blob: 1b9ff1fcedcd0ed1bf140bfc61a9eb32dff6bf8c [file] [log] [blame]
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pub_core_basics.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
// I need this to avoid some signedness warnings, not sure why
// #define Char char
// jrs 19 Aug 2005: m_oset.c relies on Char being a signed char.
// It appears that plain 'char' on ppc32 is unsigned and so the
// above #define screws up the AVL tree balancing logic and
// leads to segfaults. Commenting it out and using the standard
// definition of Char from pub_core_basics.h seems a good solution
// as that has the same signedness on all platforms.
// Crudely redirect various VG_(foo)() functions to their libc equivalents.
#undef vg_assert
#define vg_assert(e) assert(e)
#undef vg_assert2
#define vg_assert2(e, fmt, args...) assert(e)
#define vgPlain_printf printf
#define vgPlain_memset memset
#define vgPlain_memcpy memcpy
#define vgPlain_random random
#include "coregrind/m_oset.c"
#define NN 1000 // Size of OSets being created
//---------------------------------------------------------------------------
// Int example
//---------------------------------------------------------------------------
// This example shows that an element can be a single value (in this case an
// Int), in which case the element is also the key.
__attribute__((unused))
static Char *intToStr(void *p)
{
static char buf[16];
sprintf(buf, "%d", *(Int*)p);
return buf;
}
__attribute__((unused))
static Int intCmp(void* vkey, void* velem)
{
return *(Int*)vkey - *(Int*)velem;
}
void example1(void)
{
Int i, v, n, prev;
Int* vs[NN];
Int *pv;
// Create a static OSet of Ints. This one uses fast (built-in)
// comparisons.
OSet* oset1 = VG_(OSet_Create)(0,
NULL,
(void*)malloc, free);
// Try some operations on an empty OSet to ensure they don't screw up.
vg_assert( ! VG_(OSet_Contains)(oset1, &v) );
vg_assert( ! VG_(OSet_Lookup)(oset1, &v) );
vg_assert( ! VG_(OSet_Remove)(oset1, &v) );
vg_assert( ! VG_(OSet_Next)(oset1) );
vg_assert( 0 == VG_(OSet_Size)(oset1) );
// Create some elements, with gaps (they're all even) but no dups,
// and shuffle them randomly.
for (i = 0; i < NN; i++) {
vs[i] = VG_(OSet_AllocNode)(oset1, sizeof(Int));
*(vs[i]) = 2*i;
}
for (i = 0; i < NN; i++) {
Int r1 = random() % NN;
Int r2 = random() % NN;
Int* tmp= vs[r1];
vs[r1] = vs[r2];
vs[r2] = tmp;
}
// Insert the elements
for (i = 0; i < NN; i++) {
VG_(OSet_Insert)(oset1, vs[i]);
}
// Check the size
vg_assert( NN == VG_(OSet_Size)(oset1) );
// Check we can find all the elements we inserted
for (i = 0; i < NN; i++) {
assert( VG_(OSet_Contains)(oset1, vs[i]) );
}
// Check we cannot find elements we did not insert, below, within (odd
// numbers), and above the inserted elements.
v = -1;
assert( ! VG_(OSet_Contains)(oset1, &v) );
for (i = 0; i < NN; i++) {
v = *(vs[i]) + 1;
assert( ! VG_(OSet_Contains)(oset1, &v) );
}
v = NN*2;
assert( ! VG_(OSet_Contains)(oset1, &v) );
// Check we can find all the elements we inserted, and the right values
// are returned.
for (i = 0; i < NN; i++) {
assert( vs[i] == VG_(OSet_Lookup)(oset1, vs[i]) );
}
// Check that we can iterate over the OSet elements in sorted order, and
// there is the right number of them.
n = 0;
pv = NULL;
prev = -1;
VG_(OSet_ResetIter)(oset1);
while ( (pv = VG_(OSet_Next)(oset1)) ) {
Int curr = *pv;
assert(prev < curr);
prev = curr;
n++;
}
assert(NN == n);
vg_assert( ! VG_(OSet_Next)(oset1) );
vg_assert( ! VG_(OSet_Next)(oset1) );
// Check that we can remove half of the elements, and that their values
// are as expected.
for (i = 0; i < NN; i += 2) {
assert( pv = VG_(OSet_Remove)(oset1, vs[i]) );
assert( pv == vs[i] );
}
// Check the size
vg_assert( NN/2 == VG_(OSet_Size)(oset1) );
// Check we can find the remaining elements (with the right values).
for (i = 1; i < NN; i += 2) {
assert( pv = VG_(OSet_LookupWithCmp)(oset1, vs[i], NULL) );
assert( pv == vs[i] );
}
// Check we cannot find any of the elements we removed.
for (i = 0; i < NN; i += 2) {
assert( ! VG_(OSet_Contains)(oset1, vs[i]) );
}
// Check that we can remove the remaining half of the elements, and that
// their values are as expected.
for (i = 1; i < NN; i += 2) {
assert( pv = VG_(OSet_Remove)(oset1, vs[i]) );
assert( pv == vs[i] );
}
// Try some more operations on the empty OSet to ensure they don't screw up.
vg_assert( ! VG_(OSet_Contains)(oset1, &v) );
vg_assert( ! VG_(OSet_Lookup)(oset1, &v) );
vg_assert( ! VG_(OSet_Remove)(oset1, &v) );
vg_assert( ! VG_(OSet_Next)(oset1) );
vg_assert( 0 == VG_(OSet_Size)(oset1) );
// Free a few elements
VG_(OSet_FreeNode)(oset1, vs[0]);
VG_(OSet_FreeNode)(oset1, vs[1]);
VG_(OSet_FreeNode)(oset1, vs[2]);
// Re-insert remaining elements, to give OSet_Destroy something to work with.
for (i = 3; i < NN; i++) {
VG_(OSet_Insert)(oset1, vs[i]);
}
// Print the list
OSet_Print(oset1, "foo", intToStr);
// Destroy the OSet
VG_(OSet_Destroy)(oset1);
}
//---------------------------------------------------------------------------
// Struct example
//---------------------------------------------------------------------------
// This element shows that a key can be in the middle of the element, and
// be of arbitrary size and even span multiple (contiguous) fields. It
// also demonstrates how an OSet can be used to implement a list of
// non-overlapping intervals.
typedef struct {
Int b1;
Addr first;
Addr last;
Int b2;
}
Block;
__attribute__((unused))
static Char *blockToStr(void *p)
{
static char buf[32];
Block* b = (Block*)p;
sprintf(buf, "<(%d) %lu..%lu (%d)>", b->b1, b->first, b->last, b->b2);
return buf;
}
static Int blockCmp(void* vkey, void* velem)
{
Addr key = *(Addr*)vkey;
Block* elem = (Block*)velem;
assert(elem->first <= elem->last);
if (key < elem->first) return -1;
if (key > elem->last) return 1;
return 0;
}
void example2(void)
{
Int i, n;
Addr a;
Block* vs[NN];
Block v, prev;
Block *pv;
// Create a dynamic OSet of Blocks. This one uses slow (custom)
// comparisons.
OSet* oset2 = VG_(OSet_Create)(offsetof(Block, first),
blockCmp,
(void*)malloc, free);
// Try some operations on an empty OSet to ensure they don't screw up.
vg_assert( ! VG_(OSet_Contains)(oset2, &v) );
vg_assert( ! VG_(OSet_Lookup)(oset2, &v) );
vg_assert( ! VG_(OSet_Remove)(oset2, &v) );
vg_assert( ! VG_(OSet_Next)(oset2) );
vg_assert( 0 == VG_(OSet_Size)(oset2) );
// Create some inputs, with gaps -- intervals are 1..3, 11..13, ... -- but
// no dups, and shuffle them randomly.
for (i = 0; i < NN; i++) {
vs[i] = VG_(OSet_AllocNode)(oset2, sizeof(Block));
vs[i]->b1 = i;
vs[i]->first = i*10 + 1;
vs[i]->last = vs[i]->first + 2;
vs[i]->b2 = i+1;
}
for (i = 0; i < NN; i++) {
Int r1 = random() % NN;
Int r2 = random() % NN;
Block* tmp = vs[r1];
vs[r1] = vs[r2];
vs[r2] = tmp;
}
// Insert the elements
for (i = 0; i < NN; i++) {
VG_(OSet_Insert)(oset2, vs[i]);
}
// Check the size
vg_assert( NN == VG_(OSet_Size)(oset2) );
// Check we can find all the elements we inserted, within the full range
// of each Block.
for (i = 0; i < NN; i++) {
a = vs[i]->first + 0; assert( VG_(OSet_Contains)(oset2, &a) );
a = vs[i]->first + 1; assert( VG_(OSet_Contains)(oset2, &a) );
a = vs[i]->first + 2; assert( VG_(OSet_Contains)(oset2, &a) );
}
// Check we cannot find elements we did not insert, below and above the
// ranges of the inserted elements.
a = 0;
assert( ! VG_(OSet_Contains)(oset2, &a) );
for (i = 0; i < NN; i++) {
a = vs[i]->first - 1; assert( ! VG_(OSet_Contains)(oset2, &a) );
a = vs[i]->first + 3; assert( ! VG_(OSet_Contains)(oset2, &a) );
}
// Check we can find all the elements we inserted, and the right values
// are returned.
for (i = 0; i < NN; i++) {
a = vs[i]->first + 0; assert( vs[i] == VG_(OSet_Lookup)(oset2, &a) );
a = vs[i]->first + 1; assert( vs[i] == VG_(OSet_Lookup)(oset2, &a) );
a = vs[i]->first + 2; assert( vs[i] == VG_(OSet_Lookup)(oset2, &a) );
assert( vs[i] == VG_(OSet_LookupWithCmp)(oset2, &a, blockCmp) );
}
// Check that we can iterate over the OSet elements in sorted order, and
// there is the right number of them.
n = 0;
pv = NULL;
prev.last = 0;
VG_(OSet_ResetIter)(oset2);
while ( (pv = VG_(OSet_Next)(oset2)) ) {
Block curr = *pv;
assert(prev.last < curr.first);
prev = curr;
n++;
}
assert(NN == n);
vg_assert( ! VG_(OSet_Next)(oset2) );
vg_assert( ! VG_(OSet_Next)(oset2) );
// Check that we can remove half of the elements, and that their values
// are as expected.
for (i = 0; i < NN; i += 2) {
a = vs[i]->first; assert( vs[i] == VG_(OSet_Remove)(oset2, &a) );
}
// Check the size
vg_assert( NN/2 == VG_(OSet_Size)(oset2) );
// Check we can find the remaining elements (with the right values).
for (i = 1; i < NN; i += 2) {
a = vs[i]->first + 0; assert( vs[i] == VG_(OSet_Lookup)(oset2, &a) );
a = vs[i]->first + 1; assert( vs[i] == VG_(OSet_Lookup)(oset2, &a) );
a = vs[i]->first + 2; assert( vs[i] == VG_(OSet_Lookup)(oset2, &a) );
}
// Check we cannot find any of the elements we removed.
for (i = 0; i < NN; i += 2) {
a = vs[i]->first + 0; assert( ! VG_(OSet_Contains)(oset2, &a) );
a = vs[i]->first + 1; assert( ! VG_(OSet_Contains)(oset2, &a) );
a = vs[i]->first + 2; assert( ! VG_(OSet_Contains)(oset2, &a) );
}
// Check that we can remove the remaining half of the elements, and that
// their values are as expected.
for (i = 1; i < NN; i += 2) {
a = vs[i]->first; assert( vs[i] == VG_(OSet_Remove)(oset2, &a) );
}
// Try some more operations on the empty OSet to ensure they don't screw up.
vg_assert( ! VG_(OSet_Contains)(oset2, &v) );
vg_assert( ! VG_(OSet_Lookup)(oset2, &v) );
vg_assert( ! VG_(OSet_Remove)(oset2, &v) );
vg_assert( ! VG_(OSet_Next)(oset2) );
vg_assert( 0 == VG_(OSet_Size)(oset2) );
// Re-insert all elements, to give OSet_Destroy something to work with.
for (i = 0; i < NN; i++) {
VG_(OSet_Insert)(oset2, vs[i]);
}
// Destroy the OSet
VG_(OSet_Destroy)(oset2);
}
//-----------------------------------------------------------------------
// main()
//-----------------------------------------------------------------------
int main(void)
{
example1();
example2();
return 0;
}