { |
| Seg* seg = get_Seg_for_malloc(); |
| tl_assert(seg != (Seg*)1); /* since we're using 1 as a special value */ |
| seg->addr = p; |
| seg->szB = size; |
| seg->ec = VG_(record_ExeContext)( tid, 0/*first_ip_delta*/ ); |
| tl_assert(!Seg__is_freed(seg)); |
| |
| bind_addr_to_Seg(p, seg); |
| |
| last_seg_added = seg; |
| |
| return seg; |
| } |
| |
| // Forward declarations |
| static void copy_mem( Addr from, Addr to, SizeT len ); |
| static void set_mem_unknown ( Addr a, SizeT len ); |
| |
| static inline VG_REGPARM(1) Seg* nonptr_or_unknown(UWord x); /*fwds*/ |
| |
| static |
| void* alloc_and_new_mem_heap ( ThreadId tid, |
| SizeT size, SizeT alignment, Bool is_zeroed ) |
| { |
| Addr p; |
| |
| if ( ((SSizeT)size) < 0) return NULL; |
| |
| p = (Addr)VG_(cli_malloc)(alignment, size); |
| if (is_zeroed) VG_(memset)((void*)p, 0, size); |
| |
| set_mem_unknown( p, size ); |
| add_new_segment( tid, p, size ); |
| |
| stats__client_mallocs++; |
| return (void*)p; |
| } |
| |
| static void die_and_free_mem_heap ( ThreadId tid, Seg* seg ) |
| { |
| // Empty and free the actual block |
| tl_assert(!Seg__is_freed(seg)); |
| set_mem_unknown( seg->addr, seg->szB ); |
| |
| VG_(cli_free)( (void*)seg->addr ); |
| |
| // Remember where freed |
| seg->ec = VG_(record_ExeContext)( tid, 0/*first_ip_delta*/ ); |
| |
| set_Seg_freed(seg); |
| unbind_addr_from_Seg( seg->addr ); |
| |
| stats__client_frees++; |
| } |
| |
| static void handle_free_heap( ThreadId tid, void* p ) |
| { |
| Seg* seg = find_Seg_by_addr( (Addr)p ); |
| if (!seg) { |
| /* freeing a block that wasn't malloc'd. Ignore. */ |
| return; |
| } |
| die_and_free_mem_heap( tid, seg ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Shadow memory ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Shadow memory holds one Seg for each naturally aligned (guest) |
| word. For a 32 bit target (assuming host word size == guest word |
| size) that means one Seg per 4 bytes, and each Seg occupies 4 |
| bytes. For a 64 bit target that means one Seg per 8 bytes, and |
| each Seg occupies 8 bytes. Hence in each case the overall space |
| overhead for shadow memory is 1:1. |
| |
| This does however make it a bit tricky to size SecMap.vseg[], simce |
| it needs to hold 16384 entries for 32 bit targets but only 8192 |
| entries for 64 bit targets. */ |
| |
| #if 0 |
| __attribute__((unused)) |
| static void pp_curr_ExeContext(void) |
| { |
| VG_(pp_ExeContext)( |
| VG_(get_ExeContext)( |
| VG_(get_current_or_recent_tid)() ) ); |
| VG_(message)(Vg_UserMsg, ""); |
| } |
| #endif |
| |
| #if defined(VGA_x86) || defined(VGA_ppc32) |
| # define SHMEM_SECMAP_MASK 0xFFFC |
| # define SHMEM_SECMAP_SHIFT 2 |
| # define SHMEM_IS_WORD_ALIGNED(_a) VG_IS_4_ALIGNED(_a) |
| # define SEC_MAP_WORDS (0x10000UL / 4UL) /* 16k */ |
| #elif defined(VGA_amd64) || defined(VGA_ppc64) |
| # define SHMEM_SECMAP_MASK 0xFFF8 |
| # define SHMEM_SECMAP_SHIFT 3 |
| # define SHMEM_IS_WORD_ALIGNED(_a) VG_IS_8_ALIGNED(_a) |
| # define SEC_MAP_WORDS (0x10000UL / 8UL) /* 8k */ |
| #else |
| # error "Unknown arch" |
| #endif |
| |
| typedef |
| struct { |
| Seg* vseg[SEC_MAP_WORDS]; |
| } |
| SecMap; |
| |
| static SecMap distinguished_secondary_map; |
| |
| /* An entry in the primary map. base must be a 64k-aligned value, and |
| sm points at the relevant secondary map. The secondary may be |
| either a real secondary, or the distinguished secondary. DO NOT |
| CHANGE THIS LAYOUT: the first word has to be the key for OSet fast |
| lookups. |
| */ |
| typedef |
| struct { |
| Addr base; |
| SecMap* sm; |
| } |
| PriMapEnt; |
| |
| /* Primary map is an OSet of PriMapEnt (primap_L2), "fronted" by a |
| cache (primap_L1). */ |
| |
| /* Tunable parameter: How big is the L1 queue? */ |
| #define N_PRIMAP_L1 24 |
| |
| /* Tunable parameter: How far along the L1 queue to insert |
| entries resulting from L2 lookups? */ |
| #define PRIMAP_L1_INSERT_IX 12 |
| |
| static struct { |
| Addr base; // must be 64k aligned |
| PriMapEnt* ent; // pointer to the matching primap_L2 node |
| } |
| primap_L1[N_PRIMAP_L1]; |
| |
| static OSet* primap_L2 = NULL; |
| |
| |
| /* # searches initiated in auxmap_L1, and # base cmps required */ |
| static ULong n_primap_L1_searches = 0; |
| static ULong n_primap_L1_cmps = 0; |
| /* # of searches that missed in auxmap_L1 and therefore had to |
| be handed to auxmap_L2. And the number of nodes inserted. */ |
| static ULong n_primap_L2_searches = 0; |
| static ULong n_primap_L2_nodes = 0; |
| |
| |
| static void init_shadow_memory ( void ) |
| { |
| Int i; |
| |
| for (i = 0; i < SEC_MAP_WORDS; i++) |
| distinguished_secondary_map.vseg[i] = NONPTR; |
| |
| for (i = 0; i < N_PRIMAP_L1; i++) { |
| primap_L1[i].base = 1; /* not 64k aligned, so doesn't match any |
| request ==> slot is empty */ |
| primap_L1[i].ent = NULL; |
| } |
| |
| tl_assert(0 == offsetof(PriMapEnt,base)); |
| tl_assert(sizeof(Addr) == sizeof(void*)); |
| primap_L2 = VG_(OSetGen_Create)( /*keyOff*/ offsetof(PriMapEnt,base), |
| /*fastCmp*/ NULL, |
| VG_(malloc), "pc.h_main.ism.1", |
| VG_(free) ); |
| tl_assert(primap_L2); |
| } |
| |
| static void insert_into_primap_L1_at ( Word rank, PriMapEnt* ent ) |
| { |
| Word i; |
| tl_assert(ent); |
| tl_assert(rank >= 0 && rank < N_PRIMAP_L1); |
| for (i = N_PRIMAP_L1-1; i > rank; i--) |
| primap_L1[i] = primap_L1[i-1]; |
| primap_L1[rank].base = ent->base; |
| primap_L1[rank].ent = ent; |
| } |
| |
| static inline PriMapEnt* maybe_find_in_primap ( Addr a ) |
| { |
| PriMapEnt key; |
| PriMapEnt* res; |
| Word i; |
| |
| a &= ~(Addr)0xFFFF; |
| |
| /* First search the front-cache, which is a self-organising |
| list containing the most popular entries. */ |
| |
| if (LIKELY(primap_L1[0].base == a)) |
| return primap_L1[0].ent; |
| if (LIKELY(primap_L1[1].base == a)) { |
| Addr t_base = primap_L1[0].base; |
| PriMapEnt* t_ent = primap_L1[0].ent; |
| primap_L1[0].base = primap_L1[1].base; |
| primap_L1[0].ent = primap_L1[1].ent; |
| primap_L1[1].base = t_base; |
| primap_L1[1].ent = t_ent; |
| return primap_L1[0].ent; |
| } |
| |
| n_primap_L1_searches++; |
| |
| for (i = 0; i < N_PRIMAP_L1; i++) { |
| if (primap_L1[i].base == a) { |
| break; |
| } |
| } |
| tl_assert(i >= 0 && i <= N_PRIMAP_L1); |
| |
| n_primap_L1_cmps += (ULong)(i+1); |
| |
| if (i < N_PRIMAP_L1) { |
| if (i > 0) { |
| Addr t_base = primap_L1[i-1].base; |
| PriMapEnt* t_ent = primap_L1[i-1].ent; |
| primap_L1[i-1].base = primap_L1[i-0].base; |
| primap_L1[i-1].ent = primap_L1[i-0].ent; |
| primap_L1[i-0].base = t_base; |
| primap_L1[i-0].ent = t_ent; |
| i--; |
| } |
| return primap_L1[i].ent; |
| } |
| |
| n_primap_L2_searches++; |
| |
| /* First see if we already have it. */ |
| key.base = a; |
| key.sm = 0; |
| |
| res = VG_(OSetGen_Lookup)(primap_L2, &key); |
| if (res) |
| insert_into_primap_L1_at( PRIMAP_L1_INSERT_IX, res ); |
| return res; |
| } |
| |
| static SecMap* alloc_secondary_map ( void ) |
| { |
| SecMap* map; |
| UInt i; |
| |
| // JRS 2008-June-25: what's the following assertion for? |
| tl_assert(0 == (sizeof(SecMap) % VKI_MAX_PAGE_SIZE)); |
| |
| map = VG_(am_shadow_alloc)( sizeof(SecMap) ); |
| if (map == NULL) |
| VG_(out_of_memory_NORETURN)( "annelid:allocate new SecMap", |
| sizeof(SecMap) ); |
| |
| for (i = 0; i < SEC_MAP_WORDS; i++) |
| map->vseg[i] = NONPTR; |
| if (0) VG_(printf)("XXX new secmap %p\n", map); |
| return map; |
| } |
| |
| static PriMapEnt* find_or_alloc_in_primap ( Addr a ) |
| { |
| PriMapEnt *nyu, *res; |
| |
| /* First see if we already have it. */ |
| res = maybe_find_in_primap( a ); |
| if (LIKELY(res)) |
| return res; |
| |
| /* Ok, there's no entry in the secondary map, so we'll have |
| to allocate one. */ |
| a &= ~(Addr)0xFFFF; |
| |
| nyu = (PriMapEnt*) VG_(OSetGen_AllocNode)( |
| primap_L2, sizeof(PriMapEnt) ); |
| tl_assert(nyu); |
| nyu->base = a; |
| nyu->sm = alloc_secondary_map(); |
| tl_assert(nyu->sm); |
| VG_(OSetGen_Insert)( primap_L2, nyu ); |
| insert_into_primap_L1_at( PRIMAP_L1_INSERT_IX, nyu ); |
| n_primap_L2_nodes++; |
| return nyu; |
| } |
| |
| ///////////////////////////////////////////////// |
| |
| // Nb: 'a' must be naturally word aligned for the host. |
| static inline Seg* get_mem_vseg ( Addr a ) |
| { |
| SecMap* sm = find_or_alloc_in_primap(a)->sm; |
| UWord sm_off = (a & SHMEM_SECMAP_MASK) >> SHMEM_SECMAP_SHIFT; |
| tl_assert(SHMEM_IS_WORD_ALIGNED(a)); |
| return sm->vseg[sm_off]; |
| } |
| |
| // Nb: 'a' must be naturally word aligned for the host. |
| static inline void set_mem_vseg ( Addr a, Seg* vseg ) |
| { |
| SecMap* sm = find_or_alloc_in_primap(a)->sm; |
| UWord sm_off = (a & SHMEM_SECMAP_MASK) >> SHMEM_SECMAP_SHIFT; |
| tl_assert(SHMEM_IS_WORD_ALIGNED(a)); |
| sm->vseg[sm_off] = vseg; |
| } |
| |
| // Find the Seg which contains the given address. |
| // Returns UNKNOWN if no matches. Never returns BOTTOM or NONPTR. |
| // Also, only returns in-use segments, not freed ones. |
| /* Doing this fast is distinctly difficult when there are more than a |
| few heap allocated blocks live. Basically it is done by searching |
| addr_to_seg_map for 'a'. |
| |
| First, if 'a' is the start address of a segment, then we can detect |
| that by simply doing a VG_(lookupFM) of 'a', and we are done (nice |
| and easy). |
| |
| If 'a' is within some segment, but does not point to the start, it |
| is much more complex. We use VG_(findBoundsFM) to find the segment |
| with the largest .addr field which is <= a, and we then inspect the |
| segment to see if 'a' really falls inside it or not. This is all a |
| bit complex and fragile, and so there's a lot of assertery in the |
| code below. It has been crosschecked however against the trivial |
| _SLOW implementation shown after the end of this fn. |
| */ |
| static Seg* get_Seg_containing_addr( Addr a ) |
| { |
| UWord keyW, valW; |
| Seg* s2; |
| |
| /* Since we are going to poke around in it */ |
| addr_to_seg_map_ENSURE_INIT(); |
| |
| /* first, see if 'a' is at the start of a block. We do this both |
| because it's easy and more imporantly because VG_(findBoundsFM) |
| will fail in this case, so we need to exclude it first. */ |
| if (VG_(lookupFM)( addr_to_seg_map, &keyW, &valW, a )) { |
| tl_assert(keyW == a); |
| s2 = (Seg*)valW; |
| tl_assert(s2->addr == a); |
| } else { |
| Bool ok; |
| UWord kMin, vMin, kMax, vMax; |
| Seg minSeg; |
| Seg maxSeg; |
| UWord minAddr = 0; |
| UWord maxAddr = ~minAddr; |
| VG_(memset)(&minSeg, 0, sizeof(minSeg)); |
| VG_(memset)(&maxSeg, 0, sizeof(maxSeg)); |
| minSeg.addr = minAddr; |
| maxSeg.addr = maxAddr; |
| ok = VG_(findBoundsFM)( addr_to_seg_map, |
| &kMin, &vMin, &kMax, &vMax, |
| minAddr, (UWord)&minSeg, |
| maxAddr, (UWord)&maxSeg, a ); |
| tl_assert(ok); /* must be so, since False is only returned when |
| 'a' is directly present in the map, and we |
| just established that it isn't. */ |
| /* At this point, either vMin points at minSeg, or it points at a |
| real Seg. In the former case, there is no live heap-allocated |
| Seg which has a start address <= a, so a is not in any block. |
| In the latter case, the Seg vMin points at may or may not |
| actually contain 'a'; we can only tell that by inspecting the |
| Seg itself. */ |
| s2 = (Seg*)vMin; |
| tl_assert(kMin == s2->addr); |
| if (s2 == &minSeg) { |
| /* the former */ |
| s2 = UNKNOWN; |
| } else { |
| /* the latter */ |
| tl_assert(s2->addr <= a); |
| /* if s2 doesn't actually contain 'a', we must forget about it. */ |
| if (s2->szB == 0 /* a zero sized block can't contain anything */ |
| || s2->addr + s2->szB < a /* the usual range check */) |
| s2 = UNKNOWN; |
| } |
| /* while we're at it, do as much assertery as we can, since this |
| is all rather complex. Either vMax points at maxSeg, or it |
| points to a real block, which must have a start address |
| greater than a. */ |
| tl_assert(kMax == ((Seg*)vMax)->addr); |
| if (vMax == (UWord)&maxSeg) { |
| /* nothing we can check */ |
| } else { |
| tl_assert(a < kMax); /* hence also a < ((Seg*)vMax)->addr */ |
| } |
| } |
| |
| return s2; |
| } |
| |
| /* XXXX very slow reference implementation. Do not use. |
| static Seg* get_Seg_containing_addr_SLOW( Addr a ) |
| { |
| SegGroup* group; |
| UWord i; |
| stats__slow_searches++; |
| for (group = group_list; group; group = group->admin) { |
| for (i = 0; i < group->nextfree; i++) { |
| stats__slow_totcmps++; |
| if (Seg__is_freed(&group->segs[i])) |
| continue; |
| if (group->segs[i].addr <= a |
| && a < group->segs[i].addr + group->segs[i].szB) |
| return &group->segs[i]; |
| } |
| } |
| return UNKNOWN; |
| } |
| */ |
| |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- malloc() et al replacements ---*/ |
| /*------------------------------------------------------------*/ |
| |
| void* h_replace_malloc ( ThreadId tid, SizeT n ) |
| { |
| return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), |
| /*is_zeroed*/False ); |
| } |
| |
| void* h_replace___builtin_new ( ThreadId tid, SizeT n ) |
| { |
| return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), |
| /*is_zeroed*/False ); |
| } |
| |
| void* h_replace___builtin_vec_new ( ThreadId tid, SizeT n ) |
| { |
| return alloc_and_new_mem_heap ( tid, n, VG_(clo_alignment), |
| /*is_zeroed*/False ); |
| } |
| |
| void* h_replace_memalign ( ThreadId tid, SizeT align, SizeT n ) |
| { |
| return alloc_and_new_mem_heap ( tid, n, align, |
| /*is_zeroed*/False ); |
| } |
| |
| void* h_replace_calloc ( ThreadId tid, SizeT nmemb, SizeT size1 ) |
| { |
| return alloc_and_new_mem_heap ( tid, nmemb*size1, VG_(clo_alignment), |
| /*is_zeroed*/True ); |
| } |
| |
| void h_replace_free ( ThreadId tid, void* p ) |
| { |
| // Should arguably check here if p.vseg matches the segID of the |
| // pointed-to block... unfortunately, by this stage, we don't know what |
| // p.vseg is, because we don't know the address of p (the p here is a |
| // copy, and we've lost the address of its source). To do so would |
| // require passing &p in, which would require rewriting part of |
| // vg_replace_malloc.c... argh. |
| // |
| // However, Memcheck does free checking, and will catch almost all |
| // violations this checking would have caught. (Would only miss if we |
| // unluckily passed an unrelated pointer to the very start of a heap |
| // block that was unrelated to that block. This is very unlikely!) So |
| // we haven't lost much. |
| |
| handle_free_heap(tid, p); |
| } |
| |
| void h_replace___builtin_delete ( ThreadId tid, void* p ) |
| { |
| handle_free_heap(tid, p); |
| } |
| |
| void h_replace___builtin_vec_delete ( ThreadId tid, void* p ) |
| { |
| handle_free_heap(tid, p); |
| } |
| |
| void* h_replace_realloc ( ThreadId tid, void* p_old, SizeT new_size ) |
| { |
| Seg* seg; |
| |
| /* First try and find the block. */ |
| seg = find_Seg_by_addr( (Addr)p_old ); |
| if (!seg) |
| return NULL; |
| |
| tl_assert(seg->addr == (Addr)p_old); |
| |
| if (new_size <= seg->szB) { |
| /* new size is smaller: allocate, copy from old to new */ |
| Addr p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); |
| VG_(memcpy)((void*)p_new, p_old, new_size); |
| |
| /* Notification: copy retained part */ |
| copy_mem ( (Addr)p_old, p_new, new_size ); |
| |
| /* Free old memory */ |
| die_and_free_mem_heap( tid, seg ); |
| |
| /* This has to be after die_and_free_mem_heap, otherwise the |
| former succeeds in shorting out the new block, not the |
| old, in the case when both are on the same list. */ |
| add_new_segment ( tid, p_new, new_size ); |
| |
| return (void*)p_new; |
| } else { |
| /* new size is bigger: allocate, copy from old to new */ |
| Addr p_new = (Addr)VG_(cli_malloc)(VG_(clo_alignment), new_size); |
| VG_(memcpy)((void*)p_new, p_old, seg->szB); |
| |
| /* Notification: first half kept and copied, second half new */ |
| copy_mem ( (Addr)p_old, p_new, seg->szB ); |
| set_mem_unknown( p_new + seg->szB, new_size - seg->szB ); |
| |
| /* Free old memory */ |
| die_and_free_mem_heap( tid, seg ); |
| |
| /* This has to be after die_and_free_mem_heap, otherwise the |
| former succeeds in shorting out the new block, not the old, |
| in the case when both are on the same list. NB jrs |
| 2008-Sept-11: not sure if this comment is valid/correct any |
| more -- I suspect not. */ |
| add_new_segment ( tid, p_new, new_size ); |
| |
| return (void*)p_new; |
| } |
| } |
| |
| SizeT h_replace_malloc_usable_size ( ThreadId tid, void* p ) |
| { |
| Seg* seg = find_Seg_by_addr( (Addr)p ); |
| |
| // There may be slop, but pretend there isn't because only the asked-for |
| // area will have been shadowed properly. |
| return ( seg ? seg->szB : 0 ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Memory events ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static inline |
| void set_mem ( Addr a, SizeT len, Seg* seg ) |
| { |
| Addr end; |
| |
| if (0 == len) |
| return; |
| |
| if (len > 100 * 1000 * 1000) |
| VG_(message)(Vg_UserMsg, |
| "Warning: set address range state: large range %lu", len); |
| |
| a = VG_ROUNDDN(a, sizeof(UWord)); |
| end = VG_ROUNDUP(a + len, sizeof(UWord)); |
| for ( ; a < end; a += sizeof(UWord)) |
| set_mem_vseg(a, seg); |
| } |
| |
| static void set_mem_unknown( Addr a, SizeT len ) |
| { |
| set_mem( a, len, UNKNOWN ); |
| } |
| |
| //zz static void set_mem_nonptr( Addr a, UInt len ) |
| //zz { |
| //zz set_mem( a, len, NONPTR ); |
| //zz } |
| |
| void h_new_mem_startup( Addr a, SizeT len, |
| Bool rr, Bool ww, Bool xx, ULong di_handle ) |
| { |
| if (0) VG_(printf)("new_mem_startup(%#lx,%lu)\n", a, len); |
| set_mem_unknown( a, len ); |
| //add_new_segment( VG_(get_running_tid)(), a, len, SegMmap ); |
| } |
| |
| //zz // XXX: Currently not doing anything with brk() -- new segments, or not? |
| //zz // Proper way to do it would be to grow/shrink a single, special brk segment. |
| //zz // |
| //zz // brk is difficult: it defines a single segment, of changeable size. |
| //zz // It starts off with size zero, at the address given by brk(0). There are |
| //zz // no pointers within the program to it. Any subsequent calls by the |
| //zz // program to brk() (possibly growing or shrinking it) return pointers to |
| //zz // the *end* of the segment (nb: this is the kernel brk(), which is |
| //zz // different to the libc brk()). |
| //zz // |
| //zz // If fixing this, don't forget to update the brk case in SK_(post_syscall). |
| //zz // |
| //zz // Nb: not sure if the return value is the last byte addressible, or one |
| //zz // past the end of the segment. |
| //zz // |
| //zz static void new_mem_brk( Addr a, UInt len ) |
| //zz { |
| //zz set_mem_unknown(a, len); |
| //zz //VG_(skin_panic)("can't handle new_mem_brk"); |
| //zz } |
| |
| // Not quite right: if you mmap a segment into a specified place, it could |
| // be legitimate to do certain arithmetic with the pointer that it wouldn't |
| // otherwise. Hopefully this is rare, though. |
| void h_new_mem_mmap( Addr a, SizeT len, |
| Bool rr, Bool ww, Bool xx, ULong di_handle ) |
| { |
| if (0) VG_(printf)("new_mem_mmap(%#lx,%lu)\n", a, len); |
| //zz #if 0 |
| //zz Seg seg = NULL; |
| //zz |
| //zz // Check for overlapping segments |
| //zz #if 0 |
| //zz is_overlapping_seg___a = a; // 'free' variable |
| //zz is_overlapping_seg___len = len; // 'free' variable |
| //zz seg = (Seg)VG_(HT_first_match) ( mlist, is_overlapping_seg ); |
| //zz is_overlapping_seg___a = 0; // paranoia, reset |
| //zz is_overlapping_seg___len = 0; // paranoia, reset |
| //zz #endif |
| //zz |
| //zz // XXX: do this check properly with ISLists |
| //zz |
| //zz if ( ISList__findI( seglist, a, &seg )) { |
| //zz sk_assert(SegMmap == seg->status || SegMmapFree == seg->status); |
| //zz if (SegMmap == seg->status) |
| //zz |
| //zz } |
| //zz |
| //zz if (NULL != seg) { |
| //zz // Right, we found an overlap |
| //zz if (VG_(clo_verbosity) > 1) |
| //zz VG_(message)(Vg_UserMsg, "mmap overlap: old: %#lx, %d; new: %#lx, %d", |
| //zz seg->left, Seg__size(seg), a, len); |
| //zz if (seg->left <= a && a <= seg->right) { |
| //zz // New one truncates end of the old one. Nb: we don't adjust its |
| //zz // size, because the first segment's pointer can be (and for |
| //zz // Konqueror, is) legitimately used to access parts of the second |
| //zz // segment. At least, I assume Konqueror is doing something legal. |
| //zz // so that a size mismatch upon munmap isn't a problem. |
| //zz // seg->size = a - seg->data; |
| //zz // seg->is_truncated_map = True; |
| //zz // if (VG_(clo_verbosity) > 1) |
| //zz // VG_(message)(Vg_UserMsg, "old seg truncated to length %d", |
| //zz // seg->size); |
| //zz } else { |
| //zz VG_(skin_panic)("Can't handle this mmap() overlap case"); |
| //zz } |
| //zz } |
| set_mem_unknown( a, len ); |
| //add_new_segment( VG_(get_running_tid)(), a, len, SegMmap ); |
| //zz #endif |
| } |
| |
| static void copy_mem( Addr from, Addr to, SizeT len ) |
| { |
| Addr fromend = from + len; |
| |
| // Must be aligned due to malloc always returning aligned objects. |
| tl_assert(VG_IS_8_ALIGNED(from) && VG_IS_8_ALIGNED(to)); |
| |
| // Must only be called with positive len. |
| if (0 == len) |
| return; |
| |
| for ( ; from < fromend; from += sizeof(UWord), to += sizeof(UWord)) |
| set_mem_vseg( to, get_mem_vseg(from) ); |
| } |
| |
| //zz // Similar to SK_(realloc)() |
| //zz static void copy_mem_remap( Addr from, Addr to, UInt len ) |
| //zz { |
| //zz VG_(skin_panic)("argh: copy_mem_remap"); |
| //zz } |
| //zz |
| //zz static void die_mem_brk( Addr a, UInt len ) |
| //zz { |
| //zz set_mem_unknown(a, len); |
| //zz // VG_(skin_panic)("can't handle die_mem_brk()"); |
| //zz } |
| |
| void h_die_mem_munmap( Addr a, SizeT len ) |
| { |
| // handle_free_munmap( (void*)a, len ); |
| } |
| |
| // Don't need to check all addresses within the block; in the absence of |
| // discontiguous segments, the segments for the first and last bytes should |
| // be the same. Can't easily check the pointer segment matches the block |
| // segment, unfortunately, but the first/last check should catch most |
| // errors. |
| static void pre_mem_access2 ( CorePart part, ThreadId tid, Char* str, |
| Addr s/*tart*/, Addr e/*nd*/ ) |
| { |
| Seg *seglo, *seghi; |
| Bool s_in_seglo, s_in_seghi, e_in_seglo, e_in_seghi; |
| |
| // Don't check code being translated -- very slow, and not much point |
| if (Vg_CoreTranslate == part) return; |
| |
| // Don't check the signal case -- only happens in core, no need to check |
| if (Vg_CoreSignal == part) return; |
| |
| // Only expect syscalls after this point |
| if (part != Vg_CoreSysCall) { |
| VG_(printf)("part = %d\n", part); |
| VG_(tool_panic)("unknown corepart in pre_mem_access2"); |
| } |
| |
| // Check first and last bytes match |
| seglo = get_Seg_containing_addr( s ); |
| seghi = get_Seg_containing_addr( e ); |
| tl_assert( BOTTOM != seglo && NONPTR != seglo ); |
| tl_assert( BOTTOM != seghi && NONPTR != seghi ); |
| |
| /* so seglo and seghi are either UNKNOWN or P(..) */ |
| s_in_seglo |
| = is_known_segment(seglo) |
| && seglo->addr <= s && s < seglo->addr + seglo->szB; |
| s_in_seghi |
| = is_known_segment(seghi) |
| && seghi->addr <= s && s < seghi->addr + seghi->szB; |
| e_in_seglo |
| = is_known_segment(seglo) |
| && seglo->addr <= e && e < seglo->addr + seglo->szB; |
| e_in_seghi |
| = is_known_segment(seghi) |
| && seghi->addr <= e && e < seghi->addr + seghi->szB; |
| |
| /* record an error if start and end are in different, but known |
| segments */ |
| if (is_known_segment(seglo) && is_known_segment(seghi) |
| && seglo != seghi) { |
| h_record_sysparam_error(tid, part, str, s, e, seglo, seghi); |
| } |
| else |
| /* record an error if start is in a known segment but end isn't */ |
| if (is_known_segment(seglo) && !is_known_segment(seghi)) { |
| h_record_sysparam_error(tid, part, str, s, e, seglo, UNKNOWN); |
| } |
| else |
| /* record an error if end is in a known segment but start isn't */ |
| if (!is_known_segment(seglo) && is_known_segment(seghi)) { |
| h_record_sysparam_error(tid, part, str, s, e, UNKNOWN, seghi); |
| } |
| } |
| |
| void h_pre_mem_access ( CorePart part, ThreadId tid, Char* s, |
| Addr base, SizeT size ) |
| { |
| pre_mem_access2( part, tid, s, base, base + size - 1 ); |
| } |
| |
| void h_pre_mem_read_asciiz ( CorePart part, ThreadId tid, |
| Char* s, Addr lo ) |
| { |
| Addr hi = lo; |
| |
| // Nb: the '\0' must be included in the lo...hi range |
| while ('\0' != *(Char*)hi) hi++; |
| pre_mem_access2( part, tid, s, lo, hi ); |
| } |
| |
| //zz static void post_mem_write(Addr a, UInt len) |
| //zz { |
| //zz set_mem_unknown(a, len); |
| //zz } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Register event handlers ---*/ |
| /*------------------------------------------------------------*/ |
| |
| //zz static void post_regs_write_init ( void ) |
| //zz { |
| //zz UInt i; |
| //zz for (i = R_EAX; i <= R_EDI; i++) |
| //zz VG_(set_shadow_archreg)( i, (UInt)UNKNOWN ); |
| //zz |
| //zz // Don't bother about eflags |
| //zz } |
| |
| // BEGIN move this uglyness to pc_machine.c |
| |
| static inline Bool host_is_big_endian ( void ) { |
| UInt x = 0x11223344; |
| return 0x1122 == *(UShort*)(&x); |
| } |
| static inline Bool host_is_little_endian ( void ) { |
| UInt x = 0x11223344; |
| return 0x3344 == *(UShort*)(&x); |
| } |
| |
| #define N_INTREGINFO_OFFSETS 4 |
| |
| /* Holds the result of a query to 'get_IntRegInfo'. Valid values for |
| n_offsets are: |
| |
| -1: means the queried guest state slice exactly matches |
| one integer register |
| |
| 0: means the queried guest state slice does not overlap any |
| integer registers |
| |
| 1 .. N_INTREGINFO_OFFSETS: means the queried guest state offset |
| overlaps n_offsets different integer registers, and their base |
| offsets are placed in the offsets array. |
| */ |
| typedef |
| struct { |
| Int offsets[N_INTREGINFO_OFFSETS]; |
| Int n_offsets; |
| } |
| IntRegInfo; |
| |
| |
| #if defined(VGA_x86) |
| # include "libvex_guest_x86.h" |
| # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestX86State) |
| #endif |
| |
| #if defined(VGA_amd64) |
| # include "libvex_guest_amd64.h" |
| # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestAMD64State) |
| # define PC_OFF_FS_ZERO offsetof(VexGuestAMD64State,guest_FS_ZERO) |
| # define PC_SZB_FS_ZERO sizeof( ((VexGuestAMD64State*)0)->guest_FS_ZERO) |
| #endif |
| |
| #if defined(VGA_ppc32) |
| # include "libvex_guest_ppc32.h" |
| # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestPPC32State) |
| #endif |
| |
| #if defined(VGA_ppc64) |
| # include "libvex_guest_ppc64.h" |
| # define MC_SIZEOF_GUEST_STATE sizeof(VexGuestPPC64State) |
| #endif |
| |
| |
| /* See description on definition of type IntRegInfo. */ |
| static void get_IntRegInfo ( /*OUT*/IntRegInfo* iii, Int offset, Int szB ) |
| { |
| /* --------------------- x86 --------------------- */ |
| |
| # if defined(VGA_x86) |
| |
| # define GOF(_fieldname) \ |
| (offsetof(VexGuestX86State,guest_##_fieldname)) |
| |
| Int o = offset; |
| Int sz = szB; |
| Bool is4 = sz == 4; |
| Bool is21 = sz == 2 || sz == 1; |
| |
| tl_assert(sz > 0); |
| tl_assert(host_is_little_endian()); |
| |
| /* Set default state to "does not intersect any int register". */ |
| VG_(memset)( iii, 0, sizeof(*iii) ); |
| |
| /* Exact accesses to integer registers */ |
| if (o == GOF(EAX) && is4) goto exactly1; |
| if (o == GOF(ECX) && is4) goto exactly1; |
| if (o == GOF(EDX) && is4) goto exactly1; |
| if (o == GOF(EBX) && is4) goto exactly1; |
| if (o == GOF(ESP) && is4) goto exactly1; |
| if (o == GOF(EBP) && is4) goto exactly1; |
| if (o == GOF(ESI) && is4) goto exactly1; |
| if (o == GOF(EDI) && is4) goto exactly1; |
| if (o == GOF(EIP) && is4) goto none; |
| if (o == GOF(CC_OP) && is4) goto none; |
| if (o == GOF(CC_DEP1) && is4) goto none; |
| if (o == GOF(CC_DEP2) && is4) goto none; |
| if (o == GOF(CC_NDEP) && is4) goto none; |
| if (o == GOF(DFLAG) && is4) goto none; |
| if (o == GOF(IDFLAG) && is4) goto none; |
| if (o == GOF(ACFLAG) && is4) goto none; |
| |
| /* Partial accesses to integer registers */ |
| if (o == GOF(EAX) && is21) { o -= 0; goto contains_o; } |
| if (o == GOF(EAX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(ECX) && is21) { o -= 0; goto contains_o; } |
| if (o == GOF(ECX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(EBX) && is21) { o -= 0; goto contains_o; } |
| if (o == GOF(EBX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(EDX) && is21) { o -= 0; goto contains_o; } |
| if (o == GOF(EDX)+1 && is21) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(ESI) && is21) { o -= 0; goto contains_o; } |
| if (o == GOF(EDI) && is21) { o -= 0; goto contains_o; } |
| |
| /* Segment related guff */ |
| if (o == GOF(GS) && sz == 2) goto none; |
| if (o == GOF(LDT) && is4) goto none; |
| if (o == GOF(GDT) && is4) goto none; |
| |
| /* FP admin related */ |
| if (o == GOF(SSEROUND) && is4) goto none; |
| if (o == GOF(FPROUND) && is4) goto none; |
| if (o == GOF(EMWARN) && is4) goto none; |
| if (o == GOF(FTOP) && is4) goto none; |
| if (o == GOF(FPTAG) && sz == 8) goto none; |
| if (o == GOF(FC3210) && is4) goto none; |
| |
| /* xmm registers, including arbitrary sub-parts */ |
| if (o >= GOF(XMM0) && o+sz <= GOF(XMM0)+16) goto none; |
| if (o >= GOF(XMM1) && o+sz <= GOF(XMM1)+16) goto none; |
| if (o >= GOF(XMM2) && o+sz <= GOF(XMM2)+16) goto none; |
| if (o >= GOF(XMM3) && o+sz <= GOF(XMM3)+16) goto none; |
| if (o >= GOF(XMM4) && o+sz <= GOF(XMM4)+16) goto none; |
| if (o >= GOF(XMM5) && o+sz <= GOF(XMM5)+16) goto none; |
| if (o >= GOF(XMM6) && o+sz <= GOF(XMM6)+16) goto none; |
| if (o >= GOF(XMM7) && o+sz <= GOF(XMM7)+16) goto none; |
| |
| /* mmx/x87 registers (a bit of a kludge, since 'o' is not checked |
| to be exactly equal to one of FPREG[0] .. FPREG[7]) */ |
| if (o >= GOF(FPREG[0]) && o < GOF(FPREG[7])+8 && sz == 8) goto none; |
| |
| /* the entire mmx/x87 register bank in one big piece */ |
| if (o == GOF(FPREG) && sz == 64) goto none; |
| |
| VG_(printf)("get_IntRegInfo(x86):failing on (%d,%d)\n", o, sz); |
| tl_assert(0); |
| # undef GOF |
| |
| /* -------------------- amd64 -------------------- */ |
| |
| # elif defined(VGA_amd64) |
| |
| # define GOF(_fieldname) \ |
| (offsetof(VexGuestAMD64State,guest_##_fieldname)) |
| |
| Int o = offset; |
| Int sz = szB; |
| Bool is421 = sz == 4 || sz == 2 || sz == 1; |
| Bool is8 = sz == 8; |
| |
| tl_assert(sz > 0); |
| tl_assert(host_is_little_endian()); |
| |
| /* Set default state to "does not intersect any int register". */ |
| VG_(memset)( iii, 0, sizeof(*iii) ); |
| |
| /* Exact accesses to integer registers */ |
| if (o == GOF(RAX) && is8) goto exactly1; |
| if (o == GOF(RCX) && is8) goto exactly1; |
| if (o == GOF(RDX) && is8) goto exactly1; |
| if (o == GOF(RBX) && is8) goto exactly1; |
| if (o == GOF(RSP) && is8) goto exactly1; |
| if (o == GOF(RBP) && is8) goto exactly1; |
| if (o == GOF(RSI) && is8) goto exactly1; |
| if (o == GOF(RDI) && is8) goto exactly1; |
| if (o == GOF(R8) && is8) goto exactly1; |
| if (o == GOF(R9) && is8) goto exactly1; |
| if (o == GOF(R10) && is8) goto exactly1; |
| if (o == GOF(R11) && is8) goto exactly1; |
| if (o == GOF(R12) && is8) goto exactly1; |
| if (o == GOF(R13) && is8) goto exactly1; |
| if (o == GOF(R14) && is8) goto exactly1; |
| if (o == GOF(R15) && is8) goto exactly1; |
| if (o == GOF(RIP) && is8) goto exactly1; |
| if (o == GOF(CC_OP) && is8) goto none; |
| if (o == GOF(CC_DEP1) && is8) goto none; |
| if (o == GOF(CC_DEP2) && is8) goto none; |
| if (o == GOF(CC_NDEP) && is8) goto none; |
| if (o == GOF(DFLAG) && is8) goto none; |
| if (o == GOF(IDFLAG) && is8) goto none; |
| |
| /* Partial accesses to integer registers */ |
| if (o == GOF(RAX) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(RAX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(RCX) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(RCX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(RDX) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(RDX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(RBX) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(RBX)+1 && is421) { o -= 1; o -= 0; goto contains_o; } |
| if (o == GOF(RBP) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(RSI) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(RDI) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R8) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R9) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R10) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R11) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R12) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R13) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R14) && is421) { o -= 0; goto contains_o; } |
| if (o == GOF(R15) && is421) { o -= 0; goto contains_o; } |
| |
| /* Segment related guff */ |
| if (o == GOF(FS_ZERO) && is8) goto exactly1; |
| |
| /* FP admin related */ |
| if (o == GOF(SSEROUND) && is8) goto none; |
| if (o == GOF(FPROUND) && is8) goto none; |
| if (o == GOF(EMWARN) && sz == 4) goto none; |
| if (o == GOF(FTOP) && sz == 4) goto none; |
| if (o == GOF(FPTAG) && is8) goto none; |
| if (o == GOF(FC3210) && is8) goto none; |
| |
| /* xmm registers, including arbitrary sub-parts */ |
| if (o >= GOF(XMM0) && o+sz <= GOF(XMM0)+16) goto none; |
| if (o >= GOF(XMM1) && o+sz <= GOF(XMM1)+16) goto none; |
| if (o >= GOF(XMM2) && o+sz <= GOF(XMM2)+16) goto none; |
| if (o >= GOF(XMM3) && o+sz <= GOF(XMM3)+16) goto none; |
| if (o >= GOF(XMM4) && o+sz <= GOF(XMM4)+16) goto none; |
| if (o >= GOF(XMM5) && o+sz <= GOF(XMM5)+16) goto none; |
| if (o >= GOF(XMM6) && o+sz <= GOF(XMM6)+16) goto none; |
| if (o >= GOF(XMM7) && o+sz <= GOF(XMM7)+16) goto none; |
| if (o >= GOF(XMM8) && o+sz <= GOF(XMM8)+16) goto none; |
| if (o >= GOF(XMM9) && o+sz <= GOF(XMM9)+16) goto none; |
| if (o >= GOF(XMM10) && o+sz <= GOF(XMM10)+16) goto none; |
| if (o >= GOF(XMM11) && o+sz <= GOF(XMM11)+16) goto none; |
| if (o >= GOF(XMM12) && o+sz <= GOF(XMM12)+16) goto none; |
| if (o >= GOF(XMM13) && o+sz <= GOF(XMM13)+16) goto none; |
| if (o >= GOF(XMM14) && o+sz <= GOF(XMM14)+16) goto none; |
| if (o >= GOF(XMM15) && o+sz <= GOF(XMM15)+16) goto none; |
| |
| /* mmx/x87 registers (a bit of a kludge, since 'o' is not checked |
| to be exactly equal to one of FPREG[0] .. FPREG[7]) */ |
| if (o >= GOF(FPREG[0]) && o < GOF(FPREG[7])+8 && sz == 8) goto none; |
| |
| VG_(printf)("get_IntRegInfo(amd64):failing on (%d,%d)\n", o, sz); |
| tl_assert(0); |
| # undef GOF |
| |
| /* -------------------- ppc32 -------------------- */ |
| |
| # elif defined(VGA_ppc32) |
| |
| # define GOF(_fieldname) \ |
| (offsetof(VexGuestPPC32State,guest_##_fieldname)) |
| |
| Int o = offset; |
| Int sz = szB; |
| Bool is4 = sz == 4; |
| Bool is8 = sz == 8; |
| |
| tl_assert(sz > 0); |
| tl_assert(host_is_big_endian()); |
| |
| /* Set default state to "does not intersect any int register". */ |
| VG_(memset)( iii, 0, sizeof(*iii) ); |
| |
| /* Exact accesses to integer registers */ |
| if (o == GOF(GPR0) && is4) goto exactly1; |
| if (o == GOF(GPR1) && is4) goto exactly1; |
| if (o == GOF(GPR2) && is4) goto exactly1; |
| if (o == GOF(GPR3) && is4) goto exactly1; |
| if (o == GOF(GPR4) && is4) goto exactly1; |
| if (o == GOF(GPR5) && is4) goto exactly1; |
| if (o == GOF(GPR6) && is4) goto exactly1; |
| if (o == GOF(GPR7) && is4) goto exactly1; |
| if (o == GOF(GPR8) && is4) goto exactly1; |
| if (o == GOF(GPR9) && is4) goto exactly1; |
| if (o == GOF(GPR10) && is4) goto exactly1; |
| if (o == GOF(GPR11) && is4) goto exactly1; |
| if (o == GOF(GPR12) && is4) goto exactly1; |
| if (o == GOF(GPR13) && is4) goto exactly1; |
| if (o == GOF(GPR14) && is4) goto exactly1; |
| if (o == GOF(GPR15) && is4) goto exactly1; |
| if (o == GOF(GPR16) && is4) goto exactly1; |
| if (o == GOF(GPR17) && is4) goto exactly1; |
| if (o == GOF(GPR18) && is4) goto exactly1; |
| if (o == GOF(GPR19) && is4) goto exactly1; |
| if (o == GOF(GPR20) && is4) goto exactly1; |
| if (o == GOF(GPR21) && is4) goto exactly1; |
| if (o == GOF(GPR22) && is4) goto exactly1; |
| if (o == GOF(GPR23) && is4) goto exactly1; |
| if (o == GOF(GPR24) && is4) goto exactly1; |
| if (o == GOF(GPR25) && is4) goto exactly1; |
| if (o == GOF(GPR26) && is4) goto exactly1; |
| if (o == GOF(GPR27) && is4) goto exactly1; |
| if (o == GOF(GPR28) && is4) goto exactly1; |
| if (o == GOF(GPR29) && is4) goto exactly1; |
| if (o == GOF(GPR30) && is4) goto exactly1; |
| if (o == GOF(GPR31) && is4) goto exactly1; |
| |
| /* Misc integer reg and condition code accesses */ |
| if (o == GOF(LR) && is4) goto exactly1; |
| if (o == GOF(CTR) && is4) goto exactly1; |
| if (o == GOF(CIA) && is4) goto none; |
| if (o == GOF(CIA_AT_SC) && is4) goto none; |
| if (o == GOF(RESVN) && is4) goto none; |
| if (o == GOF(TISTART) && is4) goto none; |
| if (o == GOF(TILEN) && is4) goto none; |
| if (o == GOF(REDIR_SP) && is4) goto none; |
| |
| if (sz == 1) { |
| if (o == GOF(XER_SO)) goto none; |
| if (o == GOF(XER_OV)) goto none; |
| if (o == GOF(XER_CA)) goto none; |
| if (o == GOF(XER_BC)) goto none; |
| if (o == GOF(CR0_321)) goto none; |
| if (o == GOF(CR0_0)) goto none; |
| if (o == GOF(CR1_321)) goto none; |
| if (o == GOF(CR1_0)) goto none; |
| if (o == GOF(CR2_321)) goto none; |
| if (o == GOF(CR2_0)) goto none; |
| if (o == GOF(CR3_321)) goto none; |
| if (o == GOF(CR3_0)) goto none; |
| if (o == GOF(CR4_321)) goto none; |
| if (o == GOF(CR4_0)) goto none; |
| if (o == GOF(CR5_321)) goto none; |
| if (o == GOF(CR5_0)) goto none; |
| if (o == GOF(CR6_321)) goto none; |
| if (o == GOF(CR6_0)) goto none; |
| if (o == GOF(CR7_321)) goto none; |
| if (o == GOF(CR7_0)) goto none; |
| } |
| |
| /* Exact accesses to FP registers */ |
| if (o == GOF(FPR0) && is8) goto none; |
| if (o == GOF(FPR1) && is8) goto none; |
| if (o == GOF(FPR2) && is8) goto none; |
| if (o == GOF(FPR3) && is8) goto none; |
| if (o == GOF(FPR4) && is8) goto none; |
| if (o == GOF(FPR5) && is8) goto none; |
| if (o == GOF(FPR6) && is8) goto none; |
| if (o == GOF(FPR7) && is8) goto none; |
| if (o == GOF(FPR8) && is8) goto none; |
| if (o == GOF(FPR9) && is8) goto none; |
| if (o == GOF(FPR10) && is8) goto none; |
| if (o == GOF(FPR11) && is8) goto none; |
| if (o == GOF(FPR12) && is8) goto none; |
| if (o == GOF(FPR13) && is8) goto none; |
| if (o == GOF(FPR14) && is8) goto none; |
| if (o == GOF(FPR15) && is8) goto none; |
| if (o == GOF(FPR16) && is8) goto none; |
| if (o == GOF(FPR17) && is8) goto none; |
| if (o == GOF(FPR18) && is8) goto none; |
| if (o == GOF(FPR19) && is8) goto none; |
| if (o == GOF(FPR20) && is8) goto none; |
| if (o == GOF(FPR21) && is8) goto none; |
| if (o == GOF(FPR22) && is8) goto none; |
| if (o == GOF(FPR23) && is8) goto none; |
| if (o == GOF(FPR24) && is8) goto none; |
| if (o == GOF(FPR25) && is8) goto none; |
| if (o == GOF(FPR26) && is8) goto none; |
| if (o == GOF(FPR27) && is8) goto none; |
| if (o == GOF(FPR28) && is8) goto none; |
| if (o == GOF(FPR29) && is8) goto none; |
| if (o == GOF(FPR30) && is8) goto none; |
| if (o == GOF(FPR31) && is8) goto none; |
| |
| /* FP admin related */ |
| if (o == GOF(FPROUND) && is4) goto none; |
| if (o == GOF(EMWARN) && is4) goto none; |
| |
| /* Altivec registers */ |
| if (o == GOF(VR0) && sz == 16) goto none; |
| if (o == GOF(VR1) && sz == 16) goto none; |
| if (o == GOF(VR2) && sz == 16) goto none; |
| if (o == GOF(VR3) && sz == 16) goto none; |
| if (o == GOF(VR4) && sz == 16) goto none; |
| if (o == GOF(VR5) && sz == 16) goto none; |
| if (o == GOF(VR6) && sz == 16) goto none; |
| if (o == GOF(VR7) && sz == 16) goto none; |
| if (o == GOF(VR8) && sz == 16) goto none; |
| if (o == GOF(VR9) && sz == 16) goto none; |
| if (o == GOF(VR10) && sz == 16) goto none; |
| if (o == GOF(VR11) && sz == 16) goto none; |
| if (o == GOF(VR12) && sz == 16) goto none; |
| if (o == GOF(VR13) && sz == 16) goto none; |
| if (o == GOF(VR14) && sz == 16) goto none; |
| if (o == GOF(VR15) && sz == 16) goto none; |
| if (o == GOF(VR16) && sz == 16) goto none; |
| if (o == GOF(VR17) && sz == 16) goto none; |
| if (o == GOF(VR18) && sz == 16) goto none; |
| if (o == GOF(VR19) && sz == 16) goto none; |
| if (o == GOF(VR20) && sz == 16) goto none; |
| if (o == GOF(VR21) && sz == 16) goto none; |
| if (o == GOF(VR22) && sz == 16) goto none; |
| if (o == GOF(VR23) && sz == 16) goto none; |
| if (o == GOF(VR24) && sz == 16) goto none; |
| if (o == GOF(VR25) && sz == 16) goto none; |
| if (o == GOF(VR26) && sz == 16) goto none; |
| if (o == GOF(VR27) && sz == 16) goto none; |
| if (o == GOF(VR28) && sz == 16) goto none; |
| if (o == GOF(VR29) && sz == 16) goto none; |
| if (o == GOF(VR30) && sz == 16) goto none; |
| if (o == GOF(VR31) && sz == 16) goto none; |
| |
| /* Altivec admin related */ |
| if (o == GOF(VRSAVE) && is4) goto none; |
| |
| VG_(printf)("get_IntRegInfo(ppc32):failing on (%d,%d)\n", o, sz); |
| tl_assert(0); |
| # undef GOF |
| |
| /* -------------------- ppc64 -------------------- */ |
| |
| # elif defined(VGA_ppc64) |
| |
| # define GOF(_fieldname) \ |
| (offsetof(VexGuestPPC64State,guest_##_fieldname)) |
| |
| Int o = offset; |
| Int sz = szB; |
| Bool is4 = sz == 4; |
| Bool is8 = sz == 8; |
| |
| tl_assert(sz > 0); |
| tl_assert(host_is_big_endian()); |
| |
| /* Set default state to "does not intersect any int register". */ |
| VG_(memset)( iii, 0, sizeof(*iii) ); |
| |
| /* Exact accesses to integer registers */ |
| if (o == GOF(GPR0) && is8) goto exactly1; |
| if (o == GOF(GPR1) && is8) goto exactly1; |
| if (o == GOF(GPR2) && is8) goto exactly1; |
| if (o == GOF(GPR3) && is8) goto exactly1; |
| if (o == GOF(GPR4) && is8) goto exactly1; |
| if (o == GOF(GPR5) && is8) goto exactly1; |
| if (o == GOF(GPR6) && is8) goto exactly1; |
| if (o == GOF(GPR7) && is8) goto exactly1; |
| if (o == GOF(GPR8) && is8) goto exactly1; |
| if (o == GOF(GPR9) && is8) goto exactly1; |
| if (o == GOF(GPR10) && is8) goto exactly1; |
| if (o == GOF(GPR11) && is8) goto exactly1; |
| if (o == GOF(GPR12) && is8) goto exactly1; |
| if (o == GOF(GPR13) && is8) goto exactly1; |
| if (o == GOF(GPR14) && is8) goto exactly1; |
| if (o == GOF(GPR15) && is8) goto exactly1; |
| if (o == GOF(GPR16) && is8) goto exactly1; |
| if (o == GOF(GPR17) && is8) goto exactly1; |
| if (o == GOF(GPR18) && is8) goto exactly1; |
| if (o == GOF(GPR19) && is8) goto exactly1; |
| if (o == GOF(GPR20) && is8) goto exactly1; |
| if (o == GOF(GPR21) && is8) goto exactly1; |
| if (o == GOF(GPR22) && is8) goto exactly1; |
| if (o == GOF(GPR23) && is8) goto exactly1; |
| if (o == GOF(GPR24) && is8) goto exactly1; |
| if (o == GOF(GPR25) && is8) goto exactly1; |
| if (o == GOF(GPR26) && is8) goto exactly1; |
| if (o == GOF(GPR27) && is8) goto exactly1; |
| if (o == GOF(GPR28) && is8) goto exactly1; |
| if (o == GOF(GPR29) && is8) goto exactly1; |
| if (o == GOF(GPR30) && is8) goto exactly1; |
| if (o == GOF(GPR31) && is8) goto exactly1; |
| |
| /* Misc integer reg and condition code accesses */ |
| if (o == GOF(LR) && is8) goto exactly1; |
| if (o == GOF(CTR) && is8) goto exactly1; |
| if (o == GOF(CIA) && is8) goto none; |
| if (o == GOF(CIA_AT_SC) && is8) goto none; |
| if (o == GOF(RESVN) && is8) goto none; |
| if (o == GOF(TISTART) && is8) goto none; |
| if (o == GOF(TILEN) && is8) goto none; |
| if (o == GOF(REDIR_SP) && is8) goto none; |
| |
| if (sz == 1) { |
| if (o == GOF(XER_SO)) goto none; |
| if (o == GOF(XER_OV)) goto none; |
| if (o == GOF(XER_CA)) goto none; |
| if (o == GOF(XER_BC)) goto none; |
| if (o == GOF(CR0_321)) goto none; |
| if (o == GOF(CR0_0)) goto none; |
| if (o == GOF(CR1_321)) goto none; |
| if (o == GOF(CR1_0)) goto none; |
| if (o == GOF(CR2_321)) goto none; |
| if (o == GOF(CR2_0)) goto none; |
| if (o == GOF(CR3_321)) goto none; |
| if (o == GOF(CR3_0)) goto none; |
| if (o == GOF(CR4_321)) goto none; |
| if (o == GOF(CR4_0)) goto none; |
| if (o == GOF(CR5_321)) goto none; |
| if (o == GOF(CR5_0)) goto none; |
| if (o == GOF(CR6_321)) goto none; |
| if (o == GOF(CR6_0)) goto none; |
| if (o == GOF(CR7_321)) goto none; |
| if (o == GOF(CR7_0)) goto none; |
| } |
| |
| /* Exact accesses to FP registers */ |
| if (o == GOF(FPR0) && is8) goto none; |
| if (o == GOF(FPR1) && is8) goto none; |
| if (o == GOF(FPR2) && is8) goto none; |
| if (o == GOF(FPR3) && is8) goto none; |
| if (o == GOF(FPR4) && is8) goto none; |
| if (o == GOF(FPR5) && is8) goto none; |
| if (o == GOF(FPR6) && is8) goto none; |
| if (o == GOF(FPR7) && is8) goto none; |
| if (o == GOF(FPR8) && is8) goto none; |
| if (o == GOF(FPR9) && is8) goto none; |
| if (o == GOF(FPR10) && is8) goto none; |
| if (o == GOF(FPR11) && is8) goto none; |
| if (o == GOF(FPR12) && is8) goto none; |
| if (o == GOF(FPR13) && is8) goto none; |
| if (o == GOF(FPR14) && is8) goto none; |
| if (o == GOF(FPR15) && is8) goto none; |
| if (o == GOF(FPR16) && is8) goto none; |
| if (o == GOF(FPR17) && is8) goto none; |
| if (o == GOF(FPR18) && is8) goto none; |
| if (o == GOF(FPR19) && is8) goto none; |
| if (o == GOF(FPR20) && is8) goto none; |
| if (o == GOF(FPR21) && is8) goto none; |
| if (o == GOF(FPR22) && is8) goto none; |
| if (o == GOF(FPR23) && is8) goto none; |
| if (o == GOF(FPR24) && is8) goto none; |
| if (o == GOF(FPR25) && is8) goto none; |
| if (o == GOF(FPR26) && is8) goto none; |
| if (o == GOF(FPR27) && is8) goto none; |
| if (o == GOF(FPR28) && is8) goto none; |
| if (o == GOF(FPR29) && is8) goto none; |
| if (o == GOF(FPR30) && is8) goto none; |
| if (o == GOF(FPR31) && is8) goto none; |
| |
| /* FP admin related */ |
| if (o == GOF(FPROUND) && is4) goto none; |
| if (o == GOF(EMWARN) && is4) goto none; |
| |
| /* Altivec registers */ |
| if (o == GOF(VR0) && sz == 16) goto none; |
| if (o == GOF(VR1) && sz == 16) goto none; |
| if (o == GOF(VR2) && sz == 16) goto none; |
| if (o == GOF(VR3) && sz == 16) goto none; |
| if (o == GOF(VR4) && sz == 16) goto none; |
| if (o == GOF(VR5) && sz == 16) goto none; |
| if (o == GOF(VR6) && sz == 16) goto none; |
| if (o == GOF(VR7) && sz == 16) goto none; |
| if (o == GOF(VR8) && sz == 16) goto none; |
| if (o == GOF(VR9) && sz == 16) goto none; |
| if (o == GOF(VR10) && sz == 16) goto none; |
| if (o == GOF(VR11) && sz == 16) goto none; |
| if (o == GOF(VR12) && sz == 16) goto none; |
| if (o == GOF(VR13) && sz == 16) goto none; |
| if (o == GOF(VR14) && sz == 16) goto none; |
| if (o == GOF(VR15) && sz == 16) goto none; |
| if (o == GOF(VR16) && sz == 16) goto none; |
| if (o == GOF(VR17) && sz == 16) goto none; |
| if (o == GOF(VR18) && sz == 16) goto none; |
| if (o == GOF(VR19) && sz == 16) goto none; |
| if (o == GOF(VR20) && sz == 16) goto none; |
| if (o == GOF(VR21) && sz == 16) goto none; |
| if (o == GOF(VR22) && sz == 16) goto none; |
| if (o == GOF(VR23) && sz == 16) goto none; |
| if (o == GOF(VR24) && sz == 16) goto none; |
| if (o == GOF(VR25) && sz == 16) goto none; |
| if (o == GOF(VR26) && sz == 16) goto none; |
| if (o == GOF(VR27) && sz == 16) goto none; |
| if (o == GOF(VR28) && sz == 16) goto none; |
| if (o == GOF(VR29) && sz == 16) goto none; |
| if (o == GOF(VR30) && sz == 16) goto none; |
| if (o == GOF(VR31) && sz == 16) goto none; |
| |
| /* Altivec admin related */ |
| if (o == GOF(VRSAVE) && is4) goto none; |
| |
| VG_(printf)("get_IntRegInfo(ppc64):failing on (%d,%d)\n", o, sz); |
| tl_assert(0); |
| # undef GOF |
| |
| |
| # else |
| # error "FIXME: not implemented for this architecture" |
| # endif |
| |
| exactly1: |
| iii->n_offsets = -1; |
| return; |
| none: |
| iii->n_offsets = 0; |
| return; |
| contains_o: |
| tl_assert(o >= 0 && 0 == (o % sizeof(UWord))); |
| iii->n_offsets = 1; |
| iii->offsets[0] = o; |
| return; |
| } |
| |
| |
| /* Does 'arr' describe an indexed guest state section containing host |
| words, that we want to shadow? */ |
| |
| static Bool is_integer_guest_reg_array ( IRRegArray* arr ) |
| { |
| /* --------------------- x86 --------------------- */ |
| # if defined(VGA_x86) |
| /* The x87 tag array. */ |
| if (arr->base == offsetof(VexGuestX86State,guest_FPTAG[0]) |
| && arr->elemTy == Ity_I8 && arr->nElems == 8) |
| return False; |
| /* The x87 register array. */ |
| if (arr->base == offsetof(VexGuestX86State,guest_FPREG[0]) |
| && arr->elemTy == Ity_F64 && arr->nElems == 8) |
| return False; |
| |
| VG_(printf)("is_integer_guest_reg_array(x86): unhandled: "); |
| ppIRRegArray(arr); |
| VG_(printf)("\n"); |
| tl_assert(0); |
| |
| /* -------------------- amd64 -------------------- */ |
| # elif defined(VGA_amd64) |
| /* The x87 tag array. */ |
| if (arr->base == offsetof(VexGuestAMD64State,guest_FPTAG[0]) |
| && arr->elemTy == Ity_I8 && arr->nElems == 8) |
| return False; |
| /* The x87 register array. */ |
| if (arr->base == offsetof(VexGuestAMD64State,guest_FPREG[0]) |
| && arr->elemTy == Ity_F64 && arr->nElems == 8) |
| return False; |
| |
| VG_(printf)("is_integer_guest_reg_array(amd64): unhandled: "); |
| ppIRRegArray(arr); |
| VG_(printf)("\n"); |
| tl_assert(0); |
| |
| /* -------------------- ppc32 -------------------- */ |
| # elif defined(VGA_ppc32) |
| /* The redir stack. */ |
| if (arr->base == offsetof(VexGuestPPC32State,guest_REDIR_STACK[0]) |
| && arr->elemTy == Ity_I32 |
| && arr->nElems == VEX_GUEST_PPC32_REDIR_STACK_SIZE) |
| return True; |
| |
| VG_(printf)("is_integer_guest_reg_array(ppc32): unhandled: "); |
| ppIRRegArray(arr); |
| VG_(printf)("\n"); |
| tl_assert(0); |
| |
| /* -------------------- ppc64 -------------------- */ |
| # elif defined(VGA_ppc64) |
| /* The redir stack. */ |
| if (arr->base == offsetof(VexGuestPPC64State,guest_REDIR_STACK[0]) |
| && arr->elemTy == Ity_I64 |
| && arr->nElems == VEX_GUEST_PPC64_REDIR_STACK_SIZE) |
| return True; |
| |
| VG_(printf)("is_integer_guest_reg_array(ppc64): unhandled: "); |
| ppIRRegArray(arr); |
| VG_(printf)("\n"); |
| tl_assert(0); |
| |
| # else |
| # error "FIXME: not implemented for this architecture" |
| # endif |
| } |
| |
| |
| // END move this uglyness to pc_machine.c |
| |
| /* returns True iff given slice exactly matches an int reg. Merely |
| a convenience wrapper around get_IntRegInfo. */ |
| static Bool is_integer_guest_reg ( Int offset, Int szB ) |
| { |
| IntRegInfo iii; |
| get_IntRegInfo( &iii, offset, szB ); |
| tl_assert(iii.n_offsets >= -1 && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| return iii.n_offsets == -1; |
| } |
| |
| /* these assume guest and host have the same endianness and |
| word size (probably). */ |
| static UWord get_guest_intreg ( ThreadId tid, Int shadowNo, |
| PtrdiffT offset, SizeT size ) |
| { |
| UChar tmp[ 2 + sizeof(UWord) ]; |
| tl_assert(size == sizeof(UWord)); |
| tl_assert(0 == (offset % sizeof(UWord))); |
| VG_(memset)(tmp, 0, sizeof(tmp)); |
| tmp[0] = 0x31; |
| tmp[ sizeof(tmp)-1 ] = 0x27; |
| VG_(get_shadow_regs_area)(tid, &tmp[1], shadowNo, offset, size); |
| tl_assert(tmp[0] == 0x31); |
| tl_assert(tmp[ sizeof(tmp)-1 ] == 0x27); |
| return * ((UWord*) &tmp[1] ); /* MISALIGNED LOAD */ |
| } |
| static void put_guest_intreg ( ThreadId tid, Int shadowNo, |
| PtrdiffT offset, SizeT size, UWord w ) |
| { |
| tl_assert(size == sizeof(UWord)); |
| tl_assert(0 == (offset % sizeof(UWord))); |
| VG_(set_shadow_regs_area)(tid, shadowNo, offset, size, |
| (const UChar*)&w); |
| } |
| |
| /* Initialise the integer shadow registers to UNKNOWN. This is a bit |
| of a nasty kludge, but it does mean we don't need to know which |
| registers we really need to initialise -- simply assume that all |
| integer registers will be naturally aligned w.r.t. the start of the |
| guest state, and fill in all possible entries. */ |
| static void init_shadow_registers ( ThreadId tid ) |
| { |
| Int i, wordSzB = sizeof(UWord); |
| for (i = 0; i < MC_SIZEOF_GUEST_STATE-wordSzB; i += wordSzB) { |
| put_guest_intreg( tid, 1, i, wordSzB, (UWord)UNKNOWN ); |
| } |
| } |
| |
| static void post_reg_write_nonptr ( ThreadId tid, PtrdiffT offset, SizeT size ) |
| { |
| // syscall_return: Default is non-pointer. If it really is a pointer |
| // (eg. for mmap()), SK_(post_syscall) sets it again afterwards. |
| // |
| // clientreq_return: All the global client requests return non-pointers |
| // (except possibly CLIENT_CALL[0123], but they're handled by |
| // post_reg_write_clientcall, not here). |
| // |
| if (is_integer_guest_reg( (Int)offset, (Int)size )) { |
| put_guest_intreg( tid, 1, offset, size, (UWord)NONPTR ); |
| } else { |
| tl_assert(0); |
| } |
| // VG_(set_thread_shadow_archreg)( tid, reg, (UInt)NONPTR ); |
| } |
| |
| static void post_reg_write_nonptr_or_unknown ( ThreadId tid, |
| PtrdiffT offset, SizeT size ) |
| { |
| // deliver_signal: called from two places; one sets the reg to zero, the |
| // other sets the stack pointer. |
| // |
| if (is_integer_guest_reg( (Int)offset, (Int)size )) { |
| put_guest_intreg( |
| tid, 1/*shadowno*/, offset, size, |
| (UWord)nonptr_or_unknown( |
| get_guest_intreg( tid, 0/*shadowno*/, |
| offset, size ))); |
| } else { |
| tl_assert(0); |
| } |
| } |
| |
| void h_post_reg_write_demux ( CorePart part, ThreadId tid, |
| PtrdiffT guest_state_offset, SizeT size) |
| { |
| if (0) |
| VG_(printf)("post_reg_write_demux: tid %d part %d off %ld size %ld\n", |
| (Int)tid, (Int)part, |
| guest_state_offset, size); |
| switch (part) { |
| case Vg_CoreStartup: |
| /* This is a bit of a kludge since for any Vg_CoreStartup |
| event we overwrite the entire shadow register set. But |
| that's ok - we're only called once with |
| part==Vg_CoreStartup event, and in that case the supplied |
| offset & size cover the entire guest state anyway. */ |
| init_shadow_registers(tid); |
| break; |
| case Vg_CoreSysCall: |
| if (0) VG_(printf)("ZZZZZZZ p_r_w -> NONPTR\n"); |
| post_reg_write_nonptr( tid, guest_state_offset, size ); |
| break; |
| case Vg_CoreClientReq: |
| post_reg_write_nonptr( tid, guest_state_offset, size ); |
| break; |
| case Vg_CoreSignal: |
| post_reg_write_nonptr_or_unknown( tid, guest_state_offset, size ); |
| break; |
| default: |
| tl_assert(0); |
| } |
| } |
| |
| void h_post_reg_write_clientcall(ThreadId tid, PtrdiffT guest_state_offset, |
| SizeT size, Addr f ) |
| { |
| UWord p; |
| |
| // Having to do this is a bit nasty... |
| if (f == (Addr)h_replace_malloc |
| || f == (Addr)h_replace___builtin_new |
| || f == (Addr)h_replace___builtin_vec_new |
| || f == (Addr)h_replace_calloc |
| || f == (Addr)h_replace_memalign |
| || f == (Addr)h_replace_realloc) |
| { |
| // We remembered the last added segment; make sure it's the right one. |
| /* What's going on: at this point, the scheduler has just called |
| 'f' -- one of our malloc replacement functions -- and it has |
| returned. The return value has been written to the guest |
| state of thread 'tid', offset 'guest_state_offset' length |
| 'size'. We need to look at that return value and set the |
| shadow return value accordingly. The shadow return value |
| required is handed to us "under the counter" through the |
| global variable 'last_seg_added'. This is all very ugly, not |
| to mention, non-thread-safe should V ever become |
| multithreaded. */ |
| /* assert the place where the return value is is a legit int reg */ |
| tl_assert(is_integer_guest_reg(guest_state_offset, size)); |
| /* Now we need to look at the returned value, to see whether the |
| malloc succeeded or not. */ |
| p = get_guest_intreg(tid, 0/*non-shadow*/, guest_state_offset, size); |
| if ((UWord)NULL == p) { |
| // if alloc failed, eg. realloc on bogus pointer |
| put_guest_intreg(tid, 1/*first-shadow*/, |
| guest_state_offset, size, (UWord)NONPTR ); |
| } else { |
| // alloc didn't fail. Check we have the correct segment. |
| tl_assert(p == last_seg_added->addr); |
| put_guest_intreg(tid, 1/*first-shadow*/, |
| guest_state_offset, size, (UWord)last_seg_added ); |
| } |
| } |
| else if (f == (Addr)h_replace_free |
| || f == (Addr)h_replace___builtin_delete |
| || f == (Addr)h_replace___builtin_vec_delete |
| // || f == (Addr)VG_(cli_block_size) |
| || f == (Addr)VG_(message)) |
| { |
| // Probably best to set the (non-existent!) return value to |
| // non-pointer. |
| tl_assert(is_integer_guest_reg(guest_state_offset, size)); |
| put_guest_intreg(tid, 1/*first-shadow*/, |
| guest_state_offset, size, (UWord)NONPTR ); |
| } |
| else { |
| // Anything else, probably best to set return value to non-pointer. |
| //VG_(set_thread_shadow_archreg)(tid, reg, (UInt)UNKNOWN); |
| Char fbuf[100]; |
| VG_(printf)("f = %#lx\n", f); |
| VG_(get_fnname)(f, fbuf, 100); |
| VG_(printf)("name = %s\n", fbuf); |
| VG_(tool_panic)("argh: clientcall"); |
| } |
| } |
| |
| |
| //zz /*--------------------------------------------------------------------*/ |
| //zz /*--- Sanity checking ---*/ |
| //zz /*--------------------------------------------------------------------*/ |
| //zz |
| //zz /* Check that nobody has spuriously claimed that the first or last 16 |
| //zz pages (64 KB) of address space have become accessible. Failure of |
| //zz the following do not per se indicate an internal consistency |
| //zz problem, but they are so likely to that we really want to know |
| //zz about it if so. */ |
| //zz Bool pc_replace_cheap_sanity_check) ( void ) |
| //zz { |
| //zz if (IS_DISTINGUISHED_SM(primary_map[0]) |
| //zz /* kludge: kernel drops a page up at top of address range for |
| //zz magic "optimized syscalls", so we can no longer check the |
| //zz highest page */ |
| //zz /* && IS_DISTINGUISHED_SM(primary_map[65535]) */ |
| //zz ) |
| //zz return True; |
| //zz else |
| //zz return False; |
| //zz } |
| //zz |
| //zz Bool SK_(expensive_sanity_check) ( void ) |
| //zz { |
| //zz Int i; |
| //zz |
| //zz /* Make sure nobody changed the distinguished secondary. */ |
| //zz for (i = 0; i < SEC_MAP_WORDS; i++) |
| //zz if (distinguished_secondary_map.vseg[i] != UNKNOWN) |
| //zz return False; |
| //zz |
| //zz return True; |
| //zz } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- System calls ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| void h_pre_syscall ( ThreadId tid, UInt sysno ) |
| { |
| /* we don't do anything at the pre-syscall point */ |
| } |
| |
| /* The post-syscall table is a table of pairs (number, flag). |
| |
| 'flag' is only ever zero or one. If it is zero, it indicates that |
| default handling for that syscall is required -- namely that the |
| syscall is deemed to return NONPTR. This is the case for the vast |
| majority of syscalls. If it is one then some special |
| syscall-specific handling is is required. No further details of it |
| are stored in the table. |
| |
| On Linux, 'number' is a __NR_xxx constant. |
| |
| On AIX5, 'number' is an Int*, which points to the Int variable |
| holding the currently assigned number for this syscall. |
| |
| When querying the table, we compare the supplied syscall number |
| with the 'number' field (directly on Linux, after dereferencing on |
| AIX5), to find the relevant entry. This requires a linear search |
| of the table. To stop the costs getting too high, the table is |
| incrementally rearranged after each search, to move commonly |
| requested items a bit closer to the front. |
| |
| The table is built once, the first time it is used. After that we |
| merely query it (and reorder the entries as a result). */ |
| |
| static XArray* /* of UWordPair */ post_syscall_table = NULL; |
| |
| static void setup_post_syscall_table ( void ) |
| { |
| tl_assert(!post_syscall_table); |
| post_syscall_table = VG_(newXA)( VG_(malloc), "pc.h_main.spst.1", |
| VG_(free), sizeof(UWordPair) ); |
| tl_assert(post_syscall_table); |
| |
| /* --------------- LINUX --------------- */ |
| |
| # if defined(VGO_linux) |
| |
| # define ADD(_flag, _syscallname) \ |
| do { UWordPair p; p.uw1 = (_syscallname); p.uw2 = (_flag); \ |
| VG_(addToXA)( post_syscall_table, &p ); \ |
| } while (0) |
| |
| /* These ones definitely don't return pointers. They're not |
| particularly grammatical, either. */ |
| |
| # if defined(__NR__llseek) |
| ADD(0, __NR__llseek); |
| # endif |
| ADD(0, __NR__sysctl); |
| # if defined(__NR__newselect) |
| ADD(0, __NR__newselect); |
| # endif |
| # if defined(__NR_accept) |
| ADD(0, __NR_accept); |
| # endif |
| ADD(0, __NR_access); |
| ADD(0, __NR_alarm); |
| # if defined(__NR_bind) |
| ADD(0, __NR_bind); |
| # endif |
| # if defined(__NR_chdir) |
| ADD(0, __NR_chdir); |
| # endif |
| ADD(0, __NR_chmod); |
| ADD(0, __NR_chown); |
| # if defined(__NR_chown32) |
| ADD(0, __NR_chown32); |
| # endif |
| ADD(0, __NR_clock_getres); |
| ADD(0, __NR_clock_gettime); |
| ADD(0, __NR_clone); |
| ADD(0, __NR_close); |
| # if defined(__NR_connect) |
| ADD(0, __NR_connect); |
| # endif |
| ADD(0, __NR_creat); |
| ADD(0, __NR_dup); |
| ADD(0, __NR_dup2); |
| ADD(0, __NR_execve); /* presumably we see this because the call failed? */ |
| ADD(0, __NR_exit); /* hmm, why are we still alive? */ |
| ADD(0, __NR_exit_group); |
| ADD(0, __NR_fadvise64); |
| ADD(0, __NR_fallocate); |
| ADD(0, __NR_fchmod); |
| ADD(0, __NR_fchown); |
| # if defined(__NR_fchown32) |
| ADD(0, __NR_fchown32); |
| # endif |
| ADD(0, __NR_fcntl); |
| # if defined(__NR_fcntl64) |
| ADD(0, __NR_fcntl64); |
| # endif |
| ADD(0, __NR_fdatasync); |
| ADD(0, __NR_flock); |
| ADD(0, __NR_fstat); |
| # if defined(__NR_fstat64) |
| ADD(0, __NR_fstat64); |
| # endif |
| ADD(0, __NR_fstatfs); |
| ADD(0, __NR_fsync); |
| ADD(0, __NR_ftruncate); |
| # if defined(__NR_ftruncate64) |
| ADD(0, __NR_ftruncate64); |
| # endif |
| ADD(0, __NR_futex); |
| ADD(0, __NR_getcwd); |
| ADD(0, __NR_getdents); // something to do with teeth |
| ADD(0, __NR_getdents64); |
| ADD(0, __NR_getegid); |
| # if defined(__NR_getegid32) |
| ADD(0, __NR_getegid32); |
| # endif |
| ADD(0, __NR_geteuid); |
| # if defined(__NR_geteuid32) |
| ADD(0, __NR_geteuid32); |
| # endif |
| ADD(0, __NR_getgid); |
| # if defined(__NR_getgid32) |
| ADD(0, __NR_getgid32); |
| # endif |
| ADD(0, __NR_getgroups); |
| ADD(0, __NR_getitimer); |
| # if defined(__NR_getpeername) |
| ADD(0, __NR_getpeername); |
| # endif |
| ADD(0, __NR_getpid); |
| ADD(0, __NR_getpgrp); |
| ADD(0, __NR_getppid); |
| ADD(0, __NR_getresgid); |
| ADD(0, __NR_getresuid); |
| # if defined(__NR_getresuid32) |
| ADD(0, __NR_getresuid32); |
| # endif |
| ADD(0, __NR_getrlimit); |
| ADD(0, __NR_getrusage); |
| # if defined(__NR_getsockname) |
| ADD(0, __NR_getsockname); |
| # endif |
| # if defined(__NR_getsockopt) |
| ADD(0, __NR_getsockopt); |
| # endif |
| ADD(0, __NR_gettid); |
| ADD(0, __NR_gettimeofday); |
| ADD(0, __NR_getuid); |
| # if defined(__NR_getuid32) |
| ADD(0, __NR_getuid32); |
| # endif |
| ADD(0, __NR_getxattr); |
| ADD(0, __NR_inotify_add_watch); |
| ADD(0, __NR_inotify_init); |
| ADD(0, __NR_inotify_rm_watch); |
| ADD(0, __NR_ioctl); // ioctl -- assuming no pointers returned |
| ADD(0, __NR_ioprio_get); |
| ADD(0, __NR_kill); |
| ADD(0, __NR_link); |
| # if defined(__NR_listen) |
| ADD(0, __NR_listen); |
| # endif |
| ADD(0, __NR_lseek); |
| ADD(0, __NR_lstat); |
| # if defined(__NR_lstat64) |
| ADD(0, __NR_lstat64); |
| # endif |
| ADD(0, __NR_madvise); |
| ADD(0, __NR_mkdir); |
| ADD(0, __NR_mlock); |
| ADD(0, __NR_mprotect); |
| ADD(0, __NR_munmap); // die_mem_munmap already called, segment remove); |
| ADD(0, __NR_nanosleep); |
| ADD(0, __NR_open); |
| ADD(0, __NR_pipe); |
| ADD(0, __NR_poll); |
| ADD(0, __NR_pread64); |
| ADD(0, __NR_pwrite64); |
| ADD(0, __NR_read); |
| ADD(0, __NR_readlink); |
| ADD(0, __NR_readv); |
| # if defined(__NR_recvfrom) |
| ADD(0, __NR_recvfrom); |
| # endif |
| # if defined(__NR_recvmsg) |
| ADD(0, __NR_recvmsg); |
| # endif |
| ADD(0, __NR_rename); |
| ADD(0, __NR_rmdir); |
| ADD(0, __NR_rt_sigaction); |
| ADD(0, __NR_rt_sigprocmask); |
| ADD(0, __NR_rt_sigreturn); /* not sure if we should see this or not */ |
| ADD(0, __NR_sched_get_priority_max); |
| ADD(0, __NR_sched_get_priority_min); |
| ADD(0, __NR_sched_getaffinity); |
| ADD(0, __NR_sched_getparam); |
| ADD(0, __NR_sched_getscheduler); |
| ADD(0, __NR_sched_setaffinity); |
| ADD(0, __NR_sched_setscheduler); |
| ADD(0, __NR_sched_yield); |
| ADD(0, __NR_select); |
| # if defined(__NR_semctl) |
| ADD(0, __NR_semctl); |
| # endif |
| # if defined(__NR_semget) |
| ADD(0, __NR_semget); |
| # endif |
| # if defined(__NR_semop) |
| ADD(0, __NR_semop); |
| # endif |
| # if defined(__NR_sendto) |
| ADD(0, __NR_sendto); |
| # endif |
| # if defined(__NR_sendmsg) |
| ADD(0, __NR_sendmsg); |
| # endif |
| ADD(0, __NR_set_robust_list); |
| # if defined(__NR_set_thread_area) |
| ADD(0, __NR_set_thread_area); |
| # endif |
| ADD(0, __NR_set_tid_address); |
| ADD(0, __NR_setfsgid); |
| ADD(0, __NR_setfsuid); |
| ADD(0, __NR_setgid); |
| ADD(0, __NR_setitimer); |
| ADD(0, __NR_setpgid); |
| ADD(0, __NR_setresgid); |
| ADD(0, __NR_setrlimit); |
| ADD(0, __NR_setsid); |
| # if defined(__NR_setsockopt) |
| ADD(0, __NR_setsockopt); |
| # endif |
| ADD(0, __NR_setuid); |
| # if defined(__NR_shmctl) |
| ADD(0, __NR_shmctl); |
| ADD(0, __NR_shmdt); |
| # endif |
| # if defined(__NR_shutdown) |
| ADD(0, __NR_shutdown); |
| # endif |
| ADD(0, __NR_sigaltstack); |
| # if defined(__NR_socket) |
| ADD(0, __NR_socket); |
| # endif |
| # if defined(__NR_socketcall) |
| ADD(0, __NR_socketcall); /* the nasty x86-linux socket multiplexor */ |
| # endif |
| # if defined(__NR_socketpair) |
| ADD(0, __NR_socketpair); |
| # endif |
| # if defined(__NR_statfs64) |
| ADD(0, __NR_statfs64); |
| # endif |
| # if defined(__NR_sigreturn) |
| ADD(0, __NR_sigreturn); /* not sure if we should see this or not */ |
| # endif |
| # if defined(__NR_stat64) |
| ADD(0, __NR_stat64); |
| # endif |
| ADD(0, __NR_stat); |
| ADD(0, __NR_statfs); |
| ADD(0, __NR_symlink); |
| ADD(0, __NR_sysinfo); |
| ADD(0, __NR_tgkill); |
| ADD(0, __NR_time); |
| ADD(0, __NR_times); |
| ADD(0, __NR_truncate); |
| # if defined(__NR_truncate64) |
| ADD(0, __NR_truncate64); |
| # endif |
| # if defined(__NR_ugetrlimit) |
| ADD(0, __NR_ugetrlimit); |
| # endif |
| ADD(0, __NR_umask); |
| ADD(0, __NR_uname); |
| ADD(0, __NR_unlink); |
| ADD(0, __NR_utime); |
| # if defined(__NR_waitpid) |
| ADD(0, __NR_waitpid); |
| # endif |
| ADD(0, __NR_wait4); |
| ADD(0, __NR_write); |
| ADD(0, __NR_writev); |
| |
| /* Whereas the following need special treatment */ |
| # if defined(__NR_arch_prctl) |
| ADD(1, __NR_arch_prctl); |
| # endif |
| ADD(1, __NR_brk); |
| ADD(1, __NR_mmap); |
| # if defined(__NR_mmap2) |
| ADD(1, __NR_mmap2); |
| # endif |
| # if defined(__NR_shmat) |
| ADD(1, __NR_shmat); |
| # endif |
| # if defined(__NR_shmget) |
| ADD(1, __NR_shmget); |
| # endif |
| |
| /* --------------- AIX5 --------------- */ |
| |
| # elif defined(VGO_aix5) |
| |
| # define ADD(_flag, _syscallname) \ |
| do { \ |
| UWordPair p; \ |
| if ((_syscallname) != __NR_AIX5_UNKNOWN) { \ |
| p.uw1 = (UWord)&(_syscallname); p.uw2 = (_flag); \ |
| VG_(addToXA)( post_syscall_table, &p ); \ |
| } \ |
| } while (0) |
| |
| /* Just a minimal set of handlers, enough to make |
| a 32- and 64-bit hello-world program run. */ |
| ADD(1, __NR_AIX5___loadx); /* not sure what to do here */ |
| ADD(0, __NR_AIX5__exit); |
| ADD(0, __NR_AIX5_access); |
| ADD(0, __NR_AIX5_getgidx); |
| ADD(0, __NR_AIX5_getuidx); |
| ADD(0, __NR_AIX5_kfcntl); |
| ADD(0, __NR_AIX5_kioctl); |
| ADD(1, __NR_AIX5_kload); /* not sure what to do here */ |
| ADD(0, __NR_AIX5_kwrite); |
| |
| # else |
| # error "Unsupported OS" |
| # endif |
| |
| # undef ADD |
| } |
| |
| |
| void h_post_syscall ( ThreadId tid, UInt sysno, SysRes res ) |
| { |
| Word i, n; |
| UWordPair* pair; |
| |
| if (!post_syscall_table) |
| setup_post_syscall_table(); |
| |
| /* search for 'sysno' in the post_syscall_table */ |
| n = VG_(sizeXA)( post_syscall_table ); |
| for (i = 0; i < n; i++) { |
| pair = VG_(indexXA)( post_syscall_table, i ); |
| # if defined(VGO_linux) |
| if (pair->uw1 == (UWord)sysno) |
| break; |
| # elif defined(VGO_aix5) |
| if (*(Int*)(pair->uw1) == (Int)sysno) |
| break; |
| # else |
| # error "Unsupported OS" |
| # endif |
| } |
| |
| tl_assert(i >= 0 && i <= n); |
| |
| if (i == n) { |
| VG_(printf)("sysno == %u\n", sysno); |
| # if defined(VGO_aix5) |
| VG_(printf)("syscallnm == %s\n", |
| VG_(aix5_sysno_to_sysname)(sysno)); |
| # endif |
| VG_(tool_panic)("unhandled syscall"); |
| } |
| |
| /* So we found the relevant entry. Move it one step |
| forward so as to speed future accesses to it. */ |
| if (i > 0) { |
| UWordPair tmp, *p, *q; |
| p = VG_(indexXA)( post_syscall_table, i-1 ); |
| q = VG_(indexXA)( post_syscall_table, i-0 ); |
| tmp = *p; |
| *p = *q; |
| *q = tmp; |
| i--; |
| } |
| |
| /* Deal with the common case */ |
| pair = VG_(indexXA)( post_syscall_table, i ); |
| if (pair->uw2 == 0) { |
| /* the common case */ |
| VG_(set_syscall_return_shadows)( |
| tid, /* retval */ (UWord)NONPTR, 0, |
| /* error */ (UWord)NONPTR, 0 |
| ); |
| return; |
| } |
| |
| /* Special handling for all remaining cases */ |
| tl_assert(pair->uw2 == 1); |
| |
| # if defined(__NR_arch_prctl) |
| if (sysno == __NR_arch_prctl) { |
| /* This is nasty. On amd64-linux, arch_prctl may write a |
| value to guest_FS_ZERO, and we need to shadow that value. |
| Hence apply nonptr_or_unknown to it here, after the |
| syscall completes. */ |
| post_reg_write_nonptr_or_unknown( tid, PC_OFF_FS_ZERO, |
| PC_SZB_FS_ZERO ); |
| VG_(set_syscall_return_shadows)( |
| tid, /* retval */ (UWord)NONPTR, 0, |
| /* error */ (UWord)NONPTR, 0 |
| ); |
| return; |
| } |
| # endif |
| |
| # if defined(__NR_brk) |
| // With brk(), result (of kernel syscall, not glibc wrapper) is a heap |
| // pointer. Make the shadow UNKNOWN. |
| if (sysno == __NR_brk) { |
| VG_(set_syscall_return_shadows)( |
| tid, /* retval */ (UWord)UNKNOWN, 0, |
| /* error */ (UWord)NONPTR, 0 |
| ); |
| return; |
| } |
| # endif |
| |
| // With mmap, new_mem_mmap() has already been called and added the |
| // segment (we did it there because we had the result address and size |
| // handy). So just set the return value shadow. |
| if (sysno == __NR_mmap |
| # if defined(__NR_mmap2) |
| || sysno == __NR_mmap2 |
| # endif |
| # if defined(__NR_AIX5___loadx) |
| || (sysno == __NR_AIX5___loadx && __NR_AIX5___loadx != __NR_AIX5_UNKNOWN) |
| # endif |
| # if defined(__NR_AIX5_kload) |
| || (sysno == __NR_AIX5_kload && __NR_AIX5_kload != __NR_AIX5_UNKNOWN) |
| # endif |
| ) { |
| if (res.isError) { |
| // mmap() had an error, return value is a small negative integer |
| VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)NONPTR, 0, |
| /*err*/ (UWord)NONPTR, 0 ); |
| if (0) VG_(printf)("ZZZZZZZ mmap res -> NONPTR\n"); |
| } else { |
| VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)UNKNOWN, 0, |
| /*err*/ (UWord)NONPTR, 0 ); |
| if (0) VG_(printf)("ZZZZZZZ mmap res -> UNKNOWN\n"); |
| } |
| return; |
| } |
| |
| // shmat uses the same scheme. We will just have had a |
| // notification via new_mem_mmap. Just set the return value shadow. |
| # if defined(__NR_shmat) |
| if (sysno == __NR_shmat) { |
| if (res.isError) { |
| VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)NONPTR, 0, |
| /*err*/ (UWord)NONPTR, 0 ); |
| if (0) VG_(printf)("ZZZZZZZ shmat res -> NONPTR\n"); |
| } else { |
| VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)UNKNOWN, 0, |
| /*err*/ (UWord)NONPTR, 0 ); |
| if (0) VG_(printf)("ZZZZZZZ shmat res -> UNKNOWN\n"); |
| } |
| return; |
| } |
| # endif |
| |
| # if defined(__NR_shmget) |
| if (sysno == __NR_shmget) { |
| // FIXME: is this correct? |
| VG_(set_syscall_return_shadows)( tid, /*val*/ (UWord)UNKNOWN, 0, |
| /*err*/ (UWord)NONPTR, 0 ); |
| return; |
| } |
| # endif |
| |
| /* If we get here, it implies the corresponding entry in |
| post_syscall_table has .w2 == 1, which in turn implies there |
| should be special-case code for it above. */ |
| tl_assert(0); |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Functions called from generated code ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| #if SC_SEGS |
| static void checkSeg ( Seg vseg ) { |
| tl_assert(vseg == UNKNOWN || vseg == NONPTR || vseg == BOTTOM |
| || Seg__plausible(vseg) ); |
| } |
| #endif |
| |
| // XXX: could be more sophisticated -- actually track the lowest/highest |
| // valid address used by the program, and then return False for anything |
| // below that (using a suitable safety margin). Also, nothing above |
| // 0xc0000000 is valid [unless you've changed that in your kernel] |
| static inline Bool looks_like_a_pointer(Addr a) |
| { |
| # if defined(VGA_x86) || defined(VGA_ppc32) |
| tl_assert(sizeof(UWord) == 4); |
| return (a > 0x01000000UL && a < 0xFF000000UL); |
| # elif defined(VGA_amd64) || defined(VGA_ppc64) |
| tl_assert(sizeof(UWord) == 8); |
| return (a >= 16 * 0x10000UL && a < 0xFF00000000000000UL); |
| # else |
| # error "Unsupported architecture" |
| # endif |
| } |
| |
| static inline VG_REGPARM(1) |
| Seg* nonptr_or_unknown(UWord x) |
| { |
| Seg* res = looks_like_a_pointer(x) ? UNKNOWN : NONPTR; |
| if (0) VG_(printf)("nonptr_or_unknown %s %#lx\n", |
| res==UNKNOWN ? "UUU" : "nnn", x); |
| return res; |
| } |
| |
| //zz static __attribute__((regparm(1))) |
| //zz void print_BB_entry(UInt bb) |
| //zz { |
| //zz VG_(printf)("%u =\n", bb); |
| //zz } |
| |
| //static ULong stats__tot_mem_refs = 0; |
| //static ULong stats__refs_in_a_seg = 0; |
| //static ULong stats__refs_lost_seg = 0; |
| |
| typedef |
| struct { ExeContext* ec; UWord count; } |
| Lossage; |
| |
| static OSet* lossage = NULL; |
| |
| //static void inc_lossage ( ExeContext* ec ) |
| //{ |
| // Lossage key, *res, *nyu; |
| // key.ec = ec; |
| // key.count = 0; /* frivolous */ |
| // res = VG_(OSetGen_Lookup)(lossage, &key); |
| // if (res) { |
| // tl_assert(res->ec == ec); |
| // res->count++; |
| // } else { |
| // nyu = (Lossage*)VG_(OSetGen_AllocNode)(lossage, sizeof(Lossage)); |
| // tl_assert(nyu); |
| // nyu->ec = ec; |
| // nyu->count = 1; |
| // VG_(OSetGen_Insert)( lossage, nyu ); |
| // } |
| //} |
| |
| static void init_lossage ( void ) |
| { |
| lossage = VG_(OSetGen_Create)( /*keyOff*/ offsetof(Lossage,ec), |
| /*fastCmp*/NULL, |
| VG_(malloc), "pc.h_main.il.1", |
| VG_(free) ); |
| tl_assert(lossage); |
| } |
| |
| //static void show_lossage ( void ) |
| //{ |
| // Lossage* elem; |
| // VG_(OSetGen_ResetIter)( lossage ); |
| // while ( (elem = VG_(OSetGen_Next)(lossage)) ) { |
| // if (elem->count < 10) continue; |
| // //Char buf[100]; |
| // //(void)VG_(describe_IP)(elem->ec, buf, sizeof(buf)-1); |
| // //buf[sizeof(buf)-1] = 0; |
| // //VG_(printf)(" %,8lu %s\n", elem->count, buf); |
| // VG_(message)(Vg_UserMsg, "Lossage count %'lu at", elem->count); |
| // VG_(pp_ExeContext)(elem->ec); |
| // } |
| //} |
| |
| // This function is called *a lot*; inlining it sped up Konqueror by 20%. |
| static inline |
| void check_load_or_store(Bool is_write, Addr m, UWord sz, Seg* mptr_vseg) |
| { |
| #if 0 |
| tl_assert(0); |
| if (h_clo_lossage_check) { |
| Seg* seg; |
| stats__tot_mem_refs++; |
| if (ISList__findI0( seglist, (Addr)m, &seg )) { |
| /* m falls inside 'seg' (that is, we are making a memory |
| reference inside 'seg'). Now, really mptr_vseg should be |
| a tracked segment of some description. Badness is when |
| mptr_vseg is UNKNOWN, BOTTOM or NONPTR at this point, |
| since that means we've lost the type of it somehow: it |
| shoud say that m points into a real segment (preferable |
| 'seg'), but it doesn't. */ |
| if (Seg__status_is_SegHeap(seg)) { |
| stats__refs_in_a_seg++; |
| if (UNKNOWN == mptr_vseg |
| || BOTTOM == mptr_vseg || NONPTR == mptr_vseg) { |
| ExeContext* ec; |
| Char buf[100]; |
| static UWord xx = 0; |
| stats__refs_lost_seg++; |
| ec = VG_(record_ExeContext)( VG_(get_running_tid)(), 0 ); |
| inc_lossage(ec); |
| if (0) { |
| VG_(message)(Vg_DebugMsg, ""); |
| VG_(message)(Vg_DebugMsg, |
| "Lossage %s %#lx sz %lu inside block alloc'd", |
| is_write ? "wr" : "rd", m, (UWord)sz); |
| VG_(pp_ExeContext)(Seg__where(seg)); |
| } |
| if (xx++ < 0) { |
| Addr ip = VG_(get_IP)( VG_(get_running_tid)() ); |
| (void)VG_(describe_IP)( ip, buf, sizeof(buf)-1); |
| buf[sizeof(buf)-1] = 0; |
| VG_(printf)("lossage at %p %s\n", ec, buf ); |
| } |
| } |
| } |
| } |
| } /* clo_lossage_check */ |
| #endif |
| |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| |
| if (UNKNOWN == mptr_vseg) { |
| // do nothing |
| |
| } else if (BOTTOM == mptr_vseg) { |
| // do nothing |
| |
| } else if (NONPTR == mptr_vseg) { |
| h_record_heap_error( m, sz, mptr_vseg, is_write ); |
| |
| } else { |
| // check all segment ranges in the circle |
| // if none match, warn about 1st seg |
| // else, check matching one isn't freed |
| Bool is_ok = False; |
| Seg* curr = mptr_vseg; |
| Addr mhi; |
| |
| // Accesses partly outside range are an error, unless it's an aligned |
| // word-sized read, and --partial-loads-ok=yes. This is to cope with |
| // gcc's/glibc's habits of doing word-sized accesses that read past |
| // the ends of arrays/strings. |
| // JRS 2008-sept-11: couldn't this be moved off the critical path? |
| if (!is_write && sz == sizeof(UWord) |
| && h_clo_partial_loads_ok && SHMEM_IS_WORD_ALIGNED(m)) { |
| mhi = m; |
| } else { |
| mhi = m+sz-1; |
| } |
| |
| if (0) VG_(printf)("calling seg_ci %p %#lx %#lx\n", curr,m,mhi); |
| is_ok = curr->addr <= m && mhi < curr->addr + curr->szB; |
| |
| // If it's an overrun/underrun of a freed block, don't give both |
| // warnings, since the first one mentions that the block has been |
| // freed. |
| if ( ! is_ok || Seg__is_freed(curr) ) |
| h_record_heap_error( m, sz, mptr_vseg, is_write ); |
| } |
| } |
| |
| // ------------------ Load handlers ------------------ // |
| |
| /* On 32 bit targets, we will use: |
| check_load1 check_load2 check_load4_P |
| check_load4 (for 32-bit FP reads) |
| check_load8 (for 64-bit FP reads) |
| check_load16 (for xmm/altivec reads) |
| On 64 bit targets, we will use: |
| check_load1 check_load2 check_load4 check_load8_P |
| check_load8 (for 64-bit FP reads) |
| check_load16 (for xmm/altivec reads) |
| |
| A "_P" handler reads a pointer from memory, and so returns a value |
| to the generated code -- the pointer's shadow value. That implies |
| that check_load4_P is only to be called on a 32 bit host and |
| check_load8_P is only to be called on a 64 bit host. For all other |
| cases no shadow value is returned; we merely check that the pointer |
| (m) matches the block described by its shadow value (mptr_vseg). |
| */ |
| |
| // This handles 128 bit loads on both 32 bit and 64 bit targets. |
| static VG_REGPARM(2) |
| void check_load16(Addr m, Seg* mptr_vseg) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 16, mptr_vseg); |
| } |
| |
| // This handles 64 bit FP-or-otherwise-nonpointer loads on both |
| // 32 bit and 64 bit targets. |
| static VG_REGPARM(2) |
| void check_load8(Addr m, Seg* mptr_vseg) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 8, mptr_vseg); |
| } |
| |
| // This handles 64 bit loads on 64 bit targets. It must |
| // not be called on 32 bit targets. |
| // return m.vseg |
| static VG_REGPARM(2) |
| Seg* check_load8_P(Addr m, Seg* mptr_vseg) |
| { |
| Seg* vseg; |
| tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 8, mptr_vseg); |
| if (VG_IS_8_ALIGNED(m)) { |
| vseg = get_mem_vseg(m); |
| } else { |
| vseg = nonptr_or_unknown( *(ULong*)m ); |
| } |
| return vseg; |
| } |
| |
| // This handles 32 bit loads on 32 bit targets. It must |
| // not be called on 64 bit targets. |
| // return m.vseg |
| static VG_REGPARM(2) |
| Seg* check_load4_P(Addr m, Seg* mptr_vseg) |
| { |
| Seg* vseg; |
| tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 4, mptr_vseg); |
| if (VG_IS_4_ALIGNED(m)) { |
| vseg = get_mem_vseg(m); |
| } else { |
| vseg = nonptr_or_unknown( *(UInt*)m ); |
| } |
| return vseg; |
| } |
| |
| // Used for both 32 bit and 64 bit targets. |
| static VG_REGPARM(2) |
| void check_load4(Addr m, Seg* mptr_vseg) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 4, mptr_vseg); |
| } |
| |
| // Used for both 32 bit and 64 bit targets. |
| static VG_REGPARM(2) |
| void check_load2(Addr m, Seg* mptr_vseg) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 2, mptr_vseg); |
| } |
| |
| // Used for both 32 bit and 64 bit targets. |
| static VG_REGPARM(2) |
| void check_load1(Addr m, Seg* mptr_vseg) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/False, m, 1, mptr_vseg); |
| } |
| |
| // ------------------ Store handlers ------------------ // |
| |
| /* On 32 bit targets, we will use: |
| check_store1 check_store2 check_store4_P |
| check_store4 (for 32-bit nonpointer stores) |
| check_store8_ms4B_ls4B (for 64-bit stores) |
| check_store16_ms4B_4B_4B_ls4B (for xmm/altivec stores) |
| |
| On 64 bit targets, we will use: |
| check_store1 check_store2 check_store4 check_store8_P |
| check_store8_all8B (for 64-bit nonpointer stores) |
| check_store16_ms8B_ls8B (for xmm/altivec stores) |
| |
| A "_P" handler writes a pointer to memory, and so has an extra |
| argument -- the pointer's shadow value. That implies that |
| check_store4_P is only to be called on a 32 bit host and |
| check_store8_P is only to be called on a 64 bit host. For all |
| other cases, and for the misaligned _P cases, the strategy is to |
| let the store go through, and then snoop around with |
| nonptr_or_unknown to fix up the shadow values of any affected |
| words. */ |
| |
| /* Apply nonptr_or_unknown to all the words intersecting |
| [a, a+len). */ |
| static VG_REGPARM(2) |
| void nonptr_or_unknown_range ( Addr a, SizeT len ) |
| { |
| const SizeT wszB = sizeof(UWord); |
| Addr wfirst = VG_ROUNDDN(a, wszB); |
| Addr wlast = VG_ROUNDDN(a+len-1, wszB); |
| Addr a2; |
| tl_assert(wfirst <= wlast); |
| for (a2 = wfirst ; a2 <= wlast; a2 += wszB) { |
| set_mem_vseg( a2, nonptr_or_unknown( *(UWord*)a2 )); |
| } |
| } |
| |
| // This handles 128 bit stores on 64 bit targets. The |
| // store data is passed in 2 pieces, the most significant |
| // bits first. |
| static VG_REGPARM(3) |
| void check_store16_ms8B_ls8B(Addr m, Seg* mptr_vseg, |
| UWord ms8B, UWord ls8B) |
| { |
| tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 16, mptr_vseg); |
| // Actually *do* the STORE here |
| if (host_is_little_endian()) { |
| // FIXME: aren't we really concerned whether the guest |
| // is little endian, not whether the host is? |
| *(ULong*)(m + 0) = ls8B; |
| *(ULong*)(m + 8) = ms8B; |
| } else { |
| *(ULong*)(m + 0) = ms8B; |
| *(ULong*)(m + 8) = ls8B; |
| } |
| nonptr_or_unknown_range(m, 16); |
| } |
| |
| // This handles 128 bit stores on 64 bit targets. The |
| // store data is passed in 2 pieces, the most significant |
| // bits first. |
| static VG_REGPARM(3) |
| void check_store16_ms4B_4B_4B_ls4B(Addr m, Seg* mptr_vseg, |
| UWord ms4B, UWord w2, |
| UWord w1, UWord ls4B) |
| { |
| tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 16, mptr_vseg); |
| // Actually *do* the STORE here |
| if (host_is_little_endian()) { |
| // FIXME: aren't we really concerned whether the guest |
| // is little endian, not whether the host is? |
| *(UInt*)(m + 0) = ls4B; |
| *(UInt*)(m + 4) = w1; |
| *(UInt*)(m + 8) = w2; |
| *(UInt*)(m + 12) = ms4B; |
| } else { |
| *(UInt*)(m + 0) = ms4B; |
| *(UInt*)(m + 4) = w2; |
| *(UInt*)(m + 8) = w1; |
| *(UInt*)(m + 12) = ls4B; |
| } |
| nonptr_or_unknown_range(m, 16); |
| } |
| |
| // This handles 64 bit stores on 32 bit targets. The |
| // store data is passed in 2 pieces, the most significant |
| // bits first. |
| static VG_REGPARM(3) |
| void check_store8_ms4B_ls4B(Addr m, Seg* mptr_vseg, |
| UWord ms4B, UWord ls4B) |
| { |
| tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 8, mptr_vseg); |
| // Actually *do* the STORE here |
| if (host_is_little_endian()) { |
| // FIXME: aren't we really concerned whether the guest |
| // is little endian, not whether the host is? |
| *(UInt*)(m + 0) = ls4B; |
| *(UInt*)(m + 4) = ms4B; |
| } else { |
| *(UInt*)(m + 0) = ms4B; |
| *(UInt*)(m + 4) = ls4B; |
| } |
| nonptr_or_unknown_range(m, 8); |
| } |
| |
| // This handles 64 bit non pointer stores on 64 bit targets. |
| // It must not be called on 32 bit targets. |
| static VG_REGPARM(3) |
| void check_store8_all8B(Addr m, Seg* mptr_vseg, UWord all8B) |
| { |
| tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 8, mptr_vseg); |
| // Actually *do* the STORE here |
| *(ULong*)m = all8B; |
| nonptr_or_unknown_range(m, 8); |
| } |
| |
| // This handles 64 bit stores on 64 bit targets. It must |
| // not be called on 32 bit targets. |
| static VG_REGPARM(3) |
| void check_store8_P(Addr m, Seg* mptr_vseg, UWord t, Seg* t_vseg) |
| { |
| tl_assert(sizeof(UWord) == 8); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(t_vseg); |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 8, mptr_vseg); |
| // Actually *do* the STORE here |
| *(ULong*)m = t; |
| if (VG_IS_8_ALIGNED(m)) { |
| set_mem_vseg( m, t_vseg ); |
| } else { |
| // straddling two words |
| nonptr_or_unknown_range(m, 8); |
| } |
| } |
| |
| // This handles 32 bit stores on 32 bit targets. It must |
| // not be called on 64 bit targets. |
| static VG_REGPARM(3) |
| void check_store4_P(Addr m, Seg* mptr_vseg, UWord t, Seg* t_vseg) |
| { |
| tl_assert(sizeof(UWord) == 4); /* DO NOT REMOVE */ |
| # if SC_SEGS |
| checkSeg(t_vseg); |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 4, mptr_vseg); |
| // Actually *do* the STORE here |
| *(UInt*)m = t; |
| if (VG_IS_4_ALIGNED(m)) { |
| set_mem_vseg( m, t_vseg ); |
| } else { |
| // straddling two words |
| nonptr_or_unknown_range(m, 4); |
| } |
| } |
| |
| // Used for both 32 bit and 64 bit targets. |
| static VG_REGPARM(3) |
| void check_store4(Addr m, Seg* mptr_vseg, UWord t) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 4, mptr_vseg); |
| // Actually *do* the STORE here (Nb: cast must be to 4-byte type!) |
| *(UInt*)m = t; |
| nonptr_or_unknown_range(m, 4); |
| } |
| |
| // Used for both 32 bit and 64 bit targets. |
| static VG_REGPARM(3) |
| void check_store2(Addr m, Seg* mptr_vseg, UWord t) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 2, mptr_vseg); |
| // Actually *do* the STORE here (Nb: cast must be to 2-byte type!) |
| *(UShort*)m = t; |
| nonptr_or_unknown_range(m, 2); |
| } |
| |
| // Used for both 32 bit and 64 bit targets. |
| static VG_REGPARM(3) |
| void check_store1(Addr m, Seg* mptr_vseg, UWord t) |
| { |
| # if SC_SEGS |
| checkSeg(mptr_vseg); |
| # endif |
| check_load_or_store(/*is_write*/True, m, 1, mptr_vseg); |
| // Actually *do* the STORE here (Nb: cast must be to 1-byte type!) |
| *(UChar*)m = t; |
| nonptr_or_unknown_range(m, 1); |
| } |
| |
| |
| // Nb: if the result is BOTTOM, return immedately -- don't let BOTTOM |
| // be changed to NONPTR by a range check on the result. |
| #define BINOP(bt, nn, nu, np, un, uu, up, pn, pu, pp) \ |
| if (BOTTOM == seg1 || BOTTOM == seg2) { bt; \ |
| } else if (NONPTR == seg1) { if (NONPTR == seg2) { nn; } \ |
| else if (UNKNOWN == seg2) { nu; } \ |
| else { np; } \ |
| } else if (UNKNOWN == seg1) { if (NONPTR == seg2) { un; } \ |
| else if (UNKNOWN == seg2) { uu; } \ |
| else { up; } \ |
| } else { if (NONPTR == seg2) { pn; } \ |
| else if (UNKNOWN == seg2) { pu; } \ |
| else { pp; } \ |
| } |
| |
| #define BINERROR(opname) \ |
| h_record_arith_error(seg1, seg2, opname); \ |
| out = NONPTR |
| |
| |
| // ------------- |
| // + | n ? p |
| // ------------- |
| // n | n ? p |
| // ? | ? ? ? |
| // p | p ? e (all results become n if they look like a non-pointer) |
| // ------------- |
| static Seg* do_addW_result(Seg* seg1, Seg* seg2, UWord result, HChar* opname) |
| { |
| Seg* out; |
| # if SC_SEGS |
| checkSeg(seg1); |
| checkSeg(seg2); |
| # endif |
| BINOP( |
| return BOTTOM, |
| out = NONPTR, out = UNKNOWN, out = seg2, |
| out = UNKNOWN, out = UNKNOWN, out = UNKNOWN, |
| out = seg1, out = UNKNOWN, BINERROR(opname) |
| ); |
| return ( looks_like_a_pointer(result) ? out : NONPTR ); |
| } |
| |
| static VG_REGPARM(3) Seg* do_addW(Seg* seg1, Seg* seg2, UWord result) |
| { |
| Seg* out; |
| # if SC_SEGS |
| checkSeg(seg1); |
| checkSeg(seg2); |
| # endif |
| out = do_addW_result(seg1, seg2, result, "Add32/Add64"); |
| # if SC_SEGS |
| checkSeg(out); |
| # endif |
| return out; |
| } |
| |
| // ------------- |
| // - | n ? p (Nb: operation is seg1 - seg2) |
| // ------------- |
| // n | n ? n+ (+) happens a lot due to "cmp", but result should never |
| // ? | ? ? n/B be used, so give 'n' |
| // p | p p? n*/B (*) and possibly link the segments |
| // ------------- |
| static VG_REGPARM(3) Seg* do_subW(Seg* seg1, Seg* seg2, UWord result) |
| { |
| Seg* out; |
| # if SC_SEGS |
| checkSeg(seg1); |
| checkSeg(seg2); |
| # endif |
| // Nb: when returning BOTTOM, don't let it go through the range-check; |
| // a segment linking offset can easily look like a nonptr. |
| BINOP( |
| return BOTTOM, |
| out = NONPTR, out = UNKNOWN, out = NONPTR, |
| out = UNKNOWN, out = UNKNOWN, return BOTTOM, |
| out = seg1, out = seg1/*??*/, return BOTTOM |
| ); |
| #if 0 |
| // This is for the p-p segment-linking case |
| Seg end2 = seg2; |
| while (end2->links != seg2) end2 = end2->links; |
| end2->links = seg1->links; |
| seg1->links = seg2; |
| return NONPTR; |
| #endif |
| return ( looks_like_a_pointer(result) ? out : NONPTR ); |
| } |
| |
| // ------------- |
| // & | n ? p |
| // ------------- |
| // n | n ? p |
| // ? | ? ? ? |
| // p | p ? * (*) if p1==p2 then p else e (see comment) |
| // ------------- |
| /* Seems to be OK to And two pointers: |
| testq %ptr1,%ptr2 |
| jnz .. |
| which possibly derives from |
| if (ptr1 & ptr2) { A } else { B } |
| not sure what that means |
| */ |
| static VG_REGPARM(3) Seg* do_andW(Seg* seg1, Seg* seg2, |
| UWord result, UWord args_diff) |
| { |
| Seg* out; |
| if (0 == args_diff) { |
| // p1==p2 |
| out = seg1; |
| } else { |
| BINOP( |
| return BOTTOM, |
| out = NONPTR, out = UNKNOWN, out = seg2, |
| out = UNKNOWN, out = UNKNOWN, out = UNKNOWN, |
| out = seg1, out = UNKNOWN, out = NONPTR |
| /*BINERROR("And32/And64")*/ |
| ); |
| } |
| out = ( looks_like_a_pointer(result) ? out : NONPTR ); |
| return out; |
| } |
| |
| // ------------- |
| // `|`| n ? p |
| // ------------- |
| // n | n ? p |
| // ? | ? ? ? |
| // p | p ? n |
| // ------------- |
| /* It's OK to Or two pointers together, but the result definitely |
| isn't a pointer. Why would you want to do that? Because of this: |
| char* p1 = malloc(..); |
| char* p2 = malloc(..); |
| ... |
| if (p1 || p2) { .. } |
| In this case gcc on x86/amd64 quite literally or-s the two pointers |
| together and throws away the result, the purpose of which is merely |
| to sets %eflags.Z/%rflags.Z. So we have to allow it. |
| */ |
| static VG_REGPARM(3) Seg* do_orW(Seg* seg1, Seg* seg2, UWord result) |
| { |
| Seg* out; |
| BINOP( |
| return BOTTOM, |
| out = NONPTR, out = UNKNOWN, out = seg2, |
| out = UNKNOWN, out = UNKNOWN, out = UNKNOWN, |
| out = seg1, out = UNKNOWN, out = NONPTR |
| ); |
| out = ( looks_like_a_pointer(result) ? out : NONPTR ); |
| return out; |
| } |
| |
| // ------------- |
| // ~ | n ? p |
| // ------------- |
| // | n n n |
| // ------------- |
| static VG_REGPARM(2) Seg* do_notW(Seg* seg1, UWord result) |
| { |
| # if SC_SEGS |
| checkSeg(seg1); |
| # endif |
| if (BOTTOM == seg1) return BOTTOM; |
| return NONPTR; |
| } |
| |
| // Pointers are rarely multiplied, but sometimes legitimately, eg. as hash |
| // function inputs. But two pointers args --> error. |
| // Pretend it always returns a nonptr. Maybe improve later. |
| static VG_REGPARM(2) Seg* do_mulW(Seg* seg1, Seg* seg2) |
| { |
| # if SC_SEGS |
| checkSeg(seg1); |
| checkSeg(seg2); |
| # endif |
| if (is_known_segment(seg1) && is_known_segment(seg2)) |
| h_record_arith_error(seg1, seg2, "Mul32/Mul64"); |
| return NONPTR; |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Instrumentation ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* The h_ instrumenter that follows is complex, since it deals with |
| shadow value computation. |
| |
| It also needs to generate instrumentation for the sg_ side of |
| things. That's relatively straightforward. However, rather than |
| confuse the code herein any further, we simply delegate the problem |
| to sg_main.c, by using the four functions |
| sg_instrument_{init,fini,IRStmt,final_jump}. These four completely |
| abstractify the sg_ instrumentation. See comments in sg_main.c's |
| instrumentation section for further details. */ |
| |
| /* Carries around state during Ptrcheck instrumentation. */ |
| typedef |
| struct { |
| /* MODIFIED: the superblock being constructed. IRStmts are |
| added. */ |
| IRSB* bb; |
| Bool trace; |
| |
| /* MODIFIED: a table [0 .. #temps_in_original_bb-1] which maps |
| original temps to their current their current shadow temp. |
| Initially all entries are IRTemp_INVALID. Entries are added |
| lazily since many original temps are not used due to |
| optimisation prior to instrumentation. Note that only |
| integer temps of the guest word size are shadowed, since it |
| is impossible (or meaningless) to hold a pointer in any other |
| type of temp. */ |
| IRTemp* tmpMap; |
| Int n_originalTmps; /* for range checking */ |
| |
| /* READONLY: the host word type. Needed for constructing |
| arguments of type 'HWord' to be passed to helper functions. |
| Ity_I32 or Ity_I64 only. */ |
| IRType hWordTy; |
| |
| /* READONLY: the guest word type, Ity_I32 or Ity_I64 only. */ |
| IRType gWordTy; |
| |
| /* READONLY: the guest state size, so we can generate shadow |
| offsets correctly. */ |
| Int guest_state_sizeB; |
| } |
| PCEnv; |
| |
| /* SHADOW TMP MANAGEMENT. Shadow tmps are allocated lazily (on |
| demand), as they are encountered. This is for two reasons. |
| |
| (1) (less important reason): Many original tmps are unused due to |
| initial IR optimisation, and we do not want to spaces in tables |
| tracking them. |
| |
| Shadow IRTemps are therefore allocated on demand. pce.tmpMap is a |
| table indexed [0 .. n_types-1], which gives the current shadow for |
| each original tmp, or INVALID_IRTEMP if none is so far assigned. |
| It is necessary to support making multiple assignments to a shadow |
| -- specifically, after testing a shadow for definedness, it needs |
| to be made defined. But IR's SSA property disallows this. |
| |
| (2) (more important reason): Therefore, when a shadow needs to get |
| a new value, a new temporary is created, the value is assigned to |
| that, and the tmpMap is updated to reflect the new binding. |
| |
| A corollary is that if the tmpMap maps a given tmp to |
| IRTemp_INVALID and we are hoping to read that shadow tmp, it means |
| there's a read-before-write error in the original tmps. The IR |
| sanity checker should catch all such anomalies, however. |
| */ |
| |
| /* Find the tmp currently shadowing the given original tmp. If none |
| so far exists, allocate one. */ |
| static IRTemp findShadowTmp ( PCEnv* pce, IRTemp orig ) |
| { |
| tl_assert(orig < pce->n_originalTmps); |
| tl_assert(pce->bb->tyenv->types[orig] == pce->gWordTy); |
| if (pce->tmpMap[orig] == IRTemp_INVALID) { |
| tl_assert(0); |
| pce->tmpMap[orig] |
| = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| } |
| return pce->tmpMap[orig]; |
| } |
| |
| /* Allocate a new shadow for the given original tmp. This means any |
| previous shadow is abandoned. This is needed because it is |
| necessary to give a new value to a shadow once it has been tested |
| for undefinedness, but unfortunately IR's SSA property disallows |
| this. Instead we must abandon the old shadow, allocate a new one |
| and use that instead. */ |
| __attribute__((noinline)) |
| static IRTemp newShadowTmp ( PCEnv* pce, IRTemp orig ) |
| { |
| tl_assert(orig < pce->n_originalTmps); |
| tl_assert(pce->bb->tyenv->types[orig] == pce->gWordTy); |
| pce->tmpMap[orig] |
| = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| return pce->tmpMap[orig]; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- IRAtoms -- a subset of IRExprs ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* An atom is either an IRExpr_Const or an IRExpr_Tmp, as defined by |
| isIRAtom() in libvex_ir.h. Because this instrumenter expects flat |
| input, most of this code deals in atoms. Usefully, a value atom |
| always has a V-value which is also an atom: constants are shadowed |
| by constants, and temps are shadowed by the corresponding shadow |
| temporary. */ |
| |
| typedef IRExpr IRAtom; |
| |
| //zz /* (used for sanity checks only): is this an atom which looks |
| //zz like it's from original code? */ |
| //zz static Bool isOriginalAtom ( PCEnv* pce, IRAtom* a1 ) |
| //zz { |
| //zz if (a1->tag == Iex_Const) |
| //zz return True; |
| //zz if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp < pce->n_originalTmps) |
| //zz return True; |
| //zz return False; |
| //zz } |
| //zz |
| //zz /* (used for sanity checks only): is this an atom which looks |
| //zz like it's from shadow code? */ |
| //zz static Bool isShadowAtom ( PCEnv* pce, IRAtom* a1 ) |
| //zz { |
| //zz if (a1->tag == Iex_Const) |
| //zz return True; |
| //zz if (a1->tag == Iex_RdTmp && a1->Iex.RdTmp.tmp >= pce->n_originalTmps) |
| //zz return True; |
| //zz return False; |
| //zz } |
| //zz |
| //zz /* (used for sanity checks only): check that both args are atoms and |
| //zz are identically-kinded. */ |
| //zz static Bool sameKindedAtoms ( IRAtom* a1, IRAtom* a2 ) |
| //zz { |
| //zz if (a1->tag == Iex_RdTmp && a2->tag == Iex_RdTmp) |
| //zz return True; |
| //zz if (a1->tag == Iex_Const && a2->tag == Iex_Const) |
| //zz return True; |
| //zz return False; |
| //zz } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Constructing IR fragments ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* add stmt to a bb */ |
| static inline void stmt ( HChar cat, PCEnv* pce, IRStmt* st ) { |
| if (pce->trace) { |
| VG_(printf)(" %c: ", cat); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| addStmtToIRSB(pce->bb, st); |
| } |
| |
| /* assign value to tmp */ |
| static inline |
| void assign ( HChar cat, PCEnv* pce, IRTemp tmp, IRExpr* expr ) { |
| stmt(cat, pce, IRStmt_WrTmp(tmp,expr)); |
| } |
| |
| /* build various kinds of expressions */ |
| #define binop(_op, _arg1, _arg2) IRExpr_Binop((_op),(_arg1),(_arg2)) |
| #define unop(_op, _arg) IRExpr_Unop((_op),(_arg)) |
| #define mkU8(_n) IRExpr_Const(IRConst_U8(_n)) |
| #define mkU16(_n) IRExpr_Const(IRConst_U16(_n)) |
| #define mkU32(_n) IRExpr_Const(IRConst_U32(_n)) |
| #define mkU64(_n) IRExpr_Const(IRConst_U64(_n)) |
| #define mkV128(_n) IRExpr_Const(IRConst_V128(_n)) |
| #define mkexpr(_tmp) IRExpr_RdTmp((_tmp)) |
| |
| /* Bind the given expression to a new temporary, and return the |
| temporary. This effectively converts an arbitrary expression into |
| an atom. |
| |
| 'ty' is the type of 'e' and hence the type that the new temporary |
| needs to be. But passing it is redundant, since we can deduce the |
| type merely by inspecting 'e'. So at least that fact to assert |
| that the two types agree. */ |
| static IRAtom* assignNew ( HChar cat, PCEnv* pce, IRType ty, IRExpr* e ) { |
| IRTemp t; |
| IRType tyE = typeOfIRExpr(pce->bb->tyenv, e); |
| tl_assert(tyE == ty); /* so 'ty' is redundant (!) */ |
| t = newIRTemp(pce->bb->tyenv, ty); |
| assign(cat, pce, t, e); |
| return mkexpr(t); |
| } |
| |
| |
| |
| //----------------------------------------------------------------------- |
| // Approach taken for range-checking for NONPTR/UNKNOWN-ness as follows. |
| // |
| // Range check (NONPTR/seg): |
| // - after modifying a word-sized value in/into a TempReg: |
| // - {ADD, SUB, ADC, SBB, AND, OR, XOR, LEA, LEA2, NEG, NOT}L |
| // - BSWAP |
| // |
| // Range check (NONPTR/UNKNOWN): |
| // - when introducing a new word-sized value into a TempReg: |
| // - MOVL l, t2 |
| // |
| // - when copying a word-sized value which lacks a corresponding segment |
| // into a TempReg: |
| // - straddled LDL |
| // |
| // - when a sub-word of a word (or two) is updated: |
| // - SHROTL |
| // - {ADD, SUB, ADC, SBB, AND, OR, XOR, SHROT, NEG, NOT}[WB] |
| // - PUT[WB] |
| // - straddled STL (2 range checks) |
| // - straddled STW (2 range checks) |
| // - unstraddled STW |
| // - STB |
| // |
| // Just copy: |
| // - when copying word-sized values: |
| // - MOVL t1, t2 (--optimise=no only) |
| // - CMOV |
| // - GETL, PUTL |
| // - unstraddled LDL, unstraddled STL |
| // |
| // - when barely changing |
| // - INC[LWB]/DEC[LWB] |
| // |
| // Set to NONPTR: |
| // - after copying a sub-word value into a TempReg: |
| // - MOV[WB] l, t2 |
| // - GET[WB] |
| // - unstraddled LDW |
| // - straddled LDW |
| // - LDB |
| // - POP[WB] |
| // |
| // - after copying an obvious non-ptr into a TempReg: |
| // - GETF |
| // - CC2VAL |
| // - POPL |
| // |
| // - after copying an obvious non-ptr into a memory word: |
| // - FPU_W |
| // |
| // Do nothing: |
| // - LOCK, INCEIP |
| // - WIDEN[WB] |
| // - JMP, JIFZ |
| // - CALLM_[SE], PUSHL, CALLM, CLEAR |
| // - FPU, FPU_R (and similar MMX/SSE ones) |
| // |
| |
| |
| |
| |
| /* Call h_fn (name h_nm) with the given arg, and return a new IRTemp |
| holding the result. The arg must be a word-typed atom. Callee |
| must be a VG_REGPARM(1) function. */ |
| __attribute__((noinline)) |
| static IRTemp gen_dirty_W_W ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1 ) |
| { |
| IRTemp res; |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| di = unsafeIRDirty_1_N( res, 1/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_1( a1 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| return res; |
| } |
| |
| /* Two-arg version of gen_dirty_W_W. Callee must be a VG_REGPARM(2) |
| function.*/ |
| static IRTemp gen_dirty_W_WW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2 ) |
| { |
| IRTemp res; |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| di = unsafeIRDirty_1_N( res, 2/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_2( a1, a2 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| return res; |
| } |
| |
| /* Three-arg version of gen_dirty_W_W. Callee must be a VG_REGPARM(3) |
| function.*/ |
| static IRTemp gen_dirty_W_WWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2, IRExpr* a3 ) |
| { |
| IRTemp res; |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(isIRAtom(a3)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| di = unsafeIRDirty_1_N( res, 3/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_3( a1, a2, a3 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| return res; |
| } |
| |
| /* Four-arg version of gen_dirty_W_W. Callee must be a VG_REGPARM(3) |
| function.*/ |
| static IRTemp gen_dirty_W_WWWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2, |
| IRExpr* a3, IRExpr* a4 ) |
| { |
| IRTemp res; |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(isIRAtom(a3)); |
| tl_assert(isIRAtom(a4)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a4) == pce->gWordTy); |
| res = newIRTemp(pce->bb->tyenv, pce->gWordTy); |
| di = unsafeIRDirty_1_N( res, 3/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_4( a1, a2, a3, a4 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| return res; |
| } |
| |
| /* Version of gen_dirty_W_WW with no return value. Callee must be a |
| VG_REGPARM(2) function.*/ |
| static void gen_dirty_v_WW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2 ) |
| { |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| di = unsafeIRDirty_0_N( 2/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_2( a1, a2 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| } |
| |
| /* Version of gen_dirty_W_WWW with no return value. Callee must be a |
| VG_REGPARM(3) function.*/ |
| static void gen_dirty_v_WWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2, IRExpr* a3 ) |
| { |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(isIRAtom(a3)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| di = unsafeIRDirty_0_N( 3/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_3( a1, a2, a3 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| } |
| |
| /* Version of gen_dirty_v_WWW for 4 arguments. Callee must be a |
| VG_REGPARM(3) function.*/ |
| static void gen_dirty_v_WWWW ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2, |
| IRExpr* a3, IRExpr* a4 ) |
| { |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(isIRAtom(a3)); |
| tl_assert(isIRAtom(a4)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a4) == pce->gWordTy); |
| di = unsafeIRDirty_0_N( 3/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_4( a1, a2, a3, a4 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| } |
| |
| /* Version of gen_dirty_v_WWW for 6 arguments. Callee must be a |
| VG_REGPARM(3) function.*/ |
| static void gen_dirty_v_6W ( PCEnv* pce, void* h_fn, HChar* h_nm, |
| IRExpr* a1, IRExpr* a2, IRExpr* a3, |
| IRExpr* a4, IRExpr* a5, IRExpr* a6 ) |
| { |
| IRDirty* di; |
| tl_assert(isIRAtom(a1)); |
| tl_assert(isIRAtom(a2)); |
| tl_assert(isIRAtom(a3)); |
| tl_assert(isIRAtom(a4)); |
| tl_assert(isIRAtom(a5)); |
| tl_assert(isIRAtom(a6)); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a1) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a2) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a3) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a4) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a5) == pce->gWordTy); |
| tl_assert(typeOfIRExpr(pce->bb->tyenv, a6) == pce->gWordTy); |
| di = unsafeIRDirty_0_N( 3/*regparms*/, |
| h_nm, VG_(fnptr_to_fnentry)( h_fn ), |
| mkIRExprVec_6( a1, a2, a3, a4, a5, a6 ) ); |
| stmt( 'I', pce, IRStmt_Dirty(di) ); |
| } |
| |
| static IRAtom* uwiden_to_host_word ( PCEnv* pce, IRAtom* a ) |
| { |
| IRType a_ty = typeOfIRExpr(pce->bb->tyenv, a); |
| tl_assert(isIRAtom(a)); |
| if (pce->hWordTy == Ity_I32) { |
| switch (a_ty) { |
| case Ity_I8: |
| return assignNew( 'I', pce, Ity_I32, unop(Iop_8Uto32, a) ); |
| case Ity_I16: |
| return assignNew( 'I', pce, Ity_I32, unop(Iop_16Uto32, a) ); |
| default: |
| ppIRType(a_ty); |
| tl_assert(0); |
| } |
| } else { |
| tl_assert(pce->hWordTy == Ity_I64); |
| switch (a_ty) { |
| case Ity_I8: |
| return assignNew( 'I', pce, Ity_I64, unop(Iop_8Uto64, a) ); |
| case Ity_I16: |
| return assignNew( 'I', pce, Ity_I64, unop(Iop_16Uto64, a) ); |
| case Ity_I32: |
| return assignNew( 'I', pce, Ity_I64, unop(Iop_32Uto64, a) ); |
| default: |
| ppIRType(a_ty); |
| tl_assert(0); |
| } |
| } |
| } |
| |
| /* 'e' is a word-sized atom. Call nonptr_or_unknown with it, bind the |
| results to a new temporary, and return the temporary. Note this |
| takes an original expression but returns a shadow value. */ |
| static IRTemp gen_call_nonptr_or_unknown_w ( PCEnv* pce, IRExpr* e ) |
| { |
| return gen_dirty_W_W( pce, &nonptr_or_unknown, |
| "nonptr_or_unknown", e ); |
| } |
| |
| |
| /* Generate the shadow value for an IRExpr which is an atom and |
| guaranteed to be word-sized. */ |
| static IRAtom* schemeEw_Atom ( PCEnv* pce, IRExpr* e ) |
| { |
| if (pce->gWordTy == Ity_I32) { |
| if (e->tag == Iex_Const && e->Iex.Const.con->tag == Ico_U32) { |
| IRTemp t; |
| tl_assert(sizeof(UWord) == 4); |
| t = gen_call_nonptr_or_unknown_w(pce, e); |
| return mkexpr(t); |
| } |
| if (e->tag == Iex_RdTmp |
| && typeOfIRExpr(pce->bb->tyenv, e) == Ity_I32) { |
| return mkexpr( findShadowTmp(pce, e->Iex.RdTmp.tmp) ); |
| } |
| /* there are no other word-sized atom cases */ |
| } else { |
| if (e->tag == Iex_Const && e->Iex.Const.con->tag == Ico_U64) { |
| IRTemp t; |
| tl_assert(sizeof(UWord) == 8); |
| //return mkU64( (ULong)(UWord)NONPTR ); |
| t = gen_call_nonptr_or_unknown_w(pce, e); |
| return mkexpr(t); |
| } |
| if (e->tag == Iex_RdTmp |
| && typeOfIRExpr(pce->bb->tyenv, e) == Ity_I64) { |
| return mkexpr( findShadowTmp(pce, e->Iex.RdTmp.tmp) ); |
| } |
| /* there are no other word-sized atom cases */ |
| } |
| ppIRExpr(e); |
| tl_assert(0); |
| } |
| |
| |
| static |
| void instrument_arithop ( PCEnv* pce, |
| IRTemp dst, /* already holds result */ |
| IRTemp dstv, /* generate an assignment to this */ |
| IROp op, |
| /* original args, guaranteed to be atoms */ |
| IRExpr* a1, IRExpr* a2, IRExpr* a3, IRExpr* a4 ) |
| { |
| HChar* nm = NULL; |
| void* fn = NULL; |
| IRExpr* a1v = NULL; |
| IRExpr* a2v = NULL; |
| //IRExpr* a3v = NULL; |
| //IRExpr* a4v = NULL; |
| IRTemp res = IRTemp_INVALID; |
| |
| if (pce->gWordTy == Ity_I32) { |
| |
| tl_assert(pce->hWordTy == Ity_I32); |
| switch (op) { |
| |
| /* For these cases, pass Segs for both arguments, and the |
| result value. */ |
| case Iop_Add32: nm = "do_addW"; fn = &do_addW; goto ssr32; |
| case Iop_Sub32: nm = "do_subW"; fn = &do_subW; goto ssr32; |
| case Iop_Or32: nm = "do_orW"; fn = &do_orW; goto ssr32; |
| ssr32: |
| a1v = schemeEw_Atom( pce, a1 ); |
| a2v = schemeEw_Atom( pce, a2 ); |
| res = gen_dirty_W_WWW( pce, fn, nm, a1v, a2v, mkexpr(dst) ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* In this case, pass Segs for both arguments, the result |
| value, and the difference between the (original) values of |
| the arguments. */ |
| case Iop_And32: |
| nm = "do_andW"; fn = &do_andW; |
| a1v = schemeEw_Atom( pce, a1 ); |
| a2v = schemeEw_Atom( pce, a2 ); |
| res = gen_dirty_W_WWWW( |
| pce, fn, nm, a1v, a2v, mkexpr(dst), |
| assignNew( 'I', pce, Ity_I32, |
| binop(Iop_Sub32,a1,a2) ) ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* Pass one shadow arg and the result to the helper. */ |
| case Iop_Not32: nm = "do_notW"; fn = &do_notW; goto vr32; |
| vr32: |
| a1v = schemeEw_Atom( pce, a1 ); |
| res = gen_dirty_W_WW( pce, fn, nm, a1v, mkexpr(dst) ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* Pass two shadow args only to the helper. */ |
| case Iop_Mul32: nm = "do_mulW"; fn = &do_mulW; goto vv32; |
| vv32: |
| a1v = schemeEw_Atom( pce, a1 ); |
| a2v = schemeEw_Atom( pce, a2 ); |
| res = gen_dirty_W_WW( pce, fn, nm, a1v, a2v ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* We don't really know what the result could be; test at run |
| time. */ |
| case Iop_64HIto32: goto n_or_u_32; |
| case Iop_64to32: goto n_or_u_32; |
| case Iop_Xor32: goto n_or_u_32; |
| n_or_u_32: |
| assign( 'I', pce, dstv, |
| mkexpr( |
| gen_call_nonptr_or_unknown_w( pce, |
| mkexpr(dst) ) ) ); |
| break; |
| |
| /* Cases where it's very obvious that the result cannot be a |
| pointer. Hence declare directly that it's NONPTR; don't |
| bother with the overhead of calling nonptr_or_unknown. */ |
| |
| /* cases where it makes no sense for the result to be a ptr */ |
| /* FIXME: for Shl/Shr/Sar, really should do a test on the 2nd |
| arg, so that shift by zero preserves the original |
| value. */ |
| case Iop_Shl32: goto n32; |
| case Iop_Sar32: goto n32; |
| case Iop_Shr32: goto n32; |
| case Iop_16Uto32: goto n32; |
| case Iop_16Sto32: goto n32; |
| case Iop_F64toI32: goto n32; |
| case Iop_16HLto32: goto n32; |
| case Iop_MullS16: goto n32; |
| case Iop_MullU16: goto n32; |
| case Iop_PRemC3210F64: goto n32; |
| case Iop_DivU32: goto n32; |
| case Iop_DivS32: goto n32; |
| case Iop_V128to32: goto n32; |
| |
| /* cases where result range is very limited and clearly cannot |
| be a pointer */ |
| case Iop_1Uto32: goto n32; |
| case Iop_1Sto32: goto n32; |
| case Iop_8Uto32: goto n32; |
| case Iop_8Sto32: goto n32; |
| case Iop_Clz32: goto n32; |
| case Iop_Ctz32: goto n32; |
| case Iop_CmpF64: goto n32; |
| case Iop_CmpORD32S: goto n32; |
| case Iop_CmpORD32U: goto n32; |
| n32: |
| assign( 'I', pce, dstv, mkU32( (UWord)NONPTR )); |
| break; |
| |
| default: |
| VG_(printf)("instrument_arithop(32-bit): unhandled: "); |
| ppIROp(op); |
| tl_assert(0); |
| } |
| |
| } else { |
| |
| tl_assert(pce->gWordTy == Ity_I64); |
| switch (op) { |
| |
| /* For these cases, pass Segs for both arguments, and the |
| result value. */ |
| case Iop_Add64: nm = "do_addW"; fn = &do_addW; goto ssr64; |
| case Iop_Sub64: nm = "do_subW"; fn = &do_subW; goto ssr64; |
| case Iop_Or64: nm = "do_orW"; fn = &do_orW; goto ssr64; |
| ssr64: |
| a1v = schemeEw_Atom( pce, a1 ); |
| a2v = schemeEw_Atom( pce, a2 ); |
| res = gen_dirty_W_WWW( pce, fn, nm, a1v, a2v, mkexpr(dst) ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* In this case, pass Segs for both arguments, the result |
| value, and the difference between the (original) values of |
| the arguments. */ |
| case Iop_And64: |
| nm = "do_andW"; fn = &do_andW; |
| a1v = schemeEw_Atom( pce, a1 ); |
| a2v = schemeEw_Atom( pce, a2 ); |
| res = gen_dirty_W_WWWW( |
| pce, fn, nm, a1v, a2v, mkexpr(dst), |
| assignNew( 'I', pce, Ity_I64, |
| binop(Iop_Sub64,a1,a2) ) ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* Pass one shadow arg and the result to the helper. */ |
| case Iop_Not64: nm = "do_notW"; fn = &do_notW; goto vr64; |
| vr64: |
| a1v = schemeEw_Atom( pce, a1 ); |
| res = gen_dirty_W_WW( pce, fn, nm, a1v, mkexpr(dst) ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* Pass two shadow args only to the helper. */ |
| case Iop_Mul64: nm = "do_mulW"; fn = &do_mulW; goto vv64; |
| vv64: |
| a1v = schemeEw_Atom( pce, a1 ); |
| a2v = schemeEw_Atom( pce, a2 ); |
| res = gen_dirty_W_WW( pce, fn, nm, a1v, a2v ); |
| assign( 'I', pce, dstv, mkexpr(res) ); |
| break; |
| |
| /* We don't really know what the result could be; test at run |
| time. */ |
| case Iop_Xor64: goto n_or_u_64; |
| case Iop_128HIto64: goto n_or_u_64; |
| case Iop_128to64: goto n_or_u_64; |
| case Iop_V128HIto64: goto n_or_u_64; |
| case Iop_V128to64: goto n_or_u_64; |
| n_or_u_64: |
| assign( 'I', pce, dstv, |
| mkexpr( |
| gen_call_nonptr_or_unknown_w( pce, |
| mkexpr(dst) ) ) ); |
| break; |
| |
| /* Cases where it's very obvious that the result cannot be a |
| pointer. Hence declare directly that it's NONPTR; don't |
| bother with the overhead of calling nonptr_or_unknown. */ |
| |
| /* cases where it makes no sense for the result to be a ptr */ |
| /* FIXME: for Shl/Shr/Sar, really should do a test on the 2nd |
| arg, so that shift by zero preserves the original |
| value. */ |
| case Iop_Shl64: goto n64; |
| case Iop_Sar64: goto n64; |
| case Iop_Shr64: goto n64; |
| case Iop_32Uto64: goto n64; |
| case Iop_32Sto64: goto n64; |
| case Iop_16Uto64: goto n64; |
| case Iop_16Sto64: goto n64; |
| case Iop_32HLto64: goto n64; |
| case Iop_DivModU64to32: goto n64; |
| case Iop_DivModS64to32: goto n64; |
| case Iop_F64toI64: goto n64; |
| case Iop_MullS32: goto n64; |
| case Iop_MullU32: goto n64; |
| case Iop_DivU64: goto n64; |
| case Iop_DivS64: goto n64; |
| case Iop_ReinterpF64asI64: goto n64; |
| |
| /* cases where result range is very limited and clearly cannot |
| be a pointer */ |
| case Iop_1Uto64: goto n64; |
| case Iop_8Uto64: goto n64; |
| case Iop_8Sto64: goto n64; |
| case Iop_Ctz64: goto n64; |
| case Iop_Clz64: goto n64; |
| case Iop_CmpORD64S: goto n64; |
| case Iop_CmpORD64U: goto n64; |
| /* 64-bit simd */ |
| case Iop_Avg8Ux8: case Iop_Avg16Ux4: |
| case Iop_Max16Sx4: case Iop_Max8Ux8: case Iop_Min16Sx4: |
| case Iop_Min8Ux8: case Iop_MulHi16Ux4: |
| case Iop_QNarrow32Sx2: case Iop_QNarrow16Sx4: |
| case Iop_QNarrow16Ux4: case Iop_Add8x8: case Iop_Add32x2: |
| case Iop_QAdd8Sx8: case Iop_QAdd16Sx4: case Iop_QAdd8Ux8: |
| case Iop_QAdd16Ux4: case Iop_Add16x4: case Iop_CmpEQ8x8: |
| case Iop_CmpEQ32x2: case Iop_CmpEQ16x4: case Iop_CmpGT8Sx8: |
| case Iop_CmpGT32Sx2: case Iop_CmpGT16Sx4: case Iop_MulHi16Sx4: |
| case Iop_Mul16x4: case Iop_ShlN32x2: case Iop_ShlN16x4: |
| case Iop_SarN32x2: case Iop_SarN16x4: case Iop_ShrN32x2: |
| case Iop_ShrN16x4: case Iop_Sub8x8: case Iop_Sub32x2: |
| case Iop_QSub8Sx8: case Iop_QSub16Sx4: case Iop_QSub8Ux8: |
| case Iop_QSub16Ux4: case Iop_Sub16x4: case Iop_InterleaveHI8x8: |
| case Iop_InterleaveHI32x2: case Iop_InterleaveHI16x4: |
| case Iop_InterleaveLO8x8: case Iop_InterleaveLO32x2: |
| case Iop_InterleaveLO16x4: case Iop_SarN8x8: |
| case Iop_Perm8x8: case Iop_ShlN8x8: case Iop_Mul32x2: |
| case Iop_CatEvenLanes16x4: case Iop_CatOddLanes16x4: |
| n64: |
| assign( 'I', pce, dstv, mkU64( (UWord)NONPTR )); |
| break; |
| |
| default: |
| VG_(printf)("instrument_arithop(64-bit): unhandled: "); |
| ppIROp(op); |
| tl_assert(0); |
| } |
| } |
| } |
| |
| static |
| void gen_call_nonptr_or_unknown_range ( PCEnv* pce, |
| IRAtom* addr, IRAtom* len ) |
| { |
| gen_dirty_v_WW( pce, |
| &nonptr_or_unknown_range, |
| "nonptr_or_unknown_range", |
| addr, len ); |
| } |
| |
| /* iii describes zero or more non-exact integer register updates. For |
| each one, generate IR to get the containing register, apply |
| nonptr_or_unknown to it, and write it back again. */ |
| static void gen_nonptr_or_unknown_for_III( PCEnv* pce, IntRegInfo* iii ) |
| { |
| Int i; |
| tl_assert(iii && iii->n_offsets >= 0); |
| for (i = 0; i < iii->n_offsets; i++) { |
| IRAtom* a1 = assignNew( 'I', pce, pce->gWordTy, |
| IRExpr_Get( iii->offsets[i], pce->gWordTy )); |
| IRTemp a2 = gen_call_nonptr_or_unknown_w( pce, a1 ); |
| stmt( 'I', pce, IRStmt_Put( iii->offsets[i] |
| + pce->guest_state_sizeB, |
| mkexpr(a2) )); |
| } |
| } |
| |
| /* Generate into 'ane', instrumentation for 'st'. Also copy 'st' |
| itself into 'ane' (the caller does not do so). This is somewhat |
| complex and relies heavily on the assumption that the incoming IR |
| is in flat form. |
| |
| Generally speaking, the instrumentation is placed after the |
| original statement, so that results computed by the original can be |
| used in the instrumentation. However, that isn't safe for memory |
| references, since we need the instrumentation (hence bounds check |
| and potential error message) to happen before the reference itself, |
| as the latter could cause a fault. */ |
| static void schemeS ( PCEnv* pce, IRStmt* st ) |
| { |
| tl_assert(st); |
| tl_assert(isFlatIRStmt(st)); |
| |
| switch (st->tag) { |
| |
| case Ist_Dirty: { |
| Int i; |
| IRDirty* di; |
| stmt( 'C', pce, st ); |
| /* nasty. assumes that (1) all helpers are unconditional, |
| and (2) all outputs are non-ptr */ |
| di = st->Ist.Dirty.details; |
| /* deal with the return tmp, if any */ |
| if (di->tmp != IRTemp_INVALID |
| && typeOfIRTemp(pce->bb->tyenv, di->tmp) == pce->gWordTy) { |
| /* di->tmp is shadowed. Set it to NONPTR. */ |
| IRTemp dstv = newShadowTmp( pce, di->tmp ); |
| if (pce->gWordTy == Ity_I32) { |
| assign( 'I', pce, dstv, mkU32( (UWord)NONPTR )); |
| } else { |
| assign( 'I', pce, dstv, mkU64( (UWord)NONPTR )); |
| } |
| } |
| /* apply the nonptr_or_unknown technique to any parts of |
| the guest state that happen to get written */ |
| for (i = 0; i < di->nFxState; i++) { |
| IntRegInfo iii; |
| tl_assert(di->fxState[i].fx != Ifx_None); |
| if (di->fxState[i].fx == Ifx_Read) |
| continue; /* this bit is only read -- not interesting */ |
| get_IntRegInfo( &iii, di->fxState[i].offset, |
| di->fxState[i].size ); |
| tl_assert(iii.n_offsets >= -1 |
| && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| /* Deal with 3 possible cases, same as with Ist_Put |
| elsewhere in this function. */ |
| if (iii.n_offsets == -1) { |
| /* case (1): exact write of an integer register. */ |
| IRAtom* a1 |
| = assignNew( 'I', pce, pce->gWordTy, |
| IRExpr_Get( iii.offsets[i], pce->gWordTy )); |
| IRTemp a2 = gen_call_nonptr_or_unknown_w( pce, a1 ); |
| stmt( 'I', pce, IRStmt_Put( iii.offsets[i] |
| + pce->guest_state_sizeB, |
| mkexpr(a2) )); |
| } else { |
| /* when == 0: case (3): no instrumentation needed */ |
| /* when > 0: case (2) .. complex case. Fish out the |
| stored value for the whole register, heave it |
| through nonptr_or_unknown, and use that as the new |
| shadow value. */ |
| tl_assert(iii.n_offsets >= 0 |
| && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| gen_nonptr_or_unknown_for_III( pce, &iii ); |
| } |
| } /* for (i = 0; i < di->nFxState; i++) */ |
| /* finally, deal with memory outputs */ |
| if (di->mFx != Ifx_None) { |
| tl_assert(di->mAddr && isIRAtom(di->mAddr)); |
| tl_assert(di->mSize > 0); |
| gen_call_nonptr_or_unknown_range( pce, di->mAddr, |
| mkIRExpr_HWord(di->mSize)); |
| } |
| break; |
| } |
| |
| case Ist_NoOp: |
| break; |
| |
| /* nothing interesting in these; just copy them through */ |
| case Ist_AbiHint: |
| case Ist_MBE: |
| case Ist_Exit: |
| case Ist_IMark: |
| stmt( 'C', pce, st ); |
| break; |
| |
| case Ist_PutI: { |
| IRRegArray* descr = st->Ist.PutI.descr; |
| stmt( 'C', pce, st ); |
| tl_assert(descr && descr->elemTy); |
| if (is_integer_guest_reg_array(descr)) { |
| /* if this fails, is_integer_guest_reg_array is returning |
| bogus results */ |
| tl_assert(descr->elemTy == pce->gWordTy); |
| stmt( |
| 'I', pce, |
| IRStmt_PutI( |
| mkIRRegArray(descr->base + pce->guest_state_sizeB, |
| descr->elemTy, descr->nElems), |
| st->Ist.PutI.ix, |
| st->Ist.PutI.bias, |
| schemeEw_Atom( pce, st->Ist.PutI.data) |
| ) |
| ); |
| } |
| break; |
| } |
| |
| case Ist_Put: { |
| /* PUT(offset) = atom */ |
| /* 3 cases: |
| 1. It's a complete write of an integer register. Get hold of |
| 'atom's shadow value and write it in the shadow state. |
| 2. It's a partial write of an integer register. Let the write |
| happen, then fish out the complete register value and see if, |
| via range checking, consultation of tea leaves, etc, its |
| shadow value can be upgraded to anything useful. |
| 3. It is none of the above. Generate no instrumentation. */ |
| IntRegInfo iii; |
| IRType ty; |
| stmt( 'C', pce, st ); |
| ty = typeOfIRExpr(pce->bb->tyenv, st->Ist.Put.data); |
| get_IntRegInfo( &iii, st->Ist.Put.offset, |
| sizeofIRType(ty) ); |
| if (iii.n_offsets == -1) { |
| /* case (1): exact write of an integer register. */ |
| tl_assert(ty == pce->gWordTy); |
| stmt( 'I', pce, |
| IRStmt_Put( st->Ist.Put.offset |
| + pce->guest_state_sizeB, |
| schemeEw_Atom( pce, st->Ist.Put.data)) ); |
| } else { |
| /* when == 0: case (3): no instrumentation needed */ |
| /* when > 0: case (2) .. complex case. Fish out the |
| stored value for the whole register, heave it through |
| nonptr_or_unknown, and use that as the new shadow |
| value. */ |
| tl_assert(iii.n_offsets >= 0 |
| && iii.n_offsets <= N_INTREGINFO_OFFSETS); |
| gen_nonptr_or_unknown_for_III( pce, &iii ); |
| } |
| break; |
| } /* case Ist_Put */ |
| |
| case Ist_Store: { |
| /* We have: STle(addr) = data |
| if data is int-word sized, do |
| check_store4(addr, addr#, data, data#) |
| for all other stores |
| check_store{1,2}(addr, addr#, data) |
| |
| The helper actually *does* the store, so that it can do |
| the post-hoc ugly hack of inspecting and "improving" the |
| shadow data after the store, in the case where it isn't an |
| aligned word store. |
| */ |
| IRExpr* data = st->Ist.Store.data; |
| IRExpr* addr = st->Ist.Store.addr; |
| IRType d_ty = typeOfIRExpr(pce->bb->tyenv, data); |
| IRExpr* addrv = schemeEw_Atom( pce, addr ); |
| if (pce->gWordTy == Ity_I32) { |
| /* ------ 32 bit host/guest (cough, cough) ------ */ |
| switch (d_ty) { |
| /* Integer word case */ |
| case Ity_I32: { |
| IRExpr* datav = schemeEw_Atom( pce, data ); |
| gen_dirty_v_WWWW( pce, |
| &check_store4_P, "check_store4_P", |
| addr, addrv, data, datav ); |
| break; |
| } |
| /* Integer subword cases */ |
| case Ity_I16: |
| gen_dirty_v_WWW( pce, |
| &check_store2, "check_store2", |
| addr, addrv, |
| uwiden_to_host_word( pce, data )); |
| break; |
| case Ity_I8: |
| gen_dirty_v_WWW( pce, |
| &check_store1, "check_store1", |
| addr, addrv, |
| uwiden_to_host_word( pce, data )); |
| break; |
| /* 64-bit float. Pass store data in 2 32-bit pieces. */ |
| case Ity_F64: { |
| IRAtom* d64 = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_ReinterpF64asI64, data) ); |
| IRAtom* dLo32 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64to32, d64) ); |
| IRAtom* dHi32 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64HIto32, d64) ); |
| gen_dirty_v_WWWW( pce, |
| &check_store8_ms4B_ls4B, |
| "check_store8_ms4B_ls4B", |
| addr, addrv, dHi32, dLo32 ); |
| break; |
| } |
| /* 32-bit float. We can just use _store4, but need |
| to futz with the argument type. */ |
| case Ity_F32: { |
| IRAtom* i32 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_ReinterpF32asI32, |
| data ) ); |
| gen_dirty_v_WWW( pce, |
| &check_store4, |
| "check_store4", |
| addr, addrv, i32 ); |
| break; |
| } |
| /* 64-bit int. Pass store data in 2 32-bit pieces. */ |
| case Ity_I64: { |
| IRAtom* dLo32 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64to32, data) ); |
| IRAtom* dHi32 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64HIto32, data) ); |
| gen_dirty_v_WWWW( pce, |
| &check_store8_ms4B_ls4B, |
| "check_store8_ms4B_ls4B", |
| addr, addrv, dHi32, dLo32 ); |
| break; |
| } |
| |
| /* 128-bit vector. Pass store data in 4 32-bit pieces. |
| This is all very ugly and inefficient, but it is |
| hard to better without considerably complicating the |
| store-handling schemes. */ |
| case Ity_V128: { |
| IRAtom* dHi64 = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_V128HIto64, data) ); |
| IRAtom* dLo64 = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_V128to64, data) ); |
| IRAtom* w3 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64HIto32, dHi64) ); |
| IRAtom* w2 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64to32, dHi64) ); |
| IRAtom* w1 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64HIto32, dLo64) ); |
| IRAtom* w0 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_64to32, dLo64) ); |
| gen_dirty_v_6W( pce, |
| &check_store16_ms4B_4B_4B_ls4B, |
| "check_store16_ms4B_4B_4B_ls4B", |
| addr, addrv, w3, w2, w1, w0 ); |
| break; |
| } |
| |
| |
| default: |
| ppIRType(d_ty); tl_assert(0); |
| } |
| } else { |
| /* ------ 64 bit host/guest (cough, cough) ------ */ |
| switch (d_ty) { |
| /* Integer word case */ |
| case Ity_I64: { |
| IRExpr* datav = schemeEw_Atom( pce, data ); |
| gen_dirty_v_WWWW( pce, |
| &check_store8_P, "check_store8_P", |
| addr, addrv, data, datav ); |
| break; |
| } |
| /* Integer subword cases */ |
| case Ity_I32: |
| gen_dirty_v_WWW( pce, |
| &check_store4, "check_store4", |
| addr, addrv, |
| uwiden_to_host_word( pce, data )); |
| break; |
| case Ity_I16: |
| gen_dirty_v_WWW( pce, |
| &check_store2, "check_store2", |
| addr, addrv, |
| uwiden_to_host_word( pce, data )); |
| break; |
| case Ity_I8: |
| gen_dirty_v_WWW( pce, |
| &check_store1, "check_store1", |
| addr, addrv, |
| uwiden_to_host_word( pce, data )); |
| break; |
| /* 128-bit vector. Pass store data in 2 64-bit pieces. */ |
| case Ity_V128: { |
| IRAtom* dHi64 = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_V128HIto64, data) ); |
| IRAtom* dLo64 = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_V128to64, data) ); |
| gen_dirty_v_WWWW( pce, |
| &check_store16_ms8B_ls8B, |
| "check_store16_ms8B_ls8B", |
| addr, addrv, dHi64, dLo64 ); |
| break; |
| } |
| /* 64-bit float. */ |
| case Ity_F64: { |
| IRAtom* dI = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_ReinterpF64asI64, |
| data ) ); |
| gen_dirty_v_WWW( pce, |
| &check_store8_all8B, |
| "check_store8_all8B", |
| addr, addrv, dI ); |
| break; |
| } |
| /* 32-bit float. We can just use _store4, but need |
| to futz with the argument type. */ |
| case Ity_F32: { |
| IRAtom* i32 = assignNew( 'I', pce, Ity_I32, |
| unop(Iop_ReinterpF32asI32, |
| data ) ); |
| IRAtom* i64 = assignNew( 'I', pce, Ity_I64, |
| unop(Iop_32Uto64, |
| i32 ) ); |
| gen_dirty_v_WWW( pce, |
| &check_store4, |
| "check_store4", |
| addr, addrv, i64 ); |
| break; |
| } |
| default: |
| ppIRType(d_ty); tl_assert(0); |
| } |
| } |
| /* And don't copy the original, since the helper does the |
| store. Ick. */ |
| break; |
| } /* case Ist_Store */ |
| |
| case Ist_WrTmp: { |
| /* This is the only place we have to deal with the full |
| IRExpr range. In all other places where an IRExpr could |
| appear, we in fact only get an atom (Iex_RdTmp or |
| Iex_Const). */ |
| IRExpr* e = st->Ist.WrTmp.data; |
| IRType e_ty = typeOfIRExpr( pce->bb->tyenv, e ); |
| Bool isWord = e_ty == pce->gWordTy; |
| IRTemp dst = st->Ist.WrTmp.tmp; |
| IRTemp dstv = isWord ? newShadowTmp( pce, dst ) |
| : IRTemp_INVALID; |
| |
| switch (e->tag) { |
| |
| case Iex_Const: { |
| stmt( 'C', pce, st ); |
| if (isWord) |
| assign( 'I', pce, dstv, schemeEw_Atom( pce, e ) ); |
| break; |
| } |
| |
| case Iex_CCall: { |
| stmt( 'C', pce, st ); |
| if (isWord) |
| assign( 'I', pce, dstv, |
| mkexpr( gen_call_nonptr_or_unknown_w( |
| pce, mkexpr(dst)))); |
| break; |
| } |
| |
| case Iex_Mux0X: { |
| /* Just steer the shadow values in the same way as the |
| originals. */ |
| stmt( 'C', pce, st ); |
| if (isWord) |
| assign( 'I', pce, dstv, |
| IRExpr_Mux0X( |
| e->Iex.Mux0X.cond, |
| schemeEw_Atom( pce, e->Iex.Mux0X.expr0 ), |
| schemeEw_Atom( pce, e->Iex.Mux0X.exprX ) )); |
| break; |
| } |
| |
| case Iex_RdTmp: { |
| stmt( 'C', pce, st ); |
| if (isWord) |
| assign( 'I', pce, dstv, schemeEw_Atom( pce, e )); |
| break; |
| } |
| |
| case Iex_Load: { |
| IRExpr* addr = e->Iex.Load.addr; |
| HChar* h_nm = NULL; |
| void* h_fn = NULL; |
| IRExpr* addrv = NULL; |
| if (pce->gWordTy == Ity_I32) { |
| /* 32 bit host/guest (cough, cough) */ |
| switch (e_ty) { |
| /* Ity_I32: helper returns shadow value. */ |
| case Ity_I32: h_fn = &check_load4_P; |
| h_nm = "check_load4_P"; break; |
| /* all others: helper does not return a shadow |
| value. */ |
| case Ity_V128: h_fn = &check_load16; |
| h_nm = "check_load16"; break; |
| case Ity_I64: |
| case Ity_F64: h_fn = &check_load8; |
| h_nm = "check_load8"; break; |
| case Ity_F32: h_fn = &check_load4; |
| h_nm = "check_load4"; break; |
| case Ity_I16: h_fn = &check_load2; |
| h_nm = "check_load2"; break; |
| case Ity_I8: h_fn = &check_load1; |
| h_nm = "check_load1"; break; |
| default: ppIRType(e_ty); tl_assert(0); |
| } |
| addrv = schemeEw_Atom( pce, addr ); |
| if (e_ty == Ity_I32) { |
| assign( 'I', pce, dstv, |
| mkexpr( gen_dirty_W_WW( pce, h_fn, h_nm, |
| addr, addrv )) ); |
| } else { |
| gen_dirty_v_WW( pce, h_fn, h_nm, addr, addrv ); |
| } |
| } else { |
| /* 64 bit host/guest (cough, cough) */ |
| switch (e_ty) { |
| /* Ity_I64: helper returns shadow value. */ |
| case Ity_I64: h_fn = &check_load8_P; |
| h_nm = "check_load8_P"; break; |
| /* all others: helper does not return a shadow |
| value. */ |
| case Ity_V128: h_fn = &check_load16; |
| h_nm = "check_load16"; break; |
| case Ity_F64: h_fn = &check_load8; |
| h_nm = "check_load8"; break; |
| case Ity_F32: |
| case Ity_I32: h_fn = &check_load4; |
| h_nm = "check_load4"; break; |
| case Ity_I16: h_fn = &check_load2; |
| h_nm = "check_load2"; break; |
| case Ity_I8: h_fn = &check_load1; |
| h_nm = "check_load1"; break; |
| default: ppIRType(e_ty); tl_assert(0); |
| } |
| addrv = schemeEw_Atom( pce, addr ); |
| if (e_ty == Ity_I64) { |
| assign( 'I', pce, dstv, |
| mkexpr( gen_dirty_W_WW( pce, h_fn, h_nm, |
| addr, addrv )) ); |
| } else { |
| gen_dirty_v_WW( pce, h_fn, h_nm, addr, addrv ); |
| } |
| } |
| /* copy the original -- must happen after the helper call */ |
| stmt( 'C', pce, st ); |
| break; |
| } |
| |
| case Iex_GetI: { |
| IRRegArray* descr = e->Iex.GetI.descr; |
| stmt( 'C', pce, st ); |
| tl_assert(descr && descr->elemTy); |
| if (is_integer_guest_reg_array(descr)) { |
| /* if this fails, is_integer_guest_reg_array is |
| returning bogus results */ |
| tl_assert(isWord); |
| assign( |
| 'I', pce, dstv, |
| IRExpr_GetI( |
| mkIRRegArray(descr->base + pce->guest_state_sizeB, |
| descr->elemTy, descr->nElems), |
| e->Iex.GetI.ix, |
| e->Iex.GetI.bias |
| ) |
| ); |
| } |
| break; |
| } |
| |
| case Iex_Get: { |
| stmt( 'C', pce, st ); |
| if (isWord) { |
| /* guest-word-typed tmp assignment, so it will have a |
| shadow tmp, and we must make an assignment to |
| that */ |
| if (is_integer_guest_reg(e->Iex.Get.offset, |
| sizeofIRType(e->Iex.Get.ty))) { |
| assign( 'I', pce, dstv, |
| IRExpr_Get( e->Iex.Get.offset |
| + pce->guest_state_sizeB, |
| e->Iex.Get.ty) ); |
| } else { |
| if (pce->hWordTy == Ity_I32) { |
| assign( 'I', pce, dstv, mkU32( (UWord)NONPTR )); |
| } else { |
| assign( 'I', pce, dstv, mkU64( (UWord)NONPTR )); |
| } |
| } |
| } else { |
| /* tmp isn't guest-word-typed, so isn't shadowed, so |
| generate no instrumentation */ |
| } |
| break; |
| } |
| |
| case Iex_Unop: { |
| stmt( 'C', pce, st ); |
| tl_assert(isIRAtom(e->Iex.Unop.arg)); |
| if (isWord) |
| instrument_arithop( pce, dst, dstv, e->Iex.Unop.op, |
| e->Iex.Unop.arg, |
| NULL, NULL, NULL ); |
| break; |
| } |
| |
| case Iex_Binop: { |
| stmt( 'C', pce, st ); |
| tl_assert(isIRAtom(e->Iex.Binop.arg1)); |
| tl_assert(isIRAtom(e->Iex.Binop.arg2)); |
| if (isWord) |
| instrument_arithop( pce, dst, dstv, e->Iex.Binop.op, |
| e->Iex.Binop.arg1, e->Iex.Binop.arg2, |
| NULL, NULL ); |
| break; |
| } |
| |
| case Iex_Triop: { |
| stmt( 'C', pce, st ); |
| tl_assert(isIRAtom(e->Iex.Triop.arg1)); |
| tl_assert(isIRAtom(e->Iex.Triop.arg2)); |
| tl_assert(isIRAtom(e->Iex.Triop.arg3)); |
| if (isWord) |
| instrument_arithop( pce, dst, dstv, e->Iex.Triop.op, |
| e->Iex.Triop.arg1, e->Iex.Triop.arg2, |
| e->Iex.Triop.arg3, NULL ); |
| break; |
| } |
| |
| case Iex_Qop: { |
| stmt( 'C', pce, st ); |
| tl_assert(isIRAtom(e->Iex.Qop.arg1)); |
| tl_assert(isIRAtom(e->Iex.Qop.arg2)); |
| tl_assert(isIRAtom(e->Iex.Qop.arg3)); |
| tl_assert(isIRAtom(e->Iex.Qop.arg4)); |
| if (isWord) |
| instrument_arithop( pce, dst, dstv, e->Iex.Qop.op, |
| e->Iex.Qop.arg1, e->Iex.Qop.arg2, |
| e->Iex.Qop.arg3, e->Iex.Qop.arg4 ); |
| break; |
| } |
| |
| default: |
| goto unhandled; |
| } /* switch (e->tag) */ |
| |
| break; |
| |
| } /* case Ist_WrTmp */ |
| |
| default: |
| unhandled: |
| ppIRStmt(st); |
| tl_assert(0); |
| } |
| } |
| |
| |
| IRSB* h_instrument ( VgCallbackClosure* closure, |
| IRSB* sbIn, |
| VexGuestLayout* layout, |
| VexGuestExtents* vge, |
| IRType gWordTy, IRType hWordTy ) |
| { |
| Bool verboze = 0||False; |
| Int i /*, j*/; |
| PCEnv pce; |
| struct _SGEnv* sgenv; |
| |
| if (gWordTy != hWordTy) { |
| /* We don't currently support this case. */ |
| VG_(tool_panic)("host/guest word size mismatch"); |
| } |
| |
| /* Check we're not completely nuts */ |
| tl_assert(sizeof(UWord) == sizeof(void*)); |
| tl_assert(sizeof(Word) == sizeof(void*)); |
| tl_assert(sizeof(Addr) == sizeof(void*)); |
| tl_assert(sizeof(ULong) == 8); |
| tl_assert(sizeof(Long) == 8); |
| tl_assert(sizeof(Addr64) == 8); |
| tl_assert(sizeof(UInt) == 4); |
| tl_assert(sizeof(Int) == 4); |
| |
| /* Set up the running environment. Only .bb is modified as we go |
| along. */ |
| pce.bb = deepCopyIRSBExceptStmts(sbIn); |
| pce.trace = verboze; |
| pce.n_originalTmps = sbIn->tyenv->types_used; |
| pce.hWordTy = hWordTy; |
| pce.gWordTy = gWordTy; |
| pce.guest_state_sizeB = layout->total_sizeB; |
| pce.tmpMap = LibVEX_Alloc(pce.n_originalTmps * sizeof(IRTemp)); |
| for (i = 0; i < pce.n_originalTmps; i++) |
| pce.tmpMap[i] = IRTemp_INVALID; |
| |
| /* Also set up for the sg_ instrumenter. See comments |
| at the top of this instrumentation section for details. */ |
| sgenv = sg_instrument_init(); |
| |
| /* Stay sane. These two should agree! */ |
| tl_assert(layout->total_sizeB == MC_SIZEOF_GUEST_STATE); |
| |
| /* Copy verbatim any IR preamble preceding the first IMark */ |
| |
| i = 0; |
| while (i < sbIn->stmts_used && sbIn->stmts[i]->tag != Ist_IMark) { |
| IRStmt* st = sbIn->stmts[i]; |
| tl_assert(st); |
| tl_assert(isFlatIRStmt(st)); |
| stmt( 'C', &pce, sbIn->stmts[i] ); |
| i++; |
| } |
| |
| /* Nasty problem. IR optimisation of the pre-instrumented IR may |
| cause the IR following the preamble to contain references to IR |
| temporaries defined in the preamble. Because the preamble isn't |
| instrumented, these temporaries don't have any shadows. |
| Nevertheless uses of them following the preamble will cause |
| memcheck to generate references to their shadows. End effect is |
| to cause IR sanity check failures, due to references to |
| non-existent shadows. This is only evident for the complex |
| preambles used for function wrapping on TOC-afflicted platforms |
| (ppc64-linux, ppc32-aix5, ppc64-aix5). |
| |
| The following loop therefore scans the preamble looking for |
| assignments to temporaries. For each one found it creates an |
| assignment to the corresponding shadow temp, marking it as |
| 'defined'. This is the same resulting IR as if the main |
| instrumentation loop before had been applied to the statement |
| 'tmp = CONSTANT'. |
| */ |
| #if 0 |
| // FIXME: this isn't exactly right; only needs to generate shadows |
| // for guest-word-typed temps |
| for (j = 0; j < i; j++) { |
| if (sbIn->stmts[j]->tag == Ist_WrTmp) { |
| /* findShadowTmpV checks its arg is an original tmp; |
| no need to assert that here. */ |
| IRTemp tmp_o = sbIn->stmts[j]->Ist.WrTmp.tmp; |
| IRTemp tmp_s = findShadowTmp(&pce, tmp_o); |
| IRType ty_s = typeOfIRTemp(sbIn->tyenv, tmp_s); |
| assign( 'V', &pce, tmp_s, definedOfType( ty_s ) ); |
| if (0) { |
| VG_(printf)("create shadow tmp for preamble tmp [%d] ty ", j); |
| ppIRType( ty_s ); |
| VG_(printf)("\n"); |
| } |
| } |
| } |
| #endif |
| |
| /* Iterate over the remaining stmts to generate instrumentation. */ |
| |
| tl_assert(sbIn->stmts_used > 0); |
| tl_assert(i >= 0); |
| tl_assert(i < sbIn->stmts_used); |
| tl_assert(sbIn->stmts[i]->tag == Ist_IMark); |
| |
| for (/*use current i*/; i < sbIn->stmts_used; i++) { |
| /* generate sg_ instrumentation for this stmt */ |
| sg_instrument_IRStmt( sgenv, pce.bb, sbIn->stmts[i], |
| layout, gWordTy, hWordTy ); |
| /* generate h_ instrumentation for this stmt */ |
| schemeS( &pce, sbIn->stmts[i] ); |
| } |
| |
| /* generate sg_ instrumentation for the final jump */ |
| sg_instrument_final_jump( sgenv, pce.bb, sbIn->next, sbIn->jumpkind, |
| layout, gWordTy, hWordTy ); |
| |
| /* and finalise .. */ |
| sg_instrument_fini( sgenv ); |
| |
| return pce.bb; |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Initialisation ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| void h_pre_clo_init ( void ) |
| { |
| // Other initialisation |
| init_shadow_memory(); |
| init_lossage(); |
| } |
| |
| void h_post_clo_init ( void ) |
| { |
| } |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- Finalisation ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| void h_fini ( Int exitcode ) |
| { |
| if (VG_(clo_verbosity) >= 2) { |
| VG_(message)(Vg_DebugMsg, |
| " h_: %'10llu client allocs, %'10llu client frees", |
| stats__client_mallocs, stats__client_frees); |
| VG_(message)(Vg_DebugMsg, |
| " h_: %'10llu Segs allocd, %'10llu Segs recycled", |
| stats__segs_allocd, stats__segs_recycled); |
| } |
| |
| #if 0 |
| if (h_clo_lossage_check) { |
| VG_(message)(Vg_UserMsg, ""); |
| VG_(message)(Vg_UserMsg, "%12lld total memory references", |
| stats__tot_mem_refs); |
| VG_(message)(Vg_UserMsg, "%12lld of which are in a known segment", |
| stats__refs_in_a_seg); |
| VG_(message)(Vg_UserMsg, "%12lld of which are 'lost' w.r.t the seg", |
| stats__refs_lost_seg); |
| VG_(message)(Vg_UserMsg, ""); |
| show_lossage(); |
| VG_(message)(Vg_UserMsg, ""); |
| } else { |
| tl_assert( 0 == VG_(OSetGen_Size)(lossage) ); |
| } |
| #endif |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end h_main.c ---*/ |
| /*--------------------------------------------------------------------*/ |