| |
| /*--------------------------------------------------------------------*/ |
| /*--- Instrument IR to perform memory checking operations. ---*/ |
| /*--- mc_translate.c ---*/ |
| /*--------------------------------------------------------------------*/ |
| |
| /* |
| This file is part of MemCheck, a heavyweight Valgrind tool for |
| detecting memory errors. |
| |
| Copyright (C) 2000-2013 Julian Seward |
| jseward@acm.org |
| |
| This program is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 2 of the |
| License, or (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 02111-1307, USA. |
| |
| The GNU General Public License is contained in the file COPYING. |
| */ |
| |
| #include "pub_tool_basics.h" |
| #include "pub_tool_poolalloc.h" // For mc_include.h |
| #include "pub_tool_hashtable.h" // For mc_include.h |
| #include "pub_tool_libcassert.h" |
| #include "pub_tool_libcprint.h" |
| #include "pub_tool_tooliface.h" |
| #include "pub_tool_machine.h" // VG_(fnptr_to_fnentry) |
| #include "pub_tool_xarray.h" |
| #include "pub_tool_mallocfree.h" |
| #include "pub_tool_libcbase.h" |
| |
| #include "mc_include.h" |
| |
| |
| /* FIXMEs JRS 2011-June-16. |
| |
| Check the interpretation for vector narrowing and widening ops, |
| particularly the saturating ones. I suspect they are either overly |
| pessimistic and/or wrong. |
| */ |
| |
| /* This file implements the Memcheck instrumentation, and in |
| particular contains the core of its undefined value detection |
| machinery. For a comprehensive background of the terminology, |
| algorithms and rationale used herein, read: |
| |
| Using Valgrind to detect undefined value errors with |
| bit-precision |
| |
| Julian Seward and Nicholas Nethercote |
| |
| 2005 USENIX Annual Technical Conference (General Track), |
| Anaheim, CA, USA, April 10-15, 2005. |
| |
| ---- |
| |
| Here is as good a place as any to record exactly when V bits are and |
| should be checked, why, and what function is responsible. |
| |
| |
| Memcheck complains when an undefined value is used: |
| |
| 1. In the condition of a conditional branch. Because it could cause |
| incorrect control flow, and thus cause incorrect externally-visible |
| behaviour. [mc_translate.c:complainIfUndefined] |
| |
| 2. As an argument to a system call, or as the value that specifies |
| the system call number. Because it could cause an incorrect |
| externally-visible side effect. [mc_translate.c:mc_pre_reg_read] |
| |
| 3. As the address in a load or store. Because it could cause an |
| incorrect value to be used later, which could cause externally-visible |
| behaviour (eg. via incorrect control flow or an incorrect system call |
| argument) [complainIfUndefined] |
| |
| 4. As the target address of a branch. Because it could cause incorrect |
| control flow. [complainIfUndefined] |
| |
| 5. As an argument to setenv, unsetenv, or putenv. Because it could put |
| an incorrect value into the external environment. |
| [mc_replace_strmem.c:VG_WRAP_FUNCTION_ZU(*, *env)] |
| |
| 6. As the index in a GETI or PUTI operation. I'm not sure why... (njn). |
| [complainIfUndefined] |
| |
| 7. As an argument to the VALGRIND_CHECK_MEM_IS_DEFINED and |
| VALGRIND_CHECK_VALUE_IS_DEFINED client requests. Because the user |
| requested it. [in memcheck.h] |
| |
| |
| Memcheck also complains, but should not, when an undefined value is used: |
| |
| 8. As the shift value in certain SIMD shift operations (but not in the |
| standard integer shift operations). This inconsistency is due to |
| historical reasons.) [complainIfUndefined] |
| |
| |
| Memcheck does not complain, but should, when an undefined value is used: |
| |
| 9. As an input to a client request. Because the client request may |
| affect the visible behaviour -- see bug #144362 for an example |
| involving the malloc replacements in vg_replace_malloc.c and |
| VALGRIND_NON_SIMD_CALL* requests, where an uninitialised argument |
| isn't identified. That bug report also has some info on how to solve |
| the problem. [valgrind.h:VALGRIND_DO_CLIENT_REQUEST] |
| |
| |
| In practice, 1 and 2 account for the vast majority of cases. |
| */ |
| |
| /* Generation of addr-definedness, addr-validity and |
| guard-definedness checks pertaining to loads and stores (Iex_Load, |
| Ist_Store, IRLoadG, IRStoreG, LLSC, CAS and Dirty memory |
| loads/stores) was re-checked 11 May 2013. */ |
| |
| /*------------------------------------------------------------*/ |
| /*--- Forward decls ---*/ |
| /*------------------------------------------------------------*/ |
| |
| struct _MCEnv; |
| |
| static IRType shadowTypeV ( IRType ty ); |
| static IRExpr* expr2vbits ( struct _MCEnv* mce, IRExpr* e ); |
| static IRTemp findShadowTmpB ( struct _MCEnv* mce, IRTemp orig ); |
| |
| static IRExpr *i128_const_zero(void); |
| |
| /*------------------------------------------------------------*/ |
| /*--- Memcheck running state, and tmp management. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Carries info about a particular tmp. The tmp's number is not |
| recorded, as this is implied by (equal to) its index in the tmpMap |
| in MCEnv. The tmp's type is also not recorded, as this is present |
| in MCEnv.sb->tyenv. |
| |
| When .kind is Orig, .shadowV and .shadowB may give the identities |
| of the temps currently holding the associated definedness (shadowV) |
| and origin (shadowB) values, or these may be IRTemp_INVALID if code |
| to compute such values has not yet been emitted. |
| |
| When .kind is VSh or BSh then the tmp is holds a V- or B- value, |
| and so .shadowV and .shadowB must be IRTemp_INVALID, since it is |
| illogical for a shadow tmp itself to be shadowed. |
| */ |
| typedef |
| enum { Orig=1, VSh=2, BSh=3 } |
| TempKind; |
| |
| typedef |
| struct { |
| TempKind kind; |
| IRTemp shadowV; |
| IRTemp shadowB; |
| } |
| TempMapEnt; |
| |
| |
| /* Carries around state during memcheck instrumentation. */ |
| typedef |
| struct _MCEnv { |
| /* MODIFIED: the superblock being constructed. IRStmts are |
| added. */ |
| IRSB* sb; |
| Bool trace; |
| |
| /* MODIFIED: a table [0 .. #temps_in_sb-1] which gives the |
| current kind and possibly shadow temps for each temp in the |
| IRSB being constructed. Note that it does not contain the |
| type of each tmp. If you want to know the type, look at the |
| relevant entry in sb->tyenv. It follows that at all times |
| during the instrumentation process, the valid indices for |
| tmpMap and sb->tyenv are identical, being 0 .. N-1 where N is |
| total number of Orig, V- and B- temps allocated so far. |
| |
| The reason for this strange split (types in one place, all |
| other info in another) is that we need the types to be |
| attached to sb so as to make it possible to do |
| "typeOfIRExpr(mce->bb->tyenv, ...)" at various places in the |
| instrumentation process. */ |
| XArray* /* of TempMapEnt */ tmpMap; |
| |
| /* MODIFIED: indicates whether "bogus" literals have so far been |
| found. Starts off False, and may change to True. */ |
| Bool bogusLiterals; |
| |
| /* READONLY: indicates whether we should use expensive |
| interpretations of integer adds, since unfortunately LLVM |
| uses them to do ORs in some circumstances. Defaulted to True |
| on MacOS and False everywhere else. */ |
| Bool useLLVMworkarounds; |
| |
| /* READONLY: the guest layout. This indicates which parts of |
| the guest state should be regarded as 'always defined'. */ |
| VexGuestLayout* layout; |
| |
| /* READONLY: the host word type. Needed for constructing |
| arguments of type 'HWord' to be passed to helper functions. |
| Ity_I32 or Ity_I64 only. */ |
| IRType hWordTy; |
| } |
| MCEnv; |
| |
| /* SHADOW TMP MANAGEMENT. Shadow tmps are allocated lazily (on |
| demand), as they are encountered. This is for two reasons. |
| |
| (1) (less important reason): Many original tmps are unused due to |
| initial IR optimisation, and we do not want to spaces in tables |
| tracking them. |
| |
| Shadow IRTemps are therefore allocated on demand. mce.tmpMap is a |
| table indexed [0 .. n_types-1], which gives the current shadow for |
| each original tmp, or INVALID_IRTEMP if none is so far assigned. |
| It is necessary to support making multiple assignments to a shadow |
| -- specifically, after testing a shadow for definedness, it needs |
| to be made defined. But IR's SSA property disallows this. |
| |
| (2) (more important reason): Therefore, when a shadow needs to get |
| a new value, a new temporary is created, the value is assigned to |
| that, and the tmpMap is updated to reflect the new binding. |
| |
| A corollary is that if the tmpMap maps a given tmp to |
| IRTemp_INVALID and we are hoping to read that shadow tmp, it means |
| there's a read-before-write error in the original tmps. The IR |
| sanity checker should catch all such anomalies, however. |
| */ |
| |
| /* Create a new IRTemp of type 'ty' and kind 'kind', and add it to |
| both the table in mce->sb and to our auxiliary mapping. Note that |
| newTemp may cause mce->tmpMap to resize, hence previous results |
| from VG_(indexXA)(mce->tmpMap) are invalidated. */ |
| static IRTemp newTemp ( MCEnv* mce, IRType ty, TempKind kind ) |
| { |
| Word newIx; |
| TempMapEnt ent; |
| IRTemp tmp = newIRTemp(mce->sb->tyenv, ty); |
| ent.kind = kind; |
| ent.shadowV = IRTemp_INVALID; |
| ent.shadowB = IRTemp_INVALID; |
| newIx = VG_(addToXA)( mce->tmpMap, &ent ); |
| tl_assert(newIx == (Word)tmp); |
| return tmp; |
| } |
| |
| |
| /* Find the tmp currently shadowing the given original tmp. If none |
| so far exists, allocate one. */ |
| static IRTemp findShadowTmpV ( MCEnv* mce, IRTemp orig ) |
| { |
| TempMapEnt* ent; |
| /* VG_(indexXA) range-checks 'orig', hence no need to check |
| here. */ |
| ent = (TempMapEnt*)VG_(indexXA)( mce->tmpMap, (Word)orig ); |
| tl_assert(ent->kind == Orig); |
| if (ent->shadowV == IRTemp_INVALID) { |
| IRTemp tmpV |
| = newTemp( mce, shadowTypeV(mce->sb->tyenv->types[orig]), VSh ); |
| /* newTemp may cause mce->tmpMap to resize, hence previous results |
| from VG_(indexXA) are invalid. */ |
| ent = (TempMapEnt*)VG_(indexXA)( mce->tmpMap, (Word)orig ); |
| tl_assert(ent->kind == Orig); |
| tl_assert(ent->shadowV == IRTemp_INVALID); |
| ent->shadowV = tmpV; |
| } |
| return ent->shadowV; |
| } |
| |
| /* Allocate a new shadow for the given original tmp. This means any |
| previous shadow is abandoned. This is needed because it is |
| necessary to give a new value to a shadow once it has been tested |
| for undefinedness, but unfortunately IR's SSA property disallows |
| this. Instead we must abandon the old shadow, allocate a new one |
| and use that instead. |
| |
| This is the same as findShadowTmpV, except we don't bother to see |
| if a shadow temp already existed -- we simply allocate a new one |
| regardless. */ |
| static void newShadowTmpV ( MCEnv* mce, IRTemp orig ) |
| { |
| TempMapEnt* ent; |
| /* VG_(indexXA) range-checks 'orig', hence no need to check |
| here. */ |
| ent = (TempMapEnt*)VG_(indexXA)( mce->tmpMap, (Word)orig ); |
| tl_assert(ent->kind == Orig); |
| if (1) { |
| IRTemp tmpV |
| = newTemp( mce, shadowTypeV(mce->sb->tyenv->types[orig]), VSh ); |
| /* newTemp may cause mce->tmpMap to resize, hence previous results |
| from VG_(indexXA) are invalid. */ |
| ent = (TempMapEnt*)VG_(indexXA)( mce->tmpMap, (Word)orig ); |
| tl_assert(ent->kind == Orig); |
| ent->shadowV = tmpV; |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- IRAtoms -- a subset of IRExprs ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* An atom is either an IRExpr_Const or an IRExpr_Tmp, as defined by |
| isIRAtom() in libvex_ir.h. Because this instrumenter expects flat |
| input, most of this code deals in atoms. Usefully, a value atom |
| always has a V-value which is also an atom: constants are shadowed |
| by constants, and temps are shadowed by the corresponding shadow |
| temporary. */ |
| |
| typedef IRExpr IRAtom; |
| |
| /* (used for sanity checks only): is this an atom which looks |
| like it's from original code? */ |
| static Bool isOriginalAtom ( MCEnv* mce, IRAtom* a1 ) |
| { |
| if (a1->tag == Iex_Const) |
| return True; |
| if (a1->tag == Iex_RdTmp) { |
| TempMapEnt* ent = VG_(indexXA)( mce->tmpMap, a1->Iex.RdTmp.tmp ); |
| return ent->kind == Orig; |
| } |
| return False; |
| } |
| |
| /* (used for sanity checks only): is this an atom which looks |
| like it's from shadow code? */ |
| static Bool isShadowAtom ( MCEnv* mce, IRAtom* a1 ) |
| { |
| if (a1->tag == Iex_Const) |
| return True; |
| if (a1->tag == Iex_RdTmp) { |
| TempMapEnt* ent = VG_(indexXA)( mce->tmpMap, a1->Iex.RdTmp.tmp ); |
| return ent->kind == VSh || ent->kind == BSh; |
| } |
| return False; |
| } |
| |
| /* (used for sanity checks only): check that both args are atoms and |
| are identically-kinded. */ |
| static Bool sameKindedAtoms ( IRAtom* a1, IRAtom* a2 ) |
| { |
| if (a1->tag == Iex_RdTmp && a2->tag == Iex_RdTmp) |
| return True; |
| if (a1->tag == Iex_Const && a2->tag == Iex_Const) |
| return True; |
| return False; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Type management ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Shadow state is always accessed using integer types. This returns |
| an integer type with the same size (as per sizeofIRType) as the |
| given type. The only valid shadow types are Bit, I8, I16, I32, |
| I64, I128, V128, V256. */ |
| |
| static IRType shadowTypeV ( IRType ty ) |
| { |
| switch (ty) { |
| case Ity_I1: |
| case Ity_I8: |
| case Ity_I16: |
| case Ity_I32: |
| case Ity_I64: |
| case Ity_I128: return ty; |
| case Ity_F32: return Ity_I32; |
| case Ity_D32: return Ity_I32; |
| case Ity_F64: return Ity_I64; |
| case Ity_D64: return Ity_I64; |
| case Ity_F128: return Ity_I128; |
| case Ity_D128: return Ity_I128; |
| case Ity_V128: return Ity_V128; |
| case Ity_V256: return Ity_V256; |
| default: ppIRType(ty); |
| VG_(tool_panic)("memcheck:shadowTypeV"); |
| } |
| } |
| |
| /* Produce a 'defined' value of the given shadow type. Should only be |
| supplied shadow types (Bit/I8/I16/I32/UI64). */ |
| static IRExpr* definedOfType ( IRType ty ) { |
| switch (ty) { |
| case Ity_I1: return IRExpr_Const(IRConst_U1(False)); |
| case Ity_I8: return IRExpr_Const(IRConst_U8(0)); |
| case Ity_I16: return IRExpr_Const(IRConst_U16(0)); |
| case Ity_I32: return IRExpr_Const(IRConst_U32(0)); |
| case Ity_I64: return IRExpr_Const(IRConst_U64(0)); |
| case Ity_I128: return i128_const_zero(); |
| case Ity_V128: return IRExpr_Const(IRConst_V128(0x0000)); |
| case Ity_V256: return IRExpr_Const(IRConst_V256(0x00000000)); |
| default: VG_(tool_panic)("memcheck:definedOfType"); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Constructing IR fragments ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* add stmt to a bb */ |
| static inline void stmt ( HChar cat, MCEnv* mce, IRStmt* st ) { |
| if (mce->trace) { |
| VG_(printf)(" %c: ", cat); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| addStmtToIRSB(mce->sb, st); |
| } |
| |
| /* assign value to tmp */ |
| static inline |
| void assign ( HChar cat, MCEnv* mce, IRTemp tmp, IRExpr* expr ) { |
| stmt(cat, mce, IRStmt_WrTmp(tmp,expr)); |
| } |
| |
| /* build various kinds of expressions */ |
| #define triop(_op, _arg1, _arg2, _arg3) \ |
| IRExpr_Triop((_op),(_arg1),(_arg2),(_arg3)) |
| #define binop(_op, _arg1, _arg2) IRExpr_Binop((_op),(_arg1),(_arg2)) |
| #define unop(_op, _arg) IRExpr_Unop((_op),(_arg)) |
| #define mkU1(_n) IRExpr_Const(IRConst_U1(_n)) |
| #define mkU8(_n) IRExpr_Const(IRConst_U8(_n)) |
| #define mkU16(_n) IRExpr_Const(IRConst_U16(_n)) |
| #define mkU32(_n) IRExpr_Const(IRConst_U32(_n)) |
| #define mkU64(_n) IRExpr_Const(IRConst_U64(_n)) |
| #define mkV128(_n) IRExpr_Const(IRConst_V128(_n)) |
| #define mkexpr(_tmp) IRExpr_RdTmp((_tmp)) |
| |
| /* Bind the given expression to a new temporary, and return the |
| temporary. This effectively converts an arbitrary expression into |
| an atom. |
| |
| 'ty' is the type of 'e' and hence the type that the new temporary |
| needs to be. But passing it in is redundant, since we can deduce |
| the type merely by inspecting 'e'. So at least use that fact to |
| assert that the two types agree. */ |
| static IRAtom* assignNew ( HChar cat, MCEnv* mce, IRType ty, IRExpr* e ) |
| { |
| TempKind k; |
| IRTemp t; |
| IRType tyE = typeOfIRExpr(mce->sb->tyenv, e); |
| |
| tl_assert(tyE == ty); /* so 'ty' is redundant (!) */ |
| switch (cat) { |
| case 'V': k = VSh; break; |
| case 'B': k = BSh; break; |
| case 'C': k = Orig; break; |
| /* happens when we are making up new "orig" |
| expressions, for IRCAS handling */ |
| default: tl_assert(0); |
| } |
| t = newTemp(mce, ty, k); |
| assign(cat, mce, t, e); |
| return mkexpr(t); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helper functions for 128-bit ops ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static IRExpr *i128_const_zero(void) |
| { |
| IRAtom* z64 = IRExpr_Const(IRConst_U64(0)); |
| return binop(Iop_64HLto128, z64, z64); |
| } |
| |
| /* There are no I128-bit loads and/or stores [as generated by any |
| current front ends]. So we do not need to worry about that in |
| expr2vbits_Load */ |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Constructing definedness primitive ops ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* --------- Defined-if-either-defined --------- */ |
| |
| static IRAtom* mkDifD8 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I8, binop(Iop_And8, a1, a2)); |
| } |
| |
| static IRAtom* mkDifD16 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I16, binop(Iop_And16, a1, a2)); |
| } |
| |
| static IRAtom* mkDifD32 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I32, binop(Iop_And32, a1, a2)); |
| } |
| |
| static IRAtom* mkDifD64 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_And64, a1, a2)); |
| } |
| |
| static IRAtom* mkDifDV128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_AndV128, a1, a2)); |
| } |
| |
| static IRAtom* mkDifDV256 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_V256, binop(Iop_AndV256, a1, a2)); |
| } |
| |
| /* --------- Undefined-if-either-undefined --------- */ |
| |
| static IRAtom* mkUifU8 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I8, binop(Iop_Or8, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU16 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I16, binop(Iop_Or16, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU32 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I32, binop(Iop_Or32, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU64 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_Or64, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| IRAtom *tmp1, *tmp2, *tmp3, *tmp4, *tmp5, *tmp6; |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| tmp1 = assignNew('V', mce, Ity_I64, unop(Iop_128to64, a1)); |
| tmp2 = assignNew('V', mce, Ity_I64, unop(Iop_128HIto64, a1)); |
| tmp3 = assignNew('V', mce, Ity_I64, unop(Iop_128to64, a2)); |
| tmp4 = assignNew('V', mce, Ity_I64, unop(Iop_128HIto64, a2)); |
| tmp5 = assignNew('V', mce, Ity_I64, binop(Iop_Or64, tmp1, tmp3)); |
| tmp6 = assignNew('V', mce, Ity_I64, binop(Iop_Or64, tmp2, tmp4)); |
| |
| return assignNew('V', mce, Ity_I128, binop(Iop_64HLto128, tmp6, tmp5)); |
| } |
| |
| static IRAtom* mkUifUV128 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_OrV128, a1, a2)); |
| } |
| |
| static IRAtom* mkUifUV256 ( MCEnv* mce, IRAtom* a1, IRAtom* a2 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| tl_assert(isShadowAtom(mce,a2)); |
| return assignNew('V', mce, Ity_V256, binop(Iop_OrV256, a1, a2)); |
| } |
| |
| static IRAtom* mkUifU ( MCEnv* mce, IRType vty, IRAtom* a1, IRAtom* a2 ) { |
| switch (vty) { |
| case Ity_I8: return mkUifU8(mce, a1, a2); |
| case Ity_I16: return mkUifU16(mce, a1, a2); |
| case Ity_I32: return mkUifU32(mce, a1, a2); |
| case Ity_I64: return mkUifU64(mce, a1, a2); |
| case Ity_I128: return mkUifU128(mce, a1, a2); |
| case Ity_V128: return mkUifUV128(mce, a1, a2); |
| case Ity_V256: return mkUifUV256(mce, a1, a2); |
| default: |
| VG_(printf)("\n"); ppIRType(vty); VG_(printf)("\n"); |
| VG_(tool_panic)("memcheck:mkUifU"); |
| } |
| } |
| |
| /* --------- The Left-family of operations. --------- */ |
| |
| static IRAtom* mkLeft8 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I8, unop(Iop_Left8, a1)); |
| } |
| |
| static IRAtom* mkLeft16 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I16, unop(Iop_Left16, a1)); |
| } |
| |
| static IRAtom* mkLeft32 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I32, unop(Iop_Left32, a1)); |
| } |
| |
| static IRAtom* mkLeft64 ( MCEnv* mce, IRAtom* a1 ) { |
| tl_assert(isShadowAtom(mce,a1)); |
| return assignNew('V', mce, Ity_I64, unop(Iop_Left64, a1)); |
| } |
| |
| /* --------- 'Improvement' functions for AND/OR. --------- */ |
| |
| /* ImproveAND(data, vbits) = data OR vbits. Defined (0) data 0s give |
| defined (0); all other -> undefined (1). |
| */ |
| static IRAtom* mkImproveAND8 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I8, binop(Iop_Or8, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveAND16 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I16, binop(Iop_Or16, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveAND32 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I32, binop(Iop_Or32, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveAND64 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_Or64, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveANDV128 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_OrV128, data, vbits)); |
| } |
| |
| static IRAtom* mkImproveANDV256 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew('V', mce, Ity_V256, binop(Iop_OrV256, data, vbits)); |
| } |
| |
| /* ImproveOR(data, vbits) = ~data OR vbits. Defined (0) data 1s give |
| defined (0); all other -> undefined (1). |
| */ |
| static IRAtom* mkImproveOR8 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I8, |
| binop(Iop_Or8, |
| assignNew('V', mce, Ity_I8, unop(Iop_Not8, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveOR16 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I16, |
| binop(Iop_Or16, |
| assignNew('V', mce, Ity_I16, unop(Iop_Not16, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveOR32 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I32, |
| binop(Iop_Or32, |
| assignNew('V', mce, Ity_I32, unop(Iop_Not32, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveOR64 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_I64, |
| binop(Iop_Or64, |
| assignNew('V', mce, Ity_I64, unop(Iop_Not64, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveORV128 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_V128, |
| binop(Iop_OrV128, |
| assignNew('V', mce, Ity_V128, unop(Iop_NotV128, data)), |
| vbits) ); |
| } |
| |
| static IRAtom* mkImproveORV256 ( MCEnv* mce, IRAtom* data, IRAtom* vbits ) |
| { |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(isShadowAtom(mce, vbits)); |
| tl_assert(sameKindedAtoms(data, vbits)); |
| return assignNew( |
| 'V', mce, Ity_V256, |
| binop(Iop_OrV256, |
| assignNew('V', mce, Ity_V256, unop(Iop_NotV256, data)), |
| vbits) ); |
| } |
| |
| /* --------- Pessimising casts. --------- */ |
| |
| /* The function returns an expression of type DST_TY. If any of the VBITS |
| is undefined (value == 1) the resulting expression has all bits set to |
| 1. Otherwise, all bits are 0. */ |
| |
| static IRAtom* mkPCastTo( MCEnv* mce, IRType dst_ty, IRAtom* vbits ) |
| { |
| IRType src_ty; |
| IRAtom* tmp1; |
| |
| /* Note, dst_ty is a shadow type, not an original type. */ |
| tl_assert(isShadowAtom(mce,vbits)); |
| src_ty = typeOfIRExpr(mce->sb->tyenv, vbits); |
| |
| /* Fast-track some common cases */ |
| if (src_ty == Ity_I32 && dst_ty == Ity_I32) |
| return assignNew('V', mce, Ity_I32, unop(Iop_CmpwNEZ32, vbits)); |
| |
| if (src_ty == Ity_I64 && dst_ty == Ity_I64) |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpwNEZ64, vbits)); |
| |
| if (src_ty == Ity_I32 && dst_ty == Ity_I64) { |
| /* PCast the arg, then clone it. */ |
| IRAtom* tmp = assignNew('V', mce, Ity_I32, unop(Iop_CmpwNEZ32, vbits)); |
| return assignNew('V', mce, Ity_I64, binop(Iop_32HLto64, tmp, tmp)); |
| } |
| |
| if (src_ty == Ity_I32 && dst_ty == Ity_V128) { |
| /* PCast the arg, then clone it 4 times. */ |
| IRAtom* tmp = assignNew('V', mce, Ity_I32, unop(Iop_CmpwNEZ32, vbits)); |
| tmp = assignNew('V', mce, Ity_I64, binop(Iop_32HLto64, tmp, tmp)); |
| return assignNew('V', mce, Ity_V128, binop(Iop_64HLtoV128, tmp, tmp)); |
| } |
| |
| if (src_ty == Ity_I32 && dst_ty == Ity_V256) { |
| /* PCast the arg, then clone it 8 times. */ |
| IRAtom* tmp = assignNew('V', mce, Ity_I32, unop(Iop_CmpwNEZ32, vbits)); |
| tmp = assignNew('V', mce, Ity_I64, binop(Iop_32HLto64, tmp, tmp)); |
| tmp = assignNew('V', mce, Ity_V128, binop(Iop_64HLtoV128, tmp, tmp)); |
| return assignNew('V', mce, Ity_V256, binop(Iop_V128HLtoV256, tmp, tmp)); |
| } |
| |
| if (src_ty == Ity_I64 && dst_ty == Ity_I32) { |
| /* PCast the arg. This gives all 0s or all 1s. Then throw away |
| the top half. */ |
| IRAtom* tmp = assignNew('V', mce, Ity_I64, unop(Iop_CmpwNEZ64, vbits)); |
| return assignNew('V', mce, Ity_I32, unop(Iop_64to32, tmp)); |
| } |
| |
| /* Else do it the slow way .. */ |
| /* First of all, collapse vbits down to a single bit. */ |
| tmp1 = NULL; |
| switch (src_ty) { |
| case Ity_I1: |
| tmp1 = vbits; |
| break; |
| case Ity_I8: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ8, vbits)); |
| break; |
| case Ity_I16: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ16, vbits)); |
| break; |
| case Ity_I32: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ32, vbits)); |
| break; |
| case Ity_I64: |
| tmp1 = assignNew('V', mce, Ity_I1, unop(Iop_CmpNEZ64, vbits)); |
| break; |
| case Ity_I128: { |
| /* Gah. Chop it in half, OR the halves together, and compare |
| that with zero. */ |
| IRAtom* tmp2 = assignNew('V', mce, Ity_I64, unop(Iop_128HIto64, vbits)); |
| IRAtom* tmp3 = assignNew('V', mce, Ity_I64, unop(Iop_128to64, vbits)); |
| IRAtom* tmp4 = assignNew('V', mce, Ity_I64, binop(Iop_Or64, tmp2, tmp3)); |
| tmp1 = assignNew('V', mce, Ity_I1, |
| unop(Iop_CmpNEZ64, tmp4)); |
| break; |
| } |
| default: |
| ppIRType(src_ty); |
| VG_(tool_panic)("mkPCastTo(1)"); |
| } |
| tl_assert(tmp1); |
| /* Now widen up to the dst type. */ |
| switch (dst_ty) { |
| case Ity_I1: |
| return tmp1; |
| case Ity_I8: |
| return assignNew('V', mce, Ity_I8, unop(Iop_1Sto8, tmp1)); |
| case Ity_I16: |
| return assignNew('V', mce, Ity_I16, unop(Iop_1Sto16, tmp1)); |
| case Ity_I32: |
| return assignNew('V', mce, Ity_I32, unop(Iop_1Sto32, tmp1)); |
| case Ity_I64: |
| return assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| case Ity_V128: |
| tmp1 = assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| tmp1 = assignNew('V', mce, Ity_V128, binop(Iop_64HLtoV128, tmp1, tmp1)); |
| return tmp1; |
| case Ity_I128: |
| tmp1 = assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| tmp1 = assignNew('V', mce, Ity_I128, binop(Iop_64HLto128, tmp1, tmp1)); |
| return tmp1; |
| case Ity_V256: |
| tmp1 = assignNew('V', mce, Ity_I64, unop(Iop_1Sto64, tmp1)); |
| tmp1 = assignNew('V', mce, Ity_V128, binop(Iop_64HLtoV128, |
| tmp1, tmp1)); |
| tmp1 = assignNew('V', mce, Ity_V256, binop(Iop_V128HLtoV256, |
| tmp1, tmp1)); |
| return tmp1; |
| default: |
| ppIRType(dst_ty); |
| VG_(tool_panic)("mkPCastTo(2)"); |
| } |
| } |
| |
| /* --------- Accurate interpretation of CmpEQ/CmpNE. --------- */ |
| /* |
| Normally, we can do CmpEQ/CmpNE by doing UifU on the arguments, and |
| PCasting to Ity_U1. However, sometimes it is necessary to be more |
| accurate. The insight is that the result is defined if two |
| corresponding bits can be found, one from each argument, so that |
| both bits are defined but are different -- that makes EQ say "No" |
| and NE say "Yes". Hence, we compute an improvement term and DifD |
| it onto the "normal" (UifU) result. |
| |
| The result is: |
| |
| PCastTo<1> ( |
| -- naive version |
| PCastTo<sz>( UifU<sz>(vxx, vyy) ) |
| |
| `DifD<sz>` |
| |
| -- improvement term |
| PCastTo<sz>( PCast<sz>( CmpEQ<sz> ( vec, 1...1 ) ) ) |
| ) |
| |
| where |
| vec contains 0 (defined) bits where the corresponding arg bits |
| are defined but different, and 1 bits otherwise. |
| |
| vec = Or<sz>( vxx, // 0 iff bit defined |
| vyy, // 0 iff bit defined |
| Not<sz>(Xor<sz>( xx, yy )) // 0 iff bits different |
| ) |
| |
| If any bit of vec is 0, the result is defined and so the |
| improvement term should produce 0...0, else it should produce |
| 1...1. |
| |
| Hence require for the improvement term: |
| |
| if vec == 1...1 then 1...1 else 0...0 |
| -> |
| PCast<sz>( CmpEQ<sz> ( vec, 1...1 ) ) |
| |
| This was extensively re-analysed and checked on 6 July 05. |
| */ |
| static IRAtom* expensiveCmpEQorNE ( MCEnv* mce, |
| IRType ty, |
| IRAtom* vxx, IRAtom* vyy, |
| IRAtom* xx, IRAtom* yy ) |
| { |
| IRAtom *naive, *vec, *improvement_term; |
| IRAtom *improved, *final_cast, *top; |
| IROp opDIFD, opUIFU, opXOR, opNOT, opCMP, opOR; |
| |
| tl_assert(isShadowAtom(mce,vxx)); |
| tl_assert(isShadowAtom(mce,vyy)); |
| tl_assert(isOriginalAtom(mce,xx)); |
| tl_assert(isOriginalAtom(mce,yy)); |
| tl_assert(sameKindedAtoms(vxx,xx)); |
| tl_assert(sameKindedAtoms(vyy,yy)); |
| |
| switch (ty) { |
| case Ity_I16: |
| opOR = Iop_Or16; |
| opDIFD = Iop_And16; |
| opUIFU = Iop_Or16; |
| opNOT = Iop_Not16; |
| opXOR = Iop_Xor16; |
| opCMP = Iop_CmpEQ16; |
| top = mkU16(0xFFFF); |
| break; |
| case Ity_I32: |
| opOR = Iop_Or32; |
| opDIFD = Iop_And32; |
| opUIFU = Iop_Or32; |
| opNOT = Iop_Not32; |
| opXOR = Iop_Xor32; |
| opCMP = Iop_CmpEQ32; |
| top = mkU32(0xFFFFFFFF); |
| break; |
| case Ity_I64: |
| opOR = Iop_Or64; |
| opDIFD = Iop_And64; |
| opUIFU = Iop_Or64; |
| opNOT = Iop_Not64; |
| opXOR = Iop_Xor64; |
| opCMP = Iop_CmpEQ64; |
| top = mkU64(0xFFFFFFFFFFFFFFFFULL); |
| break; |
| default: |
| VG_(tool_panic)("expensiveCmpEQorNE"); |
| } |
| |
| naive |
| = mkPCastTo(mce,ty, |
| assignNew('V', mce, ty, binop(opUIFU, vxx, vyy))); |
| |
| vec |
| = assignNew( |
| 'V', mce,ty, |
| binop( opOR, |
| assignNew('V', mce,ty, binop(opOR, vxx, vyy)), |
| assignNew( |
| 'V', mce,ty, |
| unop( opNOT, |
| assignNew('V', mce,ty, binop(opXOR, xx, yy)))))); |
| |
| improvement_term |
| = mkPCastTo( mce,ty, |
| assignNew('V', mce,Ity_I1, binop(opCMP, vec, top))); |
| |
| improved |
| = assignNew( 'V', mce,ty, binop(opDIFD, naive, improvement_term) ); |
| |
| final_cast |
| = mkPCastTo( mce, Ity_I1, improved ); |
| |
| return final_cast; |
| } |
| |
| |
| /* --------- Semi-accurate interpretation of CmpORD. --------- */ |
| |
| /* CmpORD32{S,U} does PowerPC-style 3-way comparisons: |
| |
| CmpORD32S(x,y) = 1<<3 if x <s y |
| = 1<<2 if x >s y |
| = 1<<1 if x == y |
| |
| and similarly the unsigned variant. The default interpretation is: |
| |
| CmpORD32{S,U}#(x,y,x#,y#) = PCast(x# `UifU` y#) |
| & (7<<1) |
| |
| The "& (7<<1)" reflects the fact that all result bits except 3,2,1 |
| are zero and therefore defined (viz, zero). |
| |
| Also deal with a special case better: |
| |
| CmpORD32S(x,0) |
| |
| Here, bit 3 (LT) of the result is a copy of the top bit of x and |
| will be defined even if the rest of x isn't. In which case we do: |
| |
| CmpORD32S#(x,x#,0,{impliedly 0}#) |
| = PCast(x#) & (3<<1) -- standard interp for GT#,EQ# |
| | (x# >>u 31) << 3 -- LT# = x#[31] |
| |
| Analogous handling for CmpORD64{S,U}. |
| */ |
| static Bool isZeroU32 ( IRAtom* e ) |
| { |
| return |
| toBool( e->tag == Iex_Const |
| && e->Iex.Const.con->tag == Ico_U32 |
| && e->Iex.Const.con->Ico.U32 == 0 ); |
| } |
| |
| static Bool isZeroU64 ( IRAtom* e ) |
| { |
| return |
| toBool( e->tag == Iex_Const |
| && e->Iex.Const.con->tag == Ico_U64 |
| && e->Iex.Const.con->Ico.U64 == 0 ); |
| } |
| |
| static IRAtom* doCmpORD ( MCEnv* mce, |
| IROp cmp_op, |
| IRAtom* xxhash, IRAtom* yyhash, |
| IRAtom* xx, IRAtom* yy ) |
| { |
| Bool m64 = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD64U; |
| Bool syned = cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD32S; |
| IROp opOR = m64 ? Iop_Or64 : Iop_Or32; |
| IROp opAND = m64 ? Iop_And64 : Iop_And32; |
| IROp opSHL = m64 ? Iop_Shl64 : Iop_Shl32; |
| IROp opSHR = m64 ? Iop_Shr64 : Iop_Shr32; |
| IRType ty = m64 ? Ity_I64 : Ity_I32; |
| Int width = m64 ? 64 : 32; |
| |
| Bool (*isZero)(IRAtom*) = m64 ? isZeroU64 : isZeroU32; |
| |
| IRAtom* threeLeft1 = NULL; |
| IRAtom* sevenLeft1 = NULL; |
| |
| tl_assert(isShadowAtom(mce,xxhash)); |
| tl_assert(isShadowAtom(mce,yyhash)); |
| tl_assert(isOriginalAtom(mce,xx)); |
| tl_assert(isOriginalAtom(mce,yy)); |
| tl_assert(sameKindedAtoms(xxhash,xx)); |
| tl_assert(sameKindedAtoms(yyhash,yy)); |
| tl_assert(cmp_op == Iop_CmpORD32S || cmp_op == Iop_CmpORD32U |
| || cmp_op == Iop_CmpORD64S || cmp_op == Iop_CmpORD64U); |
| |
| if (0) { |
| ppIROp(cmp_op); VG_(printf)(" "); |
| ppIRExpr(xx); VG_(printf)(" "); ppIRExpr( yy ); VG_(printf)("\n"); |
| } |
| |
| if (syned && isZero(yy)) { |
| /* fancy interpretation */ |
| /* if yy is zero, then it must be fully defined (zero#). */ |
| tl_assert(isZero(yyhash)); |
| threeLeft1 = m64 ? mkU64(3<<1) : mkU32(3<<1); |
| return |
| binop( |
| opOR, |
| assignNew( |
| 'V', mce,ty, |
| binop( |
| opAND, |
| mkPCastTo(mce,ty, xxhash), |
| threeLeft1 |
| )), |
| assignNew( |
| 'V', mce,ty, |
| binop( |
| opSHL, |
| assignNew( |
| 'V', mce,ty, |
| binop(opSHR, xxhash, mkU8(width-1))), |
| mkU8(3) |
| )) |
| ); |
| } else { |
| /* standard interpretation */ |
| sevenLeft1 = m64 ? mkU64(7<<1) : mkU32(7<<1); |
| return |
| binop( |
| opAND, |
| mkPCastTo( mce,ty, |
| mkUifU(mce,ty, xxhash,yyhash)), |
| sevenLeft1 |
| ); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Emit a test and complaint if something is undefined. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static IRAtom* schemeE ( MCEnv* mce, IRExpr* e ); /* fwds */ |
| |
| |
| /* Set the annotations on a dirty helper to indicate that the stack |
| pointer and instruction pointers might be read. This is the |
| behaviour of all 'emit-a-complaint' style functions we might |
| call. */ |
| |
| static void setHelperAnns ( MCEnv* mce, IRDirty* di ) { |
| di->nFxState = 2; |
| di->fxState[0].fx = Ifx_Read; |
| di->fxState[0].offset = mce->layout->offset_SP; |
| di->fxState[0].size = mce->layout->sizeof_SP; |
| di->fxState[0].nRepeats = 0; |
| di->fxState[0].repeatLen = 0; |
| di->fxState[1].fx = Ifx_Read; |
| di->fxState[1].offset = mce->layout->offset_IP; |
| di->fxState[1].size = mce->layout->sizeof_IP; |
| di->fxState[1].nRepeats = 0; |
| di->fxState[1].repeatLen = 0; |
| } |
| |
| |
| /* Check the supplied *original* |atom| for undefinedness, and emit a |
| complaint if so. Once that happens, mark it as defined. This is |
| possible because the atom is either a tmp or literal. If it's a |
| tmp, it will be shadowed by a tmp, and so we can set the shadow to |
| be defined. In fact as mentioned above, we will have to allocate a |
| new tmp to carry the new 'defined' shadow value, and update the |
| original->tmp mapping accordingly; we cannot simply assign a new |
| value to an existing shadow tmp as this breaks SSAness. |
| |
| The checks are performed, any resulting complaint emitted, and |
| |atom|'s shadow temp set to 'defined', ONLY in the case that |
| |guard| evaluates to True at run-time. If it evaluates to False |
| then no action is performed. If |guard| is NULL (the usual case) |
| then it is assumed to be always-true, and hence these actions are |
| performed unconditionally. |
| |
| This routine does not generate code to check the definedness of |
| |guard|. The caller is assumed to have taken care of that already. |
| */ |
| static void complainIfUndefined ( MCEnv* mce, IRAtom* atom, IRExpr *guard ) |
| { |
| IRAtom* vatom; |
| IRType ty; |
| Int sz; |
| IRDirty* di; |
| IRAtom* cond; |
| IRAtom* origin; |
| void* fn; |
| const HChar* nm; |
| IRExpr** args; |
| Int nargs; |
| |
| // Don't do V bit tests if we're not reporting undefined value errors. |
| if (MC_(clo_mc_level) == 1) |
| return; |
| |
| if (guard) |
| tl_assert(isOriginalAtom(mce, guard)); |
| |
| /* Since the original expression is atomic, there's no duplicated |
| work generated by making multiple V-expressions for it. So we |
| don't really care about the possibility that someone else may |
| also create a V-interpretion for it. */ |
| tl_assert(isOriginalAtom(mce, atom)); |
| vatom = expr2vbits( mce, atom ); |
| tl_assert(isShadowAtom(mce, vatom)); |
| tl_assert(sameKindedAtoms(atom, vatom)); |
| |
| ty = typeOfIRExpr(mce->sb->tyenv, vatom); |
| |
| /* sz is only used for constructing the error message */ |
| sz = ty==Ity_I1 ? 0 : sizeofIRType(ty); |
| |
| cond = mkPCastTo( mce, Ity_I1, vatom ); |
| /* cond will be 0 if all defined, and 1 if any not defined. */ |
| |
| /* Get the origin info for the value we are about to check. At |
| least, if we are doing origin tracking. If not, use a dummy |
| zero origin. */ |
| if (MC_(clo_mc_level) == 3) { |
| origin = schemeE( mce, atom ); |
| if (mce->hWordTy == Ity_I64) { |
| origin = assignNew( 'B', mce, Ity_I64, unop(Iop_32Uto64, origin) ); |
| } |
| } else { |
| origin = NULL; |
| } |
| |
| fn = NULL; |
| nm = NULL; |
| args = NULL; |
| nargs = -1; |
| |
| switch (sz) { |
| case 0: |
| if (origin) { |
| fn = &MC_(helperc_value_check0_fail_w_o); |
| nm = "MC_(helperc_value_check0_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check0_fail_no_o); |
| nm = "MC_(helperc_value_check0_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 1: |
| if (origin) { |
| fn = &MC_(helperc_value_check1_fail_w_o); |
| nm = "MC_(helperc_value_check1_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check1_fail_no_o); |
| nm = "MC_(helperc_value_check1_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 4: |
| if (origin) { |
| fn = &MC_(helperc_value_check4_fail_w_o); |
| nm = "MC_(helperc_value_check4_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check4_fail_no_o); |
| nm = "MC_(helperc_value_check4_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 8: |
| if (origin) { |
| fn = &MC_(helperc_value_check8_fail_w_o); |
| nm = "MC_(helperc_value_check8_fail_w_o)"; |
| args = mkIRExprVec_1(origin); |
| nargs = 1; |
| } else { |
| fn = &MC_(helperc_value_check8_fail_no_o); |
| nm = "MC_(helperc_value_check8_fail_no_o)"; |
| args = mkIRExprVec_0(); |
| nargs = 0; |
| } |
| break; |
| case 2: |
| case 16: |
| if (origin) { |
| fn = &MC_(helperc_value_checkN_fail_w_o); |
| nm = "MC_(helperc_value_checkN_fail_w_o)"; |
| args = mkIRExprVec_2( mkIRExpr_HWord( sz ), origin); |
| nargs = 2; |
| } else { |
| fn = &MC_(helperc_value_checkN_fail_no_o); |
| nm = "MC_(helperc_value_checkN_fail_no_o)"; |
| args = mkIRExprVec_1( mkIRExpr_HWord( sz ) ); |
| nargs = 1; |
| } |
| break; |
| default: |
| VG_(tool_panic)("unexpected szB"); |
| } |
| |
| tl_assert(fn); |
| tl_assert(nm); |
| tl_assert(args); |
| tl_assert(nargs >= 0 && nargs <= 2); |
| tl_assert( (MC_(clo_mc_level) == 3 && origin != NULL) |
| || (MC_(clo_mc_level) == 2 && origin == NULL) ); |
| |
| di = unsafeIRDirty_0_N( nargs/*regparms*/, nm, |
| VG_(fnptr_to_fnentry)( fn ), args ); |
| di->guard = cond; // and cond is PCast-to-1(atom#) |
| |
| /* If the complaint is to be issued under a guard condition, AND |
| that into the guard condition for the helper call. */ |
| if (guard) { |
| IRAtom *g1 = assignNew('V', mce, Ity_I32, unop(Iop_1Uto32, di->guard)); |
| IRAtom *g2 = assignNew('V', mce, Ity_I32, unop(Iop_1Uto32, guard)); |
| IRAtom *e = assignNew('V', mce, Ity_I32, binop(Iop_And32, g1, g2)); |
| di->guard = assignNew('V', mce, Ity_I1, unop(Iop_32to1, e)); |
| } |
| |
| setHelperAnns( mce, di ); |
| stmt( 'V', mce, IRStmt_Dirty(di)); |
| |
| /* If |atom| is shadowed by an IRTemp, set the shadow tmp to be |
| defined -- but only in the case where the guard evaluates to |
| True at run-time. Do the update by setting the orig->shadow |
| mapping for tmp to reflect the fact that this shadow is getting |
| a new value. */ |
| tl_assert(isIRAtom(vatom)); |
| /* sameKindedAtoms ... */ |
| if (vatom->tag == Iex_RdTmp) { |
| tl_assert(atom->tag == Iex_RdTmp); |
| if (guard == NULL) { |
| // guard is 'always True', hence update unconditionally |
| newShadowTmpV(mce, atom->Iex.RdTmp.tmp); |
| assign('V', mce, findShadowTmpV(mce, atom->Iex.RdTmp.tmp), |
| definedOfType(ty)); |
| } else { |
| // update the temp only conditionally. Do this by copying |
| // its old value when the guard is False. |
| // The old value .. |
| IRTemp old_tmpV = findShadowTmpV(mce, atom->Iex.RdTmp.tmp); |
| newShadowTmpV(mce, atom->Iex.RdTmp.tmp); |
| IRAtom* new_tmpV |
| = assignNew('V', mce, shadowTypeV(ty), |
| IRExpr_ITE(guard, definedOfType(ty), |
| mkexpr(old_tmpV))); |
| assign('V', mce, findShadowTmpV(mce, atom->Iex.RdTmp.tmp), new_tmpV); |
| } |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Shadowing PUTs/GETs, and indexed variants thereof ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Examine the always-defined sections declared in layout to see if |
| the (offset,size) section is within one. Note, is is an error to |
| partially fall into such a region: (offset,size) should either be |
| completely in such a region or completely not-in such a region. |
| */ |
| static Bool isAlwaysDefd ( MCEnv* mce, Int offset, Int size ) |
| { |
| Int minoffD, maxoffD, i; |
| Int minoff = offset; |
| Int maxoff = minoff + size - 1; |
| tl_assert((minoff & ~0xFFFF) == 0); |
| tl_assert((maxoff & ~0xFFFF) == 0); |
| |
| for (i = 0; i < mce->layout->n_alwaysDefd; i++) { |
| minoffD = mce->layout->alwaysDefd[i].offset; |
| maxoffD = minoffD + mce->layout->alwaysDefd[i].size - 1; |
| tl_assert((minoffD & ~0xFFFF) == 0); |
| tl_assert((maxoffD & ~0xFFFF) == 0); |
| |
| if (maxoff < minoffD || maxoffD < minoff) |
| continue; /* no overlap */ |
| if (minoff >= minoffD && maxoff <= maxoffD) |
| return True; /* completely contained in an always-defd section */ |
| |
| VG_(tool_panic)("memcheck:isAlwaysDefd:partial overlap"); |
| } |
| return False; /* could not find any containing section */ |
| } |
| |
| |
| /* Generate into bb suitable actions to shadow this Put. If the state |
| slice is marked 'always defined', do nothing. Otherwise, write the |
| supplied V bits to the shadow state. We can pass in either an |
| original atom or a V-atom, but not both. In the former case the |
| relevant V-bits are then generated from the original. |
| We assume here, that the definedness of GUARD has already been checked. |
| */ |
| static |
| void do_shadow_PUT ( MCEnv* mce, Int offset, |
| IRAtom* atom, IRAtom* vatom, IRExpr *guard ) |
| { |
| IRType ty; |
| |
| // Don't do shadow PUTs if we're not doing undefined value checking. |
| // Their absence lets Vex's optimiser remove all the shadow computation |
| // that they depend on, which includes GETs of the shadow registers. |
| if (MC_(clo_mc_level) == 1) |
| return; |
| |
| if (atom) { |
| tl_assert(!vatom); |
| tl_assert(isOriginalAtom(mce, atom)); |
| vatom = expr2vbits( mce, atom ); |
| } else { |
| tl_assert(vatom); |
| tl_assert(isShadowAtom(mce, vatom)); |
| } |
| |
| ty = typeOfIRExpr(mce->sb->tyenv, vatom); |
| tl_assert(ty != Ity_I1); |
| tl_assert(ty != Ity_I128); |
| if (isAlwaysDefd(mce, offset, sizeofIRType(ty))) { |
| /* later: no ... */ |
| /* emit code to emit a complaint if any of the vbits are 1. */ |
| /* complainIfUndefined(mce, atom); */ |
| } else { |
| /* Do a plain shadow Put. */ |
| if (guard) { |
| /* If the guard expression evaluates to false we simply Put the value |
| that is already stored in the guest state slot */ |
| IRAtom *cond, *iffalse; |
| |
| cond = assignNew('V', mce, Ity_I1, guard); |
| iffalse = assignNew('V', mce, ty, |
| IRExpr_Get(offset + mce->layout->total_sizeB, ty)); |
| vatom = assignNew('V', mce, ty, IRExpr_ITE(cond, vatom, iffalse)); |
| } |
| stmt( 'V', mce, IRStmt_Put( offset + mce->layout->total_sizeB, vatom )); |
| } |
| } |
| |
| |
| /* Return an expression which contains the V bits corresponding to the |
| given GETI (passed in in pieces). |
| */ |
| static |
| void do_shadow_PUTI ( MCEnv* mce, IRPutI *puti) |
| { |
| IRAtom* vatom; |
| IRType ty, tyS; |
| Int arrSize;; |
| IRRegArray* descr = puti->descr; |
| IRAtom* ix = puti->ix; |
| Int bias = puti->bias; |
| IRAtom* atom = puti->data; |
| |
| // Don't do shadow PUTIs if we're not doing undefined value checking. |
| // Their absence lets Vex's optimiser remove all the shadow computation |
| // that they depend on, which includes GETIs of the shadow registers. |
| if (MC_(clo_mc_level) == 1) |
| return; |
| |
| tl_assert(isOriginalAtom(mce,atom)); |
| vatom = expr2vbits( mce, atom ); |
| tl_assert(sameKindedAtoms(atom, vatom)); |
| ty = descr->elemTy; |
| tyS = shadowTypeV(ty); |
| arrSize = descr->nElems * sizeofIRType(ty); |
| tl_assert(ty != Ity_I1); |
| tl_assert(isOriginalAtom(mce,ix)); |
| complainIfUndefined(mce, ix, NULL); |
| if (isAlwaysDefd(mce, descr->base, arrSize)) { |
| /* later: no ... */ |
| /* emit code to emit a complaint if any of the vbits are 1. */ |
| /* complainIfUndefined(mce, atom); */ |
| } else { |
| /* Do a cloned version of the Put that refers to the shadow |
| area. */ |
| IRRegArray* new_descr |
| = mkIRRegArray( descr->base + mce->layout->total_sizeB, |
| tyS, descr->nElems); |
| stmt( 'V', mce, IRStmt_PutI( mkIRPutI(new_descr, ix, bias, vatom) )); |
| } |
| } |
| |
| |
| /* Return an expression which contains the V bits corresponding to the |
| given GET (passed in in pieces). |
| */ |
| static |
| IRExpr* shadow_GET ( MCEnv* mce, Int offset, IRType ty ) |
| { |
| IRType tyS = shadowTypeV(ty); |
| tl_assert(ty != Ity_I1); |
| tl_assert(ty != Ity_I128); |
| if (isAlwaysDefd(mce, offset, sizeofIRType(ty))) { |
| /* Always defined, return all zeroes of the relevant type */ |
| return definedOfType(tyS); |
| } else { |
| /* return a cloned version of the Get that refers to the shadow |
| area. */ |
| /* FIXME: this isn't an atom! */ |
| return IRExpr_Get( offset + mce->layout->total_sizeB, tyS ); |
| } |
| } |
| |
| |
| /* Return an expression which contains the V bits corresponding to the |
| given GETI (passed in in pieces). |
| */ |
| static |
| IRExpr* shadow_GETI ( MCEnv* mce, |
| IRRegArray* descr, IRAtom* ix, Int bias ) |
| { |
| IRType ty = descr->elemTy; |
| IRType tyS = shadowTypeV(ty); |
| Int arrSize = descr->nElems * sizeofIRType(ty); |
| tl_assert(ty != Ity_I1); |
| tl_assert(isOriginalAtom(mce,ix)); |
| complainIfUndefined(mce, ix, NULL); |
| if (isAlwaysDefd(mce, descr->base, arrSize)) { |
| /* Always defined, return all zeroes of the relevant type */ |
| return definedOfType(tyS); |
| } else { |
| /* return a cloned version of the Get that refers to the shadow |
| area. */ |
| IRRegArray* new_descr |
| = mkIRRegArray( descr->base + mce->layout->total_sizeB, |
| tyS, descr->nElems); |
| return IRExpr_GetI( new_descr, ix, bias ); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generating approximations for unknown operations, ---*/ |
| /*--- using lazy-propagate semantics ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Lazy propagation of undefinedness from two values, resulting in the |
| specified shadow type. |
| */ |
| static |
| IRAtom* mkLazy2 ( MCEnv* mce, IRType finalVty, IRAtom* va1, IRAtom* va2 ) |
| { |
| IRAtom* at; |
| IRType t1 = typeOfIRExpr(mce->sb->tyenv, va1); |
| IRType t2 = typeOfIRExpr(mce->sb->tyenv, va2); |
| tl_assert(isShadowAtom(mce,va1)); |
| tl_assert(isShadowAtom(mce,va2)); |
| |
| /* The general case is inefficient because PCast is an expensive |
| operation. Here are some special cases which use PCast only |
| once rather than twice. */ |
| |
| /* I64 x I64 -> I64 */ |
| if (t1 == Ity_I64 && t2 == Ity_I64 && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy2: I64 x I64 -> I64\n"); |
| at = mkUifU(mce, Ity_I64, va1, va2); |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| /* I64 x I64 -> I32 */ |
| if (t1 == Ity_I64 && t2 == Ity_I64 && finalVty == Ity_I32) { |
| if (0) VG_(printf)("mkLazy2: I64 x I64 -> I32\n"); |
| at = mkUifU(mce, Ity_I64, va1, va2); |
| at = mkPCastTo(mce, Ity_I32, at); |
| return at; |
| } |
| |
| if (0) { |
| VG_(printf)("mkLazy2 "); |
| ppIRType(t1); |
| VG_(printf)("_"); |
| ppIRType(t2); |
| VG_(printf)("_"); |
| ppIRType(finalVty); |
| VG_(printf)("\n"); |
| } |
| |
| /* General case: force everything via 32-bit intermediaries. */ |
| at = mkPCastTo(mce, Ity_I32, va1); |
| at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va2)); |
| at = mkPCastTo(mce, finalVty, at); |
| return at; |
| } |
| |
| |
| /* 3-arg version of the above. */ |
| static |
| IRAtom* mkLazy3 ( MCEnv* mce, IRType finalVty, |
| IRAtom* va1, IRAtom* va2, IRAtom* va3 ) |
| { |
| IRAtom* at; |
| IRType t1 = typeOfIRExpr(mce->sb->tyenv, va1); |
| IRType t2 = typeOfIRExpr(mce->sb->tyenv, va2); |
| IRType t3 = typeOfIRExpr(mce->sb->tyenv, va3); |
| tl_assert(isShadowAtom(mce,va1)); |
| tl_assert(isShadowAtom(mce,va2)); |
| tl_assert(isShadowAtom(mce,va3)); |
| |
| /* The general case is inefficient because PCast is an expensive |
| operation. Here are some special cases which use PCast only |
| twice rather than three times. */ |
| |
| /* I32 x I64 x I64 -> I64 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I64 && t3 == Ity_I64 |
| && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy3: I32 x I64 x I64 -> I64\n"); |
| /* Widen 1st arg to I64. Since 1st arg is typically a rounding |
| mode indication which is fully defined, this should get |
| folded out later. */ |
| at = mkPCastTo(mce, Ity_I64, va1); |
| /* Now fold in 2nd and 3rd args. */ |
| at = mkUifU(mce, Ity_I64, at, va2); |
| at = mkUifU(mce, Ity_I64, at, va3); |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| /* I32 x I8 x I64 -> I64 */ |
| if (t1 == Ity_I32 && t2 == Ity_I8 && t3 == Ity_I64 |
| && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy3: I32 x I8 x I64 -> I64\n"); |
| /* Widen 1st and 2nd args to I64. Since 1st arg is typically a |
| * rounding mode indication which is fully defined, this should |
| * get folded out later. |
| */ |
| IRAtom* at1 = mkPCastTo(mce, Ity_I64, va1); |
| IRAtom* at2 = mkPCastTo(mce, Ity_I64, va2); |
| at = mkUifU(mce, Ity_I64, at1, at2); // UifU(PCast(va1), PCast(va2)) |
| at = mkUifU(mce, Ity_I64, at, va3); |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| /* I32 x I64 x I64 -> I32 */ |
| if (t1 == Ity_I32 && t2 == Ity_I64 && t3 == Ity_I64 |
| && finalVty == Ity_I32) { |
| if (0) VG_(printf)("mkLazy3: I32 x I64 x I64 -> I32\n"); |
| at = mkPCastTo(mce, Ity_I64, va1); |
| at = mkUifU(mce, Ity_I64, at, va2); |
| at = mkUifU(mce, Ity_I64, at, va3); |
| at = mkPCastTo(mce, Ity_I32, at); |
| return at; |
| } |
| |
| /* I32 x I32 x I32 -> I32 */ |
| /* 32-bit FP idiom, as (eg) happens on ARM */ |
| if (t1 == Ity_I32 && t2 == Ity_I32 && t3 == Ity_I32 |
| && finalVty == Ity_I32) { |
| if (0) VG_(printf)("mkLazy3: I32 x I32 x I32 -> I32\n"); |
| at = va1; |
| at = mkUifU(mce, Ity_I32, at, va2); |
| at = mkUifU(mce, Ity_I32, at, va3); |
| at = mkPCastTo(mce, Ity_I32, at); |
| return at; |
| } |
| |
| /* I32 x I128 x I128 -> I128 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I128 && t3 == Ity_I128 |
| && finalVty == Ity_I128) { |
| if (0) VG_(printf)("mkLazy3: I32 x I128 x I128 -> I128\n"); |
| /* Widen 1st arg to I128. Since 1st arg is typically a rounding |
| mode indication which is fully defined, this should get |
| folded out later. */ |
| at = mkPCastTo(mce, Ity_I128, va1); |
| /* Now fold in 2nd and 3rd args. */ |
| at = mkUifU(mce, Ity_I128, at, va2); |
| at = mkUifU(mce, Ity_I128, at, va3); |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I128, at); |
| return at; |
| } |
| |
| /* I32 x I8 x I128 -> I128 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I8 && t3 == Ity_I128 |
| && finalVty == Ity_I128) { |
| if (0) VG_(printf)("mkLazy3: I32 x I8 x I128 -> I128\n"); |
| /* Use I64 as an intermediate type, which means PCasting all 3 |
| args to I64 to start with. 1st arg is typically a rounding |
| mode indication which is fully defined, so we hope that it |
| will get folded out later. */ |
| IRAtom* at1 = mkPCastTo(mce, Ity_I64, va1); |
| IRAtom* at2 = mkPCastTo(mce, Ity_I64, va2); |
| IRAtom* at3 = mkPCastTo(mce, Ity_I64, va3); |
| /* Now UifU all three together. */ |
| at = mkUifU(mce, Ity_I64, at1, at2); // UifU(PCast(va1), PCast(va2)) |
| at = mkUifU(mce, Ity_I64, at, at3); // ... `UifU` PCast(va3) |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I128, at); |
| return at; |
| } |
| if (1) { |
| VG_(printf)("mkLazy3: "); |
| ppIRType(t1); |
| VG_(printf)(" x "); |
| ppIRType(t2); |
| VG_(printf)(" x "); |
| ppIRType(t3); |
| VG_(printf)(" -> "); |
| ppIRType(finalVty); |
| VG_(printf)("\n"); |
| } |
| |
| tl_assert(0); |
| /* General case: force everything via 32-bit intermediaries. */ |
| /* |
| at = mkPCastTo(mce, Ity_I32, va1); |
| at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va2)); |
| at = mkUifU(mce, Ity_I32, at, mkPCastTo(mce, Ity_I32, va3)); |
| at = mkPCastTo(mce, finalVty, at); |
| return at; |
| */ |
| } |
| |
| |
| /* 4-arg version of the above. */ |
| static |
| IRAtom* mkLazy4 ( MCEnv* mce, IRType finalVty, |
| IRAtom* va1, IRAtom* va2, IRAtom* va3, IRAtom* va4 ) |
| { |
| IRAtom* at; |
| IRType t1 = typeOfIRExpr(mce->sb->tyenv, va1); |
| IRType t2 = typeOfIRExpr(mce->sb->tyenv, va2); |
| IRType t3 = typeOfIRExpr(mce->sb->tyenv, va3); |
| IRType t4 = typeOfIRExpr(mce->sb->tyenv, va4); |
| tl_assert(isShadowAtom(mce,va1)); |
| tl_assert(isShadowAtom(mce,va2)); |
| tl_assert(isShadowAtom(mce,va3)); |
| tl_assert(isShadowAtom(mce,va4)); |
| |
| /* The general case is inefficient because PCast is an expensive |
| operation. Here are some special cases which use PCast only |
| twice rather than three times. */ |
| |
| /* I32 x I64 x I64 x I64 -> I64 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 x FParg3 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I64 && t3 == Ity_I64 && t4 == Ity_I64 |
| && finalVty == Ity_I64) { |
| if (0) VG_(printf)("mkLazy4: I32 x I64 x I64 x I64 -> I64\n"); |
| /* Widen 1st arg to I64. Since 1st arg is typically a rounding |
| mode indication which is fully defined, this should get |
| folded out later. */ |
| at = mkPCastTo(mce, Ity_I64, va1); |
| /* Now fold in 2nd, 3rd, 4th args. */ |
| at = mkUifU(mce, Ity_I64, at, va2); |
| at = mkUifU(mce, Ity_I64, at, va3); |
| at = mkUifU(mce, Ity_I64, at, va4); |
| /* and PCast once again. */ |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| /* I32 x I32 x I32 x I32 -> I32 */ |
| /* Standard FP idiom: rm x FParg1 x FParg2 x FParg3 -> FPresult */ |
| if (t1 == Ity_I32 && t2 == Ity_I32 && t3 == Ity_I32 && t4 == Ity_I32 |
| && finalVty == Ity_I32) { |
| if (0) VG_(printf)("mkLazy4: I32 x I32 x I32 x I32 -> I32\n"); |
| at = va1; |
| /* Now fold in 2nd, 3rd, 4th args. */ |
| at = mkUifU(mce, Ity_I32, at, va2); |
| at = mkUifU(mce, Ity_I32, at, va3); |
| at = mkUifU(mce, Ity_I32, at, va4); |
| at = mkPCastTo(mce, Ity_I32, at); |
| return at; |
| } |
| |
| if (1) { |
| VG_(printf)("mkLazy4: "); |
| ppIRType(t1); |
| VG_(printf)(" x "); |
| ppIRType(t2); |
| VG_(printf)(" x "); |
| ppIRType(t3); |
| VG_(printf)(" x "); |
| ppIRType(t4); |
| VG_(printf)(" -> "); |
| ppIRType(finalVty); |
| VG_(printf)("\n"); |
| } |
| |
| tl_assert(0); |
| } |
| |
| |
| /* Do the lazy propagation game from a null-terminated vector of |
| atoms. This is presumably the arguments to a helper call, so the |
| IRCallee info is also supplied in order that we can know which |
| arguments should be ignored (via the .mcx_mask field). |
| */ |
| static |
| IRAtom* mkLazyN ( MCEnv* mce, |
| IRAtom** exprvec, IRType finalVtype, IRCallee* cee ) |
| { |
| Int i; |
| IRAtom* here; |
| IRAtom* curr; |
| IRType mergeTy; |
| Bool mergeTy64 = True; |
| |
| /* Decide on the type of the merge intermediary. If all relevant |
| args are I64, then it's I64. In all other circumstances, use |
| I32. */ |
| for (i = 0; exprvec[i]; i++) { |
| tl_assert(i < 32); |
| tl_assert(isOriginalAtom(mce, exprvec[i])); |
| if (cee->mcx_mask & (1<<i)) |
| continue; |
| if (typeOfIRExpr(mce->sb->tyenv, exprvec[i]) != Ity_I64) |
| mergeTy64 = False; |
| } |
| |
| mergeTy = mergeTy64 ? Ity_I64 : Ity_I32; |
| curr = definedOfType(mergeTy); |
| |
| for (i = 0; exprvec[i]; i++) { |
| tl_assert(i < 32); |
| tl_assert(isOriginalAtom(mce, exprvec[i])); |
| /* Only take notice of this arg if the callee's mc-exclusion |
| mask does not say it is to be excluded. */ |
| if (cee->mcx_mask & (1<<i)) { |
| /* the arg is to be excluded from definedness checking. Do |
| nothing. */ |
| if (0) VG_(printf)("excluding %s(%d)\n", cee->name, i); |
| } else { |
| /* calculate the arg's definedness, and pessimistically merge |
| it in. */ |
| here = mkPCastTo( mce, mergeTy, expr2vbits(mce, exprvec[i]) ); |
| curr = mergeTy64 |
| ? mkUifU64(mce, here, curr) |
| : mkUifU32(mce, here, curr); |
| } |
| } |
| return mkPCastTo(mce, finalVtype, curr ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generating expensive sequences for exact carry-chain ---*/ |
| /*--- propagation in add/sub and related operations. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| IRAtom* expensiveAddSub ( MCEnv* mce, |
| Bool add, |
| IRType ty, |
| IRAtom* qaa, IRAtom* qbb, |
| IRAtom* aa, IRAtom* bb ) |
| { |
| IRAtom *a_min, *b_min, *a_max, *b_max; |
| IROp opAND, opOR, opXOR, opNOT, opADD, opSUB; |
| |
| tl_assert(isShadowAtom(mce,qaa)); |
| tl_assert(isShadowAtom(mce,qbb)); |
| tl_assert(isOriginalAtom(mce,aa)); |
| tl_assert(isOriginalAtom(mce,bb)); |
| tl_assert(sameKindedAtoms(qaa,aa)); |
| tl_assert(sameKindedAtoms(qbb,bb)); |
| |
| switch (ty) { |
| case Ity_I32: |
| opAND = Iop_And32; |
| opOR = Iop_Or32; |
| opXOR = Iop_Xor32; |
| opNOT = Iop_Not32; |
| opADD = Iop_Add32; |
| opSUB = Iop_Sub32; |
| break; |
| case Ity_I64: |
| opAND = Iop_And64; |
| opOR = Iop_Or64; |
| opXOR = Iop_Xor64; |
| opNOT = Iop_Not64; |
| opADD = Iop_Add64; |
| opSUB = Iop_Sub64; |
| break; |
| default: |
| VG_(tool_panic)("expensiveAddSub"); |
| } |
| |
| // a_min = aa & ~qaa |
| a_min = assignNew('V', mce,ty, |
| binop(opAND, aa, |
| assignNew('V', mce,ty, unop(opNOT, qaa)))); |
| |
| // b_min = bb & ~qbb |
| b_min = assignNew('V', mce,ty, |
| binop(opAND, bb, |
| assignNew('V', mce,ty, unop(opNOT, qbb)))); |
| |
| // a_max = aa | qaa |
| a_max = assignNew('V', mce,ty, binop(opOR, aa, qaa)); |
| |
| // b_max = bb | qbb |
| b_max = assignNew('V', mce,ty, binop(opOR, bb, qbb)); |
| |
| if (add) { |
| // result = (qaa | qbb) | ((a_min + b_min) ^ (a_max + b_max)) |
| return |
| assignNew('V', mce,ty, |
| binop( opOR, |
| assignNew('V', mce,ty, binop(opOR, qaa, qbb)), |
| assignNew('V', mce,ty, |
| binop( opXOR, |
| assignNew('V', mce,ty, binop(opADD, a_min, b_min)), |
| assignNew('V', mce,ty, binop(opADD, a_max, b_max)) |
| ) |
| ) |
| ) |
| ); |
| } else { |
| // result = (qaa | qbb) | ((a_min - b_max) ^ (a_max + b_min)) |
| return |
| assignNew('V', mce,ty, |
| binop( opOR, |
| assignNew('V', mce,ty, binop(opOR, qaa, qbb)), |
| assignNew('V', mce,ty, |
| binop( opXOR, |
| assignNew('V', mce,ty, binop(opSUB, a_min, b_max)), |
| assignNew('V', mce,ty, binop(opSUB, a_max, b_min)) |
| ) |
| ) |
| ) |
| ); |
| } |
| |
| } |
| |
| |
| static |
| IRAtom* expensiveCountTrailingZeroes ( MCEnv* mce, IROp czop, |
| IRAtom* atom, IRAtom* vatom ) |
| { |
| IRType ty; |
| IROp xorOp, subOp, andOp; |
| IRExpr *one; |
| IRAtom *improver, *improved; |
| tl_assert(isShadowAtom(mce,vatom)); |
| tl_assert(isOriginalAtom(mce,atom)); |
| tl_assert(sameKindedAtoms(atom,vatom)); |
| |
| switch (czop) { |
| case Iop_Ctz32: |
| ty = Ity_I32; |
| xorOp = Iop_Xor32; |
| subOp = Iop_Sub32; |
| andOp = Iop_And32; |
| one = mkU32(1); |
| break; |
| case Iop_Ctz64: |
| ty = Ity_I64; |
| xorOp = Iop_Xor64; |
| subOp = Iop_Sub64; |
| andOp = Iop_And64; |
| one = mkU64(1); |
| break; |
| default: |
| ppIROp(czop); |
| VG_(tool_panic)("memcheck:expensiveCountTrailingZeroes"); |
| } |
| |
| // improver = atom ^ (atom - 1) |
| // |
| // That is, improver has its low ctz(atom) bits equal to one; |
| // higher bits (if any) equal to zero. |
| improver = assignNew('V', mce,ty, |
| binop(xorOp, |
| atom, |
| assignNew('V', mce, ty, |
| binop(subOp, atom, one)))); |
| |
| // improved = vatom & improver |
| // |
| // That is, treat any V bits above the first ctz(atom) bits as |
| // "defined". |
| improved = assignNew('V', mce, ty, |
| binop(andOp, vatom, improver)); |
| |
| // Return pessimizing cast of improved. |
| return mkPCastTo(mce, ty, improved); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Scalar shifts. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Produce an interpretation for (aa << bb) (or >>s, >>u). The basic |
| idea is to shift the definedness bits by the original shift amount. |
| This introduces 0s ("defined") in new positions for left shifts and |
| unsigned right shifts, and copies the top definedness bit for |
| signed right shifts. So, conveniently, applying the original shift |
| operator to the definedness bits for the left arg is exactly the |
| right thing to do: |
| |
| (qaa << bb) |
| |
| However if the shift amount is undefined then the whole result |
| is undefined. Hence need: |
| |
| (qaa << bb) `UifU` PCast(qbb) |
| |
| If the shift amount bb is a literal than qbb will say 'all defined' |
| and the UifU and PCast will get folded out by post-instrumentation |
| optimisation. |
| */ |
| static IRAtom* scalarShift ( MCEnv* mce, |
| IRType ty, |
| IROp original_op, |
| IRAtom* qaa, IRAtom* qbb, |
| IRAtom* aa, IRAtom* bb ) |
| { |
| tl_assert(isShadowAtom(mce,qaa)); |
| tl_assert(isShadowAtom(mce,qbb)); |
| tl_assert(isOriginalAtom(mce,aa)); |
| tl_assert(isOriginalAtom(mce,bb)); |
| tl_assert(sameKindedAtoms(qaa,aa)); |
| tl_assert(sameKindedAtoms(qbb,bb)); |
| return |
| assignNew( |
| 'V', mce, ty, |
| mkUifU( mce, ty, |
| assignNew('V', mce, ty, binop(original_op, qaa, bb)), |
| mkPCastTo(mce, ty, qbb) |
| ) |
| ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Helpers for dealing with vector primops. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Vector pessimisation -- pessimise within each lane individually. */ |
| |
| static IRAtom* mkPCast8x16 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ8x16, at)); |
| } |
| |
| static IRAtom* mkPCast16x8 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ16x8, at)); |
| } |
| |
| static IRAtom* mkPCast32x4 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ32x4, at)); |
| } |
| |
| static IRAtom* mkPCast64x2 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V128, unop(Iop_CmpNEZ64x2, at)); |
| } |
| |
| static IRAtom* mkPCast64x4 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V256, unop(Iop_CmpNEZ64x4, at)); |
| } |
| |
| static IRAtom* mkPCast32x8 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V256, unop(Iop_CmpNEZ32x8, at)); |
| } |
| |
| static IRAtom* mkPCast32x2 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpNEZ32x2, at)); |
| } |
| |
| static IRAtom* mkPCast16x16 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V256, unop(Iop_CmpNEZ16x16, at)); |
| } |
| |
| static IRAtom* mkPCast16x4 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpNEZ16x4, at)); |
| } |
| |
| static IRAtom* mkPCast8x32 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_V256, unop(Iop_CmpNEZ8x32, at)); |
| } |
| |
| static IRAtom* mkPCast8x8 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I64, unop(Iop_CmpNEZ8x8, at)); |
| } |
| |
| static IRAtom* mkPCast16x2 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I32, unop(Iop_CmpNEZ16x2, at)); |
| } |
| |
| static IRAtom* mkPCast8x4 ( MCEnv* mce, IRAtom* at ) |
| { |
| return assignNew('V', mce, Ity_I32, unop(Iop_CmpNEZ8x4, at)); |
| } |
| |
| |
| /* Here's a simple scheme capable of handling ops derived from SSE1 |
| code and while only generating ops that can be efficiently |
| implemented in SSE1. */ |
| |
| /* All-lanes versions are straightforward: |
| |
| binary32Fx4(x,y) ==> PCast32x4(UifUV128(x#,y#)) |
| |
| unary32Fx4(x,y) ==> PCast32x4(x#) |
| |
| Lowest-lane-only versions are more complex: |
| |
| binary32F0x4(x,y) ==> SetV128lo32( |
| x#, |
| PCast32(V128to32(UifUV128(x#,y#))) |
| ) |
| |
| This is perhaps not so obvious. In particular, it's faster to |
| do a V128-bit UifU and then take the bottom 32 bits than the more |
| obvious scheme of taking the bottom 32 bits of each operand |
| and doing a 32-bit UifU. Basically since UifU is fast and |
| chopping lanes off vector values is slow. |
| |
| Finally: |
| |
| unary32F0x4(x) ==> SetV128lo32( |
| x#, |
| PCast32(V128to32(x#)) |
| ) |
| |
| Where: |
| |
| PCast32(v#) = 1Sto32(CmpNE32(v#,0)) |
| PCast32x4(v#) = CmpNEZ32x4(v#) |
| */ |
| |
| static |
| IRAtom* binary32Fx4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_V128, mkPCast32x4(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary32Fx4 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_V128, mkPCast32x4(mce, vatomX)); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32F0x4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_I32, unop(Iop_V128to32, at)); |
| at = mkPCastTo(mce, Ity_I32, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo32, vatomX, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary32F0x4 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_I32, unop(Iop_V128to32, vatomX)); |
| at = mkPCastTo(mce, Ity_I32, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo32, vatomX, at)); |
| return at; |
| } |
| |
| /* --- ... and ... 64Fx2 versions of the same ... --- */ |
| |
| static |
| IRAtom* binary64Fx2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_V128, mkPCast64x2(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary64Fx2 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_V128, mkPCast64x2(mce, vatomX)); |
| return at; |
| } |
| |
| static |
| IRAtom* binary64F0x2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV128(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_I64, unop(Iop_V128to64, at)); |
| at = mkPCastTo(mce, Ity_I64, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo64, vatomX, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary64F0x2 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_I64, unop(Iop_V128to64, vatomX)); |
| at = mkPCastTo(mce, Ity_I64, at); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SetV128lo64, vatomX, at)); |
| return at; |
| } |
| |
| /* --- --- ... and ... 32Fx2 versions of the same --- --- */ |
| |
| static |
| IRAtom* binary32Fx2 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifU64(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_I64, mkPCast32x2(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary32Fx2 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_I64, mkPCast32x2(mce, vatomX)); |
| return at; |
| } |
| |
| /* --- ... and ... 64Fx4 versions of the same ... --- */ |
| |
| static |
| IRAtom* binary64Fx4 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV256(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_V256, mkPCast64x4(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary64Fx4 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_V256, mkPCast64x4(mce, vatomX)); |
| return at; |
| } |
| |
| /* --- ... and ... 32Fx8 versions of the same ... --- */ |
| |
| static |
| IRAtom* binary32Fx8 ( MCEnv* mce, IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| tl_assert(isShadowAtom(mce, vatomY)); |
| at = mkUifUV256(mce, vatomX, vatomY); |
| at = assignNew('V', mce, Ity_V256, mkPCast32x8(mce, at)); |
| return at; |
| } |
| |
| static |
| IRAtom* unary32Fx8 ( MCEnv* mce, IRAtom* vatomX ) |
| { |
| IRAtom* at; |
| tl_assert(isShadowAtom(mce, vatomX)); |
| at = assignNew('V', mce, Ity_V256, mkPCast32x8(mce, vatomX)); |
| return at; |
| } |
| |
| /* --- 64Fx2 binary FP ops, with rounding mode --- */ |
| |
| static |
| IRAtom* binary64Fx2_w_rm ( MCEnv* mce, IRAtom* vRM, |
| IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| /* This is the same as binary64Fx2, except that we subsequently |
| pessimise vRM (definedness of the rounding mode), widen to 128 |
| bits and UifU it into the result. As with the scalar cases, if |
| the RM is a constant then it is defined and so this extra bit |
| will get constant-folded out later. */ |
| // "do" the vector args |
| IRAtom* t1 = binary64Fx2(mce, vatomX, vatomY); |
| // PCast the RM, and widen it to 128 bits |
| IRAtom* t2 = mkPCastTo(mce, Ity_V128, vRM); |
| // Roll it into the result |
| t1 = mkUifUV128(mce, t1, t2); |
| return t1; |
| } |
| |
| /* --- ... and ... 32Fx4 versions of the same --- */ |
| |
| static |
| IRAtom* binary32Fx4_w_rm ( MCEnv* mce, IRAtom* vRM, |
| IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* t1 = binary32Fx4(mce, vatomX, vatomY); |
| // PCast the RM, and widen it to 128 bits |
| IRAtom* t2 = mkPCastTo(mce, Ity_V128, vRM); |
| // Roll it into the result |
| t1 = mkUifUV128(mce, t1, t2); |
| return t1; |
| } |
| |
| /* --- ... and ... 64Fx4 versions of the same --- */ |
| |
| static |
| IRAtom* binary64Fx4_w_rm ( MCEnv* mce, IRAtom* vRM, |
| IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* t1 = binary64Fx4(mce, vatomX, vatomY); |
| // PCast the RM, and widen it to 256 bits |
| IRAtom* t2 = mkPCastTo(mce, Ity_V256, vRM); |
| // Roll it into the result |
| t1 = mkUifUV256(mce, t1, t2); |
| return t1; |
| } |
| |
| /* --- ... and ... 32Fx8 versions of the same --- */ |
| |
| static |
| IRAtom* binary32Fx8_w_rm ( MCEnv* mce, IRAtom* vRM, |
| IRAtom* vatomX, IRAtom* vatomY ) |
| { |
| IRAtom* t1 = binary32Fx8(mce, vatomX, vatomY); |
| // PCast the RM, and widen it to 256 bits |
| IRAtom* t2 = mkPCastTo(mce, Ity_V256, vRM); |
| // Roll it into the result |
| t1 = mkUifUV256(mce, t1, t2); |
| return t1; |
| } |
| |
| |
| /* --- --- Vector saturated narrowing --- --- */ |
| |
| /* We used to do something very clever here, but on closer inspection |
| (2011-Jun-15), and in particular bug #279698, it turns out to be |
| wrong. Part of the problem came from the fact that for a long |
| time, the IR primops to do with saturated narrowing were |
| underspecified and managed to confuse multiple cases which needed |
| to be separate: the op names had a signedness qualifier, but in |
| fact the source and destination signednesses needed to be specified |
| independently, so the op names really need two independent |
| signedness specifiers. |
| |
| As of 2011-Jun-15 (ish) the underspecification was sorted out |
| properly. The incorrect instrumentation remained, though. That |
| has now (2011-Oct-22) been fixed. |
| |
| What we now do is simple: |
| |
| Let the original narrowing op be QNarrowBinXtoYxZ, where Z is a |
| number of lanes, X is the source lane width and signedness, and Y |
| is the destination lane width and signedness. In all cases the |
| destination lane width is half the source lane width, so the names |
| have a bit of redundancy, but are at least easy to read. |
| |
| For example, Iop_QNarrowBin32Sto16Ux8 narrows 8 lanes of signed 32s |
| to unsigned 16s. |
| |
| Let Vanilla(OP) be a function that takes OP, one of these |
| saturating narrowing ops, and produces the same "shaped" narrowing |
| op which is not saturating, but merely dumps the most significant |
| bits. "same shape" means that the lane numbers and widths are the |
| same as with OP. |
| |
| For example, Vanilla(Iop_QNarrowBin32Sto16Ux8) |
| = Iop_NarrowBin32to16x8, |
| that is, narrow 8 lanes of 32 bits to 8 lanes of 16 bits, by |
| dumping the top half of each lane. |
| |
| So, with that in place, the scheme is simple, and it is simple to |
| pessimise each lane individually and then apply Vanilla(OP) so as |
| to get the result in the right "shape". If the original OP is |
| QNarrowBinXtoYxZ then we produce |
| |
| Vanilla(OP)( PCast-X-to-X-x-Z(vatom1), PCast-X-to-X-x-Z(vatom2) ) |
| |
| or for the case when OP is unary (Iop_QNarrowUn*) |
| |
| Vanilla(OP)( PCast-X-to-X-x-Z(vatom) ) |
| */ |
| static |
| IROp vanillaNarrowingOpOfShape ( IROp qnarrowOp ) |
| { |
| switch (qnarrowOp) { |
| /* Binary: (128, 128) -> 128 */ |
| case Iop_QNarrowBin16Sto8Ux16: |
| case Iop_QNarrowBin16Sto8Sx16: |
| case Iop_QNarrowBin16Uto8Ux16: |
| case Iop_QNarrowBin64Sto32Sx4: |
| case Iop_QNarrowBin64Uto32Ux4: |
| return Iop_NarrowBin16to8x16; |
| case Iop_QNarrowBin32Sto16Ux8: |
| case Iop_QNarrowBin32Sto16Sx8: |
| case Iop_QNarrowBin32Uto16Ux8: |
| return Iop_NarrowBin32to16x8; |
| /* Binary: (64, 64) -> 64 */ |
| case Iop_QNarrowBin32Sto16Sx4: |
| return Iop_NarrowBin32to16x4; |
| case Iop_QNarrowBin16Sto8Ux8: |
| case Iop_QNarrowBin16Sto8Sx8: |
| return Iop_NarrowBin16to8x8; |
| /* Unary: 128 -> 64 */ |
| case Iop_QNarrowUn64Uto32Ux2: |
| case Iop_QNarrowUn64Sto32Sx2: |
| case Iop_QNarrowUn64Sto32Ux2: |
| return Iop_NarrowUn64to32x2; |
| case Iop_QNarrowUn32Uto16Ux4: |
| case Iop_QNarrowUn32Sto16Sx4: |
| case Iop_QNarrowUn32Sto16Ux4: |
| return Iop_NarrowUn32to16x4; |
| case Iop_QNarrowUn16Uto8Ux8: |
| case Iop_QNarrowUn16Sto8Sx8: |
| case Iop_QNarrowUn16Sto8Ux8: |
| return Iop_NarrowUn16to8x8; |
| default: |
| ppIROp(qnarrowOp); |
| VG_(tool_panic)("vanillaNarrowOpOfShape"); |
| } |
| } |
| |
| static |
| IRAtom* vectorNarrowBinV128 ( MCEnv* mce, IROp narrow_op, |
| IRAtom* vatom1, IRAtom* vatom2) |
| { |
| IRAtom *at1, *at2, *at3; |
| IRAtom* (*pcast)( MCEnv*, IRAtom* ); |
| switch (narrow_op) { |
| case Iop_QNarrowBin64Sto32Sx4: pcast = mkPCast32x4; break; |
| case Iop_QNarrowBin64Uto32Ux4: pcast = mkPCast32x4; break; |
| case Iop_QNarrowBin32Sto16Sx8: pcast = mkPCast32x4; break; |
| case Iop_QNarrowBin32Uto16Ux8: pcast = mkPCast32x4; break; |
| case Iop_QNarrowBin32Sto16Ux8: pcast = mkPCast32x4; break; |
| case Iop_QNarrowBin16Sto8Sx16: pcast = mkPCast16x8; break; |
| case Iop_QNarrowBin16Uto8Ux16: pcast = mkPCast16x8; break; |
| case Iop_QNarrowBin16Sto8Ux16: pcast = mkPCast16x8; break; |
| default: VG_(tool_panic)("vectorNarrowBinV128"); |
| } |
| IROp vanilla_narrow = vanillaNarrowingOpOfShape(narrow_op); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| at1 = assignNew('V', mce, Ity_V128, pcast(mce, vatom1)); |
| at2 = assignNew('V', mce, Ity_V128, pcast(mce, vatom2)); |
| at3 = assignNew('V', mce, Ity_V128, binop(vanilla_narrow, at1, at2)); |
| return at3; |
| } |
| |
| static |
| IRAtom* vectorNarrowBin64 ( MCEnv* mce, IROp narrow_op, |
| IRAtom* vatom1, IRAtom* vatom2) |
| { |
| IRAtom *at1, *at2, *at3; |
| IRAtom* (*pcast)( MCEnv*, IRAtom* ); |
| switch (narrow_op) { |
| case Iop_QNarrowBin32Sto16Sx4: pcast = mkPCast32x2; break; |
| case Iop_QNarrowBin16Sto8Sx8: pcast = mkPCast16x4; break; |
| case Iop_QNarrowBin16Sto8Ux8: pcast = mkPCast16x4; break; |
| default: VG_(tool_panic)("vectorNarrowBin64"); |
| } |
| IROp vanilla_narrow = vanillaNarrowingOpOfShape(narrow_op); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| at1 = assignNew('V', mce, Ity_I64, pcast(mce, vatom1)); |
| at2 = assignNew('V', mce, Ity_I64, pcast(mce, vatom2)); |
| at3 = assignNew('V', mce, Ity_I64, binop(vanilla_narrow, at1, at2)); |
| return at3; |
| } |
| |
| static |
| IRAtom* vectorNarrowUnV128 ( MCEnv* mce, IROp narrow_op, |
| IRAtom* vatom1) |
| { |
| IRAtom *at1, *at2; |
| IRAtom* (*pcast)( MCEnv*, IRAtom* ); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| /* For vanilla narrowing (non-saturating), we can just apply |
| the op directly to the V bits. */ |
| switch (narrow_op) { |
| case Iop_NarrowUn16to8x8: |
| case Iop_NarrowUn32to16x4: |
| case Iop_NarrowUn64to32x2: |
| at1 = assignNew('V', mce, Ity_I64, unop(narrow_op, vatom1)); |
| return at1; |
| default: |
| break; /* Do Plan B */ |
| } |
| /* Plan B: for ops that involve a saturation operation on the args, |
| we must PCast before the vanilla narrow. */ |
| switch (narrow_op) { |
| case Iop_QNarrowUn16Sto8Sx8: pcast = mkPCast16x8; break; |
| case Iop_QNarrowUn16Sto8Ux8: pcast = mkPCast16x8; break; |
| case Iop_QNarrowUn16Uto8Ux8: pcast = mkPCast16x8; break; |
| case Iop_QNarrowUn32Sto16Sx4: pcast = mkPCast32x4; break; |
| case Iop_QNarrowUn32Sto16Ux4: pcast = mkPCast32x4; break; |
| case Iop_QNarrowUn32Uto16Ux4: pcast = mkPCast32x4; break; |
| case Iop_QNarrowUn64Sto32Sx2: pcast = mkPCast64x2; break; |
| case Iop_QNarrowUn64Sto32Ux2: pcast = mkPCast64x2; break; |
| case Iop_QNarrowUn64Uto32Ux2: pcast = mkPCast64x2; break; |
| default: VG_(tool_panic)("vectorNarrowUnV128"); |
| } |
| IROp vanilla_narrow = vanillaNarrowingOpOfShape(narrow_op); |
| at1 = assignNew('V', mce, Ity_V128, pcast(mce, vatom1)); |
| at2 = assignNew('V', mce, Ity_I64, unop(vanilla_narrow, at1)); |
| return at2; |
| } |
| |
| static |
| IRAtom* vectorWidenI64 ( MCEnv* mce, IROp longen_op, |
| IRAtom* vatom1) |
| { |
| IRAtom *at1, *at2; |
| IRAtom* (*pcast)( MCEnv*, IRAtom* ); |
| switch (longen_op) { |
| case Iop_Widen8Uto16x8: pcast = mkPCast16x8; break; |
| case Iop_Widen8Sto16x8: pcast = mkPCast16x8; break; |
| case Iop_Widen16Uto32x4: pcast = mkPCast32x4; break; |
| case Iop_Widen16Sto32x4: pcast = mkPCast32x4; break; |
| case Iop_Widen32Uto64x2: pcast = mkPCast64x2; break; |
| case Iop_Widen32Sto64x2: pcast = mkPCast64x2; break; |
| default: VG_(tool_panic)("vectorWidenI64"); |
| } |
| tl_assert(isShadowAtom(mce,vatom1)); |
| at1 = assignNew('V', mce, Ity_V128, unop(longen_op, vatom1)); |
| at2 = assignNew('V', mce, Ity_V128, pcast(mce, at1)); |
| return at2; |
| } |
| |
| |
| /* --- --- Vector integer arithmetic --- --- */ |
| |
| /* Simple ... UifU the args and per-lane pessimise the results. */ |
| |
| /* --- V256-bit versions --- */ |
| |
| static |
| IRAtom* binary8Ix32 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV256(mce, vatom1, vatom2); |
| at = mkPCast8x32(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary16Ix16 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV256(mce, vatom1, vatom2); |
| at = mkPCast16x16(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32Ix8 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV256(mce, vatom1, vatom2); |
| at = mkPCast32x8(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary64Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV256(mce, vatom1, vatom2); |
| at = mkPCast64x4(mce, at); |
| return at; |
| } |
| |
| /* --- V128-bit versions --- */ |
| |
| static |
| IRAtom* binary8Ix16 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast8x16(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary16Ix8 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast16x8(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast32x4(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary64Ix2 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifUV128(mce, vatom1, vatom2); |
| at = mkPCast64x2(mce, at); |
| return at; |
| } |
| |
| /* --- 64-bit versions --- */ |
| |
| static |
| IRAtom* binary8Ix8 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCast8x8(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary16Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCast16x4(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary32Ix2 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCast32x2(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary64Ix1 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU64(mce, vatom1, vatom2); |
| at = mkPCastTo(mce, Ity_I64, at); |
| return at; |
| } |
| |
| /* --- 32-bit versions --- */ |
| |
| static |
| IRAtom* binary8Ix4 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU32(mce, vatom1, vatom2); |
| at = mkPCast8x4(mce, at); |
| return at; |
| } |
| |
| static |
| IRAtom* binary16Ix2 ( MCEnv* mce, IRAtom* vatom1, IRAtom* vatom2 ) |
| { |
| IRAtom* at; |
| at = mkUifU32(mce, vatom1, vatom2); |
| at = mkPCast16x2(mce, at); |
| return at; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generate shadow values from all kinds of IRExprs. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static |
| IRAtom* expr2vbits_Qop ( MCEnv* mce, |
| IROp op, |
| IRAtom* atom1, IRAtom* atom2, |
| IRAtom* atom3, IRAtom* atom4 ) |
| { |
| IRAtom* vatom1 = expr2vbits( mce, atom1 ); |
| IRAtom* vatom2 = expr2vbits( mce, atom2 ); |
| IRAtom* vatom3 = expr2vbits( mce, atom3 ); |
| IRAtom* vatom4 = expr2vbits( mce, atom4 ); |
| |
| tl_assert(isOriginalAtom(mce,atom1)); |
| tl_assert(isOriginalAtom(mce,atom2)); |
| tl_assert(isOriginalAtom(mce,atom3)); |
| tl_assert(isOriginalAtom(mce,atom4)); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| tl_assert(isShadowAtom(mce,vatom3)); |
| tl_assert(isShadowAtom(mce,vatom4)); |
| tl_assert(sameKindedAtoms(atom1,vatom1)); |
| tl_assert(sameKindedAtoms(atom2,vatom2)); |
| tl_assert(sameKindedAtoms(atom3,vatom3)); |
| tl_assert(sameKindedAtoms(atom4,vatom4)); |
| switch (op) { |
| case Iop_MAddF64: |
| case Iop_MAddF64r32: |
| case Iop_MSubF64: |
| case Iop_MSubF64r32: |
| /* I32(rm) x F64 x F64 x F64 -> F64 */ |
| return mkLazy4(mce, Ity_I64, vatom1, vatom2, vatom3, vatom4); |
| |
| case Iop_MAddF32: |
| case Iop_MSubF32: |
| /* I32(rm) x F32 x F32 x F32 -> F32 */ |
| return mkLazy4(mce, Ity_I32, vatom1, vatom2, vatom3, vatom4); |
| |
| /* V256-bit data-steering */ |
| case Iop_64x4toV256: |
| return assignNew('V', mce, Ity_V256, |
| IRExpr_Qop(op, vatom1, vatom2, vatom3, vatom4)); |
| |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Qop"); |
| } |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_Triop ( MCEnv* mce, |
| IROp op, |
| IRAtom* atom1, IRAtom* atom2, IRAtom* atom3 ) |
| { |
| IRAtom* vatom1 = expr2vbits( mce, atom1 ); |
| IRAtom* vatom2 = expr2vbits( mce, atom2 ); |
| IRAtom* vatom3 = expr2vbits( mce, atom3 ); |
| |
| tl_assert(isOriginalAtom(mce,atom1)); |
| tl_assert(isOriginalAtom(mce,atom2)); |
| tl_assert(isOriginalAtom(mce,atom3)); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| tl_assert(isShadowAtom(mce,vatom3)); |
| tl_assert(sameKindedAtoms(atom1,vatom1)); |
| tl_assert(sameKindedAtoms(atom2,vatom2)); |
| tl_assert(sameKindedAtoms(atom3,vatom3)); |
| switch (op) { |
| case Iop_AddF128: |
| case Iop_AddD128: |
| case Iop_SubF128: |
| case Iop_SubD128: |
| case Iop_MulF128: |
| case Iop_MulD128: |
| case Iop_DivF128: |
| case Iop_DivD128: |
| case Iop_QuantizeD128: |
| /* I32(rm) x F128/D128 x F128/D128 -> F128/D128 */ |
| return mkLazy3(mce, Ity_I128, vatom1, vatom2, vatom3); |
| case Iop_AddF64: |
| case Iop_AddD64: |
| case Iop_AddF64r32: |
| case Iop_SubF64: |
| case Iop_SubD64: |
| case Iop_SubF64r32: |
| case Iop_MulF64: |
| case Iop_MulD64: |
| case Iop_MulF64r32: |
| case Iop_DivF64: |
| case Iop_DivD64: |
| case Iop_DivF64r32: |
| case Iop_ScaleF64: |
| case Iop_Yl2xF64: |
| case Iop_Yl2xp1F64: |
| case Iop_AtanF64: |
| case Iop_PRemF64: |
| case Iop_PRem1F64: |
| case Iop_QuantizeD64: |
| /* I32(rm) x F64/D64 x F64/D64 -> F64/D64 */ |
| return mkLazy3(mce, Ity_I64, vatom1, vatom2, vatom3); |
| case Iop_PRemC3210F64: |
| case Iop_PRem1C3210F64: |
| /* I32(rm) x F64 x F64 -> I32 */ |
| return mkLazy3(mce, Ity_I32, vatom1, vatom2, vatom3); |
| case Iop_AddF32: |
| case Iop_SubF32: |
| case Iop_MulF32: |
| case Iop_DivF32: |
| /* I32(rm) x F32 x F32 -> I32 */ |
| return mkLazy3(mce, Ity_I32, vatom1, vatom2, vatom3); |
| case Iop_SignificanceRoundD64: |
| /* IRRoundingMode(I32) x I8 x D64 -> D64 */ |
| return mkLazy3(mce, Ity_I64, vatom1, vatom2, vatom3); |
| case Iop_SignificanceRoundD128: |
| /* IRRoundingMode(I32) x I8 x D128 -> D128 */ |
| return mkLazy3(mce, Ity_I128, vatom1, vatom2, vatom3); |
| case Iop_ExtractV128: |
| complainIfUndefined(mce, atom3, NULL); |
| return assignNew('V', mce, Ity_V128, triop(op, vatom1, vatom2, atom3)); |
| case Iop_Extract64: |
| complainIfUndefined(mce, atom3, NULL); |
| return assignNew('V', mce, Ity_I64, triop(op, vatom1, vatom2, atom3)); |
| case Iop_SetElem8x8: |
| case Iop_SetElem16x4: |
| case Iop_SetElem32x2: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I64, triop(op, vatom1, atom2, vatom3)); |
| /* BCDIops */ |
| case Iop_BCDAdd: |
| case Iop_BCDSub: |
| complainIfUndefined(mce, atom3, NULL); |
| return assignNew('V', mce, Ity_V128, triop(op, vatom1, vatom2, atom3)); |
| |
| /* Vector FP with rounding mode as the first arg */ |
| case Iop_Add64Fx2: |
| case Iop_Sub64Fx2: |
| case Iop_Mul64Fx2: |
| case Iop_Div64Fx2: |
| return binary64Fx2_w_rm(mce, vatom1, vatom2, vatom3); |
| |
| case Iop_Add32Fx4: |
| case Iop_Sub32Fx4: |
| case Iop_Mul32Fx4: |
| case Iop_Div32Fx4: |
| return binary32Fx4_w_rm(mce, vatom1, vatom2, vatom3); |
| |
| case Iop_Add64Fx4: |
| case Iop_Sub64Fx4: |
| case Iop_Mul64Fx4: |
| case Iop_Div64Fx4: |
| return binary64Fx4_w_rm(mce, vatom1, vatom2, vatom3); |
| |
| case Iop_Add32Fx8: |
| case Iop_Sub32Fx8: |
| case Iop_Mul32Fx8: |
| case Iop_Div32Fx8: |
| return binary32Fx8_w_rm(mce, vatom1, vatom2, vatom3); |
| |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Triop"); |
| } |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_Binop ( MCEnv* mce, |
| IROp op, |
| IRAtom* atom1, IRAtom* atom2 ) |
| { |
| IRType and_or_ty; |
| IRAtom* (*uifu) (MCEnv*, IRAtom*, IRAtom*); |
| IRAtom* (*difd) (MCEnv*, IRAtom*, IRAtom*); |
| IRAtom* (*improve) (MCEnv*, IRAtom*, IRAtom*); |
| |
| IRAtom* vatom1 = expr2vbits( mce, atom1 ); |
| IRAtom* vatom2 = expr2vbits( mce, atom2 ); |
| |
| tl_assert(isOriginalAtom(mce,atom1)); |
| tl_assert(isOriginalAtom(mce,atom2)); |
| tl_assert(isShadowAtom(mce,vatom1)); |
| tl_assert(isShadowAtom(mce,vatom2)); |
| tl_assert(sameKindedAtoms(atom1,vatom1)); |
| tl_assert(sameKindedAtoms(atom2,vatom2)); |
| switch (op) { |
| |
| /* 32-bit SIMD */ |
| |
| case Iop_Add16x2: |
| case Iop_HAdd16Ux2: |
| case Iop_HAdd16Sx2: |
| case Iop_Sub16x2: |
| case Iop_HSub16Ux2: |
| case Iop_HSub16Sx2: |
| case Iop_QAdd16Sx2: |
| case Iop_QSub16Sx2: |
| case Iop_QSub16Ux2: |
| case Iop_QAdd16Ux2: |
| return binary16Ix2(mce, vatom1, vatom2); |
| |
| case Iop_Add8x4: |
| case Iop_HAdd8Ux4: |
| case Iop_HAdd8Sx4: |
| case Iop_Sub8x4: |
| case Iop_HSub8Ux4: |
| case Iop_HSub8Sx4: |
| case Iop_QSub8Ux4: |
| case Iop_QAdd8Ux4: |
| case Iop_QSub8Sx4: |
| case Iop_QAdd8Sx4: |
| return binary8Ix4(mce, vatom1, vatom2); |
| |
| /* 64-bit SIMD */ |
| |
| case Iop_ShrN8x8: |
| case Iop_ShrN16x4: |
| case Iop_ShrN32x2: |
| case Iop_SarN8x8: |
| case Iop_SarN16x4: |
| case Iop_SarN32x2: |
| case Iop_ShlN16x4: |
| case Iop_ShlN32x2: |
| case Iop_ShlN8x8: |
| /* Same scheme as with all other shifts. */ |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)); |
| |
| case Iop_QNarrowBin32Sto16Sx4: |
| case Iop_QNarrowBin16Sto8Sx8: |
| case Iop_QNarrowBin16Sto8Ux8: |
| return vectorNarrowBin64(mce, op, vatom1, vatom2); |
| |
| case Iop_Min8Ux8: |
| case Iop_Min8Sx8: |
| case Iop_Max8Ux8: |
| case Iop_Max8Sx8: |
| case Iop_Avg8Ux8: |
| case Iop_QSub8Sx8: |
| case Iop_QSub8Ux8: |
| case Iop_Sub8x8: |
| case Iop_CmpGT8Sx8: |
| case Iop_CmpGT8Ux8: |
| case Iop_CmpEQ8x8: |
| case Iop_QAdd8Sx8: |
| case Iop_QAdd8Ux8: |
| case Iop_QSal8x8: |
| case Iop_QShl8x8: |
| case Iop_Add8x8: |
| case Iop_Mul8x8: |
| case Iop_PolynomialMul8x8: |
| return binary8Ix8(mce, vatom1, vatom2); |
| |
| case Iop_Min16Sx4: |
| case Iop_Min16Ux4: |
| case Iop_Max16Sx4: |
| case Iop_Max16Ux4: |
| case Iop_Avg16Ux4: |
| case Iop_QSub16Ux4: |
| case Iop_QSub16Sx4: |
| case Iop_Sub16x4: |
| case Iop_Mul16x4: |
| case Iop_MulHi16Sx4: |
| case Iop_MulHi16Ux4: |
| case Iop_CmpGT16Sx4: |
| case Iop_CmpGT16Ux4: |
| case Iop_CmpEQ16x4: |
| case Iop_QAdd16Sx4: |
| case Iop_QAdd16Ux4: |
| case Iop_QSal16x4: |
| case Iop_QShl16x4: |
| case Iop_Add16x4: |
| case Iop_QDMulHi16Sx4: |
| case Iop_QRDMulHi16Sx4: |
| return binary16Ix4(mce, vatom1, vatom2); |
| |
| case Iop_Sub32x2: |
| case Iop_Mul32x2: |
| case Iop_Max32Sx2: |
| case Iop_Max32Ux2: |
| case Iop_Min32Sx2: |
| case Iop_Min32Ux2: |
| case Iop_CmpGT32Sx2: |
| case Iop_CmpGT32Ux2: |
| case Iop_CmpEQ32x2: |
| case Iop_Add32x2: |
| case Iop_QAdd32Ux2: |
| case Iop_QAdd32Sx2: |
| case Iop_QSub32Ux2: |
| case Iop_QSub32Sx2: |
| case Iop_QSal32x2: |
| case Iop_QShl32x2: |
| case Iop_QDMulHi32Sx2: |
| case Iop_QRDMulHi32Sx2: |
| return binary32Ix2(mce, vatom1, vatom2); |
| |
| case Iop_QSub64Ux1: |
| case Iop_QSub64Sx1: |
| case Iop_QAdd64Ux1: |
| case Iop_QAdd64Sx1: |
| case Iop_QSal64x1: |
| case Iop_QShl64x1: |
| case Iop_Sal64x1: |
| return binary64Ix1(mce, vatom1, vatom2); |
| |
| case Iop_QShlN8Sx8: |
| case Iop_QShlN8x8: |
| case Iop_QSalN8x8: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast8x8(mce, vatom1); |
| |
| case Iop_QShlN16Sx4: |
| case Iop_QShlN16x4: |
| case Iop_QSalN16x4: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast16x4(mce, vatom1); |
| |
| case Iop_QShlN32Sx2: |
| case Iop_QShlN32x2: |
| case Iop_QSalN32x2: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast32x2(mce, vatom1); |
| |
| case Iop_QShlN64Sx1: |
| case Iop_QShlN64x1: |
| case Iop_QSalN64x1: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast32x2(mce, vatom1); |
| |
| case Iop_PwMax32Sx2: |
| case Iop_PwMax32Ux2: |
| case Iop_PwMin32Sx2: |
| case Iop_PwMin32Ux2: |
| case Iop_PwMax32Fx2: |
| case Iop_PwMin32Fx2: |
| return assignNew('V', mce, Ity_I64, |
| binop(Iop_PwMax32Ux2, |
| mkPCast32x2(mce, vatom1), |
| mkPCast32x2(mce, vatom2))); |
| |
| case Iop_PwMax16Sx4: |
| case Iop_PwMax16Ux4: |
| case Iop_PwMin16Sx4: |
| case Iop_PwMin16Ux4: |
| return assignNew('V', mce, Ity_I64, |
| binop(Iop_PwMax16Ux4, |
| mkPCast16x4(mce, vatom1), |
| mkPCast16x4(mce, vatom2))); |
| |
| case Iop_PwMax8Sx8: |
| case Iop_PwMax8Ux8: |
| case Iop_PwMin8Sx8: |
| case Iop_PwMin8Ux8: |
| return assignNew('V', mce, Ity_I64, |
| binop(Iop_PwMax8Ux8, |
| mkPCast8x8(mce, vatom1), |
| mkPCast8x8(mce, vatom2))); |
| |
| case Iop_PwAdd32x2: |
| case Iop_PwAdd32Fx2: |
| return mkPCast32x2(mce, |
| assignNew('V', mce, Ity_I64, |
| binop(Iop_PwAdd32x2, |
| mkPCast32x2(mce, vatom1), |
| mkPCast32x2(mce, vatom2)))); |
| |
| case Iop_PwAdd16x4: |
| return mkPCast16x4(mce, |
| assignNew('V', mce, Ity_I64, |
| binop(op, mkPCast16x4(mce, vatom1), |
| mkPCast16x4(mce, vatom2)))); |
| |
| case Iop_PwAdd8x8: |
| return mkPCast8x8(mce, |
| assignNew('V', mce, Ity_I64, |
| binop(op, mkPCast8x8(mce, vatom1), |
| mkPCast8x8(mce, vatom2)))); |
| |
| case Iop_Shl8x8: |
| case Iop_Shr8x8: |
| case Iop_Sar8x8: |
| case Iop_Sal8x8: |
| return mkUifU64(mce, |
| assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)), |
| mkPCast8x8(mce,vatom2) |
| ); |
| |
| case Iop_Shl16x4: |
| case Iop_Shr16x4: |
| case Iop_Sar16x4: |
| case Iop_Sal16x4: |
| return mkUifU64(mce, |
| assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)), |
| mkPCast16x4(mce,vatom2) |
| ); |
| |
| case Iop_Shl32x2: |
| case Iop_Shr32x2: |
| case Iop_Sar32x2: |
| case Iop_Sal32x2: |
| return mkUifU64(mce, |
| assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)), |
| mkPCast32x2(mce,vatom2) |
| ); |
| |
| /* 64-bit data-steering */ |
| case Iop_InterleaveLO32x2: |
| case Iop_InterleaveLO16x4: |
| case Iop_InterleaveLO8x8: |
| case Iop_InterleaveHI32x2: |
| case Iop_InterleaveHI16x4: |
| case Iop_InterleaveHI8x8: |
| case Iop_CatOddLanes8x8: |
| case Iop_CatEvenLanes8x8: |
| case Iop_CatOddLanes16x4: |
| case Iop_CatEvenLanes16x4: |
| case Iop_InterleaveOddLanes8x8: |
| case Iop_InterleaveEvenLanes8x8: |
| case Iop_InterleaveOddLanes16x4: |
| case Iop_InterleaveEvenLanes16x4: |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, vatom2)); |
| |
| case Iop_GetElem8x8: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I8, binop(op, vatom1, atom2)); |
| case Iop_GetElem16x4: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I16, binop(op, vatom1, atom2)); |
| case Iop_GetElem32x2: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I32, binop(op, vatom1, atom2)); |
| |
| /* Perm8x8: rearrange values in left arg using steering values |
| from right arg. So rearrange the vbits in the same way but |
| pessimise wrt steering values. */ |
| case Iop_Perm8x8: |
| return mkUifU64( |
| mce, |
| assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)), |
| mkPCast8x8(mce, vatom2) |
| ); |
| |
| /* V128-bit SIMD */ |
| |
| case Iop_ShrN8x16: |
| case Iop_ShrN16x8: |
| case Iop_ShrN32x4: |
| case Iop_ShrN64x2: |
| case Iop_SarN8x16: |
| case Iop_SarN16x8: |
| case Iop_SarN32x4: |
| case Iop_SarN64x2: |
| case Iop_ShlN8x16: |
| case Iop_ShlN16x8: |
| case Iop_ShlN32x4: |
| case Iop_ShlN64x2: |
| /* Same scheme as with all other shifts. Note: 22 Oct 05: |
| this is wrong now, scalar shifts are done properly lazily. |
| Vector shifts should be fixed too. */ |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)); |
| |
| /* V x V shifts/rotates are done using the standard lazy scheme. */ |
| case Iop_Shl8x16: |
| case Iop_Shr8x16: |
| case Iop_Sar8x16: |
| case Iop_Sal8x16: |
| case Iop_Rol8x16: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast8x16(mce,vatom2) |
| ); |
| |
| case Iop_Shl16x8: |
| case Iop_Shr16x8: |
| case Iop_Sar16x8: |
| case Iop_Sal16x8: |
| case Iop_Rol16x8: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast16x8(mce,vatom2) |
| ); |
| |
| case Iop_Shl32x4: |
| case Iop_Shr32x4: |
| case Iop_Sar32x4: |
| case Iop_Sal32x4: |
| case Iop_Rol32x4: |
| case Iop_Rol64x2: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast32x4(mce,vatom2) |
| ); |
| |
| case Iop_Shl64x2: |
| case Iop_Shr64x2: |
| case Iop_Sar64x2: |
| case Iop_Sal64x2: |
| return mkUifUV128(mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast64x2(mce,vatom2) |
| ); |
| |
| case Iop_F32ToFixed32Ux4_RZ: |
| case Iop_F32ToFixed32Sx4_RZ: |
| case Iop_Fixed32UToF32x4_RN: |
| case Iop_Fixed32SToF32x4_RN: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast32x4(mce, vatom1); |
| |
| case Iop_F32ToFixed32Ux2_RZ: |
| case Iop_F32ToFixed32Sx2_RZ: |
| case Iop_Fixed32UToF32x2_RN: |
| case Iop_Fixed32SToF32x2_RN: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast32x2(mce, vatom1); |
| |
| case Iop_QSub8Ux16: |
| case Iop_QSub8Sx16: |
| case Iop_Sub8x16: |
| case Iop_Min8Ux16: |
| case Iop_Min8Sx16: |
| case Iop_Max8Ux16: |
| case Iop_Max8Sx16: |
| case Iop_CmpGT8Sx16: |
| case Iop_CmpGT8Ux16: |
| case Iop_CmpEQ8x16: |
| case Iop_Avg8Ux16: |
| case Iop_Avg8Sx16: |
| case Iop_QAdd8Ux16: |
| case Iop_QAdd8Sx16: |
| case Iop_QSal8x16: |
| case Iop_QShl8x16: |
| case Iop_Add8x16: |
| case Iop_Mul8x16: |
| case Iop_PolynomialMul8x16: |
| case Iop_PolynomialMulAdd8x16: |
| return binary8Ix16(mce, vatom1, vatom2); |
| |
| case Iop_QSub16Ux8: |
| case Iop_QSub16Sx8: |
| case Iop_Sub16x8: |
| case Iop_Mul16x8: |
| case Iop_MulHi16Sx8: |
| case Iop_MulHi16Ux8: |
| case Iop_Min16Sx8: |
| case Iop_Min16Ux8: |
| case Iop_Max16Sx8: |
| case Iop_Max16Ux8: |
| case Iop_CmpGT16Sx8: |
| case Iop_CmpGT16Ux8: |
| case Iop_CmpEQ16x8: |
| case Iop_Avg16Ux8: |
| case Iop_Avg16Sx8: |
| case Iop_QAdd16Ux8: |
| case Iop_QAdd16Sx8: |
| case Iop_QSal16x8: |
| case Iop_QShl16x8: |
| case Iop_Add16x8: |
| case Iop_QDMulHi16Sx8: |
| case Iop_QRDMulHi16Sx8: |
| case Iop_PolynomialMulAdd16x8: |
| return binary16Ix8(mce, vatom1, vatom2); |
| |
| case Iop_Sub32x4: |
| case Iop_CmpGT32Sx4: |
| case Iop_CmpGT32Ux4: |
| case Iop_CmpEQ32x4: |
| case Iop_QAdd32Sx4: |
| case Iop_QAdd32Ux4: |
| case Iop_QSub32Sx4: |
| case Iop_QSub32Ux4: |
| case Iop_QSal32x4: |
| case Iop_QShl32x4: |
| case Iop_Avg32Ux4: |
| case Iop_Avg32Sx4: |
| case Iop_Add32x4: |
| case Iop_Max32Ux4: |
| case Iop_Max32Sx4: |
| case Iop_Min32Ux4: |
| case Iop_Min32Sx4: |
| case Iop_Mul32x4: |
| case Iop_QDMulHi32Sx4: |
| case Iop_QRDMulHi32Sx4: |
| case Iop_PolynomialMulAdd32x4: |
| return binary32Ix4(mce, vatom1, vatom2); |
| |
| case Iop_Sub64x2: |
| case Iop_Add64x2: |
| case Iop_Max64Sx2: |
| case Iop_Max64Ux2: |
| case Iop_Min64Sx2: |
| case Iop_Min64Ux2: |
| case Iop_CmpEQ64x2: |
| case Iop_CmpGT64Sx2: |
| case Iop_CmpGT64Ux2: |
| case Iop_QSal64x2: |
| case Iop_QShl64x2: |
| case Iop_QAdd64Ux2: |
| case Iop_QAdd64Sx2: |
| case Iop_QSub64Ux2: |
| case Iop_QSub64Sx2: |
| case Iop_PolynomialMulAdd64x2: |
| case Iop_CipherV128: |
| case Iop_CipherLV128: |
| case Iop_NCipherV128: |
| case Iop_NCipherLV128: |
| return binary64Ix2(mce, vatom1, vatom2); |
| |
| case Iop_QNarrowBin64Sto32Sx4: |
| case Iop_QNarrowBin64Uto32Ux4: |
| case Iop_QNarrowBin32Sto16Sx8: |
| case Iop_QNarrowBin32Uto16Ux8: |
| case Iop_QNarrowBin32Sto16Ux8: |
| case Iop_QNarrowBin16Sto8Sx16: |
| case Iop_QNarrowBin16Uto8Ux16: |
| case Iop_QNarrowBin16Sto8Ux16: |
| return vectorNarrowBinV128(mce, op, vatom1, vatom2); |
| |
| case Iop_Min64Fx2: |
| case Iop_Max64Fx2: |
| case Iop_CmpLT64Fx2: |
| case Iop_CmpLE64Fx2: |
| case Iop_CmpEQ64Fx2: |
| case Iop_CmpUN64Fx2: |
| return binary64Fx2(mce, vatom1, vatom2); |
| |
| case Iop_Sub64F0x2: |
| case Iop_Mul64F0x2: |
| case Iop_Min64F0x2: |
| case Iop_Max64F0x2: |
| case Iop_Div64F0x2: |
| case Iop_CmpLT64F0x2: |
| case Iop_CmpLE64F0x2: |
| case Iop_CmpEQ64F0x2: |
| case Iop_CmpUN64F0x2: |
| case Iop_Add64F0x2: |
| return binary64F0x2(mce, vatom1, vatom2); |
| |
| case Iop_Min32Fx4: |
| case Iop_Max32Fx4: |
| case Iop_CmpLT32Fx4: |
| case Iop_CmpLE32Fx4: |
| case Iop_CmpEQ32Fx4: |
| case Iop_CmpUN32Fx4: |
| case Iop_CmpGT32Fx4: |
| case Iop_CmpGE32Fx4: |
| case Iop_Recps32Fx4: |
| case Iop_Rsqrts32Fx4: |
| return binary32Fx4(mce, vatom1, vatom2); |
| |
| case Iop_Sub32Fx2: |
| case Iop_Mul32Fx2: |
| case Iop_Min32Fx2: |
| case Iop_Max32Fx2: |
| case Iop_CmpEQ32Fx2: |
| case Iop_CmpGT32Fx2: |
| case Iop_CmpGE32Fx2: |
| case Iop_Add32Fx2: |
| case Iop_Recps32Fx2: |
| case Iop_Rsqrts32Fx2: |
| return binary32Fx2(mce, vatom1, vatom2); |
| |
| case Iop_Sub32F0x4: |
| case Iop_Mul32F0x4: |
| case Iop_Min32F0x4: |
| case Iop_Max32F0x4: |
| case Iop_Div32F0x4: |
| case Iop_CmpLT32F0x4: |
| case Iop_CmpLE32F0x4: |
| case Iop_CmpEQ32F0x4: |
| case Iop_CmpUN32F0x4: |
| case Iop_Add32F0x4: |
| return binary32F0x4(mce, vatom1, vatom2); |
| |
| case Iop_QShlN8Sx16: |
| case Iop_QShlN8x16: |
| case Iop_QSalN8x16: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast8x16(mce, vatom1); |
| |
| case Iop_QShlN16Sx8: |
| case Iop_QShlN16x8: |
| case Iop_QSalN16x8: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast16x8(mce, vatom1); |
| |
| case Iop_QShlN32Sx4: |
| case Iop_QShlN32x4: |
| case Iop_QSalN32x4: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast32x4(mce, vatom1); |
| |
| case Iop_QShlN64Sx2: |
| case Iop_QShlN64x2: |
| case Iop_QSalN64x2: |
| complainIfUndefined(mce, atom2, NULL); |
| return mkPCast32x4(mce, vatom1); |
| |
| case Iop_Mull32Sx2: |
| case Iop_Mull32Ux2: |
| case Iop_QDMull32Sx2: |
| return vectorWidenI64(mce, Iop_Widen32Sto64x2, |
| mkUifU64(mce, vatom1, vatom2)); |
| |
| case Iop_Mull16Sx4: |
| case Iop_Mull16Ux4: |
| case Iop_QDMull16Sx4: |
| return vectorWidenI64(mce, Iop_Widen16Sto32x4, |
| mkUifU64(mce, vatom1, vatom2)); |
| |
| case Iop_Mull8Sx8: |
| case Iop_Mull8Ux8: |
| case Iop_PolynomialMull8x8: |
| return vectorWidenI64(mce, Iop_Widen8Sto16x8, |
| mkUifU64(mce, vatom1, vatom2)); |
| |
| case Iop_PwAdd32x4: |
| return mkPCast32x4(mce, |
| assignNew('V', mce, Ity_V128, binop(op, mkPCast32x4(mce, vatom1), |
| mkPCast32x4(mce, vatom2)))); |
| |
| case Iop_PwAdd16x8: |
| return mkPCast16x8(mce, |
| assignNew('V', mce, Ity_V128, binop(op, mkPCast16x8(mce, vatom1), |
| mkPCast16x8(mce, vatom2)))); |
| |
| case Iop_PwAdd8x16: |
| return mkPCast8x16(mce, |
| assignNew('V', mce, Ity_V128, binop(op, mkPCast8x16(mce, vatom1), |
| mkPCast8x16(mce, vatom2)))); |
| |
| /* V128-bit data-steering */ |
| case Iop_SetV128lo32: |
| case Iop_SetV128lo64: |
| case Iop_64HLtoV128: |
| case Iop_InterleaveLO64x2: |
| case Iop_InterleaveLO32x4: |
| case Iop_InterleaveLO16x8: |
| case Iop_InterleaveLO8x16: |
| case Iop_InterleaveHI64x2: |
| case Iop_InterleaveHI32x4: |
| case Iop_InterleaveHI16x8: |
| case Iop_InterleaveHI8x16: |
| case Iop_CatOddLanes8x16: |
| case Iop_CatOddLanes16x8: |
| case Iop_CatOddLanes32x4: |
| case Iop_CatEvenLanes8x16: |
| case Iop_CatEvenLanes16x8: |
| case Iop_CatEvenLanes32x4: |
| case Iop_InterleaveOddLanes8x16: |
| case Iop_InterleaveOddLanes16x8: |
| case Iop_InterleaveOddLanes32x4: |
| case Iop_InterleaveEvenLanes8x16: |
| case Iop_InterleaveEvenLanes16x8: |
| case Iop_InterleaveEvenLanes32x4: |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, vatom2)); |
| |
| case Iop_GetElem8x16: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I8, binop(op, vatom1, atom2)); |
| case Iop_GetElem16x8: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I16, binop(op, vatom1, atom2)); |
| case Iop_GetElem32x4: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I32, binop(op, vatom1, atom2)); |
| case Iop_GetElem64x2: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, atom2)); |
| |
| /* Perm8x16: rearrange values in left arg using steering values |
| from right arg. So rearrange the vbits in the same way but |
| pessimise wrt steering values. Perm32x4 ditto. */ |
| case Iop_Perm8x16: |
| return mkUifUV128( |
| mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast8x16(mce, vatom2) |
| ); |
| case Iop_Perm32x4: |
| return mkUifUV128( |
| mce, |
| assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)), |
| mkPCast32x4(mce, vatom2) |
| ); |
| |
| /* These two take the lower half of each 16-bit lane, sign/zero |
| extend it to 32, and multiply together, producing a 32x4 |
| result (and implicitly ignoring half the operand bits). So |
| treat it as a bunch of independent 16x8 operations, but then |
| do 32-bit shifts left-right to copy the lower half results |
| (which are all 0s or all 1s due to PCasting in binary16Ix8) |
| into the upper half of each result lane. */ |
| case Iop_MullEven16Ux8: |
| case Iop_MullEven16Sx8: { |
| IRAtom* at; |
| at = binary16Ix8(mce,vatom1,vatom2); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_ShlN32x4, at, mkU8(16))); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SarN32x4, at, mkU8(16))); |
| return at; |
| } |
| |
| /* Same deal as Iop_MullEven16{S,U}x8 */ |
| case Iop_MullEven8Ux16: |
| case Iop_MullEven8Sx16: { |
| IRAtom* at; |
| at = binary8Ix16(mce,vatom1,vatom2); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_ShlN16x8, at, mkU8(8))); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SarN16x8, at, mkU8(8))); |
| return at; |
| } |
| |
| /* Same deal as Iop_MullEven16{S,U}x8 */ |
| case Iop_MullEven32Ux4: |
| case Iop_MullEven32Sx4: { |
| IRAtom* at; |
| at = binary32Ix4(mce,vatom1,vatom2); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_ShlN64x2, at, mkU8(32))); |
| at = assignNew('V', mce, Ity_V128, binop(Iop_SarN64x2, at, mkU8(32))); |
| return at; |
| } |
| |
| /* narrow 2xV128 into 1xV128, hi half from left arg, in a 2 x |
| 32x4 -> 16x8 laneage, discarding the upper half of each lane. |
| Simply apply same op to the V bits, since this really no more |
| than a data steering operation. */ |
| case Iop_NarrowBin32to16x8: |
| case Iop_NarrowBin16to8x16: |
| case Iop_NarrowBin64to32x4: |
| return assignNew('V', mce, Ity_V128, |
| binop(op, vatom1, vatom2)); |
| |
| case Iop_ShrV128: |
| case Iop_ShlV128: |
| /* Same scheme as with all other shifts. Note: 10 Nov 05: |
| this is wrong now, scalar shifts are done properly lazily. |
| Vector shifts should be fixed too. */ |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)); |
| |
| /* SHA Iops */ |
| case Iop_SHA256: |
| case Iop_SHA512: |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_V128, binop(op, vatom1, atom2)); |
| |
| /* I128-bit data-steering */ |
| case Iop_64HLto128: |
| return assignNew('V', mce, Ity_I128, binop(op, vatom1, vatom2)); |
| |
| /* V256-bit SIMD */ |
| |
| case Iop_Max64Fx4: |
| case Iop_Min64Fx4: |
| return binary64Fx4(mce, vatom1, vatom2); |
| |
| case Iop_Max32Fx8: |
| case Iop_Min32Fx8: |
| return binary32Fx8(mce, vatom1, vatom2); |
| |
| /* V256-bit data-steering */ |
| case Iop_V128HLtoV256: |
| return assignNew('V', mce, Ity_V256, binop(op, vatom1, vatom2)); |
| |
| /* Scalar floating point */ |
| |
| case Iop_F32toI64S: |
| case Iop_F32toI64U: |
| /* I32(rm) x F32 -> I64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_I64StoF32: |
| /* I32(rm) x I64 -> F32 */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_RoundF64toInt: |
| case Iop_RoundF64toF32: |
| case Iop_F64toI64S: |
| case Iop_F64toI64U: |
| case Iop_I64StoF64: |
| case Iop_I64UtoF64: |
| case Iop_SinF64: |
| case Iop_CosF64: |
| case Iop_TanF64: |
| case Iop_2xm1F64: |
| case Iop_SqrtF64: |
| /* I32(rm) x I64/F64 -> I64/F64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_ShlD64: |
| case Iop_ShrD64: |
| case Iop_RoundD64toInt: |
| /* I32(rm) x D64 -> D64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_ShlD128: |
| case Iop_ShrD128: |
| case Iop_RoundD128toInt: |
| /* I32(rm) x D128 -> D128 */ |
| return mkLazy2(mce, Ity_I128, vatom1, vatom2); |
| |
| case Iop_D64toI64S: |
| case Iop_D64toI64U: |
| case Iop_I64StoD64: |
| case Iop_I64UtoD64: |
| /* I32(rm) x I64/D64 -> D64/I64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_F32toD32: |
| case Iop_F64toD32: |
| case Iop_F128toD32: |
| case Iop_D32toF32: |
| case Iop_D64toF32: |
| case Iop_D128toF32: |
| /* I32(rm) x F32/F64/F128/D32/D64/D128 -> D32/F32 */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_F32toD64: |
| case Iop_F64toD64: |
| case Iop_F128toD64: |
| case Iop_D32toF64: |
| case Iop_D64toF64: |
| case Iop_D128toF64: |
| /* I32(rm) x F32/F64/F128/D32/D64/D128 -> D64/F64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_F32toD128: |
| case Iop_F64toD128: |
| case Iop_F128toD128: |
| case Iop_D32toF128: |
| case Iop_D64toF128: |
| case Iop_D128toF128: |
| /* I32(rm) x F32/F64/F128/D32/D64/D128 -> D128/F128 */ |
| return mkLazy2(mce, Ity_I128, vatom1, vatom2); |
| |
| case Iop_RoundF32toInt: |
| case Iop_SqrtF32: |
| /* I32(rm) x I32/F32 -> I32/F32 */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_SqrtF128: |
| /* I32(rm) x F128 -> F128 */ |
| return mkLazy2(mce, Ity_I128, vatom1, vatom2); |
| |
| case Iop_I32StoF32: |
| case Iop_I32UtoF32: |
| case Iop_F32toI32S: |
| case Iop_F32toI32U: |
| /* First arg is I32 (rounding mode), second is F32/I32 (data). */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_F128toI32S: /* IRRoundingMode(I32) x F128 -> signed I32 */ |
| case Iop_F128toI32U: /* IRRoundingMode(I32) x F128 -> unsigned I32 */ |
| case Iop_F128toF32: /* IRRoundingMode(I32) x F128 -> F32 */ |
| case Iop_D128toI32S: /* IRRoundingMode(I32) x D128 -> signed I32 */ |
| case Iop_D128toI32U: /* IRRoundingMode(I32) x D128 -> unsigned I32 */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_F128toI64S: /* IRRoundingMode(I32) x F128 -> signed I64 */ |
| case Iop_F128toI64U: /* IRRoundingMode(I32) x F128 -> unsigned I64 */ |
| case Iop_F128toF64: /* IRRoundingMode(I32) x F128 -> F64 */ |
| case Iop_D128toD64: /* IRRoundingMode(I64) x D128 -> D64 */ |
| case Iop_D128toI64S: /* IRRoundingMode(I64) x D128 -> signed I64 */ |
| case Iop_D128toI64U: /* IRRoundingMode(I32) x D128 -> unsigned I64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_F64HLtoF128: |
| case Iop_D64HLtoD128: |
| return assignNew('V', mce, Ity_I128, |
| binop(Iop_64HLto128, vatom1, vatom2)); |
| |
| case Iop_F64toI32U: |
| case Iop_F64toI32S: |
| case Iop_F64toF32: |
| case Iop_I64UtoF32: |
| case Iop_D64toI32U: |
| case Iop_D64toI32S: |
| /* First arg is I32 (rounding mode), second is F64/D64 (data). */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_D64toD32: |
| /* First arg is I32 (rounding mode), second is D64 (data). */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_F64toI16S: |
| /* First arg is I32 (rounding mode), second is F64 (data). */ |
| return mkLazy2(mce, Ity_I16, vatom1, vatom2); |
| |
| case Iop_InsertExpD64: |
| /* I64 x I64 -> D64 */ |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_InsertExpD128: |
| /* I64 x I128 -> D128 */ |
| return mkLazy2(mce, Ity_I128, vatom1, vatom2); |
| |
| case Iop_CmpF32: |
| case Iop_CmpF64: |
| case Iop_CmpF128: |
| case Iop_CmpD64: |
| case Iop_CmpD128: |
| case Iop_CmpExpD64: |
| case Iop_CmpExpD128: |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| /* non-FP after here */ |
| |
| case Iop_DivModU64to32: |
| case Iop_DivModS64to32: |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_DivModU128to64: |
| case Iop_DivModS128to64: |
| return mkLazy2(mce, Ity_I128, vatom1, vatom2); |
| |
| case Iop_8HLto16: |
| return assignNew('V', mce, Ity_I16, binop(op, vatom1, vatom2)); |
| case Iop_16HLto32: |
| return assignNew('V', mce, Ity_I32, binop(op, vatom1, vatom2)); |
| case Iop_32HLto64: |
| return assignNew('V', mce, Ity_I64, binop(op, vatom1, vatom2)); |
| |
| case Iop_DivModS64to64: |
| case Iop_MullS64: |
| case Iop_MullU64: { |
| IRAtom* vLo64 = mkLeft64(mce, mkUifU64(mce, vatom1,vatom2)); |
| IRAtom* vHi64 = mkPCastTo(mce, Ity_I64, vLo64); |
| return assignNew('V', mce, Ity_I128, |
| binop(Iop_64HLto128, vHi64, vLo64)); |
| } |
| |
| case Iop_MullS32: |
| case Iop_MullU32: { |
| IRAtom* vLo32 = mkLeft32(mce, mkUifU32(mce, vatom1,vatom2)); |
| IRAtom* vHi32 = mkPCastTo(mce, Ity_I32, vLo32); |
| return assignNew('V', mce, Ity_I64, |
| binop(Iop_32HLto64, vHi32, vLo32)); |
| } |
| |
| case Iop_MullS16: |
| case Iop_MullU16: { |
| IRAtom* vLo16 = mkLeft16(mce, mkUifU16(mce, vatom1,vatom2)); |
| IRAtom* vHi16 = mkPCastTo(mce, Ity_I16, vLo16); |
| return assignNew('V', mce, Ity_I32, |
| binop(Iop_16HLto32, vHi16, vLo16)); |
| } |
| |
| case Iop_MullS8: |
| case Iop_MullU8: { |
| IRAtom* vLo8 = mkLeft8(mce, mkUifU8(mce, vatom1,vatom2)); |
| IRAtom* vHi8 = mkPCastTo(mce, Ity_I8, vLo8); |
| return assignNew('V', mce, Ity_I16, binop(Iop_8HLto16, vHi8, vLo8)); |
| } |
| |
| case Iop_Sad8Ux4: /* maybe we could do better? ftm, do mkLazy2. */ |
| case Iop_DivS32: |
| case Iop_DivU32: |
| case Iop_DivU32E: |
| case Iop_DivS32E: |
| case Iop_QAdd32S: /* could probably do better */ |
| case Iop_QSub32S: /* could probably do better */ |
| return mkLazy2(mce, Ity_I32, vatom1, vatom2); |
| |
| case Iop_DivS64: |
| case Iop_DivU64: |
| case Iop_DivS64E: |
| case Iop_DivU64E: |
| return mkLazy2(mce, Ity_I64, vatom1, vatom2); |
| |
| case Iop_Add32: |
| if (mce->bogusLiterals || mce->useLLVMworkarounds) |
| return expensiveAddSub(mce,True,Ity_I32, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub32; |
| case Iop_Sub32: |
| if (mce->bogusLiterals) |
| return expensiveAddSub(mce,False,Ity_I32, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub32; |
| |
| cheap_AddSub32: |
| case Iop_Mul32: |
| return mkLeft32(mce, mkUifU32(mce, vatom1,vatom2)); |
| |
| case Iop_CmpORD32S: |
| case Iop_CmpORD32U: |
| case Iop_CmpORD64S: |
| case Iop_CmpORD64U: |
| return doCmpORD(mce, op, vatom1,vatom2, atom1,atom2); |
| |
| case Iop_Add64: |
| if (mce->bogusLiterals || mce->useLLVMworkarounds) |
| return expensiveAddSub(mce,True,Ity_I64, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub64; |
| case Iop_Sub64: |
| if (mce->bogusLiterals) |
| return expensiveAddSub(mce,False,Ity_I64, |
| vatom1,vatom2, atom1,atom2); |
| else |
| goto cheap_AddSub64; |
| |
| cheap_AddSub64: |
| case Iop_Mul64: |
| return mkLeft64(mce, mkUifU64(mce, vatom1,vatom2)); |
| |
| case Iop_Mul16: |
| case Iop_Add16: |
| case Iop_Sub16: |
| return mkLeft16(mce, mkUifU16(mce, vatom1,vatom2)); |
| |
| case Iop_Mul8: |
| case Iop_Sub8: |
| case Iop_Add8: |
| return mkLeft8(mce, mkUifU8(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ64: |
| case Iop_CmpNE64: |
| if (mce->bogusLiterals) |
| goto expensive_cmp64; |
| else |
| goto cheap_cmp64; |
| |
| expensive_cmp64: |
| case Iop_ExpCmpNE64: |
| return expensiveCmpEQorNE(mce,Ity_I64, vatom1,vatom2, atom1,atom2 ); |
| |
| cheap_cmp64: |
| case Iop_CmpLE64S: case Iop_CmpLE64U: |
| case Iop_CmpLT64U: case Iop_CmpLT64S: |
| return mkPCastTo(mce, Ity_I1, mkUifU64(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ32: |
| case Iop_CmpNE32: |
| if (mce->bogusLiterals) |
| goto expensive_cmp32; |
| else |
| goto cheap_cmp32; |
| |
| expensive_cmp32: |
| case Iop_ExpCmpNE32: |
| return expensiveCmpEQorNE(mce,Ity_I32, vatom1,vatom2, atom1,atom2 ); |
| |
| cheap_cmp32: |
| case Iop_CmpLE32S: case Iop_CmpLE32U: |
| case Iop_CmpLT32U: case Iop_CmpLT32S: |
| return mkPCastTo(mce, Ity_I1, mkUifU32(mce, vatom1,vatom2)); |
| |
| case Iop_CmpEQ16: case Iop_CmpNE16: |
| return mkPCastTo(mce, Ity_I1, mkUifU16(mce, vatom1,vatom2)); |
| |
| case Iop_ExpCmpNE16: |
| return expensiveCmpEQorNE(mce,Ity_I16, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_CmpEQ8: case Iop_CmpNE8: |
| return mkPCastTo(mce, Ity_I1, mkUifU8(mce, vatom1,vatom2)); |
| |
| case Iop_CasCmpEQ8: case Iop_CasCmpNE8: |
| case Iop_CasCmpEQ16: case Iop_CasCmpNE16: |
| case Iop_CasCmpEQ32: case Iop_CasCmpNE32: |
| case Iop_CasCmpEQ64: case Iop_CasCmpNE64: |
| /* Just say these all produce a defined result, regardless |
| of their arguments. See COMMENT_ON_CasCmpEQ in this file. */ |
| return assignNew('V', mce, Ity_I1, definedOfType(Ity_I1)); |
| |
| case Iop_Shl64: case Iop_Shr64: case Iop_Sar64: |
| return scalarShift( mce, Ity_I64, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_Shl32: case Iop_Shr32: case Iop_Sar32: |
| return scalarShift( mce, Ity_I32, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_Shl16: case Iop_Shr16: case Iop_Sar16: |
| return scalarShift( mce, Ity_I16, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_Shl8: case Iop_Shr8: case Iop_Sar8: |
| return scalarShift( mce, Ity_I8, op, vatom1,vatom2, atom1,atom2 ); |
| |
| case Iop_AndV256: |
| uifu = mkUifUV256; difd = mkDifDV256; |
| and_or_ty = Ity_V256; improve = mkImproveANDV256; goto do_And_Or; |
| case Iop_AndV128: |
| uifu = mkUifUV128; difd = mkDifDV128; |
| and_or_ty = Ity_V128; improve = mkImproveANDV128; goto do_And_Or; |
| case Iop_And64: |
| uifu = mkUifU64; difd = mkDifD64; |
| and_or_ty = Ity_I64; improve = mkImproveAND64; goto do_And_Or; |
| case Iop_And32: |
| uifu = mkUifU32; difd = mkDifD32; |
| and_or_ty = Ity_I32; improve = mkImproveAND32; goto do_And_Or; |
| case Iop_And16: |
| uifu = mkUifU16; difd = mkDifD16; |
| and_or_ty = Ity_I16; improve = mkImproveAND16; goto do_And_Or; |
| case Iop_And8: |
| uifu = mkUifU8; difd = mkDifD8; |
| and_or_ty = Ity_I8; improve = mkImproveAND8; goto do_And_Or; |
| |
| case Iop_OrV256: |
| uifu = mkUifUV256; difd = mkDifDV256; |
| and_or_ty = Ity_V256; improve = mkImproveORV256; goto do_And_Or; |
| case Iop_OrV128: |
| uifu = mkUifUV128; difd = mkDifDV128; |
| and_or_ty = Ity_V128; improve = mkImproveORV128; goto do_And_Or; |
| case Iop_Or64: |
| uifu = mkUifU64; difd = mkDifD64; |
| and_or_ty = Ity_I64; improve = mkImproveOR64; goto do_And_Or; |
| case Iop_Or32: |
| uifu = mkUifU32; difd = mkDifD32; |
| and_or_ty = Ity_I32; improve = mkImproveOR32; goto do_And_Or; |
| case Iop_Or16: |
| uifu = mkUifU16; difd = mkDifD16; |
| and_or_ty = Ity_I16; improve = mkImproveOR16; goto do_And_Or; |
| case Iop_Or8: |
| uifu = mkUifU8; difd = mkDifD8; |
| and_or_ty = Ity_I8; improve = mkImproveOR8; goto do_And_Or; |
| |
| do_And_Or: |
| return |
| assignNew( |
| 'V', mce, |
| and_or_ty, |
| difd(mce, uifu(mce, vatom1, vatom2), |
| difd(mce, improve(mce, atom1, vatom1), |
| improve(mce, atom2, vatom2) ) ) ); |
| |
| case Iop_Xor8: |
| return mkUifU8(mce, vatom1, vatom2); |
| case Iop_Xor16: |
| return mkUifU16(mce, vatom1, vatom2); |
| case Iop_Xor32: |
| return mkUifU32(mce, vatom1, vatom2); |
| case Iop_Xor64: |
| return mkUifU64(mce, vatom1, vatom2); |
| case Iop_XorV128: |
| return mkUifUV128(mce, vatom1, vatom2); |
| case Iop_XorV256: |
| return mkUifUV256(mce, vatom1, vatom2); |
| |
| /* V256-bit SIMD */ |
| |
| case Iop_ShrN16x16: |
| case Iop_ShrN32x8: |
| case Iop_ShrN64x4: |
| case Iop_SarN16x16: |
| case Iop_SarN32x8: |
| case Iop_ShlN16x16: |
| case Iop_ShlN32x8: |
| case Iop_ShlN64x4: |
| /* Same scheme as with all other shifts. Note: 22 Oct 05: |
| this is wrong now, scalar shifts are done properly lazily. |
| Vector shifts should be fixed too. */ |
| complainIfUndefined(mce, atom2, NULL); |
| return assignNew('V', mce, Ity_V256, binop(op, vatom1, atom2)); |
| |
| case Iop_QSub8Ux32: |
| case Iop_QSub8Sx32: |
| case Iop_Sub8x32: |
| case Iop_Min8Ux32: |
| case Iop_Min8Sx32: |
| case Iop_Max8Ux32: |
| case Iop_Max8Sx32: |
| case Iop_CmpGT8Sx32: |
| case Iop_CmpEQ8x32: |
| case Iop_Avg8Ux32: |
| case Iop_QAdd8Ux32: |
| case Iop_QAdd8Sx32: |
| case Iop_Add8x32: |
| return binary8Ix32(mce, vatom1, vatom2); |
| |
| case Iop_QSub16Ux16: |
| case Iop_QSub16Sx16: |
| case Iop_Sub16x16: |
| case Iop_Mul16x16: |
| case Iop_MulHi16Sx16: |
| case Iop_MulHi16Ux16: |
| case Iop_Min16Sx16: |
| case Iop_Min16Ux16: |
| case Iop_Max16Sx16: |
| case Iop_Max16Ux16: |
| case Iop_CmpGT16Sx16: |
| case Iop_CmpEQ16x16: |
| case Iop_Avg16Ux16: |
| case Iop_QAdd16Ux16: |
| case Iop_QAdd16Sx16: |
| case Iop_Add16x16: |
| return binary16Ix16(mce, vatom1, vatom2); |
| |
| case Iop_Sub32x8: |
| case Iop_CmpGT32Sx8: |
| case Iop_CmpEQ32x8: |
| case Iop_Add32x8: |
| case Iop_Max32Ux8: |
| case Iop_Max32Sx8: |
| case Iop_Min32Ux8: |
| case Iop_Min32Sx8: |
| case Iop_Mul32x8: |
| return binary32Ix8(mce, vatom1, vatom2); |
| |
| case Iop_Sub64x4: |
| case Iop_Add64x4: |
| case Iop_CmpEQ64x4: |
| case Iop_CmpGT64Sx4: |
| return binary64Ix4(mce, vatom1, vatom2); |
| |
| /* Perm32x8: rearrange values in left arg using steering values |
| from right arg. So rearrange the vbits in the same way but |
| pessimise wrt steering values. */ |
| case Iop_Perm32x8: |
| return mkUifUV256( |
| mce, |
| assignNew('V', mce, Ity_V256, binop(op, vatom1, atom2)), |
| mkPCast32x8(mce, vatom2) |
| ); |
| |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Binop"); |
| } |
| } |
| |
| |
| static |
| IRExpr* expr2vbits_Unop ( MCEnv* mce, IROp op, IRAtom* atom ) |
| { |
| /* For the widening operations {8,16,32}{U,S}to{16,32,64}, the |
| selection of shadow operation implicitly duplicates the logic in |
| do_shadow_LoadG and should be kept in sync (in the very unlikely |
| event that the interpretation of such widening ops changes in |
| future). See comment in do_shadow_LoadG. */ |
| IRAtom* vatom = expr2vbits( mce, atom ); |
| tl_assert(isOriginalAtom(mce,atom)); |
| switch (op) { |
| |
| case Iop_Sqrt64Fx2: |
| case Iop_Abs64Fx2: |
| case Iop_Neg64Fx2: |
| return unary64Fx2(mce, vatom); |
| |
| case Iop_Sqrt64F0x2: |
| return unary64F0x2(mce, vatom); |
| |
| case Iop_Sqrt32Fx8: |
| case Iop_RSqrt32Fx8: |
| case Iop_Recip32Fx8: |
| return unary32Fx8(mce, vatom); |
| |
| case Iop_Sqrt64Fx4: |
| return unary64Fx4(mce, vatom); |
| |
| case Iop_Sqrt32Fx4: |
| case Iop_RSqrt32Fx4: |
| case Iop_Recip32Fx4: |
| case Iop_I32UtoFx4: |
| case Iop_I32StoFx4: |
| case Iop_QFtoI32Ux4_RZ: |
| case Iop_QFtoI32Sx4_RZ: |
| case Iop_RoundF32x4_RM: |
| case Iop_RoundF32x4_RP: |
| case Iop_RoundF32x4_RN: |
| case Iop_RoundF32x4_RZ: |
| case Iop_Recip32x4: |
| case Iop_Abs32Fx4: |
| case Iop_Neg32Fx4: |
| case Iop_Rsqrte32Fx4: |
| return unary32Fx4(mce, vatom); |
| |
| case Iop_I32UtoFx2: |
| case Iop_I32StoFx2: |
| case Iop_Recip32Fx2: |
| case Iop_Recip32x2: |
| case Iop_Abs32Fx2: |
| case Iop_Neg32Fx2: |
| case Iop_Rsqrte32Fx2: |
| return unary32Fx2(mce, vatom); |
| |
| case Iop_Sqrt32F0x4: |
| case Iop_RSqrt32F0x4: |
| case Iop_Recip32F0x4: |
| return unary32F0x4(mce, vatom); |
| |
| case Iop_32UtoV128: |
| case Iop_64UtoV128: |
| case Iop_Dup8x16: |
| case Iop_Dup16x8: |
| case Iop_Dup32x4: |
| case Iop_Reverse8sIn16_x8: |
| case Iop_Reverse8sIn32_x4: |
| case Iop_Reverse16sIn32_x4: |
| case Iop_Reverse8sIn64_x2: |
| case Iop_Reverse16sIn64_x2: |
| case Iop_Reverse32sIn64_x2: |
| case Iop_V256toV128_1: case Iop_V256toV128_0: |
| case Iop_ZeroHI64ofV128: |
| case Iop_ZeroHI96ofV128: |
| case Iop_ZeroHI112ofV128: |
| case Iop_ZeroHI120ofV128: |
| return assignNew('V', mce, Ity_V128, unop(op, vatom)); |
| |
| case Iop_F128HItoF64: /* F128 -> high half of F128 */ |
| case Iop_D128HItoD64: /* D128 -> high half of D128 */ |
| return assignNew('V', mce, Ity_I64, unop(Iop_128HIto64, vatom)); |
| case Iop_F128LOtoF64: /* F128 -> low half of F128 */ |
| case Iop_D128LOtoD64: /* D128 -> low half of D128 */ |
| return assignNew('V', mce, Ity_I64, unop(Iop_128to64, vatom)); |
| |
| case Iop_NegF128: |
| case Iop_AbsF128: |
| return mkPCastTo(mce, Ity_I128, vatom); |
| |
| case Iop_I32StoF128: /* signed I32 -> F128 */ |
| case Iop_I64StoF128: /* signed I64 -> F128 */ |
| case Iop_I32UtoF128: /* unsigned I32 -> F128 */ |
| case Iop_I64UtoF128: /* unsigned I64 -> F128 */ |
| case Iop_F32toF128: /* F32 -> F128 */ |
| case Iop_F64toF128: /* F64 -> F128 */ |
| case Iop_I32StoD128: /* signed I64 -> D128 */ |
| case Iop_I64StoD128: /* signed I64 -> D128 */ |
| case Iop_I32UtoD128: /* unsigned I32 -> D128 */ |
| case Iop_I64UtoD128: /* unsigned I64 -> D128 */ |
| return mkPCastTo(mce, Ity_I128, vatom); |
| |
| case Iop_F32toF64: |
| case Iop_I32StoF64: |
| case Iop_I32UtoF64: |
| case Iop_NegF64: |
| case Iop_AbsF64: |
| case Iop_Est5FRSqrt: |
| case Iop_RoundF64toF64_NEAREST: |
| case Iop_RoundF64toF64_NegINF: |
| case Iop_RoundF64toF64_PosINF: |
| case Iop_RoundF64toF64_ZERO: |
| case Iop_Clz64: |
| case Iop_D32toD64: |
| case Iop_I32StoD64: |
| case Iop_I32UtoD64: |
| case Iop_ExtractExpD64: /* D64 -> I64 */ |
| case Iop_ExtractExpD128: /* D128 -> I64 */ |
| case Iop_ExtractSigD64: /* D64 -> I64 */ |
| case Iop_ExtractSigD128: /* D128 -> I64 */ |
| case Iop_DPBtoBCD: |
| case Iop_BCDtoDPB: |
| return mkPCastTo(mce, Ity_I64, vatom); |
| |
| case Iop_D64toD128: |
| return mkPCastTo(mce, Ity_I128, vatom); |
| |
| case Iop_Clz32: |
| case Iop_TruncF64asF32: |
| case Iop_NegF32: |
| case Iop_AbsF32: |
| return mkPCastTo(mce, Ity_I32, vatom); |
| |
| case Iop_Ctz32: |
| case Iop_Ctz64: |
| return expensiveCountTrailingZeroes(mce, op, atom, vatom); |
| |
| case Iop_1Uto64: |
| case Iop_1Sto64: |
| case Iop_8Uto64: |
| case Iop_8Sto64: |
| case Iop_16Uto64: |
| case Iop_16Sto64: |
| case Iop_32Sto64: |
| case Iop_32Uto64: |
| case Iop_V128to64: |
| case Iop_V128HIto64: |
| case Iop_128HIto64: |
| case Iop_128to64: |
| case Iop_Dup8x8: |
| case Iop_Dup16x4: |
| case Iop_Dup32x2: |
| case Iop_Reverse8sIn16_x4: |
| case Iop_Reverse8sIn32_x2: |
| case Iop_Reverse16sIn32_x2: |
| case Iop_Reverse8sIn64_x1: |
| case Iop_Reverse16sIn64_x1: |
| case Iop_Reverse32sIn64_x1: |
| case Iop_V256to64_0: case Iop_V256to64_1: |
| case Iop_V256to64_2: case Iop_V256to64_3: |
| return assignNew('V', mce, Ity_I64, unop(op, vatom)); |
| |
| case Iop_64to32: |
| case Iop_64HIto32: |
| case Iop_1Uto32: |
| case Iop_1Sto32: |
| case Iop_8Uto32: |
| case Iop_16Uto32: |
| case Iop_16Sto32: |
| case Iop_8Sto32: |
| case Iop_V128to32: |
| return assignNew('V', mce, Ity_I32, unop(op, vatom)); |
| |
| case Iop_8Sto16: |
| case Iop_8Uto16: |
| case Iop_32to16: |
| case Iop_32HIto16: |
| case Iop_64to16: |
| case Iop_GetMSBs8x16: |
| return assignNew('V', mce, Ity_I16, unop(op, vatom)); |
| |
| case Iop_1Uto8: |
| case Iop_1Sto8: |
| case Iop_16to8: |
| case Iop_16HIto8: |
| case Iop_32to8: |
| case Iop_64to8: |
| case Iop_GetMSBs8x8: |
| return assignNew('V', mce, Ity_I8, unop(op, vatom)); |
| |
| case Iop_32to1: |
| return assignNew('V', mce, Ity_I1, unop(Iop_32to1, vatom)); |
| |
| case Iop_64to1: |
| return assignNew('V', mce, Ity_I1, unop(Iop_64to1, vatom)); |
| |
| case Iop_ReinterpF64asI64: |
| case Iop_ReinterpI64asF64: |
| case Iop_ReinterpI32asF32: |
| case Iop_ReinterpF32asI32: |
| case Iop_ReinterpI64asD64: |
| case Iop_ReinterpD64asI64: |
| case Iop_NotV256: |
| case Iop_NotV128: |
| case Iop_Not64: |
| case Iop_Not32: |
| case Iop_Not16: |
| case Iop_Not8: |
| case Iop_Not1: |
| return vatom; |
| |
| case Iop_CmpNEZ8x8: |
| case Iop_Cnt8x8: |
| case Iop_Clz8x8: |
| case Iop_Cls8x8: |
| case Iop_Abs8x8: |
| return mkPCast8x8(mce, vatom); |
| |
| case Iop_CmpNEZ8x16: |
| case Iop_Cnt8x16: |
| case Iop_Clz8x16: |
| case Iop_Cls8x16: |
| case Iop_Abs8x16: |
| return mkPCast8x16(mce, vatom); |
| |
| case Iop_CmpNEZ16x4: |
| case Iop_Clz16x4: |
| case Iop_Cls16x4: |
| case Iop_Abs16x4: |
| return mkPCast16x4(mce, vatom); |
| |
| case Iop_CmpNEZ16x8: |
| case Iop_Clz16x8: |
| case Iop_Cls16x8: |
| case Iop_Abs16x8: |
| return mkPCast16x8(mce, vatom); |
| |
| case Iop_CmpNEZ32x2: |
| case Iop_Clz32x2: |
| case Iop_Cls32x2: |
| case Iop_FtoI32Ux2_RZ: |
| case Iop_FtoI32Sx2_RZ: |
| case Iop_Abs32x2: |
| return mkPCast32x2(mce, vatom); |
| |
| case Iop_CmpNEZ32x4: |
| case Iop_Clz32x4: |
| case Iop_Cls32x4: |
| case Iop_FtoI32Ux4_RZ: |
| case Iop_FtoI32Sx4_RZ: |
| case Iop_Abs32x4: |
| return mkPCast32x4(mce, vatom); |
| |
| case Iop_CmpwNEZ32: |
| return mkPCastTo(mce, Ity_I32, vatom); |
| |
| case Iop_CmpwNEZ64: |
| return mkPCastTo(mce, Ity_I64, vatom); |
| |
| case Iop_CmpNEZ64x2: |
| case Iop_CipherSV128: |
| case Iop_Clz64x2: |
| case Iop_Abs64x2: |
| return mkPCast64x2(mce, vatom); |
| |
| case Iop_PwBitMtxXpose64x2: |
| return assignNew('V', mce, Ity_V128, unop(op, vatom)); |
| |
| case Iop_NarrowUn16to8x8: |
| case Iop_NarrowUn32to16x4: |
| case Iop_NarrowUn64to32x2: |
| case Iop_QNarrowUn16Sto8Sx8: |
| case Iop_QNarrowUn16Sto8Ux8: |
| case Iop_QNarrowUn16Uto8Ux8: |
| case Iop_QNarrowUn32Sto16Sx4: |
| case Iop_QNarrowUn32Sto16Ux4: |
| case Iop_QNarrowUn32Uto16Ux4: |
| case Iop_QNarrowUn64Sto32Sx2: |
| case Iop_QNarrowUn64Sto32Ux2: |
| case Iop_QNarrowUn64Uto32Ux2: |
| return vectorNarrowUnV128(mce, op, vatom); |
| |
| case Iop_Widen8Sto16x8: |
| case Iop_Widen8Uto16x8: |
| case Iop_Widen16Sto32x4: |
| case Iop_Widen16Uto32x4: |
| case Iop_Widen32Sto64x2: |
| case Iop_Widen32Uto64x2: |
| return vectorWidenI64(mce, op, vatom); |
| |
| case Iop_PwAddL32Ux2: |
| case Iop_PwAddL32Sx2: |
| return mkPCastTo(mce, Ity_I64, |
| assignNew('V', mce, Ity_I64, unop(op, mkPCast32x2(mce, vatom)))); |
| |
| case Iop_PwAddL16Ux4: |
| case Iop_PwAddL16Sx4: |
| return mkPCast32x2(mce, |
| assignNew('V', mce, Ity_I64, unop(op, mkPCast16x4(mce, vatom)))); |
| |
| case Iop_PwAddL8Ux8: |
| case Iop_PwAddL8Sx8: |
| return mkPCast16x4(mce, |
| assignNew('V', mce, Ity_I64, unop(op, mkPCast8x8(mce, vatom)))); |
| |
| case Iop_PwAddL32Ux4: |
| case Iop_PwAddL32Sx4: |
| return mkPCast64x2(mce, |
| assignNew('V', mce, Ity_V128, unop(op, mkPCast32x4(mce, vatom)))); |
| |
| case Iop_PwAddL16Ux8: |
| case Iop_PwAddL16Sx8: |
| return mkPCast32x4(mce, |
| assignNew('V', mce, Ity_V128, unop(op, mkPCast16x8(mce, vatom)))); |
| |
| case Iop_PwAddL8Ux16: |
| case Iop_PwAddL8Sx16: |
| return mkPCast16x8(mce, |
| assignNew('V', mce, Ity_V128, unop(op, mkPCast8x16(mce, vatom)))); |
| |
| case Iop_I64UtoF32: |
| default: |
| ppIROp(op); |
| VG_(tool_panic)("memcheck:expr2vbits_Unop"); |
| } |
| } |
| |
| |
| /* Worker function -- do not call directly. See comments on |
| expr2vbits_Load for the meaning of |guard|. |
| |
| Generates IR to (1) perform a definedness test of |addr|, (2) |
| perform a validity test of |addr|, and (3) return the Vbits for the |
| location indicated by |addr|. All of this only happens when |
| |guard| is NULL or |guard| evaluates to True at run time. |
| |
| If |guard| evaluates to False at run time, the returned value is |
| the IR-mandated 0x55..55 value, and no checks nor shadow loads are |
| performed. |
| |
| The definedness of |guard| itself is not checked. That is assumed |
| to have been done before this point, by the caller. */ |
| static |
| IRAtom* expr2vbits_Load_WRK ( MCEnv* mce, |
| IREndness end, IRType ty, |
| IRAtom* addr, UInt bias, IRAtom* guard ) |
| { |
| tl_assert(isOriginalAtom(mce,addr)); |
| tl_assert(end == Iend_LE || end == Iend_BE); |
| |
| /* First, emit a definedness test for the address. This also sets |
| the address (shadow) to 'defined' following the test. */ |
| complainIfUndefined( mce, addr, guard ); |
| |
| /* Now cook up a call to the relevant helper function, to read the |
| data V bits from shadow memory. */ |
| ty = shadowTypeV(ty); |
| |
| void* helper = NULL; |
| const HChar* hname = NULL; |
| Bool ret_via_outparam = False; |
| |
| if (end == Iend_LE) { |
| switch (ty) { |
| case Ity_V256: helper = &MC_(helperc_LOADV256le); |
| hname = "MC_(helperc_LOADV256le)"; |
| ret_via_outparam = True; |
| break; |
| case Ity_V128: helper = &MC_(helperc_LOADV128le); |
| hname = "MC_(helperc_LOADV128le)"; |
| ret_via_outparam = True; |
| break; |
| case Ity_I64: helper = &MC_(helperc_LOADV64le); |
| hname = "MC_(helperc_LOADV64le)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_LOADV32le); |
| hname = "MC_(helperc_LOADV32le)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_LOADV16le); |
| hname = "MC_(helperc_LOADV16le)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_LOADV8); |
| hname = "MC_(helperc_LOADV8)"; |
| break; |
| default: ppIRType(ty); |
| VG_(tool_panic)("memcheck:expr2vbits_Load_WRK(LE)"); |
| } |
| } else { |
| switch (ty) { |
| case Ity_V256: helper = &MC_(helperc_LOADV256be); |
| hname = "MC_(helperc_LOADV256be)"; |
| ret_via_outparam = True; |
| break; |
| case Ity_V128: helper = &MC_(helperc_LOADV128be); |
| hname = "MC_(helperc_LOADV128be)"; |
| ret_via_outparam = True; |
| break; |
| case Ity_I64: helper = &MC_(helperc_LOADV64be); |
| hname = "MC_(helperc_LOADV64be)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_LOADV32be); |
| hname = "MC_(helperc_LOADV32be)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_LOADV16be); |
| hname = "MC_(helperc_LOADV16be)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_LOADV8); |
| hname = "MC_(helperc_LOADV8)"; |
| break; |
| default: ppIRType(ty); |
| VG_(tool_panic)("memcheck:expr2vbits_Load_WRK(BE)"); |
| } |
| } |
| |
| tl_assert(helper); |
| tl_assert(hname); |
| |
| /* Generate the actual address into addrAct. */ |
| IRAtom* addrAct; |
| if (bias == 0) { |
| addrAct = addr; |
| } else { |
| IROp mkAdd; |
| IRAtom* eBias; |
| IRType tyAddr = mce->hWordTy; |
| tl_assert( tyAddr == Ity_I32 || tyAddr == Ity_I64 ); |
| mkAdd = tyAddr==Ity_I32 ? Iop_Add32 : Iop_Add64; |
| eBias = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); |
| addrAct = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBias) ); |
| } |
| |
| /* We need to have a place to park the V bits we're just about to |
| read. */ |
| IRTemp datavbits = newTemp(mce, ty, VSh); |
| |
| /* Here's the call. */ |
| IRDirty* di; |
| if (ret_via_outparam) { |
| di = unsafeIRDirty_1_N( datavbits, |
| 2/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( IRExpr_VECRET(), addrAct ) ); |
| } else { |
| di = unsafeIRDirty_1_N( datavbits, |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_1( addrAct ) ); |
| } |
| |
| setHelperAnns( mce, di ); |
| if (guard) { |
| di->guard = guard; |
| /* Ideally the didn't-happen return value here would be all-ones |
| (all-undefined), so it'd be obvious if it got used |
| inadvertantly. We can get by with the IR-mandated default |
| value (0b01 repeating, 0x55 etc) as that'll still look pretty |
| undefined if it ever leaks out. */ |
| } |
| stmt( 'V', mce, IRStmt_Dirty(di) ); |
| |
| return mkexpr(datavbits); |
| } |
| |
| |
| /* Generate IR to do a shadow load. The helper is expected to check |
| the validity of the address and return the V bits for that address. |
| This can optionally be controlled by a guard, which is assumed to |
| be True if NULL. In the case where the guard is False at runtime, |
| the helper will return the didn't-do-the-call value of 0x55..55. |
| Since that means "completely undefined result", the caller of |
| this function will need to fix up the result somehow in that |
| case. |
| |
| Caller of this function is also expected to have checked the |
| definedness of |guard| before this point. |
| */ |
| static |
| IRAtom* expr2vbits_Load ( MCEnv* mce, |
| IREndness end, IRType ty, |
| IRAtom* addr, UInt bias, |
| IRAtom* guard ) |
| { |
| tl_assert(end == Iend_LE || end == Iend_BE); |
| switch (shadowTypeV(ty)) { |
| case Ity_I8: |
| case Ity_I16: |
| case Ity_I32: |
| case Ity_I64: |
| case Ity_V128: |
| case Ity_V256: |
| return expr2vbits_Load_WRK(mce, end, ty, addr, bias, guard); |
| default: |
| VG_(tool_panic)("expr2vbits_Load"); |
| } |
| } |
| |
| |
| /* The most general handler for guarded loads. Assumes the |
| definedness of GUARD has already been checked by the caller. A |
| GUARD of NULL is assumed to mean "always True". Generates code to |
| check the definedness and validity of ADDR. |
| |
| Generate IR to do a shadow load from ADDR and return the V bits. |
| The loaded type is TY. The loaded data is then (shadow) widened by |
| using VWIDEN, which can be Iop_INVALID to denote a no-op. If GUARD |
| evaluates to False at run time then the returned Vbits are simply |
| VALT instead. Note therefore that the argument type of VWIDEN must |
| be TY and the result type of VWIDEN must equal the type of VALT. |
| */ |
| static |
| IRAtom* expr2vbits_Load_guarded_General ( MCEnv* mce, |
| IREndness end, IRType ty, |
| IRAtom* addr, UInt bias, |
| IRAtom* guard, |
| IROp vwiden, IRAtom* valt ) |
| { |
| /* Sanity check the conversion operation, and also set TYWIDE. */ |
| IRType tyWide = Ity_INVALID; |
| switch (vwiden) { |
| case Iop_INVALID: |
| tyWide = ty; |
| break; |
| case Iop_16Uto32: case Iop_16Sto32: case Iop_8Uto32: case Iop_8Sto32: |
| tyWide = Ity_I32; |
| break; |
| default: |
| VG_(tool_panic)("memcheck:expr2vbits_Load_guarded_General"); |
| } |
| |
| /* If the guard evaluates to True, this will hold the loaded V bits |
| at TY. If the guard evaluates to False, this will be all |
| ones, meaning "all undefined", in which case we will have to |
| replace it using an ITE below. */ |
| IRAtom* iftrue1 |
| = assignNew('V', mce, ty, |
| expr2vbits_Load(mce, end, ty, addr, bias, guard)); |
| /* Now (shadow-) widen the loaded V bits to the desired width. In |
| the guard-is-False case, the allowable widening operators will |
| in the worst case (unsigned widening) at least leave the |
| pre-widened part as being marked all-undefined, and in the best |
| case (signed widening) mark the whole widened result as |
| undefined. Anyway, it doesn't matter really, since in this case |
| we will replace said value with the default value |valt| using an |
| ITE. */ |
| IRAtom* iftrue2 |
| = vwiden == Iop_INVALID |
| ? iftrue1 |
| : assignNew('V', mce, tyWide, unop(vwiden, iftrue1)); |
| /* These are the V bits we will return if the load doesn't take |
| place. */ |
| IRAtom* iffalse |
| = valt; |
| /* Prepare the cond for the ITE. Convert a NULL cond into |
| something that iropt knows how to fold out later. */ |
| IRAtom* cond |
| = guard == NULL ? mkU1(1) : guard; |
| /* And assemble the final result. */ |
| return assignNew('V', mce, tyWide, IRExpr_ITE(cond, iftrue2, iffalse)); |
| } |
| |
| |
| /* A simpler handler for guarded loads, in which there is no |
| conversion operation, and the default V bit return (when the guard |
| evaluates to False at runtime) is "all defined". If there is no |
| guard expression or the guard is always TRUE this function behaves |
| like expr2vbits_Load. It is assumed that definedness of GUARD has |
| already been checked at the call site. */ |
| static |
| IRAtom* expr2vbits_Load_guarded_Simple ( MCEnv* mce, |
| IREndness end, IRType ty, |
| IRAtom* addr, UInt bias, |
| IRAtom *guard ) |
| { |
| return expr2vbits_Load_guarded_General( |
| mce, end, ty, addr, bias, guard, Iop_INVALID, definedOfType(ty) |
| ); |
| } |
| |
| |
| static |
| IRAtom* expr2vbits_ITE ( MCEnv* mce, |
| IRAtom* cond, IRAtom* iftrue, IRAtom* iffalse ) |
| { |
| IRAtom *vbitsC, *vbits0, *vbits1; |
| IRType ty; |
| /* Given ITE(cond, iftrue, iffalse), generate |
| ITE(cond, iftrue#, iffalse#) `UifU` PCast(cond#) |
| That is, steer the V bits like the originals, but trash the |
| result if the steering value is undefined. This gives |
| lazy propagation. */ |
| tl_assert(isOriginalAtom(mce, cond)); |
| tl_assert(isOriginalAtom(mce, iftrue)); |
| tl_assert(isOriginalAtom(mce, iffalse)); |
| |
| vbitsC = expr2vbits(mce, cond); |
| vbits1 = expr2vbits(mce, iftrue); |
| vbits0 = expr2vbits(mce, iffalse); |
| ty = typeOfIRExpr(mce->sb->tyenv, vbits0); |
| |
| return |
| mkUifU(mce, ty, assignNew('V', mce, ty, |
| IRExpr_ITE(cond, vbits1, vbits0)), |
| mkPCastTo(mce, ty, vbitsC) ); |
| } |
| |
| /* --------- This is the main expression-handling function. --------- */ |
| |
| static |
| IRExpr* expr2vbits ( MCEnv* mce, IRExpr* e ) |
| { |
| switch (e->tag) { |
| |
| case Iex_Get: |
| return shadow_GET( mce, e->Iex.Get.offset, e->Iex.Get.ty ); |
| |
| case Iex_GetI: |
| return shadow_GETI( mce, e->Iex.GetI.descr, |
| e->Iex.GetI.ix, e->Iex.GetI.bias ); |
| |
| case Iex_RdTmp: |
| return IRExpr_RdTmp( findShadowTmpV(mce, e->Iex.RdTmp.tmp) ); |
| |
| case Iex_Const: |
| return definedOfType(shadowTypeV(typeOfIRExpr(mce->sb->tyenv, e))); |
| |
| case Iex_Qop: |
| return expr2vbits_Qop( |
| mce, |
| e->Iex.Qop.details->op, |
| e->Iex.Qop.details->arg1, e->Iex.Qop.details->arg2, |
| e->Iex.Qop.details->arg3, e->Iex.Qop.details->arg4 |
| ); |
| |
| case Iex_Triop: |
| return expr2vbits_Triop( |
| mce, |
| e->Iex.Triop.details->op, |
| e->Iex.Triop.details->arg1, e->Iex.Triop.details->arg2, |
| e->Iex.Triop.details->arg3 |
| ); |
| |
| case Iex_Binop: |
| return expr2vbits_Binop( |
| mce, |
| e->Iex.Binop.op, |
| e->Iex.Binop.arg1, e->Iex.Binop.arg2 |
| ); |
| |
| case Iex_Unop: |
| return expr2vbits_Unop( mce, e->Iex.Unop.op, e->Iex.Unop.arg ); |
| |
| case Iex_Load: |
| return expr2vbits_Load( mce, e->Iex.Load.end, |
| e->Iex.Load.ty, |
| e->Iex.Load.addr, 0/*addr bias*/, |
| NULL/* guard == "always True"*/ ); |
| |
| case Iex_CCall: |
| return mkLazyN( mce, e->Iex.CCall.args, |
| e->Iex.CCall.retty, |
| e->Iex.CCall.cee ); |
| |
| case Iex_ITE: |
| return expr2vbits_ITE( mce, e->Iex.ITE.cond, e->Iex.ITE.iftrue, |
| e->Iex.ITE.iffalse); |
| |
| default: |
| VG_(printf)("\n"); |
| ppIRExpr(e); |
| VG_(printf)("\n"); |
| VG_(tool_panic)("memcheck: expr2vbits"); |
| } |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Generate shadow stmts from all kinds of IRStmts. ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Widen a value to the host word size. */ |
| |
| static |
| IRExpr* zwidenToHostWord ( MCEnv* mce, IRAtom* vatom ) |
| { |
| IRType ty, tyH; |
| |
| /* vatom is vbits-value and as such can only have a shadow type. */ |
| tl_assert(isShadowAtom(mce,vatom)); |
| |
| ty = typeOfIRExpr(mce->sb->tyenv, vatom); |
| tyH = mce->hWordTy; |
| |
| if (tyH == Ity_I32) { |
| switch (ty) { |
| case Ity_I32: |
| return vatom; |
| case Ity_I16: |
| return assignNew('V', mce, tyH, unop(Iop_16Uto32, vatom)); |
| case Ity_I8: |
| return assignNew('V', mce, tyH, unop(Iop_8Uto32, vatom)); |
| default: |
| goto unhandled; |
| } |
| } else |
| if (tyH == Ity_I64) { |
| switch (ty) { |
| case Ity_I32: |
| return assignNew('V', mce, tyH, unop(Iop_32Uto64, vatom)); |
| case Ity_I16: |
| return assignNew('V', mce, tyH, unop(Iop_32Uto64, |
| assignNew('V', mce, Ity_I32, unop(Iop_16Uto32, vatom)))); |
| case Ity_I8: |
| return assignNew('V', mce, tyH, unop(Iop_32Uto64, |
| assignNew('V', mce, Ity_I32, unop(Iop_8Uto32, vatom)))); |
| default: |
| goto unhandled; |
| } |
| } else { |
| goto unhandled; |
| } |
| unhandled: |
| VG_(printf)("\nty = "); ppIRType(ty); VG_(printf)("\n"); |
| VG_(tool_panic)("zwidenToHostWord"); |
| } |
| |
| |
| /* Generate a shadow store. |addr| is always the original address |
| atom. You can pass in either originals or V-bits for the data |
| atom, but obviously not both. This function generates a check for |
| the definedness and (indirectly) the validity of |addr|, but only |
| when |guard| evaluates to True at run time (or is NULL). |
| |
| |guard| :: Ity_I1 controls whether the store really happens; NULL |
| means it unconditionally does. Note that |guard| itself is not |
| checked for definedness; the caller of this function must do that |
| if necessary. |
| */ |
| static |
| void do_shadow_Store ( MCEnv* mce, |
| IREndness end, |
| IRAtom* addr, UInt bias, |
| IRAtom* data, IRAtom* vdata, |
| IRAtom* guard ) |
| { |
| IROp mkAdd; |
| IRType ty, tyAddr; |
| void* helper = NULL; |
| const HChar* hname = NULL; |
| IRConst* c; |
| |
| tyAddr = mce->hWordTy; |
| mkAdd = tyAddr==Ity_I32 ? Iop_Add32 : Iop_Add64; |
| tl_assert( tyAddr == Ity_I32 || tyAddr == Ity_I64 ); |
| tl_assert( end == Iend_LE || end == Iend_BE ); |
| |
| if (data) { |
| tl_assert(!vdata); |
| tl_assert(isOriginalAtom(mce, data)); |
| tl_assert(bias == 0); |
| vdata = expr2vbits( mce, data ); |
| } else { |
| tl_assert(vdata); |
| } |
| |
| tl_assert(isOriginalAtom(mce,addr)); |
| tl_assert(isShadowAtom(mce,vdata)); |
| |
| if (guard) { |
| tl_assert(isOriginalAtom(mce, guard)); |
| tl_assert(typeOfIRExpr(mce->sb->tyenv, guard) == Ity_I1); |
| } |
| |
| ty = typeOfIRExpr(mce->sb->tyenv, vdata); |
| |
| // If we're not doing undefined value checking, pretend that this value |
| // is "all valid". That lets Vex's optimiser remove some of the V bit |
| // shadow computation ops that precede it. |
| if (MC_(clo_mc_level) == 1) { |
| switch (ty) { |
| case Ity_V256: // V256 weirdness -- used four times |
| c = IRConst_V256(V_BITS32_DEFINED); break; |
| case Ity_V128: // V128 weirdness -- used twice |
| c = IRConst_V128(V_BITS16_DEFINED); break; |
| case Ity_I64: c = IRConst_U64 (V_BITS64_DEFINED); break; |
| case Ity_I32: c = IRConst_U32 (V_BITS32_DEFINED); break; |
| case Ity_I16: c = IRConst_U16 (V_BITS16_DEFINED); break; |
| case Ity_I8: c = IRConst_U8 (V_BITS8_DEFINED); break; |
| default: VG_(tool_panic)("memcheck:do_shadow_Store(LE)"); |
| } |
| vdata = IRExpr_Const( c ); |
| } |
| |
| /* First, emit a definedness test for the address. This also sets |
| the address (shadow) to 'defined' following the test. Both of |
| those actions are gated on |guard|. */ |
| complainIfUndefined( mce, addr, guard ); |
| |
| /* Now decide which helper function to call to write the data V |
| bits into shadow memory. */ |
| if (end == Iend_LE) { |
| switch (ty) { |
| case Ity_V256: /* we'll use the helper four times */ |
| case Ity_V128: /* we'll use the helper twice */ |
| case Ity_I64: helper = &MC_(helperc_STOREV64le); |
| hname = "MC_(helperc_STOREV64le)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_STOREV32le); |
| hname = "MC_(helperc_STOREV32le)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_STOREV16le); |
| hname = "MC_(helperc_STOREV16le)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_STOREV8); |
| hname = "MC_(helperc_STOREV8)"; |
| break; |
| default: VG_(tool_panic)("memcheck:do_shadow_Store(LE)"); |
| } |
| } else { |
| switch (ty) { |
| case Ity_V128: /* we'll use the helper twice */ |
| case Ity_I64: helper = &MC_(helperc_STOREV64be); |
| hname = "MC_(helperc_STOREV64be)"; |
| break; |
| case Ity_I32: helper = &MC_(helperc_STOREV32be); |
| hname = "MC_(helperc_STOREV32be)"; |
| break; |
| case Ity_I16: helper = &MC_(helperc_STOREV16be); |
| hname = "MC_(helperc_STOREV16be)"; |
| break; |
| case Ity_I8: helper = &MC_(helperc_STOREV8); |
| hname = "MC_(helperc_STOREV8)"; |
| break; |
| /* Note, no V256 case here, because no big-endian target that |
| we support, has 256 vectors. */ |
| default: VG_(tool_panic)("memcheck:do_shadow_Store(BE)"); |
| } |
| } |
| |
| if (UNLIKELY(ty == Ity_V256)) { |
| |
| /* V256-bit case -- phrased in terms of 64 bit units (Qs), with |
| Q3 being the most significant lane. */ |
| /* These are the offsets of the Qs in memory. */ |
| Int offQ0, offQ1, offQ2, offQ3; |
| |
| /* Various bits for constructing the 4 lane helper calls */ |
| IRDirty *diQ0, *diQ1, *diQ2, *diQ3; |
| IRAtom *addrQ0, *addrQ1, *addrQ2, *addrQ3; |
| IRAtom *vdataQ0, *vdataQ1, *vdataQ2, *vdataQ3; |
| IRAtom *eBiasQ0, *eBiasQ1, *eBiasQ2, *eBiasQ3; |
| |
| if (end == Iend_LE) { |
| offQ0 = 0; offQ1 = 8; offQ2 = 16; offQ3 = 24; |
| } else { |
| offQ3 = 0; offQ2 = 8; offQ1 = 16; offQ0 = 24; |
| } |
| |
| eBiasQ0 = tyAddr==Ity_I32 ? mkU32(bias+offQ0) : mkU64(bias+offQ0); |
| addrQ0 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasQ0) ); |
| vdataQ0 = assignNew('V', mce, Ity_I64, unop(Iop_V256to64_0, vdata)); |
| diQ0 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrQ0, vdataQ0 ) |
| ); |
| |
| eBiasQ1 = tyAddr==Ity_I32 ? mkU32(bias+offQ1) : mkU64(bias+offQ1); |
| addrQ1 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasQ1) ); |
| vdataQ1 = assignNew('V', mce, Ity_I64, unop(Iop_V256to64_1, vdata)); |
| diQ1 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrQ1, vdataQ1 ) |
| ); |
| |
| eBiasQ2 = tyAddr==Ity_I32 ? mkU32(bias+offQ2) : mkU64(bias+offQ2); |
| addrQ2 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasQ2) ); |
| vdataQ2 = assignNew('V', mce, Ity_I64, unop(Iop_V256to64_2, vdata)); |
| diQ2 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrQ2, vdataQ2 ) |
| ); |
| |
| eBiasQ3 = tyAddr==Ity_I32 ? mkU32(bias+offQ3) : mkU64(bias+offQ3); |
| addrQ3 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasQ3) ); |
| vdataQ3 = assignNew('V', mce, Ity_I64, unop(Iop_V256to64_3, vdata)); |
| diQ3 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrQ3, vdataQ3 ) |
| ); |
| |
| if (guard) |
| diQ0->guard = diQ1->guard = diQ2->guard = diQ3->guard = guard; |
| |
| setHelperAnns( mce, diQ0 ); |
| setHelperAnns( mce, diQ1 ); |
| setHelperAnns( mce, diQ2 ); |
| setHelperAnns( mce, diQ3 ); |
| stmt( 'V', mce, IRStmt_Dirty(diQ0) ); |
| stmt( 'V', mce, IRStmt_Dirty(diQ1) ); |
| stmt( 'V', mce, IRStmt_Dirty(diQ2) ); |
| stmt( 'V', mce, IRStmt_Dirty(diQ3) ); |
| |
| } |
| else if (UNLIKELY(ty == Ity_V128)) { |
| |
| /* V128-bit case */ |
| /* See comment in next clause re 64-bit regparms */ |
| /* also, need to be careful about endianness */ |
| |
| Int offLo64, offHi64; |
| IRDirty *diLo64, *diHi64; |
| IRAtom *addrLo64, *addrHi64; |
| IRAtom *vdataLo64, *vdataHi64; |
| IRAtom *eBiasLo64, *eBiasHi64; |
| |
| if (end == Iend_LE) { |
| offLo64 = 0; |
| offHi64 = 8; |
| } else { |
| offLo64 = 8; |
| offHi64 = 0; |
| } |
| |
| eBiasLo64 = tyAddr==Ity_I32 ? mkU32(bias+offLo64) : mkU64(bias+offLo64); |
| addrLo64 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasLo64) ); |
| vdataLo64 = assignNew('V', mce, Ity_I64, unop(Iop_V128to64, vdata)); |
| diLo64 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrLo64, vdataLo64 ) |
| ); |
| eBiasHi64 = tyAddr==Ity_I32 ? mkU32(bias+offHi64) : mkU64(bias+offHi64); |
| addrHi64 = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBiasHi64) ); |
| vdataHi64 = assignNew('V', mce, Ity_I64, unop(Iop_V128HIto64, vdata)); |
| diHi64 = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrHi64, vdataHi64 ) |
| ); |
| if (guard) diLo64->guard = guard; |
| if (guard) diHi64->guard = guard; |
| setHelperAnns( mce, diLo64 ); |
| setHelperAnns( mce, diHi64 ); |
| stmt( 'V', mce, IRStmt_Dirty(diLo64) ); |
| stmt( 'V', mce, IRStmt_Dirty(diHi64) ); |
| |
| } else { |
| |
| IRDirty *di; |
| IRAtom *addrAct; |
| |
| /* 8/16/32/64-bit cases */ |
| /* Generate the actual address into addrAct. */ |
| if (bias == 0) { |
| addrAct = addr; |
| } else { |
| IRAtom* eBias = tyAddr==Ity_I32 ? mkU32(bias) : mkU64(bias); |
| addrAct = assignNew('V', mce, tyAddr, binop(mkAdd, addr, eBias)); |
| } |
| |
| if (ty == Ity_I64) { |
| /* We can't do this with regparm 2 on 32-bit platforms, since |
| the back ends aren't clever enough to handle 64-bit |
| regparm args. Therefore be different. */ |
| di = unsafeIRDirty_0_N( |
| 1/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrAct, vdata ) |
| ); |
| } else { |
| di = unsafeIRDirty_0_N( |
| 2/*regparms*/, |
| hname, VG_(fnptr_to_fnentry)( helper ), |
| mkIRExprVec_2( addrAct, |
| zwidenToHostWord( mce, vdata )) |
| ); |
| } |
| if (guard) di->guard = guard; |
| setHelperAnns( mce, di ); |
| stmt( 'V', mce, IRStmt_Dirty(di) ); |
| } |
| |
| } |
| |
| |
| /* Do lazy pessimistic propagation through a dirty helper call, by |
| looking at the annotations on it. This is the most complex part of |
| Memcheck. */ |
| |
| static IRType szToITy ( Int n ) |
| { |
| switch (n) { |
| case 1: return Ity_I8; |
| case 2: return Ity_I16; |
| case 4: return Ity_I32; |
| case 8: return Ity_I64; |
| default: VG_(tool_panic)("szToITy(memcheck)"); |
| } |
| } |
| |
| static |
| void do_shadow_Dirty ( MCEnv* mce, IRDirty* d ) |
| { |
| Int i, k, n, toDo, gSz, gOff; |
| IRAtom *src, *here, *curr; |
| IRType tySrc, tyDst; |
| IRTemp dst; |
| IREndness end; |
| |
| /* What's the native endianness? We need to know this. */ |
| # if defined(VG_BIGENDIAN) |
| end = Iend_BE; |
| # elif defined(VG_LITTLEENDIAN) |
| end = Iend_LE; |
| # else |
| # error "Unknown endianness" |
| # endif |
| |
| /* First check the guard. */ |
| complainIfUndefined(mce, d->guard, NULL); |
| |
| /* Now round up all inputs and PCast over them. */ |
| curr = definedOfType(Ity_I32); |
| |
| /* Inputs: unmasked args |
| Note: arguments are evaluated REGARDLESS of the guard expression */ |
| for (i = 0; d->args[i]; i++) { |
| IRAtom* arg = d->args[i]; |
| if ( (d->cee->mcx_mask & (1<<i)) |
| || UNLIKELY(is_IRExpr_VECRET_or_BBPTR(arg)) ) { |
| /* ignore this arg */ |
| } else { |
| here = mkPCastTo( mce, Ity_I32, expr2vbits(mce, arg) ); |
| curr = mkUifU32(mce, here, curr); |
| } |
| } |
| |
| /* Inputs: guest state that we read. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Write) |
| continue; |
| |
| /* Enumerate the described state segments */ |
| for (k = 0; k < 1 + d->fxState[i].nRepeats; k++) { |
| gOff = d->fxState[i].offset + k * d->fxState[i].repeatLen; |
| gSz = d->fxState[i].size; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, gOff, gSz)) { |
| if (0) |
| VG_(printf)("memcheck: Dirty gst: ignored off %d, sz %d\n", |
| gOff, gSz); |
| continue; |
| } |
| |
| /* This state element is read or modified. So we need to |
| consider it. If larger than 8 bytes, deal with it in |
| 8-byte chunks. */ |
| while (True) { |
| tl_assert(gSz >= 0); |
| if (gSz == 0) break; |
| n = gSz <= 8 ? gSz : 8; |
| /* update 'curr' with UifU of the state slice |
| gOff .. gOff+n-1 */ |
| tySrc = szToITy( n ); |
| |
| /* Observe the guard expression. If it is false use an |
| all-bits-defined bit pattern */ |
| IRAtom *cond, *iffalse, *iftrue; |
| |
| cond = assignNew('V', mce, Ity_I1, d->guard); |
| iftrue = assignNew('V', mce, tySrc, shadow_GET(mce, gOff, tySrc)); |
| iffalse = assignNew('V', mce, tySrc, definedOfType(tySrc)); |
| src = assignNew('V', mce, tySrc, |
| IRExpr_ITE(cond, iftrue, iffalse)); |
| |
| here = mkPCastTo( mce, Ity_I32, src ); |
| curr = mkUifU32(mce, here, curr); |
| gSz -= n; |
| gOff += n; |
| } |
| } |
| } |
| |
| /* Inputs: memory. First set up some info needed regardless of |
| whether we're doing reads or writes. */ |
| |
| if (d->mFx != Ifx_None) { |
| /* Because we may do multiple shadow loads/stores from the same |
| base address, it's best to do a single test of its |
| definedness right now. Post-instrumentation optimisation |
| should remove all but this test. */ |
| IRType tyAddr; |
| tl_assert(d->mAddr); |
| complainIfUndefined(mce, d->mAddr, d->guard); |
| |
| tyAddr = typeOfIRExpr(mce->sb->tyenv, d->mAddr); |
| tl_assert(tyAddr == Ity_I32 || tyAddr == Ity_I64); |
| tl_assert(tyAddr == mce->hWordTy); /* not really right */ |
| } |
| |
| /* Deal with memory inputs (reads or modifies) */ |
| if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks. We don't care about the endianness |
| since it's all going to be condensed down to a single bit, |
| but nevertheless choose an endianness which is hopefully |
| native to the platform. */ |
| while (toDo >= 4) { |
| here = mkPCastTo( |
| mce, Ity_I32, |
| expr2vbits_Load_guarded_Simple( |
| mce, end, Ity_I32, d->mAddr, d->mSize - toDo, d->guard ) |
| ); |
| curr = mkUifU32(mce, here, curr); |
| toDo -= 4; |
| } |
| /* chew off 16-bit chunks */ |
| while (toDo >= 2) { |
| here = mkPCastTo( |
| mce, Ity_I32, |
| expr2vbits_Load_guarded_Simple( |
| mce, end, Ity_I16, d->mAddr, d->mSize - toDo, d->guard ) |
| ); |
| curr = mkUifU32(mce, here, curr); |
| toDo -= 2; |
| } |
| /* chew off the remaining 8-bit chunk, if any */ |
| if (toDo == 1) { |
| here = mkPCastTo( |
| mce, Ity_I32, |
| expr2vbits_Load_guarded_Simple( |
| mce, end, Ity_I8, d->mAddr, d->mSize - toDo, d->guard ) |
| ); |
| curr = mkUifU32(mce, here, curr); |
| toDo -= 1; |
| } |
| tl_assert(toDo == 0); |
| } |
| |
| /* Whew! So curr is a 32-bit V-value summarising pessimistically |
| all the inputs to the helper. Now we need to re-distribute the |
| results to all destinations. */ |
| |
| /* Outputs: the destination temporary, if there is one. */ |
| if (d->tmp != IRTemp_INVALID) { |
| dst = findShadowTmpV(mce, d->tmp); |
| tyDst = typeOfIRTemp(mce->sb->tyenv, d->tmp); |
| assign( 'V', mce, dst, mkPCastTo( mce, tyDst, curr) ); |
| } |
| |
| /* Outputs: guest state that we write or modify. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Read) |
| continue; |
| |
| /* Enumerate the described state segments */ |
| for (k = 0; k < 1 + d->fxState[i].nRepeats; k++) { |
| gOff = d->fxState[i].offset + k * d->fxState[i].repeatLen; |
| gSz = d->fxState[i].size; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, gOff, gSz)) |
| continue; |
| |
| /* This state element is written or modified. So we need to |
| consider it. If larger than 8 bytes, deal with it in |
| 8-byte chunks. */ |
| while (True) { |
| tl_assert(gSz >= 0); |
| if (gSz == 0) break; |
| n = gSz <= 8 ? gSz : 8; |
| /* Write suitably-casted 'curr' to the state slice |
| gOff .. gOff+n-1 */ |
| tyDst = szToITy( n ); |
| do_shadow_PUT( mce, gOff, |
| NULL, /* original atom */ |
| mkPCastTo( mce, tyDst, curr ), d->guard ); |
| gSz -= n; |
| gOff += n; |
| } |
| } |
| } |
| |
| /* Outputs: memory that we write or modify. Same comments about |
| endianness as above apply. */ |
| if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks */ |
| while (toDo >= 4) { |
| do_shadow_Store( mce, end, d->mAddr, d->mSize - toDo, |
| NULL, /* original data */ |
| mkPCastTo( mce, Ity_I32, curr ), |
| d->guard ); |
| toDo -= 4; |
| } |
| /* chew off 16-bit chunks */ |
| while (toDo >= 2) { |
| do_shadow_Store( mce, end, d->mAddr, d->mSize - toDo, |
| NULL, /* original data */ |
| mkPCastTo( mce, Ity_I16, curr ), |
| d->guard ); |
| toDo -= 2; |
| } |
| /* chew off the remaining 8-bit chunk, if any */ |
| if (toDo == 1) { |
| do_shadow_Store( mce, end, d->mAddr, d->mSize - toDo, |
| NULL, /* original data */ |
| mkPCastTo( mce, Ity_I8, curr ), |
| d->guard ); |
| toDo -= 1; |
| } |
| tl_assert(toDo == 0); |
| } |
| |
| } |
| |
| |
| /* We have an ABI hint telling us that [base .. base+len-1] is to |
| become undefined ("writable"). Generate code to call a helper to |
| notify the A/V bit machinery of this fact. |
| |
| We call |
| void MC_(helperc_MAKE_STACK_UNINIT) ( Addr base, UWord len, |
| Addr nia ); |
| */ |
| static |
| void do_AbiHint ( MCEnv* mce, IRExpr* base, Int len, IRExpr* nia ) |
| { |
| IRDirty* di; |
| /* Minor optimisation: if not doing origin tracking, ignore the |
| supplied nia and pass zero instead. This is on the basis that |
| MC_(helperc_MAKE_STACK_UNINIT) will ignore it anyway, and we can |
| almost always generate a shorter instruction to put zero into a |
| register than any other value. */ |
| if (MC_(clo_mc_level) < 3) |
| nia = mkIRExpr_HWord(0); |
| |
| di = unsafeIRDirty_0_N( |
| 0/*regparms*/, |
| "MC_(helperc_MAKE_STACK_UNINIT)", |
| VG_(fnptr_to_fnentry)( &MC_(helperc_MAKE_STACK_UNINIT) ), |
| mkIRExprVec_3( base, mkIRExpr_HWord( (UInt)len), nia ) |
| ); |
| stmt( 'V', mce, IRStmt_Dirty(di) ); |
| } |
| |
| |
| /* ------ Dealing with IRCAS (big and complex) ------ */ |
| |
| /* FWDS */ |
| static IRAtom* gen_load_b ( MCEnv* mce, Int szB, |
| IRAtom* baseaddr, Int offset ); |
| static IRAtom* gen_maxU32 ( MCEnv* mce, IRAtom* b1, IRAtom* b2 ); |
| static void gen_store_b ( MCEnv* mce, Int szB, |
| IRAtom* baseaddr, Int offset, IRAtom* dataB, |
| IRAtom* guard ); |
| |
| static void do_shadow_CAS_single ( MCEnv* mce, IRCAS* cas ); |
| static void do_shadow_CAS_double ( MCEnv* mce, IRCAS* cas ); |
| |
| |
| /* Either ORIG and SHADOW are both IRExpr.RdTmps, or they are both |
| IRExpr.Consts, else this asserts. If they are both Consts, it |
| doesn't do anything. So that just leaves the RdTmp case. |
| |
| In which case: this assigns the shadow value SHADOW to the IR |
| shadow temporary associated with ORIG. That is, ORIG, being an |
| original temporary, will have a shadow temporary associated with |
| it. However, in the case envisaged here, there will so far have |
| been no IR emitted to actually write a shadow value into that |
| temporary. What this routine does is to (emit IR to) copy the |
| value in SHADOW into said temporary, so that after this call, |
| IRExpr.RdTmps of ORIG's shadow temp will correctly pick up the |
| value in SHADOW. |
| |
| Point is to allow callers to compute "by hand" a shadow value for |
| ORIG, and force it to be associated with ORIG. |
| |
| How do we know that that shadow associated with ORIG has not so far |
| been assigned to? Well, we don't per se know that, but supposing |
| it had. Then this routine would create a second assignment to it, |
| and later the IR sanity checker would barf. But that never |
| happens. QED. |
| */ |
| static void bind_shadow_tmp_to_orig ( UChar how, |
| MCEnv* mce, |
| IRAtom* orig, IRAtom* shadow ) |
| { |
| tl_assert(isOriginalAtom(mce, orig)); |
| tl_assert(isShadowAtom(mce, shadow)); |
| switch (orig->tag) { |
| case Iex_Const: |
| tl_assert(shadow->tag == Iex_Const); |
| break; |
| case Iex_RdTmp: |
| tl_assert(shadow->tag == Iex_RdTmp); |
| if (how == 'V') { |
| assign('V', mce, findShadowTmpV(mce,orig->Iex.RdTmp.tmp), |
| shadow); |
| } else { |
| tl_assert(how == 'B'); |
| assign('B', mce, findShadowTmpB(mce,orig->Iex.RdTmp.tmp), |
| shadow); |
| } |
| break; |
| default: |
| tl_assert(0); |
| } |
| } |
| |
| |
| static |
| void do_shadow_CAS ( MCEnv* mce, IRCAS* cas ) |
| { |
| /* Scheme is (both single- and double- cases): |
| |
| 1. fetch data#,dataB (the proposed new value) |
| |
| 2. fetch expd#,expdB (what we expect to see at the address) |
| |
| 3. check definedness of address |
| |
| 4. load old#,oldB from shadow memory; this also checks |
| addressibility of the address |
| |
| 5. the CAS itself |
| |
| 6. compute "expected == old". See COMMENT_ON_CasCmpEQ below. |
| |
| 7. if "expected == old" (as computed by (6)) |
| store data#,dataB to shadow memory |
| |
| Note that 5 reads 'old' but 4 reads 'old#'. Similarly, 5 stores |
| 'data' but 7 stores 'data#'. Hence it is possible for the |
| shadow data to be incorrectly checked and/or updated: |
| |
| * 7 is at least gated correctly, since the 'expected == old' |
| condition is derived from outputs of 5. However, the shadow |
| write could happen too late: imagine after 5 we are |
| descheduled, a different thread runs, writes a different |
| (shadow) value at the address, and then we resume, hence |
| overwriting the shadow value written by the other thread. |
| |
| Because the original memory access is atomic, there's no way to |
| make both the original and shadow accesses into a single atomic |
| thing, hence this is unavoidable. |
| |
| At least as Valgrind stands, I don't think it's a problem, since |
| we're single threaded *and* we guarantee that there are no |
| context switches during the execution of any specific superblock |
| -- context switches can only happen at superblock boundaries. |
| |
| If Valgrind ever becomes MT in the future, then it might be more |
| of a problem. A possible kludge would be to artificially |
| associate with the location, a lock, which we must acquire and |
| release around the transaction as a whole. Hmm, that probably |
| would't work properly since it only guards us against other |
| threads doing CASs on the same location, not against other |
| threads doing normal reads and writes. |
| |
| ------------------------------------------------------------ |
| |
| COMMENT_ON_CasCmpEQ: |
| |
| Note two things. Firstly, in the sequence above, we compute |
| "expected == old", but we don't check definedness of it. Why |
| not? Also, the x86 and amd64 front ends use |
| Iop_CasCmp{EQ,NE}{8,16,32,64} comparisons to make the equivalent |
| determination (expected == old ?) for themselves, and we also |
| don't check definedness for those primops; we just say that the |
| result is defined. Why? Details follow. |
| |
| x86/amd64 contains various forms of locked insns: |
| * lock prefix before all basic arithmetic insn; |
| eg lock xorl %reg1,(%reg2) |
| * atomic exchange reg-mem |
| * compare-and-swaps |
| |
| Rather than attempt to represent them all, which would be a |
| royal PITA, I used a result from Maurice Herlihy |
| (http://en.wikipedia.org/wiki/Maurice_Herlihy), in which he |
| demonstrates that compare-and-swap is a primitive more general |
| than the other two, and so can be used to represent all of them. |
| So the translation scheme for (eg) lock incl (%reg) is as |
| follows: |
| |
| again: |
| old = * %reg |
| new = old + 1 |
| atomically { if (* %reg == old) { * %reg = new } else { goto again } } |
| |
| The "atomically" is the CAS bit. The scheme is always the same: |
| get old value from memory, compute new value, atomically stuff |
| new value back in memory iff the old value has not changed (iow, |
| no other thread modified it in the meantime). If it has changed |
| then we've been out-raced and we have to start over. |
| |
| Now that's all very neat, but it has the bad side effect of |
| introducing an explicit equality test into the translation. |
| Consider the behaviour of said code on a memory location which |
| is uninitialised. We will wind up doing a comparison on |
| uninitialised data, and mc duly complains. |
| |
| What's difficult about this is, the common case is that the |
| location is uncontended, and so we're usually comparing the same |
| value (* %reg) with itself. So we shouldn't complain even if it |
| is undefined. But mc doesn't know that. |
| |
| My solution is to mark the == in the IR specially, so as to tell |
| mc that it almost certainly compares a value with itself, and we |
| should just regard the result as always defined. Rather than |
| add a bit to all IROps, I just cloned Iop_CmpEQ{8,16,32,64} into |
| Iop_CasCmpEQ{8,16,32,64} so as not to disturb anything else. |
| |
| So there's always the question of, can this give a false |
| negative? eg, imagine that initially, * %reg is defined; and we |
| read that; but then in the gap between the read and the CAS, a |
| different thread writes an undefined (and different) value at |
| the location. Then the CAS in this thread will fail and we will |
| go back to "again:", but without knowing that the trip back |
| there was based on an undefined comparison. No matter; at least |
| the other thread won the race and the location is correctly |
| marked as undefined. What if it wrote an uninitialised version |
| of the same value that was there originally, though? |
| |
| etc etc. Seems like there's a small corner case in which we |
| might lose the fact that something's defined -- we're out-raced |
| in between the "old = * reg" and the "atomically {", _and_ the |
| other thread is writing in an undefined version of what's |
| already there. Well, that seems pretty unlikely. |
| |
| --- |
| |
| If we ever need to reinstate it .. code which generates a |
| definedness test for "expected == old" was removed at r10432 of |
| this file. |
| */ |
| if (cas->oldHi == IRTemp_INVALID) { |
| do_shadow_CAS_single( mce, cas ); |
| } else { |
| do_shadow_CAS_double( mce, cas ); |
| } |
| } |
| |
| |
| static void do_shadow_CAS_single ( MCEnv* mce, IRCAS* cas ) |
| { |
| IRAtom *vdataLo = NULL, *bdataLo = NULL; |
| IRAtom *vexpdLo = NULL, *bexpdLo = NULL; |
| IRAtom *voldLo = NULL, *boldLo = NULL; |
| IRAtom *expd_eq_old = NULL; |
| IROp opCasCmpEQ; |
| Int elemSzB; |
| IRType elemTy; |
| Bool otrak = MC_(clo_mc_level) >= 3; /* a shorthand */ |
| |
| /* single CAS */ |
| tl_assert(cas->oldHi == IRTemp_INVALID); |
| tl_assert(cas->expdHi == NULL); |
| tl_assert(cas->dataHi == NULL); |
| |
| elemTy = typeOfIRExpr(mce->sb->tyenv, cas->expdLo); |
| switch (elemTy) { |
| case Ity_I8: elemSzB = 1; opCasCmpEQ = Iop_CasCmpEQ8; break; |
| case Ity_I16: elemSzB = 2; opCasCmpEQ = Iop_CasCmpEQ16; break; |
| case Ity_I32: elemSzB = 4; opCasCmpEQ = Iop_CasCmpEQ32; break; |
| case Ity_I64: elemSzB = 8; opCasCmpEQ = Iop_CasCmpEQ64; break; |
| default: tl_assert(0); /* IR defn disallows any other types */ |
| } |
| |
| /* 1. fetch data# (the proposed new value) */ |
| tl_assert(isOriginalAtom(mce, cas->dataLo)); |
| vdataLo |
| = assignNew('V', mce, elemTy, expr2vbits(mce, cas->dataLo)); |
| tl_assert(isShadowAtom(mce, vdataLo)); |
| if (otrak) { |
| bdataLo |
| = assignNew('B', mce, Ity_I32, schemeE(mce, cas->dataLo)); |
| tl_assert(isShadowAtom(mce, bdataLo)); |
| } |
| |
| /* 2. fetch expected# (what we expect to see at the address) */ |
| tl_assert(isOriginalAtom(mce, cas->expdLo)); |
| vexpdLo |
| = assignNew('V', mce, elemTy, expr2vbits(mce, cas->expdLo)); |
| tl_assert(isShadowAtom(mce, vexpdLo)); |
| if (otrak) { |
| bexpdLo |
| = assignNew('B', mce, Ity_I32, schemeE(mce, cas->expdLo)); |
| tl_assert(isShadowAtom(mce, bexpdLo)); |
| } |
| |
| /* 3. check definedness of address */ |
| /* 4. fetch old# from shadow memory; this also checks |
| addressibility of the address */ |
| voldLo |
| = assignNew( |
| 'V', mce, elemTy, |
| expr2vbits_Load( |
| mce, |
| cas->end, elemTy, cas->addr, 0/*Addr bias*/, |
| NULL/*always happens*/ |
| )); |
| bind_shadow_tmp_to_orig('V', mce, mkexpr(cas->oldLo), voldLo); |
| if (otrak) { |
| boldLo |
| = assignNew('B', mce, Ity_I32, |
| gen_load_b(mce, elemSzB, cas->addr, 0/*addr bias*/)); |
| bind_shadow_tmp_to_orig('B', mce, mkexpr(cas->oldLo), boldLo); |
| } |
| |
| /* 5. the CAS itself */ |
| stmt( 'C', mce, IRStmt_CAS(cas) ); |
| |
| /* 6. compute "expected == old" */ |
| /* See COMMENT_ON_CasCmpEQ in this file background/rationale. */ |
| /* Note that 'C' is kinda faking it; it is indeed a non-shadow |
| tree, but it's not copied from the input block. */ |
| expd_eq_old |
| = assignNew('C', mce, Ity_I1, |
| binop(opCasCmpEQ, cas->expdLo, mkexpr(cas->oldLo))); |
| |
| /* 7. if "expected == old" |
| store data# to shadow memory */ |
| do_shadow_Store( mce, cas->end, cas->addr, 0/*bias*/, |
| NULL/*data*/, vdataLo/*vdata*/, |
| expd_eq_old/*guard for store*/ ); |
| if (otrak) { |
| gen_store_b( mce, elemSzB, cas->addr, 0/*offset*/, |
| bdataLo/*bdata*/, |
| expd_eq_old/*guard for store*/ ); |
| } |
| } |
| |
| |
| static void do_shadow_CAS_double ( MCEnv* mce, IRCAS* cas ) |
| { |
| IRAtom *vdataHi = NULL, *bdataHi = NULL; |
| IRAtom *vdataLo = NULL, *bdataLo = NULL; |
| IRAtom *vexpdHi = NULL, *bexpdHi = NULL; |
| IRAtom *vexpdLo = NULL, *bexpdLo = NULL; |
| IRAtom *voldHi = NULL, *boldHi = NULL; |
| IRAtom *voldLo = NULL, *boldLo = NULL; |
| IRAtom *xHi = NULL, *xLo = NULL, *xHL = NULL; |
| IRAtom *expd_eq_old = NULL, *zero = NULL; |
| IROp opCasCmpEQ, opOr, opXor; |
| Int elemSzB, memOffsLo, memOffsHi; |
| IRType elemTy; |
| Bool otrak = MC_(clo_mc_level) >= 3; /* a shorthand */ |
| |
| /* double CAS */ |
| tl_assert(cas->oldHi != IRTemp_INVALID); |
| tl_assert(cas->expdHi != NULL); |
| tl_assert(cas->dataHi != NULL); |
| |
| elemTy = typeOfIRExpr(mce->sb->tyenv, cas->expdLo); |
| switch (elemTy) { |
| case Ity_I8: |
| opCasCmpEQ = Iop_CasCmpEQ8; opOr = Iop_Or8; opXor = Iop_Xor8; |
| elemSzB = 1; zero = mkU8(0); |
| break; |
| case Ity_I16: |
| opCasCmpEQ = Iop_CasCmpEQ16; opOr = Iop_Or16; opXor = Iop_Xor16; |
| elemSzB = 2; zero = mkU16(0); |
| break; |
| case Ity_I32: |
| opCasCmpEQ = Iop_CasCmpEQ32; opOr = Iop_Or32; opXor = Iop_Xor32; |
| elemSzB = 4; zero = mkU32(0); |
| break; |
| case Ity_I64: |
| opCasCmpEQ = Iop_CasCmpEQ64; opOr = Iop_Or64; opXor = Iop_Xor64; |
| elemSzB = 8; zero = mkU64(0); |
| break; |
| default: |
| tl_assert(0); /* IR defn disallows any other types */ |
| } |
| |
| /* 1. fetch data# (the proposed new value) */ |
| tl_assert(isOriginalAtom(mce, cas->dataHi)); |
| tl_assert(isOriginalAtom(mce, cas->dataLo)); |
| vdataHi |
| = assignNew('V', mce, elemTy, expr2vbits(mce, cas->dataHi)); |
| vdataLo |
| = assignNew('V', mce, elemTy, expr2vbits(mce, cas->dataLo)); |
| tl_assert(isShadowAtom(mce, vdataHi)); |
| tl_assert(isShadowAtom(mce, vdataLo)); |
| if (otrak) { |
| bdataHi |
| = assignNew('B', mce, Ity_I32, schemeE(mce, cas->dataHi)); |
| bdataLo |
| = assignNew('B', mce, Ity_I32, schemeE(mce, cas->dataLo)); |
| tl_assert(isShadowAtom(mce, bdataHi)); |
| tl_assert(isShadowAtom(mce, bdataLo)); |
| } |
| |
| /* 2. fetch expected# (what we expect to see at the address) */ |
| tl_assert(isOriginalAtom(mce, cas->expdHi)); |
| tl_assert(isOriginalAtom(mce, cas->expdLo)); |
| vexpdHi |
| = assignNew('V', mce, elemTy, expr2vbits(mce, cas->expdHi)); |
| vexpdLo |
| = assignNew('V', mce, elemTy, expr2vbits(mce, cas->expdLo)); |
| tl_assert(isShadowAtom(mce, vexpdHi)); |
| tl_assert(isShadowAtom(mce, vexpdLo)); |
| if (otrak) { |
| bexpdHi |
| = assignNew('B', mce, Ity_I32, schemeE(mce, cas->expdHi)); |
| bexpdLo |
| = assignNew('B', mce, Ity_I32, schemeE(mce, cas->expdLo)); |
| tl_assert(isShadowAtom(mce, bexpdHi)); |
| tl_assert(isShadowAtom(mce, bexpdLo)); |
| } |
| |
| /* 3. check definedness of address */ |
| /* 4. fetch old# from shadow memory; this also checks |
| addressibility of the address */ |
| if (cas->end == Iend_LE) { |
| memOffsLo = 0; |
| memOffsHi = elemSzB; |
| } else { |
| tl_assert(cas->end == Iend_BE); |
| memOffsLo = elemSzB; |
| memOffsHi = 0; |
| } |
| voldHi |
| = assignNew( |
| 'V', mce, elemTy, |
| expr2vbits_Load( |
| mce, |
| cas->end, elemTy, cas->addr, memOffsHi/*Addr bias*/, |
| NULL/*always happens*/ |
| )); |
| voldLo |
| = assignNew( |
| 'V', mce, elemTy, |
| expr2vbits_Load( |
| mce, |
| cas->end, elemTy, cas->addr, memOffsLo/*Addr bias*/, |
| NULL/*always happens*/ |
| )); |
| bind_shadow_tmp_to_orig('V', mce, mkexpr(cas->oldHi), voldHi); |
| bind_shadow_tmp_to_orig('V', mce, mkexpr(cas->oldLo), voldLo); |
| if (otrak) { |
| boldHi |
| = assignNew('B', mce, Ity_I32, |
| gen_load_b(mce, elemSzB, cas->addr, |
| memOffsHi/*addr bias*/)); |
| boldLo |
| = assignNew('B', mce, Ity_I32, |
| gen_load_b(mce, elemSzB, cas->addr, |
| memOffsLo/*addr bias*/)); |
| bind_shadow_tmp_to_orig('B', mce, mkexpr(cas->oldHi), boldHi); |
| bind_shadow_tmp_to_orig('B', mce, mkexpr(cas->oldLo), boldLo); |
| } |
| |
| /* 5. the CAS itself */ |
| stmt( 'C', mce, IRStmt_CAS(cas) ); |
| |
| /* 6. compute "expected == old" */ |
| /* See COMMENT_ON_CasCmpEQ in this file background/rationale. */ |
| /* Note that 'C' is kinda faking it; it is indeed a non-shadow |
| tree, but it's not copied from the input block. */ |
| /* |
| xHi = oldHi ^ expdHi; |
| xLo = oldLo ^ expdLo; |
| xHL = xHi | xLo; |
| expd_eq_old = xHL == 0; |
| */ |
| xHi = assignNew('C', mce, elemTy, |
| binop(opXor, cas->expdHi, mkexpr(cas->oldHi))); |
| xLo = assignNew('C', mce, elemTy, |
| binop(opXor, cas->expdLo, mkexpr(cas->oldLo))); |
| xHL = assignNew('C', mce, elemTy, |
| binop(opOr, xHi, xLo)); |
| expd_eq_old |
| = assignNew('C', mce, Ity_I1, |
| binop(opCasCmpEQ, xHL, zero)); |
| |
| /* 7. if "expected == old" |
| store data# to shadow memory */ |
| do_shadow_Store( mce, cas->end, cas->addr, memOffsHi/*bias*/, |
| NULL/*data*/, vdataHi/*vdata*/, |
| expd_eq_old/*guard for store*/ ); |
| do_shadow_Store( mce, cas->end, cas->addr, memOffsLo/*bias*/, |
| NULL/*data*/, vdataLo/*vdata*/, |
| expd_eq_old/*guard for store*/ ); |
| if (otrak) { |
| gen_store_b( mce, elemSzB, cas->addr, memOffsHi/*offset*/, |
| bdataHi/*bdata*/, |
| expd_eq_old/*guard for store*/ ); |
| gen_store_b( mce, elemSzB, cas->addr, memOffsLo/*offset*/, |
| bdataLo/*bdata*/, |
| expd_eq_old/*guard for store*/ ); |
| } |
| } |
| |
| |
| /* ------ Dealing with LL/SC (not difficult) ------ */ |
| |
| static void do_shadow_LLSC ( MCEnv* mce, |
| IREndness stEnd, |
| IRTemp stResult, |
| IRExpr* stAddr, |
| IRExpr* stStoredata ) |
| { |
| /* In short: treat a load-linked like a normal load followed by an |
| assignment of the loaded (shadow) data to the result temporary. |
| Treat a store-conditional like a normal store, and mark the |
| result temporary as defined. */ |
| IRType resTy = typeOfIRTemp(mce->sb->tyenv, stResult); |
| IRTemp resTmp = findShadowTmpV(mce, stResult); |
| |
| tl_assert(isIRAtom(stAddr)); |
| if (stStoredata) |
| tl_assert(isIRAtom(stStoredata)); |
| |
| if (stStoredata == NULL) { |
| /* Load Linked */ |
| /* Just treat this as a normal load, followed by an assignment of |
| the value to .result. */ |
| /* Stay sane */ |
| tl_assert(resTy == Ity_I64 || resTy == Ity_I32 |
| || resTy == Ity_I16 || resTy == Ity_I8); |
| assign( 'V', mce, resTmp, |
| expr2vbits_Load( |
| mce, stEnd, resTy, stAddr, 0/*addr bias*/, |
| NULL/*always happens*/) ); |
| } else { |
| /* Store Conditional */ |
| /* Stay sane */ |
| IRType dataTy = typeOfIRExpr(mce->sb->tyenv, |
| stStoredata); |
| tl_assert(dataTy == Ity_I64 || dataTy == Ity_I32 |
| || dataTy == Ity_I16 || dataTy == Ity_I8); |
| do_shadow_Store( mce, stEnd, |
| stAddr, 0/* addr bias */, |
| stStoredata, |
| NULL /* shadow data */, |
| NULL/*guard*/ ); |
| /* This is a store conditional, so it writes to .result a value |
| indicating whether or not the store succeeded. Just claim |
| this value is always defined. In the PowerPC interpretation |
| of store-conditional, definedness of the success indication |
| depends on whether the address of the store matches the |
| reservation address. But we can't tell that here (and |
| anyway, we're not being PowerPC-specific). At least we are |
| guaranteed that the definedness of the store address, and its |
| addressibility, will be checked as per normal. So it seems |
| pretty safe to just say that the success indication is always |
| defined. |
| |
| In schemeS, for origin tracking, we must correspondingly set |
| a no-origin value for the origin shadow of .result. |
| */ |
| tl_assert(resTy == Ity_I1); |
| assign( 'V', mce, resTmp, definedOfType(resTy) ); |
| } |
| } |
| |
| |
| /* ---- Dealing with LoadG/StoreG (not entirely simple) ---- */ |
| |
| static void do_shadow_StoreG ( MCEnv* mce, IRStoreG* sg ) |
| { |
| complainIfUndefined(mce, sg->guard, NULL); |
| /* do_shadow_Store will generate code to check the definedness and |
| validity of sg->addr, in the case where sg->guard evaluates to |
| True at run-time. */ |
| do_shadow_Store( mce, sg->end, |
| sg->addr, 0/* addr bias */, |
| sg->data, |
| NULL /* shadow data */, |
| sg->guard ); |
| } |
| |
| static void do_shadow_LoadG ( MCEnv* mce, IRLoadG* lg ) |
| { |
| complainIfUndefined(mce, lg->guard, NULL); |
| /* expr2vbits_Load_guarded_General will generate code to check the |
| definedness and validity of lg->addr, in the case where |
| lg->guard evaluates to True at run-time. */ |
| |
| /* Look at the LoadG's built-in conversion operation, to determine |
| the source (actual loaded data) type, and the equivalent IROp. |
| NOTE that implicitly we are taking a widening operation to be |
| applied to original atoms and producing one that applies to V |
| bits. Since signed and unsigned widening are self-shadowing, |
| this is a straight copy of the op (modulo swapping from the |
| IRLoadGOp form to the IROp form). Note also therefore that this |
| implicitly duplicates the logic to do with said widening ops in |
| expr2vbits_Unop. See comment at the start of expr2vbits_Unop. */ |
| IROp vwiden = Iop_INVALID; |
| IRType loadedTy = Ity_INVALID; |
| switch (lg->cvt) { |
| case ILGop_Ident32: loadedTy = Ity_I32; vwiden = Iop_INVALID; break; |
| case ILGop_16Uto32: loadedTy = Ity_I16; vwiden = Iop_16Uto32; break; |
| case ILGop_16Sto32: loadedTy = Ity_I16; vwiden = Iop_16Sto32; break; |
| case ILGop_8Uto32: loadedTy = Ity_I8; vwiden = Iop_8Uto32; break; |
| case ILGop_8Sto32: loadedTy = Ity_I8; vwiden = Iop_8Sto32; break; |
| default: VG_(tool_panic)("do_shadow_LoadG"); |
| } |
| |
| IRAtom* vbits_alt |
| = expr2vbits( mce, lg->alt ); |
| IRAtom* vbits_final |
| = expr2vbits_Load_guarded_General(mce, lg->end, loadedTy, |
| lg->addr, 0/*addr bias*/, |
| lg->guard, vwiden, vbits_alt ); |
| /* And finally, bind the V bits to the destination temporary. */ |
| assign( 'V', mce, findShadowTmpV(mce, lg->dst), vbits_final ); |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Memcheck main ---*/ |
| /*------------------------------------------------------------*/ |
| |
| static void schemeS ( MCEnv* mce, IRStmt* st ); |
| |
| static Bool isBogusAtom ( IRAtom* at ) |
| { |
| ULong n = 0; |
| IRConst* con; |
| tl_assert(isIRAtom(at)); |
| if (at->tag == Iex_RdTmp) |
| return False; |
| tl_assert(at->tag == Iex_Const); |
| con = at->Iex.Const.con; |
| switch (con->tag) { |
| case Ico_U1: return False; |
| case Ico_U8: n = (ULong)con->Ico.U8; break; |
| case Ico_U16: n = (ULong)con->Ico.U16; break; |
| case Ico_U32: n = (ULong)con->Ico.U32; break; |
| case Ico_U64: n = (ULong)con->Ico.U64; break; |
| case Ico_F64: return False; |
| case Ico_F32i: return False; |
| case Ico_F64i: return False; |
| case Ico_V128: return False; |
| case Ico_V256: return False; |
| default: ppIRExpr(at); tl_assert(0); |
| } |
| /* VG_(printf)("%llx\n", n); */ |
| return (/*32*/ n == 0xFEFEFEFFULL |
| /*32*/ || n == 0x80808080ULL |
| /*32*/ || n == 0x7F7F7F7FULL |
| /*32*/ || n == 0x7EFEFEFFULL |
| /*32*/ || n == 0x81010100ULL |
| /*64*/ || n == 0xFFFFFFFFFEFEFEFFULL |
| /*64*/ || n == 0xFEFEFEFEFEFEFEFFULL |
| /*64*/ || n == 0x0000000000008080ULL |
| /*64*/ || n == 0x8080808080808080ULL |
| /*64*/ || n == 0x0101010101010101ULL |
| ); |
| } |
| |
| static Bool checkForBogusLiterals ( /*FLAT*/ IRStmt* st ) |
| { |
| Int i; |
| IRExpr* e; |
| IRDirty* d; |
| IRCAS* cas; |
| switch (st->tag) { |
| case Ist_WrTmp: |
| e = st->Ist.WrTmp.data; |
| switch (e->tag) { |
| case Iex_Get: |
| case Iex_RdTmp: |
| return False; |
| case Iex_Const: |
| return isBogusAtom(e); |
| case Iex_Unop: |
| return isBogusAtom(e->Iex.Unop.arg) |
| || e->Iex.Unop.op == Iop_GetMSBs8x16; |
| case Iex_GetI: |
| return isBogusAtom(e->Iex.GetI.ix); |
| case Iex_Binop: |
| return isBogusAtom(e->Iex.Binop.arg1) |
| || isBogusAtom(e->Iex.Binop.arg2); |
| case Iex_Triop: |
| return isBogusAtom(e->Iex.Triop.details->arg1) |
| || isBogusAtom(e->Iex.Triop.details->arg2) |
| || isBogusAtom(e->Iex.Triop.details->arg3); |
| case Iex_Qop: |
| return isBogusAtom(e->Iex.Qop.details->arg1) |
| || isBogusAtom(e->Iex.Qop.details->arg2) |
| || isBogusAtom(e->Iex.Qop.details->arg3) |
| || isBogusAtom(e->Iex.Qop.details->arg4); |
| case Iex_ITE: |
| return isBogusAtom(e->Iex.ITE.cond) |
| || isBogusAtom(e->Iex.ITE.iftrue) |
| || isBogusAtom(e->Iex.ITE.iffalse); |
| case Iex_Load: |
| return isBogusAtom(e->Iex.Load.addr); |
| case Iex_CCall: |
| for (i = 0; e->Iex.CCall.args[i]; i++) |
| if (isBogusAtom(e->Iex.CCall.args[i])) |
| return True; |
| return False; |
| default: |
| goto unhandled; |
| } |
| case Ist_Dirty: |
| d = st->Ist.Dirty.details; |
| for (i = 0; d->args[i]; i++) { |
| IRAtom* atom = d->args[i]; |
| if (LIKELY(!is_IRExpr_VECRET_or_BBPTR(atom))) { |
| if (isBogusAtom(atom)) |
| return True; |
| } |
| } |
| if (isBogusAtom(d->guard)) |
| return True; |
| if (d->mAddr && isBogusAtom(d->mAddr)) |
| return True; |
| return False; |
| case Ist_Put: |
| return isBogusAtom(st->Ist.Put.data); |
| case Ist_PutI: |
| return isBogusAtom(st->Ist.PutI.details->ix) |
| || isBogusAtom(st->Ist.PutI.details->data); |
| case Ist_Store: |
| return isBogusAtom(st->Ist.Store.addr) |
| || isBogusAtom(st->Ist.Store.data); |
| case Ist_StoreG: { |
| IRStoreG* sg = st->Ist.StoreG.details; |
| return isBogusAtom(sg->addr) || isBogusAtom(sg->data) |
| || isBogusAtom(sg->guard); |
| } |
| case Ist_LoadG: { |
| IRLoadG* lg = st->Ist.LoadG.details; |
| return isBogusAtom(lg->addr) || isBogusAtom(lg->alt) |
| || isBogusAtom(lg->guard); |
| } |
| case Ist_Exit: |
| return isBogusAtom(st->Ist.Exit.guard); |
| case Ist_AbiHint: |
| return isBogusAtom(st->Ist.AbiHint.base) |
| || isBogusAtom(st->Ist.AbiHint.nia); |
| case Ist_NoOp: |
| case Ist_IMark: |
| case Ist_MBE: |
| return False; |
| case Ist_CAS: |
| cas = st->Ist.CAS.details; |
| return isBogusAtom(cas->addr) |
| || (cas->expdHi ? isBogusAtom(cas->expdHi) : False) |
| || isBogusAtom(cas->expdLo) |
| || (cas->dataHi ? isBogusAtom(cas->dataHi) : False) |
| || isBogusAtom(cas->dataLo); |
| case Ist_LLSC: |
| return isBogusAtom(st->Ist.LLSC.addr) |
| || (st->Ist.LLSC.storedata |
| ? isBogusAtom(st->Ist.LLSC.storedata) |
| : False); |
| default: |
| unhandled: |
| ppIRStmt(st); |
| VG_(tool_panic)("hasBogusLiterals"); |
| } |
| } |
| |
| |
| IRSB* MC_(instrument) ( VgCallbackClosure* closure, |
| IRSB* sb_in, |
| VexGuestLayout* layout, |
| VexGuestExtents* vge, |
| VexArchInfo* archinfo_host, |
| IRType gWordTy, IRType hWordTy ) |
| { |
| Bool verboze = 0||False; |
| Bool bogus; |
| Int i, j, first_stmt; |
| IRStmt* st; |
| MCEnv mce; |
| IRSB* sb_out; |
| |
| if (gWordTy != hWordTy) { |
| /* We don't currently support this case. */ |
| VG_(tool_panic)("host/guest word size mismatch"); |
| } |
| |
| /* Check we're not completely nuts */ |
| tl_assert(sizeof(UWord) == sizeof(void*)); |
| tl_assert(sizeof(Word) == sizeof(void*)); |
| tl_assert(sizeof(Addr) == sizeof(void*)); |
| tl_assert(sizeof(ULong) == 8); |
| tl_assert(sizeof(Long) == 8); |
| tl_assert(sizeof(Addr64) == 8); |
| tl_assert(sizeof(UInt) == 4); |
| tl_assert(sizeof(Int) == 4); |
| |
| tl_assert(MC_(clo_mc_level) >= 1 && MC_(clo_mc_level) <= 3); |
| |
| /* Set up SB */ |
| sb_out = deepCopyIRSBExceptStmts(sb_in); |
| |
| /* Set up the running environment. Both .sb and .tmpMap are |
| modified as we go along. Note that tmps are added to both |
| .sb->tyenv and .tmpMap together, so the valid index-set for |
| those two arrays should always be identical. */ |
| VG_(memset)(&mce, 0, sizeof(mce)); |
| mce.sb = sb_out; |
| mce.trace = verboze; |
| mce.layout = layout; |
| mce.hWordTy = hWordTy; |
| mce.bogusLiterals = False; |
| |
| /* Do expensive interpretation for Iop_Add32 and Iop_Add64 on |
| Darwin. 10.7 is mostly built with LLVM, which uses these for |
| bitfield inserts, and we get a lot of false errors if the cheap |
| interpretation is used, alas. Could solve this much better if |
| we knew which of such adds came from x86/amd64 LEA instructions, |
| since these are the only ones really needing the expensive |
| interpretation, but that would require some way to tag them in |
| the _toIR.c front ends, which is a lot of faffing around. So |
| for now just use the slow and blunt-instrument solution. */ |
| mce.useLLVMworkarounds = False; |
| # if defined(VGO_darwin) |
| mce.useLLVMworkarounds = True; |
| # endif |
| |
| mce.tmpMap = VG_(newXA)( VG_(malloc), "mc.MC_(instrument).1", VG_(free), |
| sizeof(TempMapEnt)); |
| for (i = 0; i < sb_in->tyenv->types_used; i++) { |
| TempMapEnt ent; |
| ent.kind = Orig; |
| ent.shadowV = IRTemp_INVALID; |
| ent.shadowB = IRTemp_INVALID; |
| VG_(addToXA)( mce.tmpMap, &ent ); |
| } |
| tl_assert( VG_(sizeXA)( mce.tmpMap ) == sb_in->tyenv->types_used ); |
| |
| /* Make a preliminary inspection of the statements, to see if there |
| are any dodgy-looking literals. If there are, we generate |
| extra-detailed (hence extra-expensive) instrumentation in |
| places. Scan the whole bb even if dodgyness is found earlier, |
| so that the flatness assertion is applied to all stmts. */ |
| |
| bogus = False; |
| |
| for (i = 0; i < sb_in->stmts_used; i++) { |
| |
| st = sb_in->stmts[i]; |
| tl_assert(st); |
| tl_assert(isFlatIRStmt(st)); |
| |
| if (!bogus) { |
| bogus = checkForBogusLiterals(st); |
| if (0 && bogus) { |
| VG_(printf)("bogus: "); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| } |
| |
| } |
| |
| mce.bogusLiterals = bogus; |
| |
| /* Copy verbatim any IR preamble preceding the first IMark */ |
| |
| tl_assert(mce.sb == sb_out); |
| tl_assert(mce.sb != sb_in); |
| |
| i = 0; |
| while (i < sb_in->stmts_used && sb_in->stmts[i]->tag != Ist_IMark) { |
| |
| st = sb_in->stmts[i]; |
| tl_assert(st); |
| tl_assert(isFlatIRStmt(st)); |
| |
| stmt( 'C', &mce, sb_in->stmts[i] ); |
| i++; |
| } |
| |
| /* Nasty problem. IR optimisation of the pre-instrumented IR may |
| cause the IR following the preamble to contain references to IR |
| temporaries defined in the preamble. Because the preamble isn't |
| instrumented, these temporaries don't have any shadows. |
| Nevertheless uses of them following the preamble will cause |
| memcheck to generate references to their shadows. End effect is |
| to cause IR sanity check failures, due to references to |
| non-existent shadows. This is only evident for the complex |
| preambles used for function wrapping on TOC-afflicted platforms |
| (ppc64-linux). |
| |
| The following loop therefore scans the preamble looking for |
| assignments to temporaries. For each one found it creates an |
| assignment to the corresponding (V) shadow temp, marking it as |
| 'defined'. This is the same resulting IR as if the main |
| instrumentation loop before had been applied to the statement |
| 'tmp = CONSTANT'. |
| |
| Similarly, if origin tracking is enabled, we must generate an |
| assignment for the corresponding origin (B) shadow, claiming |
| no-origin, as appropriate for a defined value. |
| */ |
| for (j = 0; j < i; j++) { |
| if (sb_in->stmts[j]->tag == Ist_WrTmp) { |
| /* findShadowTmpV checks its arg is an original tmp; |
| no need to assert that here. */ |
| IRTemp tmp_o = sb_in->stmts[j]->Ist.WrTmp.tmp; |
| IRTemp tmp_v = findShadowTmpV(&mce, tmp_o); |
| IRType ty_v = typeOfIRTemp(sb_out->tyenv, tmp_v); |
| assign( 'V', &mce, tmp_v, definedOfType( ty_v ) ); |
| if (MC_(clo_mc_level) == 3) { |
| IRTemp tmp_b = findShadowTmpB(&mce, tmp_o); |
| tl_assert(typeOfIRTemp(sb_out->tyenv, tmp_b) == Ity_I32); |
| assign( 'B', &mce, tmp_b, mkU32(0)/* UNKNOWN ORIGIN */); |
| } |
| if (0) { |
| VG_(printf)("create shadow tmp(s) for preamble tmp [%d] ty ", j); |
| ppIRType( ty_v ); |
| VG_(printf)("\n"); |
| } |
| } |
| } |
| |
| /* Iterate over the remaining stmts to generate instrumentation. */ |
| |
| tl_assert(sb_in->stmts_used > 0); |
| tl_assert(i >= 0); |
| tl_assert(i < sb_in->stmts_used); |
| tl_assert(sb_in->stmts[i]->tag == Ist_IMark); |
| |
| for (/* use current i*/; i < sb_in->stmts_used; i++) { |
| |
| st = sb_in->stmts[i]; |
| first_stmt = sb_out->stmts_used; |
| |
| if (verboze) { |
| VG_(printf)("\n"); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| } |
| |
| if (MC_(clo_mc_level) == 3) { |
| /* See comments on case Ist_CAS below. */ |
| if (st->tag != Ist_CAS) |
| schemeS( &mce, st ); |
| } |
| |
| /* Generate instrumentation code for each stmt ... */ |
| |
| switch (st->tag) { |
| |
| case Ist_WrTmp: |
| assign( 'V', &mce, findShadowTmpV(&mce, st->Ist.WrTmp.tmp), |
| expr2vbits( &mce, st->Ist.WrTmp.data) ); |
| break; |
| |
| case Ist_Put: |
| do_shadow_PUT( &mce, |
| st->Ist.Put.offset, |
| st->Ist.Put.data, |
| NULL /* shadow atom */, NULL /* guard */ ); |
| break; |
| |
| case Ist_PutI: |
| do_shadow_PUTI( &mce, st->Ist.PutI.details); |
| break; |
| |
| case Ist_Store: |
| do_shadow_Store( &mce, st->Ist.Store.end, |
| st->Ist.Store.addr, 0/* addr bias */, |
| st->Ist.Store.data, |
| NULL /* shadow data */, |
| NULL/*guard*/ ); |
| break; |
| |
| case Ist_StoreG: |
| do_shadow_StoreG( &mce, st->Ist.StoreG.details ); |
| break; |
| |
| case Ist_LoadG: |
| do_shadow_LoadG( &mce, st->Ist.LoadG.details ); |
| break; |
| |
| case Ist_Exit: |
| complainIfUndefined( &mce, st->Ist.Exit.guard, NULL ); |
| break; |
| |
| case Ist_IMark: |
| break; |
| |
| case Ist_NoOp: |
| case Ist_MBE: |
| break; |
| |
| case Ist_Dirty: |
| do_shadow_Dirty( &mce, st->Ist.Dirty.details ); |
| break; |
| |
| case Ist_AbiHint: |
| do_AbiHint( &mce, st->Ist.AbiHint.base, |
| st->Ist.AbiHint.len, |
| st->Ist.AbiHint.nia ); |
| break; |
| |
| case Ist_CAS: |
| do_shadow_CAS( &mce, st->Ist.CAS.details ); |
| /* Note, do_shadow_CAS copies the CAS itself to the output |
| block, because it needs to add instrumentation both |
| before and after it. Hence skip the copy below. Also |
| skip the origin-tracking stuff (call to schemeS) above, |
| since that's all tangled up with it too; do_shadow_CAS |
| does it all. */ |
| break; |
| |
| case Ist_LLSC: |
| do_shadow_LLSC( &mce, |
| st->Ist.LLSC.end, |
| st->Ist.LLSC.result, |
| st->Ist.LLSC.addr, |
| st->Ist.LLSC.storedata ); |
| break; |
| |
| default: |
| VG_(printf)("\n"); |
| ppIRStmt(st); |
| VG_(printf)("\n"); |
| VG_(tool_panic)("memcheck: unhandled IRStmt"); |
| |
| } /* switch (st->tag) */ |
| |
| if (0 && verboze) { |
| for (j = first_stmt; j < sb_out->stmts_used; j++) { |
| VG_(printf)(" "); |
| ppIRStmt(sb_out->stmts[j]); |
| VG_(printf)("\n"); |
| } |
| VG_(printf)("\n"); |
| } |
| |
| /* ... and finally copy the stmt itself to the output. Except, |
| skip the copy of IRCASs; see comments on case Ist_CAS |
| above. */ |
| if (st->tag != Ist_CAS) |
| stmt('C', &mce, st); |
| } |
| |
| /* Now we need to complain if the jump target is undefined. */ |
| first_stmt = sb_out->stmts_used; |
| |
| if (verboze) { |
| VG_(printf)("sb_in->next = "); |
| ppIRExpr(sb_in->next); |
| VG_(printf)("\n\n"); |
| } |
| |
| complainIfUndefined( &mce, sb_in->next, NULL ); |
| |
| if (0 && verboze) { |
| for (j = first_stmt; j < sb_out->stmts_used; j++) { |
| VG_(printf)(" "); |
| ppIRStmt(sb_out->stmts[j]); |
| VG_(printf)("\n"); |
| } |
| VG_(printf)("\n"); |
| } |
| |
| /* If this fails, there's been some serious snafu with tmp management, |
| that should be investigated. */ |
| tl_assert( VG_(sizeXA)( mce.tmpMap ) == mce.sb->tyenv->types_used ); |
| VG_(deleteXA)( mce.tmpMap ); |
| |
| tl_assert(mce.sb == sb_out); |
| return sb_out; |
| } |
| |
| /*------------------------------------------------------------*/ |
| /*--- Post-tree-build final tidying ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* This exploits the observation that Memcheck often produces |
| repeated conditional calls of the form |
| |
| Dirty G MC_(helperc_value_check0/1/4/8_fail)(UInt otag) |
| |
| with the same guard expression G guarding the same helper call. |
| The second and subsequent calls are redundant. This usually |
| results from instrumentation of guest code containing multiple |
| memory references at different constant offsets from the same base |
| register. After optimisation of the instrumentation, you get a |
| test for the definedness of the base register for each memory |
| reference, which is kinda pointless. MC_(final_tidy) therefore |
| looks for such repeated calls and removes all but the first. */ |
| |
| /* A struct for recording which (helper, guard) pairs we have already |
| seen. */ |
| typedef |
| struct { void* entry; IRExpr* guard; } |
| Pair; |
| |
| /* Return True if e1 and e2 definitely denote the same value (used to |
| compare guards). Return False if unknown; False is the safe |
| answer. Since guest registers and guest memory do not have the |
| SSA property we must return False if any Gets or Loads appear in |
| the expression. */ |
| |
| static Bool sameIRValue ( IRExpr* e1, IRExpr* e2 ) |
| { |
| if (e1->tag != e2->tag) |
| return False; |
| switch (e1->tag) { |
| case Iex_Const: |
| return eqIRConst( e1->Iex.Const.con, e2->Iex.Const.con ); |
| case Iex_Binop: |
| return e1->Iex.Binop.op == e2->Iex.Binop.op |
| && sameIRValue(e1->Iex.Binop.arg1, e2->Iex.Binop.arg1) |
| && sameIRValue(e1->Iex.Binop.arg2, e2->Iex.Binop.arg2); |
| case Iex_Unop: |
| return e1->Iex.Unop.op == e2->Iex.Unop.op |
| && sameIRValue(e1->Iex.Unop.arg, e2->Iex.Unop.arg); |
| case Iex_RdTmp: |
| return e1->Iex.RdTmp.tmp == e2->Iex.RdTmp.tmp; |
| case Iex_ITE: |
| return sameIRValue( e1->Iex.ITE.cond, e2->Iex.ITE.cond ) |
| && sameIRValue( e1->Iex.ITE.iftrue, e2->Iex.ITE.iftrue ) |
| && sameIRValue( e1->Iex.ITE.iffalse, e2->Iex.ITE.iffalse ); |
| case Iex_Qop: |
| case Iex_Triop: |
| case Iex_CCall: |
| /* be lazy. Could define equality for these, but they never |
| appear to be used. */ |
| return False; |
| case Iex_Get: |
| case Iex_GetI: |
| case Iex_Load: |
| /* be conservative - these may not give the same value each |
| time */ |
| return False; |
| case Iex_Binder: |
| /* should never see this */ |
| /* fallthrough */ |
| default: |
| VG_(printf)("mc_translate.c: sameIRValue: unhandled: "); |
| ppIRExpr(e1); |
| VG_(tool_panic)("memcheck:sameIRValue"); |
| return False; |
| } |
| } |
| |
| /* See if 'pairs' already has an entry for (entry, guard). Return |
| True if so. If not, add an entry. */ |
| |
| static |
| Bool check_or_add ( XArray* /*of Pair*/ pairs, IRExpr* guard, void* entry ) |
| { |
| Pair p; |
| Pair* pp; |
| Int i, n = VG_(sizeXA)( pairs ); |
| for (i = 0; i < n; i++) { |
| pp = VG_(indexXA)( pairs, i ); |
| if (pp->entry == entry && sameIRValue(pp->guard, guard)) |
| return True; |
| } |
| p.guard = guard; |
| p.entry = entry; |
| VG_(addToXA)( pairs, &p ); |
| return False; |
| } |
| |
| static Bool is_helperc_value_checkN_fail ( const HChar* name ) |
| { |
| return |
| 0==VG_(strcmp)(name, "MC_(helperc_value_check0_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check1_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check4_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check8_fail_no_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check0_fail_w_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check1_fail_w_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check4_fail_w_o)") |
| || 0==VG_(strcmp)(name, "MC_(helperc_value_check8_fail_w_o)"); |
| } |
| |
| IRSB* MC_(final_tidy) ( IRSB* sb_in ) |
| { |
| Int i; |
| IRStmt* st; |
| IRDirty* di; |
| IRExpr* guard; |
| IRCallee* cee; |
| Bool alreadyPresent; |
| XArray* pairs = VG_(newXA)( VG_(malloc), "mc.ft.1", |
| VG_(free), sizeof(Pair) ); |
| /* Scan forwards through the statements. Each time a call to one |
| of the relevant helpers is seen, check if we have made a |
| previous call to the same helper using the same guard |
| expression, and if so, delete the call. */ |
| for (i = 0; i < sb_in->stmts_used; i++) { |
| st = sb_in->stmts[i]; |
| tl_assert(st); |
| if (st->tag != Ist_Dirty) |
| continue; |
| di = st->Ist.Dirty.details; |
| guard = di->guard; |
| tl_assert(guard); |
| if (0) { ppIRExpr(guard); VG_(printf)("\n"); } |
| cee = di->cee; |
| if (!is_helperc_value_checkN_fail( cee->name )) |
| continue; |
| /* Ok, we have a call to helperc_value_check0/1/4/8_fail with |
| guard 'guard'. Check if we have already seen a call to this |
| function with the same guard. If so, delete it. If not, |
| add it to the set of calls we do know about. */ |
| alreadyPresent = check_or_add( pairs, guard, cee->addr ); |
| if (alreadyPresent) { |
| sb_in->stmts[i] = IRStmt_NoOp(); |
| if (0) VG_(printf)("XX\n"); |
| } |
| } |
| VG_(deleteXA)( pairs ); |
| return sb_in; |
| } |
| |
| |
| /*------------------------------------------------------------*/ |
| /*--- Origin tracking stuff ---*/ |
| /*------------------------------------------------------------*/ |
| |
| /* Almost identical to findShadowTmpV. */ |
| static IRTemp findShadowTmpB ( MCEnv* mce, IRTemp orig ) |
| { |
| TempMapEnt* ent; |
| /* VG_(indexXA) range-checks 'orig', hence no need to check |
| here. */ |
| ent = (TempMapEnt*)VG_(indexXA)( mce->tmpMap, (Word)orig ); |
| tl_assert(ent->kind == Orig); |
| if (ent->shadowB == IRTemp_INVALID) { |
| IRTemp tmpB |
| = newTemp( mce, Ity_I32, BSh ); |
| /* newTemp may cause mce->tmpMap to resize, hence previous results |
| from VG_(indexXA) are invalid. */ |
| ent = (TempMapEnt*)VG_(indexXA)( mce->tmpMap, (Word)orig ); |
| tl_assert(ent->kind == Orig); |
| tl_assert(ent->shadowB == IRTemp_INVALID); |
| ent->shadowB = tmpB; |
| } |
| return ent->shadowB; |
| } |
| |
| static IRAtom* gen_maxU32 ( MCEnv* mce, IRAtom* b1, IRAtom* b2 ) |
| { |
| return assignNew( 'B', mce, Ity_I32, binop(Iop_Max32U, b1, b2) ); |
| } |
| |
| |
| /* Make a guarded origin load, with no special handling in the |
| didn't-happen case. A GUARD of NULL is assumed to mean "always |
| True". |
| |
| Generate IR to do a shadow origins load from BASEADDR+OFFSET and |
| return the otag. The loaded size is SZB. If GUARD evaluates to |
| False at run time then the returned otag is zero. |
| */ |
| static IRAtom* gen_guarded_load_b ( MCEnv* mce, Int szB, |
| IRAtom* baseaddr, |
| Int offset, IRExpr* guard ) |
| { |
| void* hFun; |
| const HChar* hName; |
| IRTemp bTmp; |
| IRDirty* di; |
| IRType aTy = typeOfIRExpr( mce->sb->tyenv, baseaddr ); |
| IROp opAdd = aTy == Ity_I32 ? Iop_Add32 : Iop_Add64; |
| IRAtom* ea = baseaddr; |
| if (offset != 0) { |
| IRAtom* off = aTy == Ity_I32 ? mkU32( offset ) |
| : mkU64( (Long)(Int)offset ); |
| ea = assignNew( 'B', mce, aTy, binop(opAdd, ea, off)); |
| } |
| bTmp = newTemp(mce, mce->hWordTy, BSh); |
| |
| switch (szB) { |
| case 1: hFun = (void*)&MC_(helperc_b_load1); |
| hName = "MC_(helperc_b_load1)"; |
| break; |
| case 2: hFun = (void*)&MC_(helperc_b_load2); |
| hName = "MC_(helperc_b_load2)"; |
| break; |
| case 4: hFun = (void*)&MC_(helperc_b_load4); |
| hName = "MC_(helperc_b_load4)"; |
| break; |
| case 8: hFun = (void*)&MC_(helperc_b_load8); |
| hName = "MC_(helperc_b_load8)"; |
| break; |
| case 16: hFun = (void*)&MC_(helperc_b_load16); |
| hName = "MC_(helperc_b_load16)"; |
| break; |
| case 32: hFun = (void*)&MC_(helperc_b_load32); |
| hName = "MC_(helperc_b_load32)"; |
| break; |
| default: |
| VG_(printf)("mc_translate.c: gen_load_b: unhandled szB == %d\n", szB); |
| tl_assert(0); |
| } |
| di = unsafeIRDirty_1_N( |
| bTmp, 1/*regparms*/, hName, VG_(fnptr_to_fnentry)( hFun ), |
| mkIRExprVec_1( ea ) |
| ); |
| if (guard) { |
| di->guard = guard; |
| /* Ideally the didn't-happen return value here would be |
| all-zeroes (unknown-origin), so it'd be harmless if it got |
| used inadvertantly. We slum it out with the IR-mandated |
| default value (0b01 repeating, 0x55 etc) as that'll probably |
| trump all legitimate otags via Max32, and it's pretty |
| obviously bogus. */ |
| } |
| /* no need to mess with any annotations. This call accesses |
| neither guest state nor guest memory. */ |
| stmt( 'B', mce, IRStmt_Dirty(di) ); |
| if (mce->hWordTy == Ity_I64) { |
| /* 64-bit host */ |
| IRTemp bTmp32 = newTemp(mce, Ity_I32, BSh); |
| assign( 'B', mce, bTmp32, unop(Iop_64to32, mkexpr(bTmp)) ); |
| return mkexpr(bTmp32); |
| } else { |
| /* 32-bit host */ |
| return mkexpr(bTmp); |
| } |
| } |
| |
| |
| /* Generate IR to do a shadow origins load from BASEADDR+OFFSET. The |
| loaded size is SZB. The load is regarded as unconditional (always |
| happens). |
| */ |
| static IRAtom* gen_load_b ( MCEnv* mce, Int szB, IRAtom* baseaddr, |
| Int offset ) |
| { |
| return gen_guarded_load_b(mce, szB, baseaddr, offset, NULL/*guard*/); |
| } |
| |
| |
| /* The most general handler for guarded origin loads. A GUARD of NULL |
| is assumed to mean "always True". |
| |
| Generate IR to do a shadow origin load from ADDR+BIAS and return |
| the B bits. The loaded type is TY. If GUARD evaluates to False at |
| run time then the returned B bits are simply BALT instead. |
| */ |
| static |
| IRAtom* expr2ori_Load_guarded_General ( MCEnv* mce, |
| IRType ty, |
| IRAtom* addr, UInt bias, |
| IRAtom* guard, IRAtom* balt ) |
| { |
| /* If the guard evaluates to True, this will hold the loaded |
| origin. If the guard evaluates to False, this will be zero, |
| meaning "unknown origin", in which case we will have to replace |
| it using an ITE below. */ |
| IRAtom* iftrue |
| = assignNew('B', mce, Ity_I32, |
| gen_guarded_load_b(mce, sizeofIRType(ty), |
| addr, bias, guard)); |
| /* These are the bits we will return if the load doesn't take |
| place. */ |
| IRAtom* iffalse |
| = balt; |
| /* Prepare the cond for the ITE. Convert a NULL cond into |
| something that iropt knows how to fold out later. */ |
| IRAtom* cond |
| = guard == NULL ? mkU1(1) : guard; |
| /* And assemble the final result. */ |
| return assignNew('B', mce, Ity_I32, IRExpr_ITE(cond, iftrue, iffalse)); |
| } |
| |
| |
| /* Generate a shadow origins store. guard :: Ity_I1 controls whether |
| the store really happens; NULL means it unconditionally does. */ |
| static void gen_store_b ( MCEnv* mce, Int szB, |
| IRAtom* baseaddr, Int offset, IRAtom* dataB, |
| IRAtom* guard ) |
| { |
| void* hFun; |
| const HChar* hName; |
| IRDirty* di; |
| IRType aTy = typeOfIRExpr( mce->sb->tyenv, baseaddr ); |
| IROp opAdd = aTy == Ity_I32 ? Iop_Add32 : Iop_Add64; |
| IRAtom* ea = baseaddr; |
| if (guard) { |
| tl_assert(isOriginalAtom(mce, guard)); |
| tl_assert(typeOfIRExpr(mce->sb->tyenv, guard) == Ity_I1); |
| } |
| if (offset != 0) { |
| IRAtom* off = aTy == Ity_I32 ? mkU32( offset ) |
| : mkU64( (Long)(Int)offset ); |
| ea = assignNew( 'B', mce, aTy, binop(opAdd, ea, off)); |
| } |
| if (mce->hWordTy == Ity_I64) |
| dataB = assignNew( 'B', mce, Ity_I64, unop(Iop_32Uto64, dataB)); |
| |
| switch (szB) { |
| case 1: hFun = (void*)&MC_(helperc_b_store1); |
| hName = "MC_(helperc_b_store1)"; |
| break; |
| case 2: hFun = (void*)&MC_(helperc_b_store2); |
| hName = "MC_(helperc_b_store2)"; |
| break; |
| case 4: hFun = (void*)&MC_(helperc_b_store4); |
| hName = "MC_(helperc_b_store4)"; |
| break; |
| case 8: hFun = (void*)&MC_(helperc_b_store8); |
| hName = "MC_(helperc_b_store8)"; |
| break; |
| case 16: hFun = (void*)&MC_(helperc_b_store16); |
| hName = "MC_(helperc_b_store16)"; |
| break; |
| case 32: hFun = (void*)&MC_(helperc_b_store32); |
| hName = "MC_(helperc_b_store32)"; |
| break; |
| default: |
| tl_assert(0); |
| } |
| di = unsafeIRDirty_0_N( 2/*regparms*/, |
| hName, VG_(fnptr_to_fnentry)( hFun ), |
| mkIRExprVec_2( ea, dataB ) |
| ); |
| /* no need to mess with any annotations. This call accesses |
| neither guest state nor guest memory. */ |
| if (guard) di->guard = guard; |
| stmt( 'B', mce, IRStmt_Dirty(di) ); |
| } |
| |
| static IRAtom* narrowTo32 ( MCEnv* mce, IRAtom* e ) { |
| IRType eTy = typeOfIRExpr(mce->sb->tyenv, e); |
| if (eTy == Ity_I64) |
| return assignNew( 'B', mce, Ity_I32, unop(Iop_64to32, e) ); |
| if (eTy == Ity_I32) |
| return e; |
| tl_assert(0); |
| } |
| |
| static IRAtom* zWidenFrom32 ( MCEnv* mce, IRType dstTy, IRAtom* e ) { |
| IRType eTy = typeOfIRExpr(mce->sb->tyenv, e); |
| tl_assert(eTy == Ity_I32); |
| if (dstTy == Ity_I64) |
| return assignNew( 'B', mce, Ity_I64, unop(Iop_32Uto64, e) ); |
| tl_assert(0); |
| } |
| |
| |
| static IRAtom* schemeE ( MCEnv* mce, IRExpr* e ) |
| { |
| tl_assert(MC_(clo_mc_level) == 3); |
| |
| switch (e->tag) { |
| |
| case Iex_GetI: { |
| IRRegArray* descr_b; |
| IRAtom *t1, *t2, *t3, *t4; |
| IRRegArray* descr = e->Iex.GetI.descr; |
| IRType equivIntTy |
| = MC_(get_otrack_reg_array_equiv_int_type)(descr); |
| /* If this array is unshadowable for whatever reason, use the |
| usual approximation. */ |
| if (equivIntTy == Ity_INVALID) |
| return mkU32(0); |
| tl_assert(sizeofIRType(equivIntTy) >= 4); |
| tl_assert(sizeofIRType(equivIntTy) == sizeofIRType(descr->elemTy)); |
| descr_b = mkIRRegArray( descr->base + 2*mce->layout->total_sizeB, |
| equivIntTy, descr->nElems ); |
| /* Do a shadow indexed get of the same size, giving t1. Take |
| the bottom 32 bits of it, giving t2. Compute into t3 the |
| origin for the index (almost certainly zero, but there's |
| no harm in being completely general here, since iropt will |
| remove any useless code), and fold it in, giving a final |
| value t4. */ |
| t1 = assignNew( 'B', mce, equivIntTy, |
| IRExpr_GetI( descr_b, e->Iex.GetI.ix, |
| e->Iex.GetI.bias )); |
| t2 = narrowTo32( mce, t1 ); |
| t3 = schemeE( mce, e->Iex.GetI.ix ); |
| t4 = gen_maxU32( mce, t2, t3 ); |
| return t4; |
| } |
| case Iex_CCall: { |
| Int i; |
| IRAtom* here; |
| IRExpr** args = e->Iex.CCall.args; |
| IRAtom* curr = mkU32(0); |
| for (i = 0; args[i]; i++) { |
| tl_assert(i < 32); |
| tl_assert(isOriginalAtom(mce, args[i])); |
| /* Only take notice of this arg if the callee's |
| mc-exclusion mask does not say it is to be excluded. */ |
| if (e->Iex.CCall.cee->mcx_mask & (1<<i)) { |
| /* the arg is to be excluded from definedness checking. |
| Do nothing. */ |
| if (0) VG_(printf)("excluding %s(%d)\n", |
| e->Iex.CCall.cee->name, i); |
| } else { |
| /* calculate the arg's definedness, and pessimistically |
| merge it in. */ |
| here = schemeE( mce, args[i] ); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| } |
| return curr; |
| } |
| case Iex_Load: { |
| Int dszB; |
| dszB = sizeofIRType(e->Iex.Load.ty); |
| /* assert that the B value for the address is already |
| available (somewhere) */ |
| tl_assert(isIRAtom(e->Iex.Load.addr)); |
| tl_assert(mce->hWordTy == Ity_I32 || mce->hWordTy == Ity_I64); |
| return gen_load_b( mce, dszB, e->Iex.Load.addr, 0 ); |
| } |
| case Iex_ITE: { |
| IRAtom* b1 = schemeE( mce, e->Iex.ITE.cond ); |
| IRAtom* b3 = schemeE( mce, e->Iex.ITE.iftrue ); |
| IRAtom* b2 = schemeE( mce, e->Iex.ITE.iffalse ); |
| return gen_maxU32( mce, b1, gen_maxU32( mce, b2, b3 )); |
| } |
| case Iex_Qop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Qop.details->arg1 ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Qop.details->arg2 ); |
| IRAtom* b3 = schemeE( mce, e->Iex.Qop.details->arg3 ); |
| IRAtom* b4 = schemeE( mce, e->Iex.Qop.details->arg4 ); |
| return gen_maxU32( mce, gen_maxU32( mce, b1, b2 ), |
| gen_maxU32( mce, b3, b4 ) ); |
| } |
| case Iex_Triop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Triop.details->arg1 ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Triop.details->arg2 ); |
| IRAtom* b3 = schemeE( mce, e->Iex.Triop.details->arg3 ); |
| return gen_maxU32( mce, b1, gen_maxU32( mce, b2, b3 ) ); |
| } |
| case Iex_Binop: { |
| switch (e->Iex.Binop.op) { |
| case Iop_CasCmpEQ8: case Iop_CasCmpNE8: |
| case Iop_CasCmpEQ16: case Iop_CasCmpNE16: |
| case Iop_CasCmpEQ32: case Iop_CasCmpNE32: |
| case Iop_CasCmpEQ64: case Iop_CasCmpNE64: |
| /* Just say these all produce a defined result, |
| regardless of their arguments. See |
| COMMENT_ON_CasCmpEQ in this file. */ |
| return mkU32(0); |
| default: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Binop.arg1 ); |
| IRAtom* b2 = schemeE( mce, e->Iex.Binop.arg2 ); |
| return gen_maxU32( mce, b1, b2 ); |
| } |
| } |
| tl_assert(0); |
| /*NOTREACHED*/ |
| } |
| case Iex_Unop: { |
| IRAtom* b1 = schemeE( mce, e->Iex.Unop.arg ); |
| return b1; |
| } |
| case Iex_Const: |
| return mkU32(0); |
| case Iex_RdTmp: |
| return mkexpr( findShadowTmpB( mce, e->Iex.RdTmp.tmp )); |
| case Iex_Get: { |
| Int b_offset = MC_(get_otrack_shadow_offset)( |
| e->Iex.Get.offset, |
| sizeofIRType(e->Iex.Get.ty) |
| ); |
| tl_assert(b_offset >= -1 |
| && b_offset <= mce->layout->total_sizeB -4); |
| if (b_offset >= 0) { |
| /* FIXME: this isn't an atom! */ |
| return IRExpr_Get( b_offset + 2*mce->layout->total_sizeB, |
| Ity_I32 ); |
| } |
| return mkU32(0); |
| } |
| default: |
| VG_(printf)("mc_translate.c: schemeE: unhandled: "); |
| ppIRExpr(e); |
| VG_(tool_panic)("memcheck:schemeE"); |
| } |
| } |
| |
| |
| static void do_origins_Dirty ( MCEnv* mce, IRDirty* d ) |
| { |
| // This is a hacked version of do_shadow_Dirty |
| Int i, k, n, toDo, gSz, gOff; |
| IRAtom *here, *curr; |
| IRTemp dst; |
| |
| /* First check the guard. */ |
| curr = schemeE( mce, d->guard ); |
| |
| /* Now round up all inputs and maxU32 over them. */ |
| |
| /* Inputs: unmasked args |
| Note: arguments are evaluated REGARDLESS of the guard expression */ |
| for (i = 0; d->args[i]; i++) { |
| IRAtom* arg = d->args[i]; |
| if ( (d->cee->mcx_mask & (1<<i)) |
| || UNLIKELY(is_IRExpr_VECRET_or_BBPTR(arg)) ) { |
| /* ignore this arg */ |
| } else { |
| here = schemeE( mce, arg ); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| } |
| |
| /* Inputs: guest state that we read. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Write) |
| continue; |
| |
| /* Enumerate the described state segments */ |
| for (k = 0; k < 1 + d->fxState[i].nRepeats; k++) { |
| gOff = d->fxState[i].offset + k * d->fxState[i].repeatLen; |
| gSz = d->fxState[i].size; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, gOff, gSz)) { |
| if (0) |
| VG_(printf)("memcheck: Dirty gst: ignored off %d, sz %d\n", |
| gOff, gSz); |
| continue; |
| } |
| |
| /* This state element is read or modified. So we need to |
| consider it. If larger than 4 bytes, deal with it in |
| 4-byte chunks. */ |
| while (True) { |
| Int b_offset; |
| tl_assert(gSz >= 0); |
| if (gSz == 0) break; |
| n = gSz <= 4 ? gSz : 4; |
| /* update 'curr' with maxU32 of the state slice |
| gOff .. gOff+n-1 */ |
| b_offset = MC_(get_otrack_shadow_offset)(gOff, 4); |
| if (b_offset != -1) { |
| /* Observe the guard expression. If it is false use 0, i.e. |
| nothing is known about the origin */ |
| IRAtom *cond, *iffalse, *iftrue; |
| |
| cond = assignNew( 'B', mce, Ity_I1, d->guard); |
| iffalse = mkU32(0); |
| iftrue = assignNew( 'B', mce, Ity_I32, |
| IRExpr_Get(b_offset |
| + 2*mce->layout->total_sizeB, |
| Ity_I32)); |
| here = assignNew( 'B', mce, Ity_I32, |
| IRExpr_ITE(cond, iftrue, iffalse)); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| gSz -= n; |
| gOff += n; |
| } |
| } |
| } |
| |
| /* Inputs: memory */ |
| |
| if (d->mFx != Ifx_None) { |
| /* Because we may do multiple shadow loads/stores from the same |
| base address, it's best to do a single test of its |
| definedness right now. Post-instrumentation optimisation |
| should remove all but this test. */ |
| tl_assert(d->mAddr); |
| here = schemeE( mce, d->mAddr ); |
| curr = gen_maxU32( mce, curr, here ); |
| } |
| |
| /* Deal with memory inputs (reads or modifies) */ |
| if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks. We don't care about the endianness |
| since it's all going to be condensed down to a single bit, |
| but nevertheless choose an endianness which is hopefully |
| native to the platform. */ |
| while (toDo >= 4) { |
| here = gen_guarded_load_b( mce, 4, d->mAddr, d->mSize - toDo, |
| d->guard ); |
| curr = gen_maxU32( mce, curr, here ); |
| toDo -= 4; |
| } |
| /* handle possible 16-bit excess */ |
| while (toDo >= 2) { |
| here = gen_guarded_load_b( mce, 2, d->mAddr, d->mSize - toDo, |
| d->guard ); |
| curr = gen_maxU32( mce, curr, here ); |
| toDo -= 2; |
| } |
| /* chew off the remaining 8-bit chunk, if any */ |
| if (toDo == 1) { |
| here = gen_guarded_load_b( mce, 1, d->mAddr, d->mSize - toDo, |
| d->guard ); |
| curr = gen_maxU32( mce, curr, here ); |
| toDo -= 1; |
| } |
| tl_assert(toDo == 0); |
| } |
| |
| /* Whew! So curr is a 32-bit B-value which should give an origin |
| of some use if any of the inputs to the helper are undefined. |
| Now we need to re-distribute the results to all destinations. */ |
| |
| /* Outputs: the destination temporary, if there is one. */ |
| if (d->tmp != IRTemp_INVALID) { |
| dst = findShadowTmpB(mce, d->tmp); |
| assign( 'V', mce, dst, curr ); |
| } |
| |
| /* Outputs: guest state that we write or modify. */ |
| for (i = 0; i < d->nFxState; i++) { |
| tl_assert(d->fxState[i].fx != Ifx_None); |
| if (d->fxState[i].fx == Ifx_Read) |
| continue; |
| |
| /* Enumerate the described state segments */ |
| for (k = 0; k < 1 + d->fxState[i].nRepeats; k++) { |
| gOff = d->fxState[i].offset + k * d->fxState[i].repeatLen; |
| gSz = d->fxState[i].size; |
| |
| /* Ignore any sections marked as 'always defined'. */ |
| if (isAlwaysDefd(mce, gOff, gSz)) |
| continue; |
| |
| /* This state element is written or modified. So we need to |
| consider it. If larger than 4 bytes, deal with it in |
| 4-byte chunks. */ |
| while (True) { |
| Int b_offset; |
| tl_assert(gSz >= 0); |
| if (gSz == 0) break; |
| n = gSz <= 4 ? gSz : 4; |
| /* Write 'curr' to the state slice gOff .. gOff+n-1 */ |
| b_offset = MC_(get_otrack_shadow_offset)(gOff, 4); |
| if (b_offset != -1) { |
| |
| /* If the guard expression evaluates to false we simply Put |
| the value that is already stored in the guest state slot */ |
| IRAtom *cond, *iffalse; |
| |
| cond = assignNew('B', mce, Ity_I1, |
| d->guard); |
| iffalse = assignNew('B', mce, Ity_I32, |
| IRExpr_Get(b_offset + |
| 2*mce->layout->total_sizeB, |
| Ity_I32)); |
| curr = assignNew('V', mce, Ity_I32, |
| IRExpr_ITE(cond, curr, iffalse)); |
| |
| stmt( 'B', mce, IRStmt_Put(b_offset |
| + 2*mce->layout->total_sizeB, |
| curr )); |
| } |
| gSz -= n; |
| gOff += n; |
| } |
| } |
| } |
| |
| /* Outputs: memory that we write or modify. Same comments about |
| endianness as above apply. */ |
| if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify) { |
| toDo = d->mSize; |
| /* chew off 32-bit chunks */ |
| while (toDo >= 4) { |
| gen_store_b( mce, 4, d->mAddr, d->mSize - toDo, curr, |
| d->guard ); |
| toDo -= 4; |
| } |
| /* handle possible 16-bit excess */ |
| while (toDo >= 2) { |
| gen_store_b( mce, 2, d->mAddr, d->mSize - toDo, curr, |
| d->guard ); |
| toDo -= 2; |
| } |
| /* chew off the remaining 8-bit chunk, if any */ |
| if (toDo == 1) { |
| gen_store_b( mce, 1, d->mAddr, d->mSize - toDo, curr, |
| d->guard ); |
| toDo -= 1; |
| } |
| tl_assert(toDo == 0); |
| } |
| } |
| |
| |
| /* Generate IR for origin shadowing for a general guarded store. */ |
| static void do_origins_Store_guarded ( MCEnv* mce, |
| IREndness stEnd, |
| IRExpr* stAddr, |
| IRExpr* stData, |
| IRExpr* guard ) |
| { |
| Int dszB; |
| IRAtom* dataB; |
| /* assert that the B value for the address is already available |
| (somewhere), since the call to schemeE will want to see it. |
| XXXX how does this actually ensure that?? */ |
| tl_assert(isIRAtom(stAddr)); |
| tl_assert(isIRAtom(stData)); |
| dszB = sizeofIRType( typeOfIRExpr(mce->sb->tyenv, stData ) ); |
| dataB = schemeE( mce, stData ); |
| gen_store_b( mce, dszB, stAddr, 0/*offset*/, dataB, guard ); |
| } |
| |
| |
| /* Generate IR for origin shadowing for a plain store. */ |
| static void do_origins_Store_plain ( MCEnv* mce, |
| IREndness stEnd, |
| IRExpr* stAddr, |
| IRExpr* stData ) |
| { |
| do_origins_Store_guarded ( mce, stEnd, stAddr, stData, |
| NULL/*guard*/ ); |
| } |
| |
| |
| /* ---- Dealing with LoadG/StoreG (not entirely simple) ---- */ |
| |
| static void do_origins_StoreG ( MCEnv* mce, IRStoreG* sg ) |
| { |
| do_origins_Store_guarded( mce, sg->end, sg->addr, |
| sg->data, sg->guard ); |
| } |
| |
| static void do_origins_LoadG ( MCEnv* mce, IRLoadG* lg ) |
| { |
| IRType loadedTy = Ity_INVALID; |
| switch (lg->cvt) { |
| case ILGop_Ident32: loadedTy = Ity_I32; break; |
| case ILGop_16Uto32: loadedTy = Ity_I16; break; |
| case ILGop_16Sto32: loadedTy = Ity_I16; break; |
| case ILGop_8Uto32: loadedTy = Ity_I8; break; |
| case ILGop_8Sto32: loadedTy = Ity_I8; break; |
| default: VG_(tool_panic)("schemeS.IRLoadG"); |
| } |
| IRAtom* ori_alt |
| = schemeE( mce,lg->alt ); |
| IRAtom* ori_final |
| = expr2ori_Load_guarded_General(mce, loadedTy, |
| lg->addr, 0/*addr bias*/, |
| lg->guard, ori_alt ); |
| /* And finally, bind the origin to the destination temporary. */ |
| assign( 'B', mce, findShadowTmpB(mce, lg->dst), ori_final ); |
| } |
| |
| |
| static void schemeS ( MCEnv* mce, IRStmt* st ) |
| { |
| tl_assert(MC_(clo_mc_level) == 3); |
| |
| switch (st->tag) { |
| |
| case Ist_AbiHint: |
| /* The value-check instrumenter handles this - by arranging |
| to pass the address of the next instruction to |
| MC_(helperc_MAKE_STACK_UNINIT). This is all that needs to |
| happen for origin tracking w.r.t. AbiHints. So there is |
| nothing to do here. */ |
| break; |
| |
| case Ist_PutI: { |
| IRPutI *puti = st->Ist.PutI.details; |
| IRRegArray* descr_b; |
| IRAtom *t1, *t2, *t3, *t4; |
| IRRegArray* descr = puti->descr; |
| IRType equivIntTy |
| = MC_(get_otrack_reg_array_equiv_int_type)(descr); |
| /* If this array is unshadowable for whatever reason, |
| generate no code. */ |
| if (equivIntTy == Ity_INVALID) |
| break; |
| tl_assert(sizeofIRType(equivIntTy) >= 4); |
| tl_assert(sizeofIRType(equivIntTy) == sizeofIRType(descr->elemTy)); |
| descr_b |
| = mkIRRegArray( descr->base + 2*mce->layout->total_sizeB, |
| equivIntTy, descr->nElems ); |
| /* Compute a value to Put - the conjoinment of the origin for |
| the data to be Put-ted (obviously) and of the index value |
| (not so obviously). */ |
| t1 = schemeE( mce, puti->data ); |
| t2 = schemeE( mce, puti->ix ); |
| t3 = gen_maxU32( mce, t1, t2 ); |
| t4 = zWidenFrom32( mce, equivIntTy, t3 ); |
| stmt( 'B', mce, IRStmt_PutI( mkIRPutI(descr_b, puti->ix, |
| puti->bias, t4) )); |
| break; |
| } |
| |
| case Ist_Dirty: |
| do_origins_Dirty( mce, st->Ist.Dirty.details ); |
| break; |
| |
| case Ist_Store: |
| do_origins_Store_plain( mce, st->Ist.Store.end, |
| st->Ist.Store.addr, |
| st->Ist.Store.data ); |
| break; |
| |
| case Ist_StoreG: |
| do_origins_StoreG( mce, st->Ist.StoreG.details ); |
| break; |
| |
| case Ist_LoadG: |
| do_origins_LoadG( mce, st->Ist.LoadG.details ); |
| break; |
| |
| case Ist_LLSC: { |
| /* In short: treat a load-linked like a normal load followed |
| by an assignment of the loaded (shadow) data the result |
| temporary. Treat a store-conditional like a normal store, |
| and mark the result temporary as defined. */ |
| if (st->Ist.LLSC.storedata == NULL) { |
| /* Load Linked */ |
| IRType resTy |
| = typeOfIRTemp(mce->sb->tyenv, st->Ist.LLSC.result); |
| IRExpr* vanillaLoad |
| = IRExpr_Load(st->Ist.LLSC.end, resTy, st->Ist.LLSC.addr); |
| tl_assert(resTy == Ity_I64 || resTy == Ity_I32 |
| || resTy == Ity_I16 || resTy == Ity_I8); |
| assign( 'B', mce, findShadowTmpB(mce, st->Ist.LLSC.result), |
| schemeE(mce, vanillaLoad)); |
| } else { |
| /* Store conditional */ |
| do_origins_Store_plain( mce, st->Ist.LLSC.end, |
| st->Ist.LLSC.addr, |
| st->Ist.LLSC.storedata ); |
| /* For the rationale behind this, see comments at the |
| place where the V-shadow for .result is constructed, in |
| do_shadow_LLSC. In short, we regard .result as |
| always-defined. */ |
| assign( 'B', mce, findShadowTmpB(mce, st->Ist.LLSC.result), |
| mkU32(0) ); |
| } |
| break; |
| } |
| |
| case Ist_Put: { |
| Int b_offset |
| = MC_(get_otrack_shadow_offset)( |
| st->Ist.Put.offset, |
| sizeofIRType(typeOfIRExpr(mce->sb->tyenv, st->Ist.Put.data)) |
| ); |
| if (b_offset >= 0) { |
| /* FIXME: this isn't an atom! */ |
| stmt( 'B', mce, IRStmt_Put(b_offset + 2*mce->layout->total_sizeB, |
| schemeE( mce, st->Ist.Put.data )) ); |
| } |
| break; |
| } |
| |
| case Ist_WrTmp: |
| assign( 'B', mce, findShadowTmpB(mce, st->Ist.WrTmp.tmp), |
| schemeE(mce, st->Ist.WrTmp.data) ); |
| break; |
| |
| case Ist_MBE: |
| case Ist_NoOp: |
| case Ist_Exit: |
| case Ist_IMark: |
| break; |
| |
| default: |
| VG_(printf)("mc_translate.c: schemeS: unhandled: "); |
| ppIRStmt(st); |
| VG_(tool_panic)("memcheck:schemeS"); |
| } |
| } |
| |
| |
| /*--------------------------------------------------------------------*/ |
| /*--- end mc_translate.c ---*/ |
| /*--------------------------------------------------------------------*/ |